JP4379025B2 - Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point - Google Patents

Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point Download PDF

Info

Publication number
JP4379025B2
JP4379025B2 JP2003199011A JP2003199011A JP4379025B2 JP 4379025 B2 JP4379025 B2 JP 4379025B2 JP 2003199011 A JP2003199011 A JP 2003199011A JP 2003199011 A JP2003199011 A JP 2003199011A JP 4379025 B2 JP4379025 B2 JP 4379025B2
Authority
JP
Japan
Prior art keywords
acid
fuel cell
meth
electrolyte membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003199011A
Other languages
Japanese (ja)
Other versions
JP2005038669A (en
Inventor
猛央 山口
浩志 原田
修生 大矢
滋 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2003199011A priority Critical patent/JP4379025B2/en
Publication of JP2005038669A publication Critical patent/JP2005038669A/en
Application granted granted Critical
Publication of JP4379025B2 publication Critical patent/JP4379025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
この発明は、氷点以下でも液体燃料としてのメタノ−ル水溶液が凝固せず作動が可能な直接メタノ−ル形燃料電池、その構成材料である電解質膜および膜−電極接合体に関する。
【0002】
【従来の技術】
固体高分子型燃料電池用イオン交換膜として、パ−フロロスルホン酸膜や炭化水素系高分子電解質膜が多く検討されている。しかし、耐熱性、燃料バリア性、力学的強度、価格、環境などの点から、実用性の点からはまだ多くの問題を有している。
高分子電解質膜の耐熱性や強度を高め、また、燃料の透過性を調節する方法として、多孔基材に高分子電解質を充填する方法は有用である。
【0003】
例えば、オレフィン多孔基材に高分子電解質が充填されたもの(特許文献1)や、フッ素系多孔基材に高分子電解質が充填されたものが知られている(特許文献2、特許文献3)。また、芳香族ポリアミド系多孔基材にパ−フルオロスルホン酸系電解質を充填したものが知られている(特許文献4)が、フッ素系電解質の使用は、前述したように実用性に問題がある。
【0004】
また、芳香族ポリイミド系多孔基材に、主にビニル系ポリマ−電解質を充填したものが知られている(特許文献5)。また種々の多孔膜にスルホン化されたポリマ−を充填したものが知られている(特許文献6、特許文献7)。
【0005】
【特許文献1】
特開平1−22932号公報
【特許文献2】
特開平6−29032号公報
【特許文献3】
特開平9−194609号公報
【特許文献4】
特開2002−358979号公報
【特許文献5】
特開2002−083612号公報
【特許文献6】
特表2001−514431号公報
【特許文献7】
米国特許第6248469号明細書
【0006】
しかし、従来公知の材料のプロトン伝導性は、スルホン酸基周辺に配位または自由水として存在する水を介したプロトン伝導機構により発現する。この電解質膜中の自由水は、氷点以下の温度で凝固(凍結)し、それに伴い電解質膜は実用的なプロトン伝導性を失ってしまい、その結果燃料電池の発電が困難になるという不都合がある。
【0007】
【発明が解決しようとする課題】
従って、この発明の目的は、氷点以下の低温で液体燃料としてのメタノ−ル水溶液が凝固せずその液体燃料を用いて発電が可能である直接メタノ−ル形燃料電池、そのような直接メタノ−ル形燃料電池に使用できる電解質膜及び電解質膜−電極接合体を提供することである。
【0008】
【課題を解決するための手段】
この発明は、液体燃料のメタノ−ル濃度が8〜15Mol/Lのメタノ−ル水溶液である直接メタノ−ル形燃料電池に用いる電解質膜であり、ポリイミド多孔質膜は、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物から選ばれる芳香族テトラカルボン酸二無水物と、オキシジアニリン、ジアミノジフエニルメタン及びパラフエニレンジアミンから選ばれる芳香族ジアミンとから得られるポリイミドの多孔質膜を用い、
ポリイミド多孔質膜の細孔内に極性基を有するプロトン伝導性ポリマ−を与えるモノマ−及び架橋剤を充填した後重合してメタノ−ル水溶液に不溶性であることを特徴とする直接メタノ−ル形燃料電池用の電解質膜に関する。
また、この発明は、前記の直接メタノ−ル形燃料電池用の電解質膜を用いた直接メタノ−ル形燃料電池に関する。
【0009】
【発明の実施の形態】
以下にこの発明の好ましい態様を列記する。
1)約−20℃以下、特に約−30℃以下の温度でも液体燃料としてのメタノ−ル水溶液が凝固しない前記の直接メタノ−ル形燃料電池。
2)−50℃以下での温度でも液体燃料としてのメタノ−ル水溶液が凝固しない前記の直接メタノ−ル形燃料電池。
3)多孔質膜が、ポリイミド多孔質膜である前記の直接メタノ−ル形燃料電池。
【0010】
4)高分子電解質が、スルホン酸基を有する高分子電解質である前記の直接メタノ−ル形燃料電池。
5)高分子電解質が、モノマ−を加熱あるいは光照射による重合によって得られるものである前記の直接メタノ−ル形燃料電池。
6)液体燃料が、メタノ−ル濃度が約53質量%(約15Mol/L)以上のメタノ−ル水溶液である前記の直接メタノ−ル形燃料電池。
【0012】
前記のポリイミド多孔質膜は、テトラカルボン酸成分、例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物などの芳香族テトラカルボン酸二無水物とジアミン成分、例えばオキシジアニリン、ジアミノジフエニルメタン、パラフエニレンジアミンなどの芳香族ジアミンとをN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドなどの有機溶媒中で重合して得られたポリアミック酸溶液から、多孔質化法、例えばポリアミック酸溶液を平坦な基板上に流延して溶媒置換速度調整材と接触させた後に水などの凝固液中に浸漬する方法によって、ポリイミド前駆体多孔質フィルムとした後、ポリイミド前駆体多孔質フィルムの両端を固定して大気中で280〜500℃で5〜60分間加熱することによって得ることができる。
【0013】
多孔質膜としては、膜(フィルム)の両面間でガスおよび液体(例えばアルコ−ルなど)が透過できる通路を有するもので、空孔率が好適には5〜95%、好ましくは10〜90%、より好ましくは10%〜80%、最も好ましくは20〜80%であるのがよい。
また、平均細孔径が0.001〜100μm、好ましくは0.01〜10μm、より好ましくは0.01μm〜1μm、特に0.05〜1μmの範囲内にあるのがよい。さらに、膜の厚さが5〜300μm、特に5〜100μm、さらに5〜50μmであるのがよい。多孔膜の空孔率、平均細孔径、及び膜厚は、得られる膜の強度、応用する際の特性、例えば電解質膜として用いる際の特性などの点から、設計するのがよい。
【0014】
この発明における高分子電解質としては、スルホン酸基などの極性基を有するプロトン伝導性ポリマ−が挙げられる。
前記の高分子電解質膜は、(1)スルホン酸基などの極性基を有するプロトン伝導性ポリマ−を与えるモノマ−を多孔質膜の細孔内に充填した後重合してメタノ−ル水溶液に実質的に不溶性にする方法、(2)スルホン酸基などの極性基を有する可溶性のオリゴマ−あるいはポリマ−を多孔質膜の細孔内に充填した後に熱硬化などによって硬化させてスルホン酸基を有するフェノ−ル樹脂のようにメタノ−ル水溶液に実質的に不溶性にする方法、あるいは(3)ナフィオンなどのプロトン伝導性ポリマ−の溶液を多孔質膜の細孔内に充填した後に不溶性溶媒でプロトン伝導性ポリマ−を析出させる、又は溶媒を発揮させる工程を繰り返して細孔内をナフィオンなどのプロトン伝導性ポリマ−で埋める方法によって得ることができる。
【0015】
前記の方法のうち、特に(1)の方法が好適である。前記の細孔に充填するプロトン伝導性ポリマ−を与えるモノマ−は、該モノマ−を細孔内に充填した後に加熱重合あるいは光照射重合する工程によって重合する。
多孔質膜は、高分子多孔質膜を親水化させる工程、好適には高分子多孔質膜を減圧酸素雰囲気下に真空プラズマ放電処理されることが好ましい。
【0016】
前記のプロトン伝導性ポリマ−を与えるモノマ−としては、(1)p−スチレンスルホン酸ナトリウム、アクリルアミドのスルホン酸又はホスホン酸誘導体、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−(メタ)−アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸、(メタ)アリルスルホン酸、(メタ)アリルホスホン酸、ビニルスルホン酸、ビニルホスホン酸、スチレンスルホン酸、スチレンホスホン酸、(メタ)アクリル酸、(無水)マレイン酸、フマル酸、クロトン酸、イタコン酸等のアニオン性不飽和モノマ−やその塩、など、構造中にビニル基;スルホン酸及びホスホン酸などの強酸基;カルボキシル基などの弱酸基;を有するモノマ−及びそのエステルなどの誘導体並びにそれらのモノマ−;
(2)(メタ)アクリルアミド、N−置換(メタ)アクリレ−ト、2−ヒドロキシエチル(メタ)アクリレ−ト、2−ヒドロキシプロピル(メタ)アクリレ−ト、メトキシポリエチレングリコ−ル(メタ)アクリレ−ト、ポリエチレングリコ−ル(メタ)アクリレ−トなどのノニオン性不飽和モノマ−;
を挙げることができる。
このうち(1)はポリマ−がプロトン伝導性を有するものである。(2)は、(1)の補助材料として用いることができる。
【0017】
これらのモノマ−をl種のみ用いてホモポリマ−を形成してもよく、2種以上を用いてコポリマ−を形成してもよい。機能性物質としてナトリウム塩などの塩のタイプを用いた場合、ポリマ−とした後に、それらの塩をプロトン型などにするのがよい。
また、コポリマ−の場合、前述のポリマ−又はモノマ−と他種のモノマ−とを共重合してもよい。共重合する他種モノマ−として、メチル(メタ)アクリレ−ト、メチレン−ビスアクリルアミドなどを挙げることができる。
【0018】
これらのプロトン伝導性ポリマ−を与える不飽和モノマ−は、1種又は2種以上を選択して用いることできるが、重合後のポリマ−のプロトン伝導性を考えると、スルホン酸基を含有する不飽和モノマ−を必須成分とすることが好ましい。スルホン酸基を含有する不飽和モノマ−の中でも、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸を用いると重合性が高く、他のモノマ−を使用した場合に比べて高い酸価で残存モノマ−の少ないポリマ−を得ることができ、得られる膜がプロトン伝導性の優れたものとなるため特に好ましい。
【0019】
また、本発明において上記プロトン伝導性ポリマ−は、架橋構造を有してメタノ−ルおよび水に対して実質的に溶解しないポリマ−であることが望ましい。ポリマ−に架橋構造を導入する方法としては、光照射および/または加熱により重合する方法を用いることが適当である。具体的には、紫外線照射、あるいは40〜240℃で0.1〜30時間程度加熱して重合反応を行なう方法が挙げられる。重合に際して、ポリマ−中の官能基と反応する基を分子内に2個以上有する架橋剤(反応開始剤)および界面活性剤を用いてもよい。
【0020】
該架橋剤としては、例えばN,N−メチレンビス(メタ)アクリルアミド、ポリエチレングリコ−ルジ(メタ)アクリレ−ト、ポリプロピレングリコ−ルジ(メタ)アクリレ−ト、トリメチロ−ルプロパンジアリルエ−テル、ペンタエリスリト−ルトリアリルエ−テル、ジビニルベンゼン、ビスフェノ−ルジ(メタ)アクリレ−ト、イソシアヌル酸ジ(メタ)アクリレ−ト、テトラアリルオキシエタン、トリアリルアミン、ジアリルオキシ酢酸塩等が挙げられる。これらの架橋剤は単独で使用することも、必要に応じて2種類以上を併用することも可能である。
上記共重合性架橋剤の使用量は、不飽和モノマ−の総質量に対して0.01〜40質量%が好ましく、更に好ましくは0.1〜30質量%、特に好ましくは0.3〜20質量%である。架橋剤量は少なすぎると未架橋のポリマ−が溶出し易く、多すぎると架橋剤成分が相溶し難いため何れも好ましくない。
【0021】
界面活性剤としては、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤および両面界面活性剤が挙げられる。さらに、界面活性剤としては、フッ素系界面活性剤がある。フッ素系界面活性剤を用いることにより少量でモノマ−水溶液の濡れ性を改良することができるため不純物としての影響が少なく好ましい。本発明において使用されるフッ素系界面活性剤としては、種々のものがあるが、例えば一般の界面活性剤における疎水性基の水素をフッ素に置換えてパ−フルオロアルキル基またはパ−フルオロアルケニル基などのフルオロカ−ボン骨格としたものであり、界面活性が格段に強くなっているものである。フッ素系界面活性剤の親水基を変えると、アニオン型、ノニオン型、カチオン型および両性型の4種類が得られる。また、界面活性剤として、シリコ−ン系界面活性剤がある。シリコ−ン系界面活性剤を用いることにより少量でモノマ−水溶液の濡れ性を改良することができる。
【0022】
これらの界面活性剤の使用量は、共に存在する機能性物質、用いる多孔性膜、所望の電解質の特性に依存する。例えばプロトン伝導性ポリマ−を与える不飽和モノマ−の総重量に対して0.001〜5質量%が好ましく、更に好ましくは0.01〜5質量%、特に好ましくは0.01〜1質量%である。少なすぎると多孔性膜へのモノマ−の充填ができず、多すぎても効果は変わらず無駄であるばかりか種類によってはイオン性不純物となって膜中に残存するため、得られる電解質膜の性能を低下させるため何れも好ましくない。
【0023】
前記の重合法において、多孔質膜を機能性物質又はその溶液に浸漬した状態で、減圧操作、好適には10〜10−5Paの減圧状態を10〜300000秒間保持する減圧操作を行い、多孔質膜の細孔内に機能性物質、例えば上述のモノマ−を充填させるのがよい。さらに、必要であれば反応開始剤の存在下に紫外線照射及び/又は加熱してプロトン伝導性ポリマ−を与える不飽和モノマ−を高分子量化した後真空乾燥する工程(必要であればいずれかの工程を繰り返す)によって、電解質膜を得るのがよい。
【0024】
前記の方法において、多孔質膜をプロトン伝導性ポリマ−を与える不飽和モノマ−又はその溶液に浸漬した状態で、超音波を照射するのが好ましい。超音波を照射することで、より短時間で細孔内部に機能性物質の溶液、例えばモノマ−水溶液を充填させることができる。また、超音波照射により機能性物質の溶液、例えばモノマ−水溶液が脱気され、水溶液中の溶存酸素による重合阻害が低減される。また、重合時の気泡発生やモノマ−充填が不十分なときに膜内に発生するピンホ−ルを防止することによって得られる電解質膜の性能低下を抑えることができる。
【0025】
また、前記の高分子電解質を多孔質膜の細孔内に充填する方法として、例えば上述のモノマ−又はその溶液、好適にはモノマ−水溶液を用い、該溶液中に多孔質膜を浸漬するのがよい。
モノマ−の溶液は、モノマ−;ラジカル反応開始剤;エタノ−ル、メタノ−ル、イソプロパノ−ル、ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルアセトアミドなどの有機溶媒、特に親水性有機溶媒;及び水を含み、好適にはモノマ−濃度が1〜75重量%、水の割合が99〜25重量%の混合液が挙げられる。
多孔質膜の細孔内に充填されたモノマ−を、その後、加熱重合して細孔内に所望のポリマ−、例えばプロトン伝導性のポリマ−を生成するのがよい。
【0026】
前記の細孔内部にてモノマ−を加熱重合させる方法として、公知の水溶液ラジカル重合法の技術を使用することができる。具体例として、熱開始重合が挙げられる。
熱開始重合のラジカル重合開始剤として、次のようなものが挙げられる。2,2´−アゾビス(2−アミジノプロパン)二塩酸塩などのアゾ化合物;過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、過酸化水素、過酸化ベンゾイル、クメンヒドロパ−オキサイド、ジ−t−ブチルパ−オキサイド等の過酸化物。または、2,2’−アゾビス−(2−アミジノプロパン)二塩酸塩(V−50)、アゾビスシアノ吉草酸等のアゾ系ラジカル重合開始剤がある。これらラジカル重合開始剤は、単独で用いてもよく、二種類以上を併用してもよい。
【0027】
なお、上述したように、本発明のある面において、多孔質膜に充填した機能性物質であるモノマ−から生成したプロトン伝導性ポリマ−は、多孔質膜の界面と化学的結合を有していることが好ましい。化学的結合を形成するための手段として、上述したように、モノマ−充填工程の前に多孔質膜に電子線、紫外線、プラズマなどを照射して多孔質膜表面にラジカルを発生させる方法、後述の水素引き抜き型のラジカル重合開始剤を用いる方法などがある。工程が簡便である点から水素引き抜き型のラジカル重合開始剤を用いるのが好ましい。
【0028】
前記の方法において、多孔質膜の細孔に電解質物質を充填した後に、多孔質膜の両表面に電解質物質を吸収する多孔質基材、例えば薬包紙、不織布、濾紙、和紙などを接触させることが好ましい。
また、多孔質膜の細孔内に電解質物質を充填した後に、平滑な材料、例えばガラス、非腐蝕性金属(例えばステンレス金属)、プラスチック製板、ヘらで高分子多孔質膜の両表面に過剰に付着する電解質物質を除去することが好ましい。
【0029】
前記の電解質膜は、好適には25℃で湿度100%の条件でプロトン伝導度が0.001S/cm以上10.0S/cm以下であり、25℃でのメタノ−ルの透過係数の逆数が0.01mh/kgμm以上10.0mh/kgμm以下である。特に、25℃における乾燥状態と湿潤状態での面積変化率が1%以下(0〜1%ということ)である。
特に、電解質膜の面積変化率は、その値が大きいと膜と電極との界面に損傷を及ぼす要因であるため、電池のオン−オフによる性能安定性、耐久性などの面で電池性能を大きく左右するもので、前記の範囲内であることが好ましい。
前記のプロトン伝導度、メタノ−ルの透過係数の逆数および乾燥状態と湿潤状態での面積変化率が前記範囲外であると、燃料電池用電解質膜として好ましくない。
前記の電解質膜は、カソ−ド極およびアノ−ド極で挟んで構成して、直接メタノ−ル形型燃料電池とする。
【0030】
この発明の電解質膜を構成要素とする電解質膜−電極接合体は、前記の電解質膜の両面に貴金属を含む触媒層を形成して得られる。
前記の貴金属としては、パラジウム、白金、ロジウム、ルテニウムおよびイリジウムよりなる群から選ばれる1種、及びこれらの物質の合金、各々の組合せ又は他の遷移金属との組合せのいずれかが挙げられる。
【0031】
前記貴金属粒子がカ−ボンブラック等の炭素微粒子に担持されたものが触媒として使用される。
前記の貴金属微粒子が担持され炭素微粒子は、貴金属を10質量%〜60質量%を含むものが好適である。
電極触媒を導電性材料に担持する方法として、電極触媒成分の金属の酸化物、複合酸化物などのコロイド粒子を含む水溶液や、塩化物、硝酸塩、硫酸塩等の塩を含む水溶液に導電性材料を浸漬して、これらの金属成分を導電性材料に担持させる方法が挙げられる。担持後は、必要に応じて、水素、ホルムアルデヒド、ヒドラジン、ギ酸塩、水素化ホウ素ナトリウム等の還元剤を用いて還元処理を行ってもよい。また、導電性材料の親水性官能基がスルホン酸基などの酸性基である場合には、上記の金属塩の水溶液に導電性材料を浸漬して、イオン交換により導電性材料に金属成分を取り込んだ後、上記の還元剤を用いて還元処理を行ってもよい。
また、貴金属微粒子が担持された炭素微粒子とともに高分子電解質および/またはオリゴマ−電解質(イオノマ−)を併用することが好ましい。
【0032】
また、電解質膜−電極接合体(MEA)は、前記の貴金属微粒子が担持され炭素微粒子および場合により高分子電解質あるいはオリゴマ−電解質(イオノマ−)を溶媒に均一分散させた触媒層形成用ペ−ストを使用して、電解質膜の両面全面あるいは所定形状に触媒層を形成する方法によって得られる。
前記の高分子電解質あるいはオリゴマ−電解質としては、イオン伝導度をもつ任意のポリマ−又はオリゴマ−、又は酸又は塩基と反応してイオン伝導度をもつポリマ−又はオリゴマ−を生ずる任意のポリマ−又はオリゴマ−を挙げることができる。
【0033】
適当な高分子電解質あるいはオリゴマ−電解質としては、プロトン又は塩の形態でスルホン酸基等のペンダントイオン交換基を持つフルオロポリマ−、例えばスルホン酸フルオロポリマ−例えばナフィオン(デュポン社登録商標)、スルホン酸フルオロオリゴマ−やスルホン化ポリイミド、スルホン化オリゴマ−等が挙げられる。
前記の高分子電解質あるいはオリゴマ−電解質は100℃以下の温度で実質的に水に不溶性であることが必要である。
前記の触媒層形成用ペ−ストとしては前記の触媒粒子と液状高分子電解質とを混合して触媒粒子表面を高分子電解質で被覆し、さらにフッ素樹脂を混合したものが好適である。
【0034】
前記の触媒組成物インクの製造に使用される適当な溶媒としては、炭素数1−6のアルコ−ル、グリセリン、エチレンカ−ボネ−ト、プロピレンカ−ボネ−ト、ブチルカ−ボネ−ト、エチレンカルバメ−ト、プロピレンカルバメ−ト、ブチレンカルバメ−ト、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1−メチル−2−ピロリドン及びスルホラン等の極性溶媒が挙げられる。有機溶媒は単独で使用してもよくまた水との混合液として使用してもよい。
【0035】
前記のようにして得られる触媒層形成用ペ−ストを高分子電解質膜の片面側に、好適にはスクリ−ン印刷、ロ−ルコ−タ−、コンマコ−タ−などを用いて1回以上、好適には1〜5回程度塗布し、次いで他面側に、同様にして塗布し、乾燥することによって、あるいは前記触媒層形成用ペ−ストから形成される触媒シ−ト(フィルム)を加熱圧着して、高分子電解質膜の両面に触媒層を形成することによって電解質膜−電極接合体を得ることができる。
【0036】
前記の電解質膜は、簡単な操作で多孔質膜の細孔内に電解質が充填され、寸法精度が高く水やメタノ−ルによって実質的に膨潤せず、直接メタノ−ル形燃料電池の構造体として好適なものである。
直接メタノ−ル形燃料電池は、前記の電解質膜−電極接合体を構成要素することによって得られる。
また、カ−ボンペ−パ−などの導電性多孔基材上に、上記の触媒層形成用ペ−ストを用いて触媒層を形成することで電極を作製し、この電極を電解質膜とホットプレスを用いて接合する方法によっても、電解質膜−電極接合体を得ることができる。
【0037】
この発明においては、前記の多孔質膜を使用した電解質膜と直接メタノ−ル燃料電池のメタノ−ル水溶液燃料を高濃度にすることとを組合せることにより、液体燃料の凝固点を低下させ、0℃以下でも燃料電池およびその周辺の配管等内の凍結を抑制することが可能となった。
すなわち、メタノ−ル水溶液の凝固点は純水と比べて低く、例えば10mol/L濃度のメタノ−ル水溶液の凝固点は約−30℃である。従って、10mol/L濃度のメタノ−ル水溶液を燃料を用いれば、燃料タンクや配管、燃料電池本体内における凍結を−30℃まで抑制することができる。
該条件でメタノ−ルのクロスオ−バ−が抑制された状況で発電を開始することが出来れば発電中の過電圧力のエネルギ−が熱として得られるので、燃料電池本体の温度が上昇し、時間の経過に伴い発電特性が向上する。
【0038】
この発明においては、高濃度メタノ−ルでの発電を可能とする為に、メタノ−ル極から酸素極へのメタノ−ルのクロスオ−バ−を実質的な発電特性を損なわない程度に抑制する電解質膜を用いて燃料電池を構成することが必要である。多孔質膜、特にポリイミド多孔質膜中の細孔内に電解質を充填したハイブリット電解質膜を用いることで上記メタノ−ルクロスオ−バ−を効果的に抑制することが好ましい。この膜においては電解質の周辺が剛性の高い多孔質膜、特にポリイミド基材で拘束されていることにより、電解質の過剰な自由水による膨潤を抑制し、メタノ−ルのクロスオ−バ−をナフィオンなどの従来の電解質膜と比べて大幅に低減することができる。また電解質中の水またはメタノ−ル水溶液の凍結に伴う体積膨張を抑制するので、凍結が起こりにくい効果も期待できる。
【0039】
【実施例】
以下、この発明を実施例および比較例により更に詳しく説明するが、この発明の範囲がこれらの例により限定されるものではない。
用いた多孔質膜の透気度、平均細孔径、及び得られた電解質膜のメタノ−ル透過性、プロトン伝導性および面積変化率は以下のように評価した。
<透気性>
JIS P8117に準じて測定した。測定装置としてB型ガ−レ−デンソメ−タ−(東洋精機社製)を使用した。試料の膜を直径28.6mm、面積645mm2の円孔に締付け、内筒重量567gにより、筒内の空気を試験円孔部から筒外へ通過させる。空気100ccが通過する時間を測定し、透気度(ガ−レ−値)とした。
<平均孔径>
バブルポイント法(ASTM F316、JISK3832)に基いて多孔質膜を評価した。PMI社のパ−ムポロメ−タ−を用いて、バブルポイント法による多孔質膜の貫通パス分布の測定を行った。また、平均細孔径は平均流量から逆算して求めた。
【0040】
<メタノ−ル透過性>
拡散セルにより透過試験(液/液系)を行い、メタノ−ルの透過性を評価した。まず、イオン交換水中に測定する膜を浸漬し膨潤させた後にセルをセットする。メタノ−ル透過側と供給側にそれぞれイオン交換水を入れ、1時間ほど恒温槽中で安定させる。次に、供給側にメタノ−ルを加え10重量%のメタノ−ル水溶液とすることで試験を開始する。所定時間ごとに透過側の溶液をサンプリングしガスクロマトグラフ分析によりメタノ−ルの濃度を求めることで濃度変化を追跡し、メタノ−ルの透過流速、透過係数、拡散係数を算出した。測定は25℃で行って、メタノ−ル透過性を評価した。
【0041】
<プロトン伝導性>
室温(25℃)、100%湿潤状態の電解質膜の表裏に電極を接触させ、耐熱性樹脂(ポリテトラフルオロエチレン)板により挟み会わせることにより膜を固定しプロトン伝導度を測定した。
測定に供する膜を1規定の塩酸水溶液中で5分間超音波洗浄し、次にイオン交換水中で3回、各々5分間超音波洗浄を行い、その後イオン交換水中で静置した。水中で膨潤させた膜を耐熱性樹脂(ポリテトラフルオロエチレン)板上に取り出し、白金板電極を膜の表と裏に接触させ、その外側から耐熱性樹脂(ポリテトラフルオロエチレン)板で挟み4本のネジで固定した。インピ−ダンスアナライザ(ヒュ−レットパッカ−ド社製、インピ−ダンスアナライザ−HP4194A)により交流インピ−ダンスを測定し、コ−ルコ−ルプロットから抵抗値を読み取り、プロトン伝導率を算出した。
【0042】
<寸法および面積変化率>
作成した電解質膜については、以下によって寸法変化率および面積変化率を測定した。
電解質ポリマ−充填の前後、及びポリマ−の膨潤・収縮に伴うフィリング膜の膜面積変化率を測定するために、先ず乾燥したポリイミド多孔質膜のx方向、y方向の長さを定規により測定した(条件1)。次に、測定後の膜を用い電解質を充填、重合を行い、膜の洗浄・イオン交換処理を行った上で完全膨潤状態での電解質膜のx・y方向の長さを測定した(条件2)。その後、50℃の乾燥機中で十分乾燥を行った後、同様に長さを測定した(条件3)。
以上の測定結果を用いて寸法変化率を求め、面積をx×yで求めて以下により面積変化率を算出した。
寸法変化率:
電解質膜充填前後の面積変化率:A(%)
A=[面積(条件1)−面積(条件3)]×100/面積(条件1)
電解質膜の乾燥時と湿潤時の面積変化率:B(%)
B=[面積(条件2)−面積(条件3)]×100/面積(条件3)
【0043】
参考例1
ポリイミド多孔質膜の作製
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とオキシジアニリンとをモル比が0.998でかつ該モノマ−成分の合計重量が9.0重量%となるポリイミド前駆体NMP溶液を、鏡面研磨したSUS板上に流延し、溶媒置換速度調整材としてポリオレフィン製微多孔膜(宇部興産社製:UP−3025)で表面を覆い、該積層物をメタノ−ル中に、続けて水中に浸漬した後、大気中にて320℃で熱処理を行い、次の特性を持つポリイミド多孔質フィルムを得た。膜厚:20μm、空孔率:40%、パ−ムポロシメ−タ−を用いて測定した平均細孔径:0.13μm、透気度:106秒/100ml。
【0044】
実施例1
プロトン伝導性高分子のモノマ−であるアクリルアミドメチルプロピルスルホン酸(ATBS)とメチレン−ビス−アクリルアミドおよび反応開始剤であるV−50(商品名:和光純薬(株))を好適に水中に溶解して得られたモノマ−水溶液に、ポリイミド多孔質膜を浸漬した後に多孔質膜を取り出し、ガラス板で挟んだ。そのまま50℃の乾燥機内に12時間静置して加熱重合を行った。これを3回繰り返し、最後に膜の両表面に付着する過剰なポリマ−を純水洗浄により取り除き膜を平滑化することで、下記の特性を有する電解質膜を得た。
メタノ−ル透過性:0.20mh/kgμm
プロトン伝導性:3.6×10−2S/cm
電解質膜充填前後の面積変化率:A=0(%)
電解質膜の乾燥時と湿潤時の面積変化率:B=0(%)
【0045】
実施例2
膜−電極接合体(MEA)の作製
1)拡散層の作製
酸素極に用いる電極にのみ、以下の操作によりカ−ボンペ−パ−上に拡散層を形成した。
メノウ乳鉢ですりつぶしたXC−720.37gにイソプロパノ−ル(IPA)4.0gを加え、攪拌と超音波により十分分散させた。その後市販のポリテトラフルオロエチレン(PTFE)分散液を0.14g加え、約1分間の攪拌を行ない拡散層作製用のペ−ストとした。
その後、東レ社製のカ−ボンペ−パ−上にスクリ−ン印刷法によりペ−ストを3回にわけ塗布し、自然乾燥させた後、350℃で2時間焼成した。
【0046】
2)酸素極電極の触媒層の作製
46.1重量%の白金が担持したカ−ボンブラック(田中貴金属社製TEC10E50E)と同量のイオン交換水を混合し、その後市販の5%Nafion溶液を加え、攪拌・超音波を10分間繰り返した。その後、適量のPTFE分散液を加え攪拌することで触媒層形成用のペ−ストを得た。スクリ−ン印刷法により、前段で作製した拡散層付カ−ボンペ−パ−上にスクリ−ン印刷機によりペ−ストを3回にわけ塗布し自然乾燥する操作を3回繰り返すことにより、酸素極に用いるガス拡散電極を得た。
【0047】
3)メタノ−ル極電極の触媒層の作製
32.7重量%の白金及び16.9重量%のルテニウムが担持したカ−ボンブラック(田中貴金属社製TEC66E50)と同量のイオン交換水を混合し、その後市販の5%Nafion溶液を加え、攪拌・超音波を10分間繰り返した。その後、適量のPTFE分散液を加え攪拌することで触媒層形成用のペ−ストを得た。スクリ−ン印刷法により、前段で作製した拡散層付カ−ボンペ−パ−上にスクリ−ン印刷機によりペ−ストを3回にわけ塗布し自然乾燥するまでの操作を4回繰り返し、メタノ−ル極に用いるガス拡散電極を得た。
【0048】
4)MEAの作成
上記方法で作成した電極と、実施例1で作製した電解質膜を、ホットプレスを用いて(条件:130℃、2 MPa、1 min)接合しMEAを作製した。電極に担持した触媒量は、Anodeで1.6mg/cm2、Cathodeで1.03 mg−Pt/cm2であった。
【0049】
5)直接メタノ−ル形燃料電池
前記の4)で作製したMEAを米国エレクトロケム社製の電極面積5cmの燃料電池に組み込み直接メタノ−ル形燃料電池を得て、電池試験を行った。発電条件は、セル温50℃で、Anodeには27〜53質量%のメタノ−ル水溶液を10mL/分の流速で、Cathodeには乾燥酸素を1L/分の流速で流した。試験の結果、53質量%のメタノ−ル水溶液を用いても実質的な発電挙動が確認された。
【0050】
上記の各濃度のメタノ−ル水溶液について、凝固点を測定した。( )は文献値である。
結果を次に示す。
メタノ−ル8Mol/L (約27質量%) (−22℃)
メタノ−ル10Mol/L(34重量%) (−30℃)
メタノ−ル15Mol/L(53重量%) −55℃
【0051】
比較例1
電解質膜としてナフィオン112を使用した他は実施例2と同様に発電試験を実施した。その結果、27質量%メタノ−ル水溶液を燃料に用いた場合において、0.4V以上の開方電圧が得られず、実用的な発電特性が得られなかった。また、それ以上のメタノ−ル濃度の水溶液を用いた場合には、ほとんど発電挙動が見られずデ−タの採取が出来なかった。
【0052】
【発明の効果】
本発明によれば、非常に高濃度のメタノ−ル水溶液を燃料に用いる事で氷点以下でも発電が可能な直接メタノ−ル形燃料電池を作製することが出来る。そのことにより気温が氷点以下になる寒冷地域での燃料電池の使用を可能にすることが出来、非常に有益で有る。
【図面の簡単な説明】
【図1】図1は、実施例2及び比較例1における発電特性(セル電圧−電流密度)である。凡例中の重量%は液体燃料のメタノ−ル濃度である。
【図2】図2は、実施例2及び比較例1における発電特性(出力密度−電流密度)である。凡例中の重量%は液体燃料のメタノ−ル濃度である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct methanol fuel cell that can operate without solidification of a methanol aqueous solution as a liquid fuel even below the freezing point, an electrolyte membrane that is a constituent material thereof, and a membrane-electrode assembly.
[0002]
[Prior art]
Many perfluorosulfonic acid membranes and hydrocarbon polymer electrolyte membranes have been studied as ion exchange membranes for polymer electrolyte fuel cells. However, there are still many problems in terms of practicality from the viewpoints of heat resistance, fuel barrier properties, mechanical strength, price, environment, and the like.
As a method for increasing the heat resistance and strength of the polymer electrolyte membrane and adjusting the fuel permeability, a method of filling a porous substrate with a polymer electrolyte is useful.
[0003]
For example, one in which a polymer electrolyte is filled in an olefin porous substrate (Patent Document 1) and one in which a polymer electrolyte is filled in a fluorine-based porous substrate are known (Patent Document 2, Patent Document 3). . In addition, an aromatic polyamide porous substrate filled with a perfluorosulfonic acid electrolyte is known (Patent Document 4), but the use of a fluorine electrolyte has a problem in practicality as described above. .
[0004]
Moreover, what filled the aromatic polymer type porous base material mainly with the vinyl type polymer electrolyte is known (patent document 5). Also, various porous membranes filled with sulfonated polymers are known (Patent Documents 6 and 7).
[0005]
[Patent Document 1]
JP-A-1-22932
[Patent Document 2]
JP-A-6-29032
[Patent Document 3]
JP-A-9-194609
[Patent Document 4]
JP 2002-358879 A
[Patent Document 5]
JP 2002-083612 A
[Patent Document 6]
JP-T-2001-514431
[Patent Document 7]
US Pat. No. 6,248,469
[0006]
However, the proton conductivity of a conventionally known material is expressed by a proton conduction mechanism via water existing as coordination or free water around the sulfonic acid group. The free water in the electrolyte membrane solidifies (freezes) at a temperature below the freezing point, and as a result, the electrolyte membrane loses practical proton conductivity, resulting in difficulty in power generation of the fuel cell. .
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a direct methanol fuel cell in which an aqueous methanol solution as a liquid fuel does not solidify at a low temperature below the freezing point and can generate electric power using the liquid fuel, and such a direct methanol fuel cell. It is an object to provide an electrolyte membrane and an electrolyte membrane-electrode assembly that can be used in a fuel cell.
[0008]
[Means for Solving the Problems]
This invention An electrolyte membrane for use in a direct methanol fuel cell that is an aqueous methanol solution having a methanol concentration of liquid fuel of 8 to 15 mol / L; The polyimide porous membrane comprises an aromatic tetracarboxylic dianhydride selected from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride, oxydianiline, diaminodiphenyl Using a polyimide porous membrane obtained from an aromatic diamine selected from methane and paraphenylenediamine,
A direct methanol form characterized by being insoluble in an aqueous methanol solution after being filled with a monomer that gives a proton conductive polymer having a polar group in the pores of a polyimide porous membrane and a cross-linking agent. The present invention relates to an electrolyte membrane for a fuel cell.
The present invention also relates to a direct methanol fuel cell using the electrolyte membrane for a direct methanol fuel cell.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The preferred embodiments of the present invention are listed below.
1) The direct methanol fuel cell as described above, in which the methanol aqueous solution as a liquid fuel does not solidify even at a temperature of about −20 ° C. or lower, particularly about −30 ° C. or lower.
2) The direct methanol fuel cell as described above, wherein the methanol aqueous solution as a liquid fuel does not solidify even at a temperature of −50 ° C. or lower.
3) The direct methanol fuel cell as described above, wherein the porous membrane is a polyimide porous membrane.
[0010]
4) The direct methanol fuel cell as described above, wherein the polymer electrolyte is a polymer electrolyte having a sulfonic acid group.
5) The direct methanol fuel cell as described above, wherein the polymer electrolyte is obtained by polymerizing a monomer by heating or light irradiation.
6) The direct methanol fuel cell as described above, wherein the liquid fuel is an aqueous methanol solution having a methanol concentration of about 53% by mass (about 15 mol / L) or more.
[0012]
The polyimide porous membrane includes a tetracarboxylic acid component, for example, aromatic tetracarboxylic dianhydride such as 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, and diamine. Ingredients, for example, aromatic diamines such as oxydianiline, diaminodiphenylmethane, paraphenylenediamine and the like in organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide From a polyamic acid solution obtained by polymerization, a method for making it porous, for example, a method in which a polyamic acid solution is cast on a flat substrate and brought into contact with a solvent displacement rate adjusting material and then immersed in a coagulating liquid such as water. After making a polyimide precursor porous film, both ends of the polyimide precursor porous film are fixed and 280 to 500 in the atmosphere. In can be obtained by heating for 5 to 60 minutes.
[0013]
The porous membrane has a passage through which gas and liquid (for example, alcohol) can pass between both surfaces of the membrane (film), and the porosity is suitably 5 to 95%, preferably 10 to 90. %, More preferably 10% to 80%, and most preferably 20 to 80%.
The average pore diameter is preferably 0.001 to 100 μm, preferably 0.01 to 10 μm, more preferably 0.01 μm to 1 μm, and particularly preferably 0.05 to 1 μm. Further, the thickness of the film is preferably 5 to 300 μm, particularly 5 to 100 μm, and more preferably 5 to 50 μm. The porosity, average pore diameter, and film thickness of the porous membrane are preferably designed from the viewpoint of the strength of the obtained membrane and the characteristics when applied, for example, the characteristics when used as an electrolyte membrane.
[0014]
Examples of the polymer electrolyte in the present invention include proton conductive polymers having polar groups such as sulfonic acid groups.
The polymer electrolyte membrane is obtained by (1) filling a monomer that gives a proton conductive polymer having a polar group such as a sulfonic acid group into the pores of the porous membrane, and then polymerizing the monomer to form an aqueous methanol solution. (2) A soluble oligomer or polymer having a polar group such as a sulfonic acid group is filled in the pores of the porous membrane and then cured by heat curing or the like to have a sulfonic acid group. A method of making it substantially insoluble in a methanol aqueous solution such as a phenol resin, or (3) filling a proton conductive polymer solution such as Nafion into the pores of the porous membrane, and then It can be obtained by a method in which a conductive polymer is deposited or a step of exerting a solvent is repeated to fill the pores with a proton conductive polymer such as Nafion.
[0015]
Among the above methods, the method (1) is particularly suitable. The monomer that gives the proton-conducting polymer that fills the pores is polymerized by a process of heat polymerization or light irradiation polymerization after filling the monomer into the pores.
The porous membrane is preferably subjected to a step of hydrophilizing the polymer porous membrane, preferably a vacuum plasma discharge treatment of the polymer porous membrane in a reduced pressure oxygen atmosphere.
[0016]
Monomers that give the proton conductive polymer include (1) sodium p-styrenesulfonate, sulfonic acid or phosphonic acid derivatives of acrylamide, 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2- ( (Meth) -acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, (meth) allylsulfonic acid, (meth) allylphosphonic acid, vinylsulfonic acid, vinylphosphonic acid, styrenesulfonic acid, styrenephosphonic acid, (meta ) Anionic unsaturated monomers such as acrylic acid, (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, and salts thereof, vinyl groups in the structure; strong acid groups such as sulfonic acid and phosphonic acid; carboxyl group A monomer having a weak acid group such as These monomers -;
(2) (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate Nonionic unsaturated monomers such as polyethylene glycol (meth) acrylate;
Can be mentioned.
Of these, (1) is one in which the polymer has proton conductivity. (2) can be used as an auxiliary material for (1).
[0017]
Only 1 type of these monomers may be used to form a homopolymer, or 2 or more types may be used to form a copolymer. When a salt type such as a sodium salt is used as the functional substance, it is preferable to convert the salt into a proton type after forming a polymer.
In the case of a copolymer, the aforementioned polymer or monomer may be copolymerized with another type of monomer. Examples of other monomers to be copolymerized include methyl (meth) acrylate and methylene-bisacrylamide.
[0018]
One or two or more unsaturated monomers that give these proton-conducting polymers can be selected and used. However, considering the proton conductivity of the polymer after polymerization, unsaturated monomers containing sulfonic acid groups can be used. It is preferable to use a saturated monomer as an essential component. Among unsaturated monomers containing sulfonic acid groups, 2- (meth) acrylamido-2-methylpropanesulfonic acid is highly polymerizable and remains at a higher acid value than when other monomers are used. A polymer having a small amount of monomers can be obtained, and the resulting membrane has excellent proton conductivity, which is particularly preferable.
[0019]
In the present invention, the proton conductive polymer is preferably a polymer having a crosslinked structure and substantially insoluble in methanol and water. As a method for introducing a crosslinked structure into the polymer, it is appropriate to use a method of polymerizing by light irradiation and / or heating. Specifically, a method of performing a polymerization reaction by ultraviolet irradiation or heating at 40 to 240 ° C. for about 0.1 to 30 hours can be mentioned. In the polymerization, a crosslinking agent (reaction initiator) and a surfactant having two or more groups that react with the functional group in the polymer may be used.
[0020]
Examples of the crosslinking agent include N, N-methylenebis (meth) acrylamide, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane diallyl ether, and pentaerythris. Examples include lithol triallyl ether, divinylbenzene, bisphenol di (meth) acrylate, isocyanuric acid di (meth) acrylate, tetraallyloxyethane, triallylamine, diallyloxyacetate and the like. These cross-linking agents can be used alone or in combination of two or more as required.
The amount of the copolymerizable crosslinking agent used is preferably 0.01 to 40% by mass, more preferably 0.1 to 30% by mass, and particularly preferably 0.3 to 20% by mass based on the total mass of the unsaturated monomer. % By mass. If the amount of the crosslinking agent is too small, the uncrosslinked polymer is likely to be eluted, and if it is too large, the crosslinking agent component is difficult to be compatible.
[0021]
Examples of the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and a double-sided surfactant. Further, as the surfactant, there is a fluorine-based surfactant. Use of a fluorosurfactant is preferable because the wettability of the aqueous monomer solution can be improved with a small amount, and the influence as an impurity is small. There are various types of fluorosurfactants used in the present invention. For example, a perfluoroalkyl group or a perfluoroalkenyl group obtained by substituting fluorine of a hydrophobic group in a general surfactant with fluorine. It has a fluorocarbon skeleton, and its surface activity is much stronger. When the hydrophilic group of the fluorosurfactant is changed, four types of anionic, nonionic, cationic and amphoteric types can be obtained. Further, as the surfactant, there is a silicone surfactant. The wettability of the aqueous monomer solution can be improved with a small amount by using a silicone surfactant.
[0022]
The amount of these surfactants used depends on the functional materials present together, the porous membrane used, and the properties of the desired electrolyte. For example, the amount is preferably 0.001 to 5% by weight, more preferably 0.01 to 5% by weight, particularly preferably 0.01 to 1% by weight, based on the total weight of unsaturated monomers giving a proton-conductive polymer. is there. If the amount is too small, the porous membrane cannot be filled with the monomer, and if the amount is too large, the effect is not changed and is not only used, but depending on the type, it remains as an ionic impurity in the membrane. Neither is preferred because it reduces the performance.
[0023]
In the above polymerization method, the porous membrane is immersed in a functional substance or a solution thereof, and the pressure is reduced, preferably 10 4 -10 -5 It is preferable to perform a decompression operation for maintaining the Pa decompression state for 10 to 300,000 seconds to fill the pores of the porous membrane with a functional substance, for example, the above-described monomer. Further, if necessary, a step of vacuum-drying the unsaturated monomer that gives a proton-conductive polymer by irradiation with ultraviolet rays and / or heating in the presence of a reaction initiator and then vacuum drying (if necessary) The electrolyte membrane is preferably obtained by repeating the process.
[0024]
In the above method, it is preferable to irradiate the ultrasonic wave in a state where the porous membrane is immersed in an unsaturated monomer that gives a proton conductive polymer or a solution thereof. By irradiating with ultrasonic waves, it is possible to fill the pores with a solution of a functional substance, such as an aqueous monomer solution, in a shorter time. In addition, a solution of a functional substance such as an aqueous monomer solution is degassed by ultrasonic irradiation, and polymerization inhibition due to dissolved oxygen in the aqueous solution is reduced. In addition, it is possible to suppress degradation of the performance of the electrolyte membrane obtained by preventing pinholes generated in the membrane when bubbles are not generated during polymerization or when the monomer filling is insufficient.
[0025]
Further, as a method of filling the polymer electrolyte in the pores of the porous membrane, for example, the above-mentioned monomer or a solution thereof, preferably an aqueous monomer solution is used, and the porous membrane is immersed in the solution. Is good.
The monomer solution is a monomer; a radical reaction initiator; an organic solvent such as ethanol, methanol, isopropanol, dimethylformamide, N-methyl-2-pyrrolidone, dimethylacetamide, particularly a hydrophilic organic solvent; And a liquid mixture containing 1 to 75% by weight of a monomer and preferably 99 to 25% by weight of water.
The monomer filled in the pores of the porous membrane is then heated and polymerized to produce a desired polymer, for example, a proton conductive polymer, in the pores.
[0026]
A known aqueous radical polymerization technique can be used as a method for heat-polymerizing the monomer inside the pores. A specific example is thermally initiated polymerization.
Examples of the radical polymerization initiator for heat-initiated polymerization include the following. Azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride; ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, benzoyl peroxide, cumene hydroperoxide, di-t-butyl peroxide Such as peroxide. Alternatively, there are azo radical polymerization initiators such as 2,2′-azobis- (2-amidinopropane) dihydrochloride (V-50) and azobiscyanovaleric acid. These radical polymerization initiators may be used alone or in combination of two or more.
[0027]
As described above, in one aspect of the present invention, the proton conductive polymer generated from the monomer, which is a functional substance filled in the porous membrane, has a chemical bond with the interface of the porous membrane. Preferably it is. As a means for forming a chemical bond, as described above, a method of generating radicals on the surface of the porous film by irradiating the porous film with an electron beam, ultraviolet light, plasma or the like before the monomer filling step, which will be described later And a method using a hydrogen abstraction type radical polymerization initiator. It is preferable to use a hydrogen abstraction type radical polymerization initiator from the viewpoint of simple process.
[0028]
In the above method, after filling the pores of the porous membrane with an electrolyte substance, a porous substrate that absorbs the electrolyte substance on both surfaces of the porous membrane, for example, medicine-wrapped paper, non-woven fabric, filter paper, Japanese paper, etc. preferable.
In addition, after filling the pores of the porous membrane with an electrolyte substance, smooth surfaces such as glass, non-corrosive metal (for example, stainless metal), plastic plate, spatula on both surfaces of the polymer porous membrane It is preferable to remove the excessively attached electrolyte substance.
[0029]
The electrolyte membrane preferably has a proton conductivity of 0.001 S / cm or more and 10.0 S / cm or less at 25 ° C. and a humidity of 100%, and has a reciprocal of the permeability coefficient of methanol at 25 ° C. 0.01m 2 h / kgμm or more 10.0m 2 h / kg μm or less. In particular, the area change rate in a dry state and a wet state at 25 ° C. is 1% or less (0 to 1%).
In particular, since the area change rate of the electrolyte membrane is a factor that damages the interface between the membrane and the electrode when the value is large, the battery performance is greatly enhanced in terms of performance stability and durability due to battery on / off. It depends, and is preferably within the above range.
When the proton conductivity, the reciprocal of the methanol permeability coefficient, and the area change rate between the dry state and the wet state are out of the above ranges, it is not preferable as an electrolyte membrane for a fuel cell.
The electrolyte membrane is sandwiched between a cathode electrode and an anode electrode to form a direct methanol fuel cell.
[0030]
The electrolyte membrane-electrode assembly having the electrolyte membrane of the present invention as a constituent element is obtained by forming a catalyst layer containing a noble metal on both surfaces of the electrolyte membrane.
Examples of the noble metal include one selected from the group consisting of palladium, platinum, rhodium, ruthenium, and iridium, and alloys of these substances, combinations of each, or combinations with other transition metals.
[0031]
A catalyst in which the noble metal particles are supported on carbon fine particles such as carbon black is used.
The carbon fine particles on which the noble metal fine particles are supported preferably include 10% by mass to 60% by mass of the noble metal.
As a method for supporting an electrode catalyst on a conductive material, the conductive material can be used in an aqueous solution containing colloidal particles such as metal oxide or composite oxide of an electrode catalyst component, or an aqueous solution containing a salt such as chloride, nitrate or sulfate. And a method in which these metal components are supported on a conductive material. After the loading, if necessary, reduction treatment may be performed using a reducing agent such as hydrogen, formaldehyde, hydrazine, formate, sodium borohydride or the like. In addition, when the hydrophilic functional group of the conductive material is an acidic group such as a sulfonic acid group, the conductive material is immersed in an aqueous solution of the above metal salt, and the metal component is taken into the conductive material by ion exchange. Thereafter, the reduction treatment may be performed using the above reducing agent.
Further, it is preferable to use a polymer electrolyte and / or an oligomer electrolyte (ionomer) together with the carbon fine particles on which the noble metal fine particles are supported.
[0032]
The electrolyte membrane-electrode assembly (MEA) is a paste for forming a catalyst layer in which the above-mentioned noble metal fine particles are supported and carbon fine particles and optionally a polymer electrolyte or an oligomer electrolyte (ionomer) are uniformly dispersed in a solvent. Is used to form the catalyst layer on the entire surface of the electrolyte membrane or in a predetermined shape.
The polyelectrolyte or oligomer electrolyte may be any polymer or oligomer having ionic conductivity, or any polymer that reacts with an acid or base to produce a polymer or oligomer having ionic conductivity, or There may be mentioned oligomers.
[0033]
Suitable polyelectrolytes or oligomer electrolytes include fluoropolymers having pendant ion exchange groups such as sulfonic acid groups in the form of protons or salts, such as sulfonic acid fluoropolymers such as Nafion (registered trademark of DuPont), sulfonic acid Examples thereof include fluoro oligomers, sulfonated polyimides, and sulfonated oligomers.
The polymer electrolyte or oligomer electrolyte needs to be substantially insoluble in water at a temperature of 100 ° C. or lower.
The paste for forming the catalyst layer is preferably a mixture obtained by mixing the catalyst particles and the liquid polymer electrolyte, covering the surfaces of the catalyst particles with the polymer electrolyte, and further mixing a fluororesin.
[0034]
Suitable solvents for use in the preparation of the catalyst composition ink include alcohols having 1-6 carbon atoms, glycerin, ethylene carbonate, propylene carbonate, butyl carbonate, ethylene. Examples thereof include polar solvents such as carbamate, propylene carbamate, butylene carbamate, acetone, acetonitrile, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone and sulfolane. The organic solvent may be used alone or as a mixed solution with water.
[0035]
The paste for forming the catalyst layer obtained as described above is applied to one side of the polymer electrolyte membrane, preferably once or more using screen printing, a roll coater, a comma coater, or the like. The catalyst sheet (film) formed by applying the catalyst layer-forming paste is preferably applied about 1 to 5 times and then applied to the other side in the same manner and dried. An electrolyte membrane-electrode assembly can be obtained by thermocompression bonding and forming catalyst layers on both sides of the polymer electrolyte membrane.
[0036]
The electrolyte membrane has a structure of a direct methanol fuel cell in which the pores of the porous membrane are filled with an electrolyte by a simple operation, has high dimensional accuracy, and does not substantially swell with water or methanol. Is suitable.
A direct methanol fuel cell is obtained by constituting the electrolyte membrane-electrode assembly.
In addition, an electrode is produced by forming a catalyst layer on the conductive porous substrate such as carbon paper using the catalyst layer forming paste described above, and this electrode is formed into an electrolyte membrane and a hot press. An electrolyte membrane-electrode assembly can also be obtained by a method of bonding using the electrode.
[0037]
In the present invention, the freezing point of the liquid fuel is lowered by combining the electrolyte membrane using the porous membrane and the direct concentration of the methanol aqueous solution fuel of the methanol fuel cell, It became possible to suppress freezing in the fuel cell and the surrounding piping, etc. even at temperatures below ℃.
That is, the freezing point of the aqueous methanol solution is lower than that of pure water. For example, the freezing point of the aqueous methanol solution having a concentration of 10 mol / L is about −30 ° C. Accordingly, if a methanol aqueous solution having a concentration of 10 mol / L is used as fuel, freezing in the fuel tank, piping, and fuel cell body can be suppressed to -30 ° C.
If power generation can be started under the condition that the methanol crossover is suppressed under these conditions, the energy of the overvoltage force during power generation can be obtained as heat. The power generation characteristics improve with the passage of time.
[0038]
In the present invention, in order to enable power generation at a high concentration methanol, the methanol crossover from the methanol electrode to the oxygen electrode is suppressed to the extent that the substantial power generation characteristics are not impaired. It is necessary to configure a fuel cell using an electrolyte membrane. It is preferable to effectively suppress the methanol crossover by using a porous electrolyte membrane, particularly a hybrid electrolyte membrane in which electrolyte is filled in pores of the polyimide porous membrane. In this membrane, the periphery of the electrolyte is constrained by a highly rigid porous membrane, especially a polyimide base material, so that swelling of the electrolyte due to excessive free water is suppressed, and methanol crossover is made Nafion, etc. As compared with the conventional electrolyte membrane, it can be greatly reduced. Moreover, since the volume expansion accompanying freezing of the water or methanol aqueous solution in electrolyte is suppressed, the effect that freezing does not occur easily can be expected.
[0039]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the scope of the present invention is not limited to these examples.
The air permeability, average pore diameter, and methanol permeability, proton conductivity, and area change rate of the obtained electrolyte membrane were evaluated as follows.
<Air permeability>
It measured according to JIS P8117. A B-type Galley densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device. The sample membrane has a diameter of 28.6 mm and an area of 645 mm. 2 The air in the cylinder is passed from the test hole to the outside of the cylinder with an inner cylinder weight of 567 g. The time required for 100 cc of air to pass through was measured and used as the air permeability (Gurley value).
<Average pore size>
The porous membrane was evaluated based on the bubble point method (ASTM F316, JISK3832). Using a palm porometer from PMI, the penetration path distribution of the porous film was measured by the bubble point method. Further, the average pore diameter was obtained by calculating back from the average flow rate.
[0040]
<Methanol permeability>
A permeation test (liquid / liquid system) was conducted using a diffusion cell to evaluate the permeability of methanol. First, the cell is set after the membrane to be measured is immersed and swollen in ion-exchanged water. Ion exchange water is added to the methanol permeation side and the supply side, respectively, and stabilized in a thermostatic bath for about 1 hour. Next, the test is started by adding methanol to the supply side to obtain a 10% by weight aqueous methanol solution. The permeation side solution was sampled every predetermined time and the concentration change was traced by obtaining the concentration of methanol by gas chromatographic analysis, and the permeation flow rate, permeation coefficient, and diffusion coefficient of methanol were calculated. The measurement was performed at 25 ° C. to evaluate the methanol permeability.
[0041]
<Proton conductivity>
Electrodes were brought into contact with the front and back of the electrolyte membrane at room temperature (25 ° C.) and 100% wet state, and the membrane was fixed by sandwiching it between heat resistant resin (polytetrafluoroethylene) plates, and proton conductivity was measured.
The membrane used for the measurement was ultrasonically washed in a 1N aqueous hydrochloric acid solution for 5 minutes, then ultrasonically washed three times in ion-exchanged water for 5 minutes each, and then left in ion-exchanged water. The film swollen in water is taken out on a heat-resistant resin (polytetrafluoroethylene) plate, the platinum plate electrode is brought into contact with the front and back of the film, and sandwiched between the heat-resistant resin (polytetrafluoroethylene) plate from the outside 4 Fixed with two screws. The AC impedance was measured with an impedance analyzer (Impedance Analyzer HP4194A, manufactured by Hewlett-Packard Company), the resistance value was read from the call call plot, and the proton conductivity was calculated.
[0042]
<Dimension and area change rate>
About the produced electrolyte membrane, the dimensional change rate and the area change rate were measured by the following.
In order to measure the membrane area change rate of the filling membrane before and after the electrolyte polymer filling and as the polymer swells / shrinks, first, the length of the dried polyimide porous membrane in the x and y directions was measured with a ruler. (Condition 1). Next, the membrane after the measurement was filled with an electrolyte, polymerized, the membrane was washed and subjected to ion exchange treatment, and the length of the electrolyte membrane in a completely swollen state was measured (Condition 2) ). Thereafter, after sufficient drying in a dryer at 50 ° C., the length was measured in the same manner (Condition 3).
The dimensional change rate was calculated | required using the above measurement result, the area was calculated | required by xxy, and the area change rate was computed by the following.
Dimensional change rate:
Area change rate before and after electrolyte membrane filling: A (%)
A = [area (condition 1) −area (condition 3)] × 100 / area (condition 1)
Rate of area change between dry and wet electrolyte membrane: B (%)
B = [area (condition 2) −area (condition 3)] × 100 / area (condition 3)
[0043]
Reference example 1
Preparation of polyimide porous membrane
Polyimide precursor NMP in which 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and oxydianiline have a molar ratio of 0.998 and the total weight of the monomer components is 9.0% by weight. The solution was cast on a mirror-polished SUS plate, the surface was covered with a microporous membrane made of polyolefin (Ube Industries, Ltd .: UP-3025) as a solvent replacement rate adjusting material, and the laminate was placed in methanol. Then, after being immersed in water, heat treatment was performed at 320 ° C. in the air to obtain a polyimide porous film having the following characteristics. Film thickness: 20 μm, porosity: 40%, average pore diameter measured using a perm porosimeter: 0.13 μm, air permeability: 106 seconds / 100 ml.
[0044]
Example 1
Proton-conducting polymer monomer acrylamide methylpropyl sulfonic acid (ATBS), methylene-bis-acrylamide and reaction initiator V-50 (trade name: Wako Pure Chemical Industries, Ltd.) are preferably dissolved in water. After the polyimide porous membrane was immersed in the aqueous monomer solution obtained, the porous membrane was taken out and sandwiched between glass plates. As it was, it was left to stand in a dryer at 50 ° C. for 12 hours to carry out heat polymerization. This was repeated three times, and finally the excess polymer adhering to both surfaces of the membrane was removed by washing with pure water to smooth the membrane, thereby obtaining an electrolyte membrane having the following characteristics.
Methanol permeability: 0.20m 2 h / kgμm
Proton conductivity: 3.6 × 10 -2 S / cm
Area change rate before and after electrolyte membrane filling: A = 0 (%)
Rate of area change between dry and wet electrolyte membrane: B = 0 (%)
[0045]
Example 2
Fabrication of membrane-electrode assembly (MEA)
1) Preparation of diffusion layer
Only for the electrode used for the oxygen electrode, a diffusion layer was formed on the carbon paper by the following operation.
4.0 g of isopropanol (IPA) was added to 720.37 g of XC-7, ground in an agate mortar, and sufficiently dispersed by stirring and ultrasonic waves. Thereafter, 0.14 g of a commercially available polytetrafluoroethylene (PTFE) dispersion was added and stirred for about 1 minute to obtain a paste for producing a diffusion layer.
Thereafter, the paste was applied to a carbon paper manufactured by Toray Industries Inc. in three portions by a screen printing method, allowed to dry naturally, and then fired at 350 ° C. for 2 hours.
[0046]
2) Preparation of oxygen electrode electrode catalyst layer
Mix the same amount of ion-exchanged water with carbon black (TEC10E50E manufactured by Tanaka Kikinzoku Co., Ltd.) loaded with 46.1% by weight of platinum, and then add commercially available 5% Nafion solution, and repeat stirring and ultrasonic waves for 10 minutes. It was. Thereafter, an appropriate amount of PTFE dispersion was added and stirred to obtain a paste for forming a catalyst layer. By screen printing, the paste was applied three times on the carbon paper with diffusion layer prepared in the previous stage using a screen printer and air-dried three times. A gas diffusion electrode used for the electrode was obtained.
[0047]
3) Preparation of catalyst layer for methanol electrode
Carbon black (TEC66E50 manufactured by Tanaka Kikinzoku Co., Ltd.) carrying 32.7% by weight of platinum and 16.9% by weight of ruthenium was mixed with the same amount of ion-exchanged water, and then a commercially available 5% Nafion solution was added. Stirring and ultrasonic waves were repeated for 10 minutes. Thereafter, an appropriate amount of PTFE dispersion was added and stirred to obtain a paste for forming a catalyst layer. Using the screen printing method, the paste was applied three times with a screen printing machine onto the carbon paper with a diffusion layer prepared in the previous stage, and the operation was repeated four times until it was naturally dried. -A gas diffusion electrode used for the electrode was obtained.
[0048]
4) Creation of MEA
The electrode produced by the above method and the electrolyte membrane produced in Example 1 were joined using a hot press (conditions: 130 ° C., 2 MPa, 1 min) to produce an MEA. The amount of catalyst supported on the electrode is 1.6mg / cm at Anode. 2 , Cathode 1.03 mg-Pt / cm 2 Met.
[0049]
5) Direct methanol fuel cell
The MEA produced in the above 4) was made into an electrode area of 5 cm by US Electrochem. 2 A direct methanol fuel cell was obtained by being incorporated into the fuel cell of No. 1 and tested. The power generation condition is that the cell temperature is 50 ° C. 27-53 A mass% aqueous methanol solution was supplied at a flow rate of 10 mL / min, and dry oxygen was supplied to the cathode at a flow rate of 1 L / min. Test results, 53 Even when a mass% aqueous methanol solution was used, substantial power generation behavior was confirmed.
[0050]
The freezing point was measured about the methanol aqueous solution of each said density | concentration. () Is a literature value.
The results are shown below.
Methanol 8 Mol / L (about 27% by mass) (−22 ° C.)
Methanol 10Mol / L (34% by weight) (-30 ° C)
Methanol 15 Mol / L (53 wt%) -55 ° C
[0051]
Comparative Example 1
A power generation test was conducted in the same manner as in Example 2 except that Nafion 112 was used as the electrolyte membrane. as a result, 27 When a mass% methanol aqueous solution was used as the fuel, an open voltage of 0.4 V or more could not be obtained, and practical power generation characteristics could not be obtained. Moreover, when an aqueous solution having a methanol concentration higher than that was used, almost no power generation behavior was observed, and data could not be collected.
[0052]
【The invention's effect】
According to the present invention, a direct methanol fuel cell capable of generating power even below the freezing point can be produced by using a very high concentration aqueous methanol solution as a fuel. This makes it possible to use the fuel cell in a cold region where the temperature is below freezing, which is very useful.
[Brief description of the drawings]
1 is a power generation characteristic (cell voltage-current density) in Example 2 and Comparative Example 1. FIG. The weight% in the legend is the methanol concentration of the liquid fuel.
FIG. 2 shows power generation characteristics (output density-current density) in Example 2 and Comparative Example 1. The weight% in the legend is the methanol concentration of the liquid fuel.

Claims (5)

液体燃料のメタノ−ル濃度が8〜15Mol/Lのメタノ−ル水溶液である直接メタノ−ル形燃料電池に用いる電解質膜であり、
ポリイミド多孔質膜は、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物から選ばれる芳香族テトラカルボン酸二無水物と、オキシジアニリン、ジアミノジフエニルメタン及びパラフエニレンジアミンから選ばれる芳香族ジアミンとから得られるポリイミドの多孔質膜を用い、
ポリイミド多孔質膜の細孔内に極性基を有するプロトン伝導性ポリマ−を与えるモノマ−及び架橋剤を充填した後重合してメタノ−ル水溶液に不溶性であることを特徴とする直接メタノ−ル形燃料電池用の電解質膜。
An electrolyte membrane for use in a direct methanol fuel cell that is an aqueous methanol solution having a methanol concentration of liquid fuel of 8 to 15 mol / L;
The polyimide porous membrane comprises an aromatic tetracarboxylic dianhydride selected from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride, oxydianiline, diaminodiphenyl Using a polyimide porous membrane obtained from an aromatic diamine selected from methane and paraphenylenediamine,
A direct methanol form characterized by being insoluble in an aqueous methanol solution after being filled with a monomer that gives a proton conductive polymer having a polar group in the pores of a polyimide porous membrane and a cross-linking agent. Electrolyte membrane for fuel cells.
極性基を有するプロトン伝導性ポリマ−を与えるモノマ−が、p−スチレンスルホン酸ナトリウム、アクリルアミドのスルホン酸又はホスホン酸誘導体、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−(メタ)−アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸、(メタ)アリルスルホン酸、(メタ)アリルホスホン酸、ビニルスルホン酸、ビニルホスホン酸、スチレンスルホン酸、スチレンホスホン酸、(メタ)アクリル酸、(無水)マレイン酸、フマル酸、クロトン酸、イタコン酸等のアニオン性不飽和モノマ−やその塩、構造中にビニル基;スルホン酸及びホスホン酸の強酸基;カルボキシル基の弱酸基;を有するモノマ−及びそのエステルの誘導体並びにそれらのモノマ−から1種又は2種以上選択され、
架橋剤は、N,N−メチレンビス(メタ)アクリルアミド、ポリエチレングリコ−ルジ(メタ)アクリレ−ト、ポリプロピレングリコ−ルジ(メタ)アクリレ−ト、トリメチロ−ルプロパンジアリルエ−テル、ペンタエリスリト−ルトリアリルエ−テル、ジビニルベンゼン、ビスフェノ−ルジ(メタ)アクリレ−ト、イソシアヌル酸ジ(メタ)アクリレ−ト、テトラアリルオキシエタン、トリアリルアミン、ジアリルオキシ酢酸塩から1種又は2種以上選択されることを特徴とする請求項1に記載の直接メタノ−ル形燃料電池用の電解質膜。
Monomers that give a proton-conducting polymer having a polar group are sodium p-styrenesulfonate, sulfonic acid or phosphonic acid derivatives of acrylamide, 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) -Acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, (meth) allylsulfonic acid, (meth) allylphosphonic acid, vinylsulfonic acid, vinylphosphonic acid, styrenesulfonic acid, styrenephosphonic acid, (meth) acrylic Anionic unsaturated monomers such as acid, (maleic anhydride), fumaric acid, crotonic acid, and itaconic acid, salts thereof, vinyl group in structure; strong acid group of sulfonic acid and phosphonic acid; weak acid group of carboxyl group; Monomers having them and derivatives of their esters and their monomers to 1 Or two or more selected,
Crosslinking agents include N, N-methylenebis (meth) acrylamide, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane diallyl ether, pentaerythritol triaryl ether. -One or more selected from ter, divinylbenzene, bisphenol di (meth) acrylate, isocyanuric acid di (meth) acrylate, tetraallyloxyethane, triallylamine, diallyloxyacetate 2. The electrolyte membrane for a direct methanol fuel cell according to claim 1 , wherein the electrolyte membrane is a direct methanol fuel cell.
ポリイミド多孔質膜は、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物から選ばれる芳香族テトラカルボン酸二無水物と、オキシジアニリン、ジアミノジフエニルメタン及びパラフエニレンジアミンから選ばれる芳香族ジアミンとから得られるポリアミック酸溶液から、ポリアミック酸溶液を平坦な基板上に流延して溶媒置換速度調整材と接触させた後に凝固液中に浸漬する方法によって、ポリイミド前駆体多孔質フィルムとした後、ポリイミド前駆体多孔質フィルムの両端を固定して大気中で280〜500℃で5〜60分間加熱することによって得ることができることを特徴とする請求項1又は請求項2に記載の直接メタノ−ル形燃料電池用の電解質膜。The polyimide porous membrane comprises an aromatic tetracarboxylic dianhydride selected from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride, oxydianiline, diaminodiphenyl From a polyamic acid solution obtained from an aromatic diamine selected from methane and paraphenylenediamine, the polyamic acid solution is cast on a flat substrate and brought into contact with a solvent substitution rate adjusting material, and then immersed in a coagulation liquid. A polyimide precursor porous film can be obtained by a method, and then obtained by fixing both ends of the polyimide precursor porous film and heating at 280 to 500 ° C. for 5 to 60 minutes in the atmosphere. The electrolyte membrane for a direct methanol fuel cell according to claim 1 or 2 . ポリイミド多孔質膜は、多孔質膜の両面間でガスおよびアルコ−ルが透過できる通路を有し、空孔率が5〜95%、平均細孔径が0.001〜100μm、膜の厚さが5〜300μmであることを特徴とする請求項1〜のいずれかに記載の直接メタノ−ル形燃料電池用の電解質膜。The polyimide porous membrane has a passage through which gas and alcohol can pass between both surfaces of the porous membrane, the porosity is 5 to 95%, the average pore diameter is 0.001 to 100 μm, and the thickness of the membrane is The electrolyte membrane for a direct methanol fuel cell according to any one of claims 1 to 3 , wherein the electrolyte membrane is 5 to 300 µm. 請求項1〜のいずれかに記載の直接メタノ−ル形燃料電池用の電解質膜を用いた直接メタノ−ル形燃料電池。A direct methanol fuel cell using the electrolyte membrane for a direct methanol fuel cell according to any one of claims 1 to 4 .
JP2003199011A 2003-07-18 2003-07-18 Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point Expired - Fee Related JP4379025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199011A JP4379025B2 (en) 2003-07-18 2003-07-18 Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199011A JP4379025B2 (en) 2003-07-18 2003-07-18 Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point

Publications (2)

Publication Number Publication Date
JP2005038669A JP2005038669A (en) 2005-02-10
JP4379025B2 true JP4379025B2 (en) 2009-12-09

Family

ID=34208592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199011A Expired - Fee Related JP4379025B2 (en) 2003-07-18 2003-07-18 Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point

Country Status (1)

Country Link
JP (1) JP4379025B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090068530A1 (en) * 2005-05-18 2009-03-12 Hideki Hiraoka Membrane electrode assembly and direct liquid fuel cell
WO2006126346A1 (en) * 2005-05-25 2006-11-30 Konica Minolta Holdings, Inc. Proton conductive electrolyte membrane, method for producing same, and solid polymer fuel cell using such proton conductive electrolyte membrane
JP2007280653A (en) * 2006-04-04 2007-10-25 Asahi Kasei Chemicals Corp Composite electrolyte membrane
JP5066865B2 (en) 2006-08-09 2012-11-07 トヨタ自動車株式会社 REINFORCED ELECTROLYTE MEMBRANE FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY FOR FUEL CELL, AND SOLID POLYMER FUEL CELL HAVING THE SAME
CN107204475B (en) 2017-05-22 2019-07-16 大连理工大学 A kind of cross-linking type perforated membrane of aliphatic radical side-chain hydrolysis and preparation method thereof

Also Published As

Publication number Publication date
JP2005038669A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
TW589759B (en) Fuel cell membranes
US7514481B2 (en) Polymer electrolytes crosslinked by e-beam
JP2002260705A (en) Solid polymer electrolyte material, liquid composite, solid polymer fuel cell, fluorine-containing polymer and solid polymer electrolyte film consisting of fluorine-containing polymer
WO2006059582A1 (en) Electrolyte membrane and solid polymer fuel cell using same
JP5089917B2 (en) Electrolyte membrane and polymer electrolyte fuel cell
JP2006216531A (en) Electrolyte membrane and solid polymer fuel cell using the same
JPWO2005076396A1 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
JP2004253147A (en) Manufacturing method of hybrid material, electrolyte film for fuel cell, electrolyte film/electrode junction, and fuel cell
JP2004247182A (en) Electrolyte film for fuel cell, electrolyte film/electrode junction, fuel cell, and manufacturing method of electrolyte film for fuel cell
JP2009242688A (en) Polymer electrolyte membrane
JP4379025B2 (en) Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
JP5164149B2 (en) Cation exchange membrane and method for producing the same
JP4851757B2 (en) Electrolyte membrane and polymer electrolyte fuel cell
JP2004247152A (en) Electrolyte film/electrode junction, fuel cell, and manufacturing method of electrolyte film/electrode junction
JP2004253336A (en) Electrolyte film and fuel cell using it
JP2006331848A (en) Proton conductive electrolyte membrane and manufacturing method thereof, and polymer electrolyte fuel cell
JP2004296409A (en) Manufacturing method of polymeric electrolyte composite film
JP2003297393A (en) Electrolyte membrane for solid high polymer fuel cell and membrane electrode junction body
JP2008135399A (en) Electrolyte membrane-electrode assembly, fuel cell, and method of manufacturing electrolyte membrane-electrode assembly
JP2010047724A (en) Electrolyte polymer having improved humidity retention property, and method of manufacturing the same
JP2004296278A (en) Small fuel cell and electrolyte film
JP2005285413A (en) Proton conductive membrane, its manufacturing method, and solid polymer type fuel cell using proton conductive membrane
JP4860237B2 (en) Composite electrolyte membrane and fuel cell using the same
JP2005268032A (en) Polymer electrolyte membrane, its evaluation method, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees