WO2016203983A1 - Endoscopic device - Google Patents

Endoscopic device Download PDF

Info

Publication number
WO2016203983A1
WO2016203983A1 PCT/JP2016/066541 JP2016066541W WO2016203983A1 WO 2016203983 A1 WO2016203983 A1 WO 2016203983A1 JP 2016066541 W JP2016066541 W JP 2016066541W WO 2016203983 A1 WO2016203983 A1 WO 2016203983A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
narrowband
generation unit
generated
Prior art date
Application number
PCT/JP2016/066541
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 光一郎
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2016203983A1 publication Critical patent/WO2016203983A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances

Definitions

  • the present invention relates to an endoscope apparatus.
  • an endoscope system that has a light emission mechanism that emits special light having different spectral characteristics between normal illumination and normal illumination light (for example, Patent Document 1).
  • the normal illumination light emitted from the light source is transmitted through a filter having spectral characteristics that are inclined upward or downward toward the long wavelength side with respect to the wavelength axis.
  • Special light is generated and a spectral image is generated. That is, for normal illumination light, by shifting the peak of spectral characteristics using a filter, special light is generated by artificially splitting one wavelength band into two narrow wavelength bands. Is generated.
  • Patent Literature 2 as a technique for acquiring an image by spectrally dividing light in a narrow wavelength band, the light color is switched to at least one of four colors, and the light irradiation direction on the object is switched to perform light.
  • An optical characteristic measuring apparatus and an image processing system for acquiring an image by selecting a wavelength by irradiating the light are disclosed.
  • JP 2008-23101 A Japanese Patent No. 4806638
  • the optical characteristic measuring apparatus of Patent Document 2 has many switching of irradiation direction and wavelength selection when acquiring a spectral image, and is not suitable for imaging a moving object.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an endoscope apparatus capable of acquiring a highly accurate spectral image.
  • an illumination unit that irradiates a living tissue with illumination light including light of each region with respect to R, G, and B, and at least two wavelength bands of R, G, and B that constitute the illumination light.
  • a narrowband light generating unit that generates 2 narrowband light having an intensity ratio of 1: 2 or more, and the narrowband light generated by the narrowband light generating unit and the reflection of the illumination light in the living tissue
  • An endoscope apparatus including an imaging unit that acquires an image signal based on light and an image generation unit that generates an image based on the image signal acquired by the imaging unit.
  • the narrowband light is generated by the narrowband light generation unit from the light of at least two wavelength bands of R, G, and B of the illumination light emitted from the illumination unit, and these narrowband lights are generated.
  • the imaging unit Is irradiated onto the living tissue, and the reflected light of the narrow band light in the living tissue is photographed by the imaging unit to obtain a plurality of image signals. That is, the image signal obtained by capturing the reflected light of a total of 5 or more wavelength bands, that is, the reflected light of at least four narrow-band lights generated by the narrow-band light generation unit and the reflected light of illumination light, respectively, by the imaging unit. Based on the above, an image is generated by the image generation unit.
  • Each of the two narrow-band lights generated by the narrow-band light generation unit is narrow-band light that is split from at least two wavelength bands of R, G, and B, and the intensity ratio is 1: 2 or more, respectively. . For this reason, a sufficient difference is obtained between the image signals acquired based on the reflected light by the narrow band light, and a highly accurate image signal can be acquired. Then, by synthesizing the image signals obtained in this way, it is possible to obtain a high-quality image in which light in each wavelength band of R, G, or B is reproduced in a balanced manner.
  • the image generation unit is acquired from reflected light of at least one narrowband light belonging to each of the R, G, and B wavelength bands among the narrowband light generated by the narrowband light generation unit.
  • a white light image may be generated based on the image signal.
  • generation part is obtained.
  • a combined white light image is generated. That is, the appearance of the living tissue can be observed with a white light image having a color reproduction similar to that obtained when white light is illuminated.
  • a white light image based on an image signal acquired from reflected light of all narrow band light generated by the narrow band light generation unit.
  • a white light image is generated by combining the image signals acquired from the reflected light of the all narrow band light generated by the narrow band light generation unit, and color reproduction close to the image obtained during white light illumination The appearance of the living tissue can be observed from the white light image.
  • the special light image can be generated based on the image signal acquired from the reflected light of any two or three of the narrowband lights generated by the narrowband light generator. .
  • a special light image that can observe a specific observation target component with high contrast is generated by combining image signals acquired by photographing reflected light from some narrowband light, A desired observation target component can be observed with the special light image.
  • the image generation unit is acquired from reflected light of at least one narrowband light belonging to each of the R, G, and B wavelength bands among the narrowband light generated by the narrowband light generation unit.
  • a white light image is generated based on the image signal, and based on the image signal acquired from the reflected light of any two or three of the narrow band lights generated by the narrow band light generation unit.
  • a special light image that can observe a specific observation target component with high contrast is generated by combining image signals acquired by photographing a part of reflected light in a narrow band, and narrow.
  • a white light image is generated by combining image signals acquired by photographing all the narrowband reflected light generated by the band light generation unit.
  • a plurality of generated images are displayed on the display unit at the same time, so that the appearance of the living tissue is always observed with a white light image with a color reproduction similar to that obtained with white light illumination, and the observation target component by the special light image It is good also as performing observation of.
  • FIG. 1 is an overall configuration diagram showing an endoscope apparatus according to an embodiment of the present invention. It is a figure which shows the transmittance
  • the endoscope apparatus includes an insertion unit 2 that is inserted into a living body, a light source unit 3 that is connected to the insertion unit 2, and a processor unit that is connected to the insertion unit 2. 4 and a monitor (display unit) 5 for displaying an image generated by the processor unit 4.
  • the insertion unit 2 includes an illumination optical system 21 that irradiates light input from the light source unit 3 toward the subject, and an imaging optical system (imaging unit) 22 that captures reflected light from the subject.
  • the illumination optical system 21 is arranged over the entire length of the insertion portion 2, and is guided by the light guide cable 23 that guides light incident from the light source portion 3 on the proximal end side to the distal end 2 a, and the light guide cable 23.
  • a diffusion optical system 24 that irradiates light forward from the distal end 2a of the insertion portion 2. That is, the light source unit 3 and the illumination optical system 21 constitute an illumination unit.
  • the imaging optical system 22 includes a lens 26 that forms an image on reflected light of the light irradiated by the illumination optical system 21 on the imaging element 25 and an imaging element 25 that captures the light collected by the lens 26.
  • the imaging element 25 is a color CCD provided with a filter that transmits blue, green, and red light to each pixel.
  • the image signal acquired by the image sensor 25 is converted into a digital signal by an A / D converter (not shown).
  • the light source unit 3 includes two sets of narrow bands from a xenon lamp 31 that generates white light and R, G, and B wavelength bands that form white light emitted from the xenon lamp 31.
  • a filter turret 32 having three spectral filters F1, F2, and F3 that cut out light, a condensing lens 33 that makes narrowband light cut out by the filter turret 32 incident on the light guide cable 23, a xenon lamp 31, and a filter And a light source control unit 34 for controlling the turret 32.
  • the three spectral filters F1, F2, and F3 are two-band filters each having two transmission wavelength bands.
  • the first spectral filter F1 has a transmission wavelength band of B1 (400 nm to 450 nm) and R2 (610 nm to 700 nm).
  • the second spectral filter F2 has a transmission wavelength band of G2 (530 nm to 610 nm) and R1 (560 nm to 610 nm).
  • the third spectral filter F3 has a transmission wavelength band of B2 (450 nm to 500 nm) and G1 (490 nm to 530 nm).
  • the broken line indicates the sensitivity of the color CCD 12.
  • the spectral filters F1, F2, and F3 are arranged on the optical path, the wavelength characteristics of the light imaged in the R, G, and B pixels of the color CCD 12 are different.
  • An image signal having different wavelength components can be obtained by combining three types of spectral filters F1, F2, and F3 and R, G, and B. That is, the narrow-band light generating unit that generates two narrow-band lights from at least two of the R, G, and B wavelength bands constituting the illumination light by the three spectral filters F1, F2, and F3. Is configured.
  • the light source control unit 34 controls the xenon lamp 31 and the filter turret 32 according to a control signal from the control unit 43 of the processor unit 4 described later.
  • the ratio of the intensity of the adjacent narrowband light to the intensity of the narrowband light is 50% or less.
  • the spectral filter has a steep spectral characteristic as shown in FIGS. 2A to 2C because a highly accurate spectral image can be obtained.
  • the wavelength region to be cut may have an inclination without becoming steep. That is, a spectral filter having steep spectral characteristics can obtain an image having spectral information as shown by a triangle T1 formed in the vicinity of a wavelength of 400 nm to 450 nm in FIG. 3B, whereas FIG. In the case of a spectral filter exhibiting such spectral characteristics, unnecessary information such as a triangle T2 formed in the vicinity of a wavelength of 450 nm to 470 nm in FIG. 3B is also included at the same time.
  • an image with a desired accuracy can be acquired. That is, if the intensity ratio of the two narrowband lights generated by the narrowband light generator is 1: 2 or more, an image with a desired accuracy can be acquired.
  • the blood vessel image should appear black due to absorption.
  • the contrast is lowered. If the ratio of the area of the triangle T2 to the area of the triangle T1 is 1: 2 or more, an image having necessary spectral information can be acquired without reducing the contrast.
  • the processor unit 4 processes the image signal stored in the memory 41 and the memory 41 that stores the image signal acquired by the image sensor 12 in association with the wavelength band of the narrowband light corresponding to the acquired image signal.
  • the image processing unit 42 generates a white light image and a special light image by combining image signals corresponding to each wavelength band stored in the memory 41.
  • the white light image can be generated by synthesizing all the image signals corresponding to the narrowband light of R1, R2, G1, G2, B1, and B2, and for each of R, B, and G, It can be generated by synthesizing at least one of the narrowband lights.
  • the special light image can be generated by synthesizing any two or three of the image signals corresponding to the narrowband light of R1, R2, G1, G2, B1, and B2.
  • the control unit 43 synchronizes the rotation of the filter turret 32 of the light source unit 3 and the photographing by the image sensor 25, stores the image signal acquired by the image sensor 25 in the memory 41, and reads it from the memory 41. Based on the image signal, the image processing unit 43 is controlled to generate any of the above images.
  • white light emitted from the xenon lamp 31 passes through one of the spectral filters F1, F2, and F3 arranged on the optical path by the rotation of the filter turret 32.
  • the spectral filters F1, F2, and F3 arranged on the optical path by the rotation of the filter turret 32.
  • two sets of narrowband light are cut out for each of the wavelength bands of R, G, and B, collected by the condenser lens 33, and incident on the incident end of the light guide cable 23.
  • Illumination light guided to the distal end 2 a of the insertion portion 2 by the light guide cable 23 is irradiated to the biological tissue disposed to face the distal end surface of the insertion portion 2, and reflected light from the biological tissue is imaged by the lens 26.
  • the image is picked up by the image pickup device 25.
  • the image sensor 25 is provided with a filter that transmits light in each wavelength band of R, G, and B for each pixel, and is included in each wavelength band of R, G, and B in the reflected light in the living tissue.
  • the reflected light in the wavelength band is photographed by the corresponding pixel.
  • a white light image composed of an image signal acquired from one narrow band light and a special light image composed of the selected image signal are generated and displayed on the monitor 5.
  • a white light image and a desired special light image are obtained by switching and arranging the three types of filters F1, F2, and F3 on the optical path.
  • Can do That is, it is not necessary to prepare as many filters as the number of images to be observed, and it is possible to easily acquire image signals for many wavelength bands and acquire high-accuracy images.
  • the white light image and the special light image can be displayed on the monitor 5 at the same time or can be switched appropriately, the state of the living tissue can be confirmed in the white light image having a color reproduction close to the image obtained at the time of the white light illumination.
  • the configuration in which the light source unit 3 includes the xenon lamp 31 and the three spectral filters F1, F2, and F3 has been described.
  • the configuration of the light source unit 3 is not limited to this, and various configurations are used. Can do.
  • an example of the light source unit will be described as a modification. In the following modifications, the same reference numerals are given to the same configurations as those of the endoscope apparatus according to the above-described embodiment, and the description thereof is omitted.
  • the light source unit according to the modified example 1 uses a xenon lamp or a halogen lamp as a light source, and the filter turret includes two spectral filters each having three bands (in the following description, a fourth spectral filter F4 and a fifth spectral filter).
  • the filter F5 may be provided (see FIG. 4).
  • the fourth spectral filter F4 has transmission wavelength bands of B2 (400 nm to 450 nm), G1 (490 nm to 530 nm), and R2 (610 nm to 700 nm).
  • the fifth spectral filter F5 has transmission wavelength bands of B1 (400 nm to 450 nm), G2 (530 nm to 610 nm), and R1 (560 nm to 610 nm).
  • the broken line indicates the sensitivity of the color CCD 12.
  • the fourth spectral filter F4 and the fifth spectral filter F5 are three-band filters each having three transmission wavelength bands.
  • the spectral filters F4 and F5 are arranged on the optical path, the wavelength characteristics of light photographed in the R, G, and B pixels of the color CCD 12 are different.
  • An image signal having different wavelength components can be obtained by combining the three types of spectral filters F4 and F5 and the three types of pixels R, G, and B. That is, the two spectral filters F4 and F5 constitute a narrowband light generating section that generates two narrowband lights from the R, G, and B wavelength bands that constitute the illumination light.
  • the xenon lamp 31 is exemplified as the light source, but other white light sources such as a halogen lamp, a mercury lamp, and a white LED can be used instead.
  • the light source unit 3 generates narrowband light by the xenon lamp 31 and the filter turret 32. Instead of this, the light source unit 3 has a six-color LED (illumination). Part and a narrow band generation part).
  • the first to sixth LEDs emit light corresponding to the wavelength bands B1, B2, G1, G2, R1, and R2, respectively. Yes.
  • the broken line indicates the sensitivity of the color CCD 12.
  • each LED it is possible to obtain an image signal based on narrowband light belonging to a total of six wavelength bands by combining and alternately lighting three LEDs that emit light in wavelength bands belonging to different colors. . That is, as shown in FIG. 7A, LEDs that emit B1, R1, and G1 lights are turned on at the first timing, and B2, R2, and G2 lights are emitted at the second timing as shown in FIG. 7B.
  • the LED to be turned on may be turned on. In this way, six types of image signals having different wavelength components can be obtained.
  • the light source unit 3 may be configured to include a five-color LED and two spectral filters.
  • one of the five LEDs emits light including all of the G wavelength band, and the remaining four LEDs have wavelength bands of B1, B2, R1, and R2, respectively.
  • the light corresponding to is emitted.
  • the two spectral filters a long wavelength cut filter near 540 nm and a short wavelength cut filter are applied.
  • the LEDs that emit B1 and G light are turned on at the first timing, and a long wavelength cut filter is applied, and as shown in FIG. 9B, R2 and G are turned on at the second timing. A light emitting LED is turned on and a short wavelength cut filter is applied. As shown in FIG. 9C, the LEDs emitting B2 and R1 light are turned on at the third timing. In this way, six types of image signals having different wavelength components can be obtained.
  • the light source unit 3 may be configured to include a two-color LED and two spectral filters.
  • the two LEDs are a V-LED and a white LED, and a spectral filter that does not transmit only near 530 to 610 nm and a filter that transmits only near 530 to 610 nm are applied. To do.
  • Imaging optical system Imaging unit
  • Image processing unit image generation unit
  • F1, F2, F3 spectral filters narrowband light generator

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

The present invention acquires a high-precision spectral image. An endoscope provided with: an illumination unit (3) for irradiating illumination light containing light from R, G, and B regions onto biomedical tissue; narrow-band light generation units (F1, F2, F3) for generating two narrow-band lights having an intensity ratio of 1:2 or more for at least each of two wavelength bands among R, G, and B constituting the illumination light; an imaging unit (25) for acquiring each image signal on the basis of the narrow-band light generated by the narrow-band generation unit and the reflected illumination light in the biomedical tissue; and an image generation unit (42) for generating an image on the basis of the image signals acquired by the imaging unit.

Description

内視鏡装置Endoscope device
 本発明は、内視鏡装置に関するものである。 The present invention relates to an endoscope apparatus.
 従来、通常照明と通常照明光とは分光特性が異なる特殊光とを発する発光機構を有し、特殊光観察を行う内視鏡システムが知られている(例えば、特許文献1)。特許文献1の内視鏡システムにおける発光機構では、光源から発せられた通常照明光を、波長軸に対して長波長側に上向き又は下向きに傾いた分光特性を有するフィルタにおいて透過させることで狭帯域の特殊光を生成し、分光画像を生成している。すなわち、通常照明光について、フィルタを用いて分光特性のピークをずらすことで、一つの波長帯域を疑似的に2つの狭波長帯域の光に分光した特殊光を生成し、これに基づいて分光画像を生成している。
 特許文献2には、狭波長帯域の光に分光して画像を取得する技術として、光の色を少なくとも4色の中からいずれかの色に切り替えると共に、物体に対する光の照射方向を切り替えて光を照射することで波長選択して画像を取得する光学特性測定装置及び画像処理システムが開示されている。
2. Description of the Related Art Conventionally, an endoscope system is known that has a light emission mechanism that emits special light having different spectral characteristics between normal illumination and normal illumination light (for example, Patent Document 1). In the light emission mechanism in the endoscope system of Patent Document 1, the normal illumination light emitted from the light source is transmitted through a filter having spectral characteristics that are inclined upward or downward toward the long wavelength side with respect to the wavelength axis. Special light is generated and a spectral image is generated. That is, for normal illumination light, by shifting the peak of spectral characteristics using a filter, special light is generated by artificially splitting one wavelength band into two narrow wavelength bands. Is generated.
In Patent Literature 2, as a technique for acquiring an image by spectrally dividing light in a narrow wavelength band, the light color is switched to at least one of four colors, and the light irradiation direction on the object is switched to perform light. An optical characteristic measuring apparatus and an image processing system for acquiring an image by selecting a wavelength by irradiating the light are disclosed.
特開2008-23101号公報JP 2008-23101 A 特許第4806738号公報Japanese Patent No. 4806638
 しかしながら、特許文献1の内視鏡システムでは、分光される特殊光間のズレ量が小さいため、特殊光に基づいて生成される分光画像間に差異が殆どみられない。従って、分光画像としての精度は充分とはいえない。
 特許文献2の光学特性測定装置等では、分光画像を取得するに際して照射方向の切替えや波長選択等が多く、動体を撮像するには適さない。
However, in the endoscope system of Patent Document 1, since the amount of deviation between the special lights to be dispersed is small, there is almost no difference between the spectral images generated based on the special lights. Therefore, it cannot be said that the accuracy as a spectral image is sufficient.
The optical characteristic measuring apparatus of Patent Document 2 has many switching of irradiation direction and wavelength selection when acquiring a spectral image, and is not suitable for imaging a moving object.
 本発明は上述した事情に鑑みてなされたものであって、高精度の分光画像を取得することのできる内視鏡装置を提供することを目的としている。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an endoscope apparatus capable of acquiring a highly accurate spectral image.
 本発明の一態様は、R,G,Bについて各領域の光を含む照明光を生体組織に照射する照明部と、前記照明光を構成するR,G,Bのうち少なくとも2の波長帯域の夫々について、強度比率が1:2以上となる2の狭帯域光を生成する狭帯域光生成部と、該狭帯域光生成部により生成された狭帯域光及び前記照明光の前記生体組織における反射光に基づいて夫々画像信号を取得する撮像部と、該撮像部により取得された前記画像信号に基づいて画像を生成する画像生成部と、を備える内視鏡装置である。 In one embodiment of the present invention, an illumination unit that irradiates a living tissue with illumination light including light of each region with respect to R, G, and B, and at least two wavelength bands of R, G, and B that constitute the illumination light. For each, a narrowband light generating unit that generates 2 narrowband light having an intensity ratio of 1: 2 or more, and the narrowband light generated by the narrowband light generating unit and the reflection of the illumination light in the living tissue An endoscope apparatus including an imaging unit that acquires an image signal based on light and an image generation unit that generates an image based on the image signal acquired by the imaging unit.
 本態様によれば、照明部から発せられた照明光のR,G,Bの少なくとも2の波長帯域の光から、狭帯域光生成部により夫々2の狭帯域光が生成され、これら狭帯域光が生体組織に照射され、生体組織における狭帯域光の反射光が撮像部により撮影されて複数の画像信号が取得される。すなわち、狭帯域光生成部により生成された少なくとも4の狭帯域光による反射光と照明光による反射光との計5以上の波長帯域の反射光が撮像部によって夫々撮影され、取得された画像信号に基づいて画像生成部により画像が生成される。 According to this aspect, the narrowband light is generated by the narrowband light generation unit from the light of at least two wavelength bands of R, G, and B of the illumination light emitted from the illumination unit, and these narrowband lights are generated. Is irradiated onto the living tissue, and the reflected light of the narrow band light in the living tissue is photographed by the imaging unit to obtain a plurality of image signals. That is, the image signal obtained by capturing the reflected light of a total of 5 or more wavelength bands, that is, the reflected light of at least four narrow-band lights generated by the narrow-band light generation unit and the reflected light of illumination light, respectively, by the imaging unit. Based on the above, an image is generated by the image generation unit.
 狭帯域光生成部により生成される夫々2つの狭帯域光は、R,G,Bの少なくとも2つの波長帯域から分光された狭帯域光であり、夫々強度比率が1:2以上となっている。このため、狭帯域光による反射光に基づいて取得される画像信号間に十分な差異が得られ高精度の画像信号を取得することができる。そして、このようにして得られた画像信号を合成することにより、R、GまたはBの各波長帯域の光をバランスよく再現した高品質の画像を取得することができる。 Each of the two narrow-band lights generated by the narrow-band light generation unit is narrow-band light that is split from at least two wavelength bands of R, G, and B, and the intensity ratio is 1: 2 or more, respectively. . For this reason, a sufficient difference is obtained between the image signals acquired based on the reflected light by the narrow band light, and a highly accurate image signal can be acquired. Then, by synthesizing the image signals obtained in this way, it is possible to obtain a high-quality image in which light in each wavelength band of R, G, or B is reproduced in a balanced manner.
 上記態様において、前記画像生成部が、前記狭帯域光生成部により生成された狭帯域光のうちR,G,Bの各波長帯域に属する夫々少なくとも1の狭帯域光による反射光から取得された画像信号に基づいて、白色光画像を生成することとしてもよい。 In the above aspect, the image generation unit is acquired from reflected light of at least one narrowband light belonging to each of the R, G, and B wavelength bands among the narrowband light generated by the narrowband light generation unit. A white light image may be generated based on the image signal.
 このようにすることで、狭帯域光生成部により生成された狭帯域光のうち、R,G,Bの各波長帯域に属する夫々少なくとも1の狭帯域光による反射光から取得された画像信号を組み合わせた白色光画像が生成される。つまり、白色光照明時に得られる画像に近い色再現の白色光画像によって生体組織の外観を観察することができる。 By doing in this way, the image signal acquired from the reflected light by at least 1 narrowband light which belongs to each wavelength band of R, G, B among the narrowband light produced | generated by the narrowband light production | generation part is obtained. A combined white light image is generated. That is, the appearance of the living tissue can be observed with a white light image having a color reproduction similar to that obtained when white light is illuminated.
 上記態様において、前記狭帯域光生成部により生成された全狭帯域光による反射光から取得された画像信号に基づいて白色光画像を生成することができる。
 このようにすることで、狭帯域光生成部により生成された全狭帯域光による反射光から取得された画像信号を組み合わせた白色光画像が生成され、白色光照明時に得られる画像に近い色再現の白色光画像によって生体組織の外観を観察することができる。
In the above aspect, it is possible to generate a white light image based on an image signal acquired from reflected light of all narrow band light generated by the narrow band light generation unit.
In this way, a white light image is generated by combining the image signals acquired from the reflected light of the all narrow band light generated by the narrow band light generation unit, and color reproduction close to the image obtained during white light illumination The appearance of the living tissue can be observed from the white light image.
 上記態様において、前記狭帯域光生成部により生成された狭帯域光のうち何れか2又は3の狭帯域光による反射光から取得された画像信号に基づいて、特殊光画像を生成することができる。 In the above aspect, the special light image can be generated based on the image signal acquired from the reflected light of any two or three of the narrowband lights generated by the narrowband light generator. .
 このようにすることで、一部の狭帯域光による反射光を撮影することにより取得された画像信号を組み合わせて、特定の観察対象成分を高コントラストで観察できる特殊光画像が生成されるので、特殊光画像により所望の観察対象成分の観察を行うことができる。 By doing in this way, a special light image that can observe a specific observation target component with high contrast is generated by combining image signals acquired by photographing reflected light from some narrowband light, A desired observation target component can be observed with the special light image.
 上記態様において、前記画像生成部が、前記狭帯域光生成部により生成された狭帯域光のうちR,G,Bの各波長帯域に属する夫々少なくとも1の狭帯域光による反射光から取得された画像信号に基づいて白色光画像を生成すると共に、前記狭帯域光生成部により生成された狭帯域光のうち何れか2つ又は3つの狭帯域光による反射光から取得された画像信号に基づいて特殊光画像を生成し、前記白色光画像及び前記特殊光画像のうち、何れか2以上の画像を同時に表示する表示部を備えることしてもよい。 In the above aspect, the image generation unit is acquired from reflected light of at least one narrowband light belonging to each of the R, G, and B wavelength bands among the narrowband light generated by the narrowband light generation unit. A white light image is generated based on the image signal, and based on the image signal acquired from the reflected light of any two or three of the narrow band lights generated by the narrow band light generation unit. You may provide the display part which produces | generates a special light image and displays any two or more images simultaneously among the said white light image and the said special light image.
 このようにすることで、一部の狭帯域の反射光を撮影することにより取得された画像信号を組み合わせて、特定の観察対象成分を高コントラストで観察できる特殊光画像が生成されるとともに、狭帯域光生成部により生成された全ての狭帯域の反射光が撮影されることにより取得された画像信号を組み合わせた白色光画像が生成される。生成された複数の画像が表示部に同時に表示されることにより、白色光照明時に得られる画像に近い色再現の白色光画像によって生体組織の外観を常時観察しながら、特殊光画像による観察対象成分の観察を行うこととしてもよい。 In this way, a special light image that can observe a specific observation target component with high contrast is generated by combining image signals acquired by photographing a part of reflected light in a narrow band, and narrow. A white light image is generated by combining image signals acquired by photographing all the narrowband reflected light generated by the band light generation unit. A plurality of generated images are displayed on the display unit at the same time, so that the appearance of the living tissue is always observed with a white light image with a color reproduction similar to that obtained with white light illumination, and the observation target component by the special light image It is good also as performing observation of.
 本発明によれば、高精度の分光画像を取得することができるという効果を奏する。 According to the present invention, it is possible to acquire a highly accurate spectral image.
本発明の一実施形態に係る内視鏡装置を示す全体構成図である。1 is an overall configuration diagram showing an endoscope apparatus according to an embodiment of the present invention. 図1の内視鏡装置の光源部に備えられる第1の分光フィルタの透過率特性を示す図である。It is a figure which shows the transmittance | permeability characteristic of the 1st spectral filter with which the light source part of the endoscope apparatus of FIG. 1 is equipped. 図1の内視鏡装置の光源部に備えられる第2の分光フィルタの透過率特性を示す図である。It is a figure which shows the transmittance | permeability characteristic of the 2nd spectral filter with which the light source part of the endoscope apparatus of FIG. 1 is equipped. 図1の内視鏡装置の光源部に備えられる第3の分光フィルタの透過率特性を示す図である。It is a figure which shows the transmittance | permeability characteristic of the 3rd spectral filter with which the light source part of the endoscope apparatus of FIG. 1 is equipped. 分光フィルタの透過率特性の一例を示す図である。It is a figure which shows an example of the transmittance | permeability characteristic of a spectral filter. 分光フィルタの透過率特性の一例を示す図である。It is a figure which shows an example of the transmittance | permeability characteristic of a spectral filter. 図1の内視鏡装置のフィルタターレットの正面図である。It is a front view of the filter turret of the endoscope apparatus of FIG. 本発明の実施形態に係る内視鏡装置の変形例1における光源部に備えられる第4の分光フィルタの透過率特性を示す図である。It is a figure which shows the transmittance | permeability characteristic of the 4th spectral filter with which the light source part in the modification 1 of the endoscope apparatus which concerns on embodiment of this invention is equipped. 本発明の実施形態に係る内視鏡装置の変形例1における光源部に備えられる第5の分光フィルタの透過率特性を示す図である。It is a figure which shows the transmittance | permeability characteristic of the 5th spectral filter with which the light source part in the modification 1 of the endoscope apparatus which concerns on embodiment of this invention is equipped. 本発明の実施形態に係る内視鏡装置の変形例2における光源部として用いる6色LEDの強度の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the intensity | strength of 6 color LED used as a light source part in the modification 2 of the endoscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡装置の変形例2において6色LEDを切替えて点灯させる場合の波長特性を示す図である。It is a figure which shows the wavelength characteristic in the case of switching and lighting 6 color LED in the modification 2 of the endoscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡装置の変形例2において6色LEDを切替えて点灯させる場合の波長特性を示す図である。It is a figure which shows the wavelength characteristic in the case of switching and lighting 6 color LED in the modification 2 of the endoscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡装置の変形例3における光源部として用いる5色LEDの強度の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the intensity | strength of 5-color LED used as a light source part in the modification 3 of the endoscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡装置の変形例3において5色LEDを切替えて点灯させると共に、分光フィルタを適用した場合の波長特性を示す図である。It is a figure which shows the wavelength characteristic at the time of applying a spectral filter while switching and lighting 5 color LED in the modification 3 of the endoscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡装置の変形例3において5色LEDを切替えて点灯させると共に、分光フィルタを適用した場合の波長特性を示す図である。It is a figure which shows the wavelength characteristic at the time of applying a spectral filter while switching and lighting 5 color LED in the modification 3 of the endoscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡装置の変形例3において5色LEDを切替えて点灯させると共に、分光フィルタを適用した場合の波長特性を示す図である。It is a figure which shows the wavelength characteristic at the time of applying a spectral filter while switching and lighting 5 color LED in the modification 3 of the endoscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡装置の変形例4における光源部として用いる2色LEDの強度の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the intensity | strength of 2 color LED used as a light source part in the modification 4 of the endoscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡装置の変形例4において2色LEDを切替えて点灯させると共に、分光フィルタを適用した場合の波長特性を示す図である。It is a figure which shows the wavelength characteristic at the time of applying a spectral filter while switching and lighting 2 color LED in the modification 4 of the endoscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡装置の変形例4において2色LEDを切替えて点灯させると共に、分光フィルタを適用した場合の波長特性を示す図である。It is a figure which shows the wavelength characteristic at the time of applying a spectral filter while switching and lighting 2 color LED in the modification 4 of the endoscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る内視鏡装置の変形例4において2色LEDを切替えて点灯させると共に、分光フィルタを適用した場合の波長特性を示す図である。It is a figure which shows the wavelength characteristic at the time of applying a spectral filter while switching and lighting 2 color LED in the modification 4 of the endoscope apparatus which concerns on embodiment of this invention.
 本発明の一実施形態に係る内視鏡装置について図面を参照して以下に説明する。
 図1に示すように、本実施形態に係る内視鏡装置は、生体内に挿入される挿入部2と、挿入部2に接続された光源部3と、挿入部2に接続されたプロセッサ部4と、プロセッサ部4により生成された画像を表示するモニタ(表示部)5とを備えている。
An endoscope apparatus according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the endoscope apparatus according to this embodiment includes an insertion unit 2 that is inserted into a living body, a light source unit 3 that is connected to the insertion unit 2, and a processor unit that is connected to the insertion unit 2. 4 and a monitor (display unit) 5 for displaying an image generated by the processor unit 4.
 挿入部2は、光源部3から入力された光を被写体に向けて照射する照明光学系21と、被写体からの反射光を撮影する撮像光学系(撮像部)22とを備えている。
 照明光学系21は、挿入部2の全長にわたって配置され、基端側の光源部3から入射された光を先端2aまで導光するライトガイドケーブル23と、該ライトガイドケーブル23により導光された光を挿入部2の先端2aから前方に照射する拡散光学系24とを備えている。つまり、光源部3及び照明光学系21により照明部が構成されている。
The insertion unit 2 includes an illumination optical system 21 that irradiates light input from the light source unit 3 toward the subject, and an imaging optical system (imaging unit) 22 that captures reflected light from the subject.
The illumination optical system 21 is arranged over the entire length of the insertion portion 2, and is guided by the light guide cable 23 that guides light incident from the light source portion 3 on the proximal end side to the distal end 2 a, and the light guide cable 23. And a diffusion optical system 24 that irradiates light forward from the distal end 2a of the insertion portion 2. That is, the light source unit 3 and the illumination optical system 21 constitute an illumination unit.
 撮像光学系22は、照明光学系21により照射された光の生体組織における反射光を撮像素子25に結像するレンズ26と、該レンズ26により集光された光を撮影する撮像素子25とを備えている。撮像素子25は、各画素にそれぞれ青色、緑色、赤色の光を透過するフィルタを備えたカラーCCDである。撮像素子25により取得された画像信号は図示しないA/D変換器によりデジタル信号に変換される。 The imaging optical system 22 includes a lens 26 that forms an image on reflected light of the light irradiated by the illumination optical system 21 on the imaging element 25 and an imaging element 25 that captures the light collected by the lens 26. I have. The imaging element 25 is a color CCD provided with a filter that transmits blue, green, and red light to each pixel. The image signal acquired by the image sensor 25 is converted into a digital signal by an A / D converter (not shown).
 光源部3は、図1に示すように、白色光を発生するキセノンランプ31と、キセノンランプ31から発せられた白色光を構成するR,G,Bの各波長帯域から夫々2組の狭帯域光を切り出す3つの分光フィルタF1,F2,F3を備えたフィルタターレット32と、該フィルタターレット32により切り出された狭帯域光をライトガイドケーブル23に入射させる集光レンズ33と、キセノンランプ31及びフィルタターレット32を制御する光源制御部34とを備えている。3つの分光フィルタF1,F2,F3は、夫々2つの透過波長帯域を有する2バンドフィルタである。 As shown in FIG. 1, the light source unit 3 includes two sets of narrow bands from a xenon lamp 31 that generates white light and R, G, and B wavelength bands that form white light emitted from the xenon lamp 31. A filter turret 32 having three spectral filters F1, F2, and F3 that cut out light, a condensing lens 33 that makes narrowband light cut out by the filter turret 32 incident on the light guide cable 23, a xenon lamp 31, and a filter And a light source control unit 34 for controlling the turret 32. The three spectral filters F1, F2, and F3 are two-band filters each having two transmission wavelength bands.
 図2Aに示すように、第1の分光フィルタF1は、B1(400nmから450nm)、及びR2(610nmから700nm)の透過波長帯域を有している。
 図2Bに示すように、第2の分光フィルタF2は、G2(530nm~610nm)及びR1(560nmから610nm)の透過波長帯域を有している。
 図2Cに示すように、第3の分光フィルタF3は、B2(450nm~500nm)及びG1(490nmから530nm)の透過波長帯域を有している。なお、図2A、図2B及び図2Cにおいて、破線はカラーCCD12の感度を示している。
As shown in FIG. 2A, the first spectral filter F1 has a transmission wavelength band of B1 (400 nm to 450 nm) and R2 (610 nm to 700 nm).
As shown in FIG. 2B, the second spectral filter F2 has a transmission wavelength band of G2 (530 nm to 610 nm) and R1 (560 nm to 610 nm).
As shown in FIG. 2C, the third spectral filter F3 has a transmission wavelength band of B2 (450 nm to 500 nm) and G1 (490 nm to 530 nm). 2A, 2B and 2C, the broken line indicates the sensitivity of the color CCD 12.
 各分光フィルタF1,F2,F3が光路上に配置されたときに、カラーCCD12のR,G,Bの各画素において撮影される光の波長特性が夫々異なっている。そして、3種類の分光フィルタF1,F2,F3及びR,G,Bの3種類の画素の組み合わせにより、異なる波長成分の画像信号を得ることができるようになっている。すなわち、3つの分光フィルタF1,F2,F3によって、照明光を構成するR,G,Bの各波長帯域のうち少なくとも2の波長帯域から夫々2の狭帯域光を生成する、狭帯域光生成部が構成されている。 When the spectral filters F1, F2, and F3 are arranged on the optical path, the wavelength characteristics of the light imaged in the R, G, and B pixels of the color CCD 12 are different. An image signal having different wavelength components can be obtained by combining three types of spectral filters F1, F2, and F3 and R, G, and B. That is, the narrow-band light generating unit that generates two narrow-band lights from at least two of the R, G, and B wavelength bands constituting the illumination light by the three spectral filters F1, F2, and F3. Is configured.
 光源制御部34は、後述するプロセッサ部4の制御部43からの制御信号に従って、キセノンランプ31及びフィルタターレット32を制御する。狭帯域光の強度に対する隣接する狭帯域光の強度の割合が50%以下となるようになっている。 The light source control unit 34 controls the xenon lamp 31 and the filter turret 32 according to a control signal from the control unit 43 of the processor unit 4 described later. The ratio of the intensity of the adjacent narrowband light to the intensity of the narrowband light is 50% or less.
 分光フィルタは、図2A~図2Cに示すように急峻な分光特性を有している方が、精度の高い分光画像を得ることができるため好ましい。換言すると、急峻であればある程、良好な分光画像が得られ、傾きがつくほど精度が劣化した分光画像が得られる。 2) It is preferable that the spectral filter has a steep spectral characteristic as shown in FIGS. 2A to 2C because a highly accurate spectral image can be obtained. In other words, the steeper the better, the better the spectral image, and the more the tilt, the less accurate the spectral image.
 しかしながら、フィルタの製造上、例えば、図3Aに示すようにカットする波長の領域が急峻にならずに傾きをもつことがある。すなわち、急峻な分光特性を有する分光フィルタであれば、図3B中の波長400nm~450nm近傍に形成される三角形T1に示すような分光情報を持つ画像を得ることができるのに対し、図3Aのような分光特性を示す分光フィルタの場合には、図3B中の波長450nm~470nm近傍に形成される三角形T2のような不要な情報も同時に入っていることになる。 However, in the manufacture of the filter, for example, as shown in FIG. 3A, the wavelength region to be cut may have an inclination without becoming steep. That is, a spectral filter having steep spectral characteristics can obtain an image having spectral information as shown by a triangle T1 formed in the vicinity of a wavelength of 400 nm to 450 nm in FIG. 3B, whereas FIG. In the case of a spectral filter exhibiting such spectral characteristics, unnecessary information such as a triangle T2 formed in the vicinity of a wavelength of 450 nm to 470 nm in FIG. 3B is also included at the same time.
 この「三角形T2の面積」対「三角形T1の面積」が1:2よりも大きければ、所望の精度の画像を取得することができる。つまり、狭帯域光生成部により生成される夫々2つの狭帯域光の強度比率が1:2以上であれば、所望の精度の画像を取得することができる。 If the “area of the triangle T2” vs. the “area of the triangle T1” is larger than 1: 2, an image with a desired accuracy can be acquired. That is, if the intensity ratio of the two narrowband lights generated by the narrowband light generator is 1: 2 or more, an image with a desired accuracy can be acquired.
 つまり、この場合、必要としている分光特性である三角形T1に係る情報以外の、不要な分光特性を示す三角形T2の情報が混ざってしまうと、必要としている分光画像のコントラストが落ちてしまう。 That is, in this case, if information on the triangle T2 indicating unnecessary spectral characteristics other than the information related to the triangle T1 that is required spectral characteristics is mixed, the contrast of the required spectral image is lowered.
 例えば、415nm付近は、ヘモグロビンの吸光度が高い波長であるため、血管像は吸収により黒く見えるはずであるが、それ以外の波長が混ざることによって、反射光が発生し、コントラストを落とすこととなる。
三角形T2の面積と三角形T1の面積の比率が1:2以上であれば、コントラストを落とすことなく、必要な分光情報をもつ画像を取得することができる。
For example, in the vicinity of 415 nm, since the absorbance of hemoglobin is high, the blood vessel image should appear black due to absorption. However, when other wavelengths are mixed, reflected light is generated and the contrast is lowered.
If the ratio of the area of the triangle T2 to the area of the triangle T1 is 1: 2 or more, an image having necessary spectral information can be acquired without reducing the contrast.
 プロセッサ部4は、撮像素子12により取得された画像信号と、取得された画像信号に対応する狭帯域光の波長帯域を対応付けて記憶するメモリ41と、メモリ41に記憶された画像信号を処理する画像処理部(画像生成部)42と、光源制御部34、撮像素子25、メモリ41及び画像処理部42を制御する制御部143とを備えている。
 画像処理部42は、メモリ41に記憶された各波長帯域に対応する画像信号を組み合わせることにより、白色光画像及び特殊光画像を生成する。
The processor unit 4 processes the image signal stored in the memory 41 and the memory 41 that stores the image signal acquired by the image sensor 12 in association with the wavelength band of the narrowband light corresponding to the acquired image signal. An image processing unit (image generation unit) 42, a light source control unit 34, an image sensor 25, a memory 41, and a control unit 143 that controls the image processing unit 42.
The image processing unit 42 generates a white light image and a special light image by combining image signals corresponding to each wavelength band stored in the memory 41.
 白色光画像としては、R1,R2,G1,G2,B1,B2の狭帯域光に対応する画像信号の全てを合成して生成することができる他、R,B,Gの夫々について、2つの狭帯域光のうち少なくとも一方を合成して生成することができる。特殊光画像としては、R1,R2,G1,G2,B1,B2の狭帯域光に対応する画像信号のうち、何れか2又は3の画像信号を合成して生成することができる。 The white light image can be generated by synthesizing all the image signals corresponding to the narrowband light of R1, R2, G1, G2, B1, and B2, and for each of R, B, and G, It can be generated by synthesizing at least one of the narrowband lights. The special light image can be generated by synthesizing any two or three of the image signals corresponding to the narrowband light of R1, R2, G1, G2, B1, and B2.
 制御部43は、光源部3のフィルタターレット32の回転と撮像素子25による撮影とを同期して行わせるとともに、撮像素子25により取得された画像信号をメモリ41に記憶させ、メモリ41から読み出した画像信号に基づいて、上記いずれかの画像を生成するように画像処理部43を制御する。 The control unit 43 synchronizes the rotation of the filter turret 32 of the light source unit 3 and the photographing by the image sensor 25, stores the image signal acquired by the image sensor 25 in the memory 41, and reads it from the memory 41. Based on the image signal, the image processing unit 43 is controlled to generate any of the above images.
 このように構成された本実施形態に係る内視鏡装置の作用について、以下に説明する。
 本実施形態に係る内視鏡装置1によれば、キセノンランプ31から発せられた白色光がフィルタターレット32の回転により光路上に配置された何れかの分光フィルタF1,F2,F3を通過することにより、R,G,Bの各波長帯域につき夫々2組の狭帯域光が切り出され、集光レンズ33によって集光されてライトガイドケーブル23の入射端に入射される。
The operation of the endoscope apparatus according to this embodiment configured as described above will be described below.
According to the endoscope apparatus 1 according to the present embodiment, white light emitted from the xenon lamp 31 passes through one of the spectral filters F1, F2, and F3 arranged on the optical path by the rotation of the filter turret 32. Thus, two sets of narrowband light are cut out for each of the wavelength bands of R, G, and B, collected by the condenser lens 33, and incident on the incident end of the light guide cable 23.
 ライトガイドケーブル23によって挿入部2の先端2aまで導光された照明光は、挿入部2の先端面に対向配置されている生体組織に照射され、生体組織における反射光が、レンズ26によって結像され、撮像素子25により撮影される。
 撮像素子25には、画素ごとにR,G,Bの各波長帯域の光を透過させるフィルタが配置されており、生体組織における反射光の内、R,G,Bの各波長帯域に含まれる波長帯域の反射光が対応する画素により撮影される。
Illumination light guided to the distal end 2 a of the insertion portion 2 by the light guide cable 23 is irradiated to the biological tissue disposed to face the distal end surface of the insertion portion 2, and reflected light from the biological tissue is imaged by the lens 26. The image is picked up by the image pickup device 25.
The image sensor 25 is provided with a filter that transmits light in each wavelength band of R, G, and B for each pixel, and is included in each wavelength band of R, G, and B in the reflected light in the living tissue. The reflected light in the wavelength band is photographed by the corresponding pixel.
 すなわち、R2,B1の波長帯域を透過させる第1の分光フィルタF1が光路上に配置されているときには、撮像素子25においては、R2,B1の波長帯域を有する反射光が対応する画素において撮影され、2つの画像信号が取得され、メモリ41に記憶される。 That is, when the first spectral filter F1 that transmits the wavelength band of R2 and B1 is arranged on the optical path, the reflected light having the wavelength band of R2 and B1 is photographed in the corresponding pixel in the image sensor 25. Two image signals are acquired and stored in the memory 41.
 R1,G2の波長帯域を透過させる第2の分光フィルタF2が光路上に配置されているときには、撮像素子25においては、R1,G2の波長帯域を有する反射光が対応する画素において撮影され、2つの画像信号が取得され、メモリ41に記憶される。G1,B2の波長帯域を透過させる第3の分光フィルタF3が光路上に配置されているときには、撮像素子25においては、G1,B2の波長帯域を有する反射光が対応する画素において撮影され、2つの画像信号が取得され、メモリ41に記憶される。 When the second spectral filter F2 that transmits the wavelength bands of R1 and G2 is arranged on the optical path, reflected light having the wavelength bands of R1 and G2 is photographed in the corresponding pixels in the image sensor 25. Two image signals are acquired and stored in the memory 41. When the third spectral filter F3 that transmits the wavelength bands of G1 and B2 is arranged on the optical path, reflected light having the wavelength bands of G1 and B2 is photographed in the corresponding pixels in the image sensor 25. Two image signals are acquired and stored in the memory 41.
 メモリ41に記憶された6つの波長帯域に対応する6種類の画像信号は、メモリ41から画像処理部42に出力され、画像処理部42において、R,G,Bの各波長帯域に属する夫々少なくとも1の狭帯域光から取得された画像信号で構成された白色光画像と、選択された画像信号で構成された特殊光画像とが生成され、モニタ5に表示される。 Six types of image signals corresponding to the six wavelength bands stored in the memory 41 are output from the memory 41 to the image processing unit 42, and the image processing unit 42 at least belongs to each of the R, G, and B wavelength bands. A white light image composed of an image signal acquired from one narrow band light and a special light image composed of the selected image signal are generated and displayed on the monitor 5.
 このように、本実施形態に係る内視鏡装置によれば、3種類のフィルタF1,F2,F3を光路上に切り替えて配置することにより、白色光画像と所望の特殊光画像を取得することができる。つまり、観察する画像の数と同じだけフィルタを用意する必要がなく、簡便に多くの波長帯域についての画像信号を取得して、高精度の画像を取得することができる。 As described above, according to the endoscope apparatus according to the present embodiment, a white light image and a desired special light image are obtained by switching and arranging the three types of filters F1, F2, and F3 on the optical path. Can do. That is, it is not necessary to prepare as many filters as the number of images to be observed, and it is possible to easily acquire image signals for many wavelength bands and acquire high-accuracy images.
 白色光画像と特殊光画像とをモニタ5に同時に表示したり、適宜切り替えて表示することができるので、白色光照明時に得られる画像に近い色再現の白色光画像において、生体組織の状態を確認しながら、観察対象成分を強調した特殊光画像による観察を行うこともできる。 Since the white light image and the special light image can be displayed on the monitor 5 at the same time or can be switched appropriately, the state of the living tissue can be confirmed in the white light image having a color reproduction close to the image obtained at the time of the white light illumination. However, it is also possible to perform observation with a special light image in which the observation target component is emphasized.
 上記した実施形態においては、光源部3がキセノンランプ31と3つの分光フィルタF1,F2,F3とを備える構成について説明したが、光源部3の構成はこれに限られず、種々の構成とすることができる。以下、光源部の例について、変形例として説明する。以下の各変形例において、上述した実施形態に係る内視鏡装置と共通の構成については同一符号を付し、その説明を省略する。 In the above-described embodiment, the configuration in which the light source unit 3 includes the xenon lamp 31 and the three spectral filters F1, F2, and F3 has been described. However, the configuration of the light source unit 3 is not limited to this, and various configurations are used. Can do. Hereinafter, an example of the light source unit will be described as a modification. In the following modifications, the same reference numerals are given to the same configurations as those of the endoscope apparatus according to the above-described embodiment, and the description thereof is omitted.
 (変形例1)
 変形例1に係る光源部は、光源としてキセノンランプ又はハロゲンランプを適用し、フィルタターレットには、夫々3バンドの2つの分光フィルタ(以下の説明において、第4の分光フィルタF4及び第5の分光フィルタF5とする)を設ける構成とすることができる(図4参照)。
(Modification 1)
The light source unit according to the modified example 1 uses a xenon lamp or a halogen lamp as a light source, and the filter turret includes two spectral filters each having three bands (in the following description, a fourth spectral filter F4 and a fifth spectral filter). The filter F5 may be provided (see FIG. 4).
 第4の分光フィルタF4は、図5Aに示すように、B2(400nmから450nm)、G1(490nmから530nm)及びR2(610nmから700nm)の透過波長帯域を有している。また、第5の分光フィルタF5は、図5Bに示すように、B1(400nmから450nm)、G2(530nm~610nm)及びR1(560nmから610nm)の透過波長帯域を有している。図中、破線はカラーCCD12の感度を示している。第4の分光フィルタF4及び第5の分光フィルタF5は、夫々3つの透過波長帯域を有する3バンドフィルタである。 As shown in FIG. 5A, the fourth spectral filter F4 has transmission wavelength bands of B2 (400 nm to 450 nm), G1 (490 nm to 530 nm), and R2 (610 nm to 700 nm). Further, as shown in FIG. 5B, the fifth spectral filter F5 has transmission wavelength bands of B1 (400 nm to 450 nm), G2 (530 nm to 610 nm), and R1 (560 nm to 610 nm). In the figure, the broken line indicates the sensitivity of the color CCD 12. The fourth spectral filter F4 and the fifth spectral filter F5 are three-band filters each having three transmission wavelength bands.
 各分光フィルタF4,F5が光路上に配置されたときに、カラーCCD12のR,G,Bの各画素において撮影される光の波長特性が夫々異なっている。そして、3種類の分光フィルタF4,F5及びR,G,Bの3種類の画素の組み合わせにより、異なる波長成分の画像信号を得ることができるようになっている。すなわち、2つの分光フィルタF4,F5によって、照明光を構成するR,G,Bの各波長帯域から夫々2の狭帯域光を生成する狭帯域光生成部が構成されている。 When the spectral filters F4 and F5 are arranged on the optical path, the wavelength characteristics of light photographed in the R, G, and B pixels of the color CCD 12 are different. An image signal having different wavelength components can be obtained by combining the three types of spectral filters F4 and F5 and the three types of pixels R, G, and B. That is, the two spectral filters F4 and F5 constitute a narrowband light generating section that generates two narrowband lights from the R, G, and B wavelength bands that constitute the illumination light.
 そして、2種類の分光フィルタF4,F5及びR,G,Bの3種類の画素の組み合わせにより、それぞれ異なる波長成分の6種類の画像信号を得ることができるようになっている。 And, by combining the two types of spectral filters F4 and F5 and the three types of pixels R, G and B, six types of image signals having different wavelength components can be obtained.
 上述の例において、光源としてキセノンランプ31を例示したが、これに代えて、ハロゲンランプ、水銀ランプ、白色LED等の他の白色光源を採用することができる。 In the above example, the xenon lamp 31 is exemplified as the light source, but other white light sources such as a halogen lamp, a mercury lamp, and a white LED can be used instead.
(変形例2)
 上記実施形態及びその変形例1においては、光源部3が、キセノンランプ31とフィルタターレット32とによって狭帯域光を生成することとしたが、これに代えて、光源部3が6色LED(照明部及び狭帯域生成部)により構成することができる。
(Modification 2)
In the above-described embodiment and its modification example 1, the light source unit 3 generates narrowband light by the xenon lamp 31 and the filter turret 32. Instead of this, the light source unit 3 has a six-color LED (illumination). Part and a narrow band generation part).
 この場合に、図6に示すように、例えば、第1のLEDから第6のLEDは、それぞれ、波長帯域B1,B2,G1,G2,R1,R2に対応する光を射出するようになっている。なお、図6中、破線はカラーCCD12の感度を示している。 In this case, as shown in FIG. 6, for example, the first to sixth LEDs emit light corresponding to the wavelength bands B1, B2, G1, G2, R1, and R2, respectively. Yes. In FIG. 6, the broken line indicates the sensitivity of the color CCD 12.
 そして、各LEDについて、異なる色に属する波長帯域の光を発光する3つのLEDを組み合わせ交互に切り替えて点灯させること、計6の波長帯域に属する狭帯域光に基づく画像信号を取得することができる。
 すなわち、図7Aに示すように、第1のタイミングでB1,R1,G1の光を発光するLEDを点灯させ、図7Bに示すように、第2のタイミングでB2,R2,G2の光を発光するLEDを点灯させることとすればよい。
 このようにすることで、それぞれ異なる波長成分の6種類の画像信号を得ることができる。
Then, for each LED, it is possible to obtain an image signal based on narrowband light belonging to a total of six wavelength bands by combining and alternately lighting three LEDs that emit light in wavelength bands belonging to different colors. .
That is, as shown in FIG. 7A, LEDs that emit B1, R1, and G1 lights are turned on at the first timing, and B2, R2, and G2 lights are emitted at the second timing as shown in FIG. 7B. The LED to be turned on may be turned on.
In this way, six types of image signals having different wavelength components can be obtained.
(変形例3)
 光源部3が、5色LEDと2つの分光フィルタを備える構成とすることもできる。
 この場合、例えば、図8に示すように、5つのLEDのうち、1つがGの波長帯域の全てを含む光を射出し、残り4つのLEDが、夫々B1,B2,R1,R2の波長帯域に対応する光を射出するようになっている。
 2つの分光フィルタとしては、540nm付近の長波長カットフィルタと短波長カットフィルタを適用する。
(Modification 3)
The light source unit 3 may be configured to include a five-color LED and two spectral filters.
In this case, for example, as shown in FIG. 8, one of the five LEDs emits light including all of the G wavelength band, and the remaining four LEDs have wavelength bands of B1, B2, R1, and R2, respectively. The light corresponding to is emitted.
As the two spectral filters, a long wavelength cut filter near 540 nm and a short wavelength cut filter are applied.
 そして、図9Aに示すように、第1のタイミングでB1とGの光を発光するLEDを点灯させると共に長波長カットフィルタを適用し、図9Bに示すように第2のタイミングでR2とGの光を発光するLEDを点灯させると共に短波長カットフィルタを適用する。図9Cに示すように第3のタイミングでB2とR1の光を発光するLEDを点灯させる。
 このようにすることで、それぞれ異なる波長成分の6種類の画像信号を得ることができる。
Then, as shown in FIG. 9A, the LEDs that emit B1 and G light are turned on at the first timing, and a long wavelength cut filter is applied, and as shown in FIG. 9B, R2 and G are turned on at the second timing. A light emitting LED is turned on and a short wavelength cut filter is applied. As shown in FIG. 9C, the LEDs emitting B2 and R1 light are turned on at the third timing.
In this way, six types of image signals having different wavelength components can be obtained.
(変形例4)
 光源部3が、2色LEDと2つの分光フィルタを備える構成とすることもできる。
 この場合、例えば、図10に示すように、2つのLEDはV-LED及び白色LEDであり、分光フィルタは、530nmから610nm付近のみ透過しないものと、530nmから610nm付近のみ透過するものとを適用する。
(Modification 4)
The light source unit 3 may be configured to include a two-color LED and two spectral filters.
In this case, for example, as shown in FIG. 10, the two LEDs are a V-LED and a white LED, and a spectral filter that does not transmit only near 530 to 610 nm and a filter that transmits only near 530 to 610 nm are applied. To do.
 そして、図11Aに示すように、第1のタイミングでV-LEDのみを点灯させ、図11Bに示すように第2のタイミングで白色LEDのみを点灯させると共に530nmから610nm付近のみ透過しないフィルタを適用する。図11Cに示すように第3のタイミングで白色LEDのみを点灯させると共に530nmから610nm付近のみ透過するフィルタを適用する。
 このようにすることで、それぞれ異なる波長成分の6種類の画像信号を得ることができる。
Then, as shown in FIG. 11A, only the V-LED is turned on at the first timing, only the white LED is turned on at the second timing as shown in FIG. 11B, and a filter that does not transmit only around 530 nm to 610 nm is applied. To do. As shown in FIG. 11C, a filter that turns on only the white LED at the third timing and transmits only around 530 to 610 nm is applied.
In this way, six types of image signals having different wavelength components can be obtained.
 3 光源部(照明部)
 5 モニタ(表示部)
 21 照明光学系(照明部)
 25 撮影光学系(撮像部)
 42 画像処理部(画像生成部)
 F1,F2,F3 分光フィルタ(狭帯域光生成部)
3 Light source part (illumination part)
5 Monitor (display section)
21 Illumination optical system (illumination unit)
25. Imaging optical system (imaging unit)
42 Image processing unit (image generation unit)
F1, F2, F3 spectral filters (narrowband light generator)

Claims (5)

  1.  R,G,Bについて各領域の光を含む照明光を生体組織に照射する照明部と、
     前記照明光を構成するR,G,Bのうち少なくとも2の波長帯域の夫々について、強度比率が1:2以上となる2の狭帯域光を生成する狭帯域光生成部と、
     該狭帯域光生成部により生成された狭帯域光及び前記照明光の前記生体組織における反射光に基づいて夫々画像信号を取得する撮像部と、
     該撮像部により取得された前記画像信号に基づいて画像を生成する画像生成部と、を備える内視鏡装置。
    An illumination unit that irradiates a living tissue with illumination light including light of each region for R, G, and B
    A narrowband light generating section that generates two narrowband lights having an intensity ratio of 1: 2 or more for each of at least two wavelength bands of R, G, and B constituting the illumination light;
    An imaging unit that acquires image signals based on the narrowband light generated by the narrowband light generation unit and the reflected light of the illumination light in the living tissue;
    An endoscope apparatus comprising: an image generation unit that generates an image based on the image signal acquired by the imaging unit.
  2.  前記画像生成部が、前記狭帯域光生成部により生成された狭帯域光のうちR,G,Bの各波長帯域に属する夫々少なくとも1の狭帯域光による反射光から取得された画像信号に基づいて、白色光画像を生成する請求項1記載の内視鏡装置。 The image generation unit is based on an image signal acquired from reflected light of at least one narrowband light belonging to each of the R, G, and B wavelength bands among the narrowband light generated by the narrowband light generation unit. The endoscope apparatus according to claim 1, wherein a white light image is generated.
  3.  前記画像生成部が、前記狭帯域光生成部により生成された全狭帯域光による反射光から取得された画像信号に基づいて白色光画像を生成する請求項1又は請求項2記載の内視鏡装置。 The endoscope according to claim 1, wherein the image generation unit generates a white light image based on an image signal acquired from reflected light of all narrow band light generated by the narrow band light generation unit. apparatus.
  4.  前記画像生成部が、前記狭帯域光生成部により生成された狭帯域光のうち何れか2又は3の狭帯域光による反射光から取得された画像信号に基づいて、特殊光画像を生成する請求項1乃至請求項3の何れか1項記載の内視鏡装置。 The said image generation part produces | generates a special light image based on the image signal acquired from the reflected light by any 2 or 3 narrowband light among the narrowband lights produced | generated by the said narrowband light production | generation part. The endoscope apparatus according to any one of claims 1 to 3.
  5.  前記画像生成部が、前記狭帯域光生成部により生成された狭帯域光のうちR,G,Bの各波長帯域に属する夫々少なくとも1の狭帯域光による反射光から取得された画像信号に基づいて白色光画像を生成すると共に、前記狭帯域光生成部により生成された狭帯域光のうち何れか2つ又は3つの狭帯域光による反射光から取得された画像信号に基づいて特殊光画像を生成し、
     前記白色光画像及び前記特殊光画像のうち、何れか2以上の画像を同時に表示する表示部を備える請求項1に記載の内視鏡装置。
     
    The image generation unit is based on an image signal acquired from reflected light of at least one narrowband light belonging to each of the R, G, and B wavelength bands among the narrowband light generated by the narrowband light generation unit. A white light image and a special light image based on an image signal acquired from reflected light of any two or three narrow band lights of the narrow band light generated by the narrow band light generation unit. Generate
    The endoscope apparatus according to claim 1, further comprising a display unit that simultaneously displays any two or more images of the white light image and the special light image.
PCT/JP2016/066541 2015-06-17 2016-06-03 Endoscopic device WO2016203983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015121875A JP2018126174A (en) 2015-06-17 2015-06-17 Endoscope apparatus
JP2015-121875 2015-06-17

Publications (1)

Publication Number Publication Date
WO2016203983A1 true WO2016203983A1 (en) 2016-12-22

Family

ID=57545596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066541 WO2016203983A1 (en) 2015-06-17 2016-06-03 Endoscopic device

Country Status (2)

Country Link
JP (1) JP2018126174A (en)
WO (1) WO2016203983A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417712B2 (en) 2020-03-09 2024-01-18 オリンパス株式会社 Medical image processing device, medical imaging device, medical observation system, operating method and program for medical image processing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237892A (en) * 1993-02-17 1994-08-30 Olympus Optical Co Ltd Stereoscopic endoscope
JP2006341078A (en) * 2005-05-12 2006-12-21 Olympus Medical Systems Corp Biological observation system
JP2008283692A (en) * 2002-07-26 2008-11-20 Olympus Corp Photographing apparatus and image processing system
JP2009131617A (en) * 2007-11-09 2009-06-18 Fujifilm Corp Image capturing system, image capturing method and program
JP2013521900A (en) * 2010-03-17 2013-06-13 ズオン、ハイシャン High-speed multispectral imaging method and apparatus and application to cancer detection and localization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237892A (en) * 1993-02-17 1994-08-30 Olympus Optical Co Ltd Stereoscopic endoscope
JP2008283692A (en) * 2002-07-26 2008-11-20 Olympus Corp Photographing apparatus and image processing system
JP2006341078A (en) * 2005-05-12 2006-12-21 Olympus Medical Systems Corp Biological observation system
JP2009131617A (en) * 2007-11-09 2009-06-18 Fujifilm Corp Image capturing system, image capturing method and program
JP2013521900A (en) * 2010-03-17 2013-06-13 ズオン、ハイシャン High-speed multispectral imaging method and apparatus and application to cancer detection and localization

Also Published As

Publication number Publication date
JP2018126174A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP5303012B2 (en) Endoscope system, processor device for endoscope system, and method for operating endoscope system
JP5460506B2 (en) Endoscope apparatus operating method and endoscope apparatus
JP5815426B2 (en) Endoscope system, processor device for endoscope system, and image processing method
US9456738B2 (en) Endoscopic diagnosis system
JP5431252B2 (en) Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system
WO2007010709A1 (en) Endoscope and endoscope device
WO2016151672A1 (en) In-vivo observation apparatus
JP6690003B2 (en) Endoscope system and operating method thereof
JP5419930B2 (en) Electronic endoscope system, light source device, and method of operating electronic endoscope system
US10285631B2 (en) Light source device for endoscope and endoscope system
JP6085648B2 (en) Endoscope light source device and endoscope system
JP6247610B2 (en) Endoscope system, operation method of endoscope system, light source device, and operation method of light source device
JP6422816B2 (en) Endoscope system
JP6214503B2 (en) Endoscope light source device and endoscope system
JP2018051143A (en) Endoscope system and method for operating the same
JP6017670B2 (en) Endoscope system, operation method thereof, and processor device
JP6254502B2 (en) Endoscope light source device and endoscope system
WO2016203983A1 (en) Endoscopic device
JP2019136555A (en) Endoscope light source device, endoscope system, and method of operating endoscope light source device
JP2016158837A (en) Endoscope light source device, endoscope system, and operation method of endoscope light source device
CN110573056A (en) Endoscope system
JP6905038B2 (en) Light source device and endoscopic system
JP2015231576A (en) Endoscope system, processor device of endoscope system, and image processing method
JP2016067373A (en) Light source device for endoscope and endoscope system
JP6438322B2 (en) Endoscope system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP