JP4378910B2 - Method for producing optically anisotropic film with tilted optical axis - Google Patents

Method for producing optically anisotropic film with tilted optical axis Download PDF

Info

Publication number
JP4378910B2
JP4378910B2 JP2002053588A JP2002053588A JP4378910B2 JP 4378910 B2 JP4378910 B2 JP 4378910B2 JP 2002053588 A JP2002053588 A JP 2002053588A JP 2002053588 A JP2002053588 A JP 2002053588A JP 4378910 B2 JP4378910 B2 JP 4378910B2
Authority
JP
Japan
Prior art keywords
magnetic field
liquid crystal
polymerizable liquid
crystal material
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002053588A
Other languages
Japanese (ja)
Other versions
JP2003255127A (en
Inventor
浩史 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2002053588A priority Critical patent/JP4378910B2/en
Publication of JP2003255127A publication Critical patent/JP2003255127A/en
Application granted granted Critical
Publication of JP4378910B2 publication Critical patent/JP4378910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光軸が傾いた光学異方フィルムの製造方法に関する。
【0002】
【従来の技術】
重合性官能基を有する液晶性化合物(以下、重合性液晶化合物)又はこの化合物を少なくとも一種含有する重合性液晶組成物を、液晶状態で配向させた重合性液晶材料層を得た後、配向状態で紫外線や電子線を照射すると、液晶分子の配向構造を固定化した重合体を作製することができる。このようにして得られた重合体の中でも、厚みが数mm〜数mm程度の重合性液晶材料を、厚み方向に対して斜めに傾けて配向させ、配向状態を固定化することによって作製される光学異方フィルムは、光学的用途に応用することができる。重合性液晶材料を斜めに配向させる手段として、重合性液晶材料層に対して角度をもって磁場を印加させる方法が、特開平5-215921号公報や特開平8-122708号公報に記載されている。
【0003】
この方法で光軸の傾き角が面内方向で均一な光学異方フィルムを製造するためには、光学異方フィルムの大きさに対して十分な磁石間隔(平行磁場を得るために対向させた一対の磁石間の距離)と断面積を有し、かつ一定以上の強さの均一な平行磁場が必要となる。具体的には、図1に示すように光軸がフィルム法線に対して角度θ傾き、一辺の長さがaの正方形の光学異方フィルム(面積A=a2)を製造する場合には、図2に示すように、磁石間隔として、少なくともa×sinθの距離が必要である。均一な平行磁場の断面積を磁極面積と等しいと考えれば、平行磁場の断面積は、少なくともa2×cosθ(=A×cosθ)が必要となる。これより磁極面積が小さいと、図3に示すように重合性液晶材料に作用する磁力線がお互いに平行でなくなり、液晶分子の傾きが面内方向で均一でなくなってしまう。重合性液晶材料の磁化率の異方性が大きいほど、磁場は弱くても配向を達成できるが、重合性液晶材料の配向にはおよそ2〜4kG以上の磁場の強さが必要である。
【0004】
これらを考慮すると、永久磁石として現時点で入手可能な最も強いネオジウム系磁石を用いても、光学異方フィルムの大きさはせいぜい数センチ角程度のものしか作製することができない。従って、数センチ角以上の大きさの光学異方フィルムを作製しようとする場合には、電磁石もしくは超伝導磁石を用いる必要がある。
【0005】
磁場の強さは磁石間隔の距離の二乗に反比例する。フィルムの一辺(a)が大きくなると、光学フィルムの光軸の傾き角がθである光軸が傾いた光学フィルムを製造するためには、磁極間の距離を少なくとも(a×sinθ)以上にする必要があり、磁極間距離が大きくなる。このため、磁場の強さは、(a×sinθ)2に反比例して小さくなってしまう。磁場の強さを増すには、磁場発生装置は急激に大がかりになり、技術的障壁が高くなり、装置コスト及び維持コストが高くなってしまうという問題があった。また、弱い磁場の強さを有する磁場の印加では、完全には配向欠陥が除去されなかったり、完全な配向を得るには、長時間を要したりすることが問題であった。つまり、重合性液晶材料の配向は、磁場により瞬時に配向が得られるのではなく、磁場を印加してから所望の配向状態を得るためには、配向に要する時間が必要である。配向に要する時間を短縮するためには、上述の2〜4kGよりさらに強い磁場が必要となる。配向に要する時間は、重合性液晶材料の粘度が低いほど、短縮することができるが、重合性液晶材料の粘度が数十〜数千mPa・sの範囲にあることを考慮すると、少なくとも4〜8kG以上の磁場強度がないと、配向時間が数分以上と長くなってしまい、生産性が悪化してしまう。このように生産性も考慮すると、磁場発生装置の技術的障害がさらに高くなり、現時点で合理的に入手できうる水準を超えてしまう、もしくは装置コスト及び維持コストが現実的でないほど高くなってしまうという問題があった。
【0006】
すなわち、磁場配向手段を用いて光学異方フィルムを生産性良く製造しようとすると磁場発生装置の技術的障害が非常に高くなるという問題があった。また、磁場発生装置のコストを低減しようとすると光学異方フィルムの生産性が悪化してしまうという問題があった。この問題は、数センチ角以上の大きさを有する光学フィルムの製造では特に深刻なものとなっていた。
【0007】
【発明が解決しようとする課題】
磁石の技術上やコスト上の制約を大きく受けることなく、光軸が傾いた光学フィルムを生産性良く製造する方法を提供する。
【0008】
【課題を解決するための手段】
上記課題を解決するために、重合性液晶材料の磁場配向を詳細に検討した結果、磁場配向における律速段階は配向欠陥の除去にあることを見いだした。そして、配向欠陥の除去に特化した配向工程を、所望の配向状態を得るための磁場配向工程の前に設けることによって上記課題を解決できることを見いだした。
【0009】
すなわち本発明は、(第一工程)重合性液晶材料を基板上に坦持して、又は2枚の基板間に挟持して、重合性液晶材料層を得る工程と、(第二工程)重合性液晶材料層を、電場印加、磁場印加、又は電場と磁場の同時印加により実質上配向欠陥が無い状態にする配向欠陥除去工程と、(第三工程)磁場により重合性液晶材料層を均一配向させ、配向状態で重合性液晶材料に活性エネルギー線を照射して硬化させる工程とを有する光軸が傾いた光学異方フィルムの製造方法を提供する。
【0010】
配向欠陥とは液晶辞典(倍風館、日本学術振興会情報科学用有機材料第142委員会編)にある転傾、点欠陥などを総称した液晶分子の配向状態が連続していないものである。配向欠陥は光散乱の原因となるため好ましくなく、光学的に良質な光学フィルムを得るためには除去する必要がある。
【0011】
配向欠陥の除去に特化した配向欠陥除去工程には、電場印加もしくは磁場印加が有効である。電場印加は、磁場印加と異なり、フィルムが大面積化しても、装置コストの上昇はほとんど無く、装置コスト自体も磁場印加の場合と比較して安価ですむ。
【0012】
また、配向欠陥の除去を目的とした磁場印加の場合には、所望の配向状態を固定化する際に印加する磁場とは異なり、重合性液晶材料に作用する磁力線はお互いに平行でなくても良い。つまり、図3に示したような磁場の状態でも良い。このような磁場は、図2に示したような重合性液晶材料に作用する磁力線がお互いに平行であるものと比較して装置コスト、維持コストが低廉である。
【0013】
配向欠陥の除去を目的とする磁場の印加には、永久磁石の使用が有効である。一つ一つの永久磁石の磁場面積は小さくとも、平行磁場である必要がないため、図5に示すように複数の永久磁石を並べて磁場を印加することが可能である。
このようにすれば、装置設計の融通度を広げることができ、電場や永久磁場の使用により装置コストや維持コストが安い配向方法を適用することでき、生産性の向上に非常に有用である。
【0014】
実質上配向欠陥がない状態まで配向欠陥の除去する工程が完了すれば、重合性液晶材料層を固定化したい所望の配向状態に配向させるための磁場配向工程を次に行う。この工程では、重合性液晶材料層に作用する磁力線がお互いに平行であれば、重合性液晶材料を配向させる程度の強さの磁場を印加するだけで、迅速に配向欠陥の無い所望の配向状態を達成することができる。所望の配向状態に到達するための律速となる配向欠陥の除去が既に前工程で達成されているため、最小限の配向に必要な磁場の強さで十分である。そのため、配向欠陥の除去に特化した配向欠陥除去工程を設けない場合と比較して、磁場発生装置の技術的障壁を低くでき配向工程の効率化を達成することができる。更に装置導入コスト及び維持コストを低減することができる。以上のように、従来の配向工程を配向欠陥除去工程と配向工程の2つに分割することにより、生産性が良好になり、かつ磁場発生装置の技術的、コスト的な障害を軽減することが可能となる。
【0015】
【発明の実施の形態】
以下に、第一〜第三工程を詳細に説明する。
【0016】
(第一工程)
重合性液晶材料を基板上に担持して重合性液晶材料層を得るには、基板上に重合性液晶材料を印刷法やスピンコート法で塗布することが好ましい。基板上の全体にわたって、均一な塗布厚みを得られるよう配慮することが好ましい。塗布の際には、重合性液晶材料を原液のまま用いても、溶媒に溶かしても良い。重合性液晶材料を2枚の基板間に挟持して重合性液晶材料層を得るには、一定の間隔を持って平行に対向させた2枚の基板間の間隙に、重合性液晶材料を注入するのが好ましい。2枚の基板のうち、少なくとも一方は紫外線や電子線等の活性エネルギー線を透過する必要がある。
【0017】
担持又は挟持のいずれの方法を用いるにしても、重合性液晶材料層の厚みは0.1〜3000μmが好ましく、0.2〜1000μmが好ましく、0.5〜200μmが好ましく、1〜150μmが特に好ましい。層の厚みの誤差は、5μm以下、好ましくは2μm以下、さらに好ましくは1μm以下、特に好ましくは0.5μm以下である。
【0018】
基板として用いることができるのは、プラスチック等の有機材料、ガラス及びアルミニウム等の無機材料である。表面の平坦性が優れ、基板厚みの均一性に優れる基板を用いることが好ましい。表面の平坦性及び厚みの誤差は、10μm以下、好ましくは5μm以下、さらに好ましくは2μm以下、特に好ましくは1μm以下である。
【0019】
基板の表面には配向処理をしておくことが好ましい。例えば、垂直配向状態を与える垂直配向膜の形成や、有機薄膜を基板に形成しラビングしたような水平一軸配向膜が挙げられる。基板自体が有機材料であれば、そのままラビング処理しても良い。
【0020】
重合性液晶材料は、液晶の技術分野で反応性の液晶材料もしくは重合性の液晶材料と認識される材料であれば用いることができる。このような材料としては、一般式(I)
【0021】
【化1】

Figure 0004378910
【0022】
[式中、X1は水素原子又はメチル基を表し、sは0〜18の整数を表し、sが0のときtは0を表し、sが1以上のときtは0又は1を表し、6員環A、環B及び環Cはそれぞれ独立的に、1,4-フェニレン基、隣接しないCH基が窒素で置換された1,4-フェニレン基、1,4-シクロヘキシレン基、1つ又は隣接しない2つのCH2基が酸素若しくは硫黄原子で置換された1,4-シクロヘキシレン基、又は1,4-シクロヘキセニル基を表し、これらの6員環A、環B及び環Cは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で一つ以上置換されていても良く、Y1、Y2はそれぞれ独立的に単結合、-CH2CH2-、-CH2O-、-OCH2-、-COO-、-OCO-、-C≡C-、-CH=CH-、-CF=CF-、-(CH2)4-、-CH2CH2CH2O-、-OCH2CH2CH2-、-CH=CH-CH2CH2-、-CH2CH2-CH=CH-、-CH=CH-COO-、-OCO-CH=CH-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2CH2-、-OCO-CH2CH2-を表し、Y3は単結合、-O-、-OCO-、-COO-、-CH=CH-COO-又は式(II)
【0023】
【化2】
Figure 0004378910
【0024】
(式中、X2は水素原子又はメチル基を表し、vは0〜18の整数を表し、vが0のときwは0を表し、vが1以上のときwは0又は1を表す。)を表し、Z1は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20の炭化水素基を表す。但しY3が式(II)を表すときは、Z1は水素原子を表す。]で表される化合物を含有する重合性液晶材料を挙げることができる。具体的な化合物の例としては、例えば以下のような化合物を挙げることができる。
【0025】
【化3】
Figure 0004378910
【0026】
(式中、s、vはそれぞれ独立的に1〜18の整数を表し、Y3、Z1は一般式(I)におけるものと同じ意味を表す)。
【0027】
重合性液晶材料は、40℃以下の温度でもネマチック相を呈するものが好ましく、25℃においてネマチック相を呈するものがさらに好ましい。また、重合性液晶材料の粘度は、40℃以下において500mPa・s以下が好ましく、さらに好ましくは25℃において500mPa・s以下であり、25℃において300mPa・s以下であり、特に好ましくは25℃において200mPa・s以下である。
【0028】
(第二工程)
本工程が、配向欠陥の除去に特化した配向欠陥除去工程である。この工程で、実質上配向欠陥が無い状態を得る。ここで配向欠陥が無い状態とは、光学顕微鏡の検出限界以上の大きさの配向欠陥が観察されない状態とすることができる。つまり、可視光波長の2倍程度(約0.8〜1.6μm)より大きな配向欠陥が面積全体にわたって観察されないことをいう(配向欠陥の形は種々存在するが、外形上、一番長くなるよう測定した長さを配向欠陥の大きさとする)。実際には50μm以上の配向欠陥が存在せず、50μm未満の配向欠陥が1平方センチあたり1個以下であれば、光学異方フィルムの光学的品質をほとんど劣化させないので、この状態を実質上配向欠陥が無いとすることができる。実質上配向欠陥が無い状態としては、10μm以上の配向欠陥が存在せず、10μm未満の配向欠陥が1平方センチあたり1個以下であることが好ましい。更には5μm以上の配向欠陥が存在せず、5μm未満の配向欠陥が1平方センチあたり1個以下がさらに好ましい。また、5μm以上の配向欠陥が存在せず、5μm未満の配向欠陥が1平方センチあたり0.5個以下が特に好ましい。このような配向欠陥の大きさと密度により表される実質上の配向欠陥は、実際の製造工程においては測定に多大な時間がかかる場合がある。実質上の配向欠陥の存在する程度は、測定が容易なヘイズで評価することができる。重合性液晶材料層の厚み(d)と複屈折率(Δn)の積(R=Δn×d:単位はμm)を計算リタデーションと定義し、重合性液晶材料層のヘイズ(H:単位は%)をリタデーション(R)で除した値を規格化ヘイズ(H/R:単位は%/μm)と定義したとき、この規格化ヘイズが0.36以下を、実質上配向欠陥が無い状態とすることができる。実質上配向欠陥が無い状態としては、規格化ヘイズが0.30以下が好ましく、0.24以下がさらに好ましく、0.18以下が特に好ましい。なお、ここで用いている計算リタデーション値はあくまでも、重合性液晶材料層の厚み(d)と複屈折率(Δn)の積で計算されるもので、重合性液晶材料層の配向角αは一切考慮にいれない。
【0029】
本工程における重合性液晶材料層の配向状態は、後で詳述する第三工程における配向状態と必ずしも同じである必要は無い。例えば、図1に示したような光軸が(重合性液晶材料分子の長軸方向が)角度θ傾いている光学異方フィルムを作製する場合においても、本工程において重合性液晶材料層を角度θ傾けた配向状態をとらせる必要は無く、例えば垂直配向状態や水平配向状態をとらせても良い。また、作製する光学異方フィルムに所望の傾き角θより小さい角度αに本工程で配向させても良い。
第二工程における電場又は磁場の配向角度α(基板の法線と電場又は磁場がなす角)が、作製する光学フィルムの光軸の傾きθより小さいことが好ましい。
【0030】
短い時間で配向欠陥を解消するためには、できるだけ強い磁界及び又は強い電界により第二工程を行うことが好ましい。磁界強度は、同じ磁石を用いた場合、磁極間の距離の二乗に反比例する。電界強度は同じ電圧を用いた場合、電極間距離に反比例する。このため、配向欠陥の解消をより速く、より完全に行うためには上記距離を短くする必要がある。光軸がθ傾いた配向を有する光学異方フィルムの製造において、第二工程でθより小さい角度(α)の傾きで配向欠陥を除去する工程を行うと、磁場及び電場の磁極(電極)間隔はsinαに比例するため、αが小さい方が磁極(電極)間隔狭くなり、同じ強さの磁場(電場)を用いても磁場(電場)強度をあげることができる。このため配向欠陥の解消をより完全に、より速くすることができる。
【0031】
αが0であるとき、磁極(電極)距離が最も短くなるため好ましい。特に電極を印加する場合は、重合性液晶材料を坦持又は挟持する基板上に電極を形成できるため好ましい。第二工程に続く第三工程最終において、最終目的の傾き角θまで回転させる際には、第二工程において少し傾き角が与えられていることが好ましい。この観点からは、第二工程のαは、3度以上、さらに好ましくは5度以上、特に好ましくは10度以上が好ましい。
【0032】
電場を用いて実質上配向欠陥が無い状態を得るには、重合性液晶材料層に交流又は直流電圧印加を行う。直流電圧の印加は、重合性液晶材料を劣化させる可能性があるので、交流電圧を印加するのが好ましい。電場は0.5V/μm以上が好ましく、1V/μm以上がさらに好ましく、2V/μm以上が特に好ましい。電場を用いる場合には、重合性液晶材料の誘電率異方性の絶対値は、0.5以上が好ましく、1以上がさらに好ましく、2以上が特に好ましい。誘電率異方性の符号(正か負か)は、どちらでも良い。電場印加方法としては、例えば、重合性液晶材料を基板上に担持する場合には、基板上に複数の櫛形電極を設けて、櫛形電極間に電圧を印加する方法、重合性液晶材料を2枚の基板間に挟持する場合には、2枚の基板上のそれぞれに電極を設けて、この電極間に電圧を印加する方法を挙げることができる。
【0033】
磁場を用いて、実質上配向欠陥が無い状態を得るには、重合性液晶材料層に、異なる磁極を対向させてなる磁石対により実現される磁場を作用させるのが好ましい。磁場の強さとしては、4kG以上であることが好ましい。この際の磁場は、図2に示したようにフィルムに対して十分な磁石間隔(平行磁場を得るために対向させた一対の磁石間の距離)と平行磁場断面積(磁極断面積)を具備する必要は無い。例えば、図4に示したように、作製する光学フィルムの光軸の傾き角がθである光軸が傾いた光学フィルムを作製するにあたり、第二工程における配向角αをθより小さくすると、磁石間隔は図2におけるa×sinθより小さくても良く、磁極面積B(b×c)は図2におけるa2×cosθ(a2はフィルム面積Aであるので、A×cosθ)より小さくても良い。磁石間隔が小さいと、同じ強さの磁石を用いた場合、より強い磁場が得られるので、配向をより迅速に得ることができ、また磁場発生装置の装置及び維持コストを低減できる。当然ながら、図3に示したように重合性液晶材料層に作用する磁力線はお互いに平行な状態とはならないが、配向欠陥の除去を目的とする本工程においては何ら問題無い。図4のような磁石配置の場合、配向欠陥を除去できるのは面積Aのうち、一部分に限られてしまう可能性があるが、重合性液晶材料層を磁場中で移動させることにより、面積A全体にわたって配向欠陥を除去することが可能になる。また、図5に示したように、磁石対を複数設けることによって、配向欠陥除去の効率を向上させることができる。図6に示すように、重合性液晶材料が垂直配向(配向角α=0)するように磁場を印加しても良い。このような配置は、磁石間隔の距離を重合性液晶材料層の厚み程度まで小さくすることができるので、強い磁場を容易に得ることができ、配向欠陥除去工程の時間短縮の観点から好ましい配置である。以上のように、実質上配向欠陥が無い状態にする工程は、電場の利用、重合性液晶材料に作用する磁力線はお互いに平行な状態では無くてもよい磁場の利用、もしくはこれらの組み合わせを利用するものであり、また最終的に作製しようとする光学フィルムの光軸の傾き角と、本工程における重合性液晶材料の配向角は必ずしも一致していなくて良く、第二工程の配向角αが光軸の傾き角θより小さいことが好ましいということで特徴付けられる。
【0034】
(第三工程)
本工程は、最終的に作製しようとする光学フィルムの光軸の傾き角に、重合性液晶材料層の配向角度を、磁場を利用することにより一致させた後、重合性液晶材料に電子線、紫外線等の活性エネルギー線を照射して硬化させる工程である。用いる磁場は異なる磁極を対向させてなる磁石対により実現される磁場を作用させるのが好ましい。ここで重要なのは磁場を利用して重合性液晶材料を均一に配向させることである。従って第二工程と異なり、図2に示したように重合性液晶材料の面積に対して十分な磁石対の間隔と断面積を持つ磁場発生装置を利用する必要がある。つまり、重合性液晶材料に作用する磁力線がお互いに平行である必要がある。すなわち、第三工程において、最終的に作製しようとする光学フィルムの光軸の傾き角がθである場合には、磁場と基板となす角αをθと等しくする。この際、重合性液晶材料層の面積をA、一対の磁石対における平行磁場の断面積をCしたとき、C>A×cosθとなるようにする必要がある。磁場の強さとしては、液晶材料を配向させることができる必要最低限以上の強さがあれば良いが、4kG以上が好ましい。
磁場を印加える手段としては、電磁石もしくは超伝導磁石を使用することが好ましい。
【0035】
第二工程で配向欠陥を除去するために印加した磁場又は電場により得られた重合性液晶層と基板の法線がなす角である配向角がα(α<θ)である場合、第三工程において、配向角度α=θとなるように印加し、配向角度αを最終の光学軸の傾き角θと等しくする。この際には、磁場の配向角度をαから直接θに変えても良いし、αからθへ段階的に或いは連続的に変更させても良い。
【0036】
重合性液晶材料の配向の均一性は、重合性液晶材料層の傾き角を複数点で測定した時の傾き角の標準偏差で評価できる。標準偏差が3度以内であれば、均一性としては問題無く使用することができる。重合性液晶材料の傾き角を直接測定できない場合は、リタデーション(光学位相差:複屈折率と重合性液晶材料層の厚みの積)もしくは偏光分離距離(光軸が傾いた重合性液晶材料層に自然光線が入射すると振動方向が直交する2つの偏光光線に分離される。その光線間の距離を偏光分離距離と定義する)で評価できるので、これらの標準偏差で評価すれば良い。配向角は、液晶セルのプレチルト角を測定する方法として知られるクリスタルローテーション法等で測定することができる。リタデーションは、セナルモン法等で測定することができる。偏光分離距離は、マイクロスケールの上に被測定物を置き、これを偏光顕微鏡で観察することにより測定することができる。リタデーション値は、せいぜい2〜5μm程度までが測定可能領域であるので、これを越える場合には偏光分離距離で評価するのが好ましい。具体的には、重合性液晶材料層の厚みが10〜20μm以下、もしくは、重合性液晶分子の傾き角が0〜60度の範囲にあるときにはリタデーションの方が評価しやすく、重合性液晶材料層の厚みが20μm以上、もしくは、重合性液晶分子の傾きが60〜90度の範囲にあるときには偏光分離距離の方が評価しやすい場合が多い。リタデーションで評価する場合には、その標準偏差10nm以下が好ましく、5nm以下がさらに好ましく、1nm以下が特に好ましい。偏光分離距離で評価する場合には、その標準偏差として1μm以下が好ましく、0.5μm以下がさらに好ましく、0.1μm以下が特に好ましい。
【0037】
電子線、紫外線等の活性エネルギー線の照射は、上述の磁場を印加した状態で行う必要がある。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、液晶組成物を2枚の基板間に挟持させた状態で重合を行う場合には、少なくとも照射面側の基板は紫外線や電子線等の活性エネルギー線に対して適当な透明性が与えられていなければならない。照射時の温度は、使用する重合性液晶材料の液晶状態が保持される温度範囲内であることが好ましい。特に、意図しない熱重合の誘起を避ける意味から可能な限り室温に近い温度、即ち、典型的には25℃での温度で重合させることが好ましい。紫外線や電子線の強度は、0.1mW/cm2〜2W/cm2が好ましい。強度が0.1mW/cm2以下の場合、光重合を完了させるのに多大な時間が必要になり生産性が悪化してしまい、2W/cm2以上の場合、重合性液晶化合物又は重合性液晶組成物が劣化してしまう危険がある。
【0038】
重合によって得られた本発明の光軸が傾いた光学異方フィルムは、初期の特性変化を軽減し、安定的な特性発現を図ることを目的として熱処理を施すこともできる。熱処理の温度は50〜250℃の範囲で、また熱処理時間は30秒〜12時間の範囲が好ましい。このような方法によって製造される光軸が傾いた光学異方フィルムは基板から剥離して単体で用いることも、剥離せずに用いることもできる。また、得られた光学異方フィルムは積層してもよいし、他の基板に貼り合わせて使用することもできる。
【0039】
【実施例】
以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。粘度はE型粘度計を用いて20℃において測定した。ヘイズはNDH2000(日本電色工業株式会社製)を用いてJIS規格K7361に基づいて測定した。また、%は質量%を表す。
【0040】
(評価項目の具体的な測定方法)
配向角は、液晶セルのプレチルト角を測定する方法として知られるクリスタルローテーション法で測定した。偏光分離距離は、マイクロスケールの上に被測定物を置き、これを偏光顕微鏡で観察することにより測定した。
【0041】
(実施例1)
厚み1.1mmで7.1cm角の正方形ガラス基板の片面に、厚み約100nmのポリビニルアルコール薄膜を形成しラビング処理した。このようにしてポリビニルアルコール配向膜を形成したガラス基板2枚を、配向膜が内側になるようにして、お互いに平行を保つように対向させてセルを作製した。このとき、2枚の基板の間隙は100μmとなるよう、ラビング方向はお互いに反平行(アンチパラレル)になるように設定した。
【0042】
次に、以下の重合性液晶組成物(A)を調製した。
【0043】
【化4】
Figure 0004378910
【0044】
この重合性液晶組成物(A)は、室温(25℃)でネマチック液晶相を呈した。ネマチック相−等方性液体相転移温度は52℃であった。また、589nmで測定したne(異常光の屈折率)は1.664で、no(常光の屈折率)は1.505、複屈折率(Δn)は0.159であった。粘度は178mPa・sであった。この重合性液晶組成物(A)99質量部に、光重合開始剤TPO(チバスペシャリティケミカルズ社製)0.1質量部からなる重合性液晶組成物(A')を調製した。さらにこの組成物を孔径1μmのフッ素樹脂製メンブランフィルターで濾過した。この濾過した重合性液晶組成物(A')を作製したセルに室温にて注入した。注入直後は、偏光顕微鏡で観察したところ50μm以上の配向欠陥が観察され、50μm未満の配向欠陥の密度は3個以上/cm2であった。また、ヘイズ(H)を測定したところ、7.5%であった。膜厚は100μmなので、計算リタデーション(R)は15.9μmとなる。従って、規格化ヘイズ(H/R:単位は%/μm)は0.472となった。注入完了後、図7に示すように、1対のネオジム永久磁石(一個の大きさ:縦5cm×横7cm×厚さ5cm)においてN極とS極が向かいあうように、又基板の法線と磁場のなす角αが45度になるように配置して得られる3600Gの磁場に置いた。3分間経過後、偏光顕微鏡で観察したところ50μm以上の配向欠陥は観察されず、50μm未満の配向欠陥の密度は1個以下/cm2となった。また、ヘイズを測定したところ3.9%であった。従って、規格化ヘイズ(H/R:単位は%/μm)は0.245となった。次に図8に示すように半径6cmの円形磁極で、N極とS極が向かい合うように電磁石を基板の法線と磁場のなす角α=θが45度になるように配置して得られる5000Gの磁場に20秒間おいた。図9に示すようにセルの5カ所の点について偏光分離距離を測定したところ、10.0、10.5、10.5、10.5、10.5μmであり、標準偏差は0.09μmであった。この状態で、40mW/cm2の紫外線を12秒照射して重合性液晶組成物を硬化させた。このようにして作製した光学異方フィルムを偏光顕微鏡で観察したところ、50μm以上の配向欠陥は観察されず、50μm未満の配向欠陥の密度は0.1個以下/cm2であった。また、得られた光学異方フィルムのヘイズを測定したところ2.8%であった。図9にしめす位置で偏光分離距離を測定したところ、6.5、7.0、7.0、7.0、7.0μmであった。
【0045】
(比較例1)
実施例1と同様にセルを作製し、これに実施例1で調製・濾過した重合性液晶組成物(A')を室温にて注入した。注入直後は、偏光顕微鏡で観察したところ、50μm以上の配向欠陥が観察され、50μm未満の配向欠陥の密度は3個以上/cm2であった。また、ヘイズを測定したところ、7.5%であった。膜厚は100μmなので、計算リタデーション(R)は15.9μmとなる。従って、規格化ヘイズ(H/R:単位は%/μm)は0.472となった。これを、図8に示すように半径6cmの円形磁極で、N極とS極が向かい合うように、又基板の法線と磁場のなす角度θが45度になるように電磁石を配置して得られる5000Gの磁場に20秒間おいた後、この状態で40mW/cm2の紫外線を12秒照射して重合性液晶組成物を硬化させた。このようにして作製した光学異方フィルムを偏光顕微鏡で観察したところ、50μm以上の配向欠陥が観察され、50μm未満の配向欠陥の密度は1個以上/cm2であった。ヘイズを測定したところ、5.0%であった。
【0046】
(比較例2)
実施例1と同様にセルを作製し、これに実施例1で調製・濾過した重合性液晶組成物(A')を室温にて注入した。注入直後は、偏光顕微鏡で観察したところ50μm以上の配向欠陥が観察され、50μm未満の配向欠陥の密度は3個以上/cm2であった。また、ヘイズを測定したところ、7.5%であった。膜厚は100μmなので、計算リタデーション(R)は15.9μmとなる。従って、規格化ヘイズ(H/R:単位は%/μm)は0.472となった。これを、図8に示すように半径6cmの円形磁極で、N極とS極が向かい合うように、又基板の法線と磁場のなす角度θが45度になるように電磁石を配置して得られる5000Gの磁場に60秒間おいた後、この状態で40mW/cm2の紫外線を12秒照射して重合性液晶組成物を硬化させた。このようにして作製した光学異方フィルムを偏光顕微鏡で観察したところ、50μm以上の配向欠陥が観察されなかったものの、50μm未満の配向欠陥の密度が1個以上/cm2であった。ヘイズを測定したところ、4.0%であった。
【0047】
(比較例3)
実施例1と同様にセルを作製し、これに実施例1で調製・濾過した重合性液晶組成物(A')を室温にて注入した。注入直後は、偏光顕微鏡で観察したところ50μm以上の配向欠陥が観察され、50μm未満の配向欠陥の密度は3個以上/cm2であった。また、ヘイズを測定したところ、7.5%であった。膜厚は100μmなので、計算リタデーション(R)は15.9μmとなる。従って、規格化ヘイズ(H/R:単位は%/μm)は0.472となった。これを、図8に示すように半径6cmの円形磁極で、N極とS極が向かい合うように、又基板の法線と磁場のなす角度である配向角αが光軸の傾き角θ=45度と等しくなるように電磁石を配置して得られる5000Gの磁場に120秒間おいた後、この状態で40mW/cm2の紫外線を12秒照射して重合性液晶組成物を硬化させた。このようにして作製した光学異方フィルムを偏光顕微鏡で観察したところ、50μm以上の配向欠陥は観察されず、50μm未満の配向欠陥の密度は0.1個以下/cm2であった。また、得られた光学異方フィルムのヘイズを測定したところ2.8%であった。
【0048】
本発明の実施例1において、装置及び維持コストが高い電磁石を用いる時間は20秒であり、配向欠陥の無い良好な光学異方フィルムが得られている。比較例1では電磁石を用いる時間は20秒と同じであるが、配向欠陥が存在する。比較例2では電磁石を用いる時間は60秒と長いが、これでも配向欠陥が除去しきれていない。比較例3では配向欠陥を除去できたが、電磁石を用いる時間は120秒と長く、生産性が悪い。
【0049】
(実施例2)
厚み1.1mmで5cm角の正方形ガラス基板を、0.25質量%トリクロロ(1H、1H、2H、2H-パーフルオロオクチル)シランのヘキサン溶液に5分浸積後、水洗、乾燥させることにより垂直配向膜を形成した。このようにして垂直配向膜を形成したガラス基板2枚を、お互いに平行を保つように対向させてセルを作製した。このとき、2枚の基板の間隙は100μmとなるように設定した。これに実施例1で調製・濾過した重合性液晶組成物(A')を室温にて注入した。注入直後は、偏光顕微鏡で観察したところ50μm以上の配向欠陥が観察され、50μm未満の配向欠陥の密度は3個以上/cm2であった。また、ヘイズを測定したところ、7.0%であった。膜厚は100μmなので、計算リタデーション(R)は15.9μmとなる。従って、規格化ヘイズ(H/R:単位は%/μm)は0.440となった。注入完了後、図10に示すように、1対のネオジム永久磁石(一個の大きさ:縦5cm×横5cm×厚さ2cm)においてN極とS極が向かいあうように、又配向角αが0度となるように(すなわち法線方向に磁場を印加)配置して得られる4300Gの磁場に置いた。3分間経過後、偏光顕微鏡で観察したところ50μm以上の配向欠陥は観察されず、50μm未満の配向欠陥の密度は1個以下/cm2となった。また、ヘイズを測定したところ3.8%であった。従って、規格化ヘイズ(H/R:単位は%/μm)は0.239となった。次に図11に示すように半径6cmの円形磁極で、N極とS極が向かい合うように又配向角αがθと等しい45度になるように電磁石を配置して得られる5000Gの磁場に20秒間おいた。図12に示すようにセルの5カ所の点について偏光分離距離を測定したところ、9.5、9.5、9.5、9.0、9.0μmであり、標準偏差は0.11μmであった。この状態で、40mW/cm2の紫外線を12秒照射して重合性液晶組成物を硬化させた。このようにして作製した光学異方フィルムを偏光顕微鏡で観察したところ、50μm以上の配向欠陥は観察されず、50μm未満の配向欠陥の密度は0.1個以下/cm2であった。また、得られた光学異方フィルムのヘイズを測定したところ2.9%であった。図12にしめす位置で偏光分離距離を測定したところ、6.5、6.5、6.5、6.5、7.0μmであった。
【0050】
(比較例4)
実施例2と同様にセルを作製し、これに実施例1で調製・濾過した重合性液晶組成物(A')を室温にて注入した。注入直後は、偏光顕微鏡で観察したところ50μm以上の配向欠陥が観察され、50μm未満の配向欠陥の密度は3個以上/cm2であった。また、ヘイズを測定したところ、7.0%であった。膜厚は100μmなので、計算リタデーション(R)は15.9μmとなる。従って、規格化ヘイズ(H/R:単位は%/μm)は0.440となった。これを、図11に示すように半径6cmの円形磁極で、N極とS極が向かい合うように、又基板の法線と磁場のなす角度θが45度になるように電磁石を配置して得られる5000Gの磁場に20秒間おいた後、この状態で40mW/cm2の紫外線を12秒照射して重合性液晶組成物を硬化させた。このようにして作製した光学異方フィルムを偏光顕微鏡で観察したところ、50μm以上の配向欠陥はなかったものの、50μm未満の配向欠陥の密度は2個以上/cm2であった。ヘイズを測定したところ、5.2%であった。
【0051】
(比較例5)
実施例2と同様にセルを作製し、これに実施例1で調製・濾過した重合性液晶組成物(A')を室温にて注入した。注入直後は、偏光顕微鏡で観察したところ50μm以上の配向欠陥が観察され、50μm未満の配向欠陥の密度は3個以上/cm2であった。また、ヘイズを測定したところ、7.0%であった。膜厚は100μmなので、計算リタデーション(R)は15.9μmとなる。従って、規格化ヘイズ(H/R:単位は%/μm)は0.440となった。これを、図11に示すように半径6cmの円形磁極で、N極とS極が向かい合うように、又基板の法線と磁場のなす角度θが45度になるように電磁石を配置して得られる5000Gの磁場に180秒間おいた後、この状態で40mW/cm2の紫外線を12秒照射して重合性液晶組成物を硬化させた。このようにして作製した光学異方フィルムを偏光顕微鏡で観察したところ、50μm以上の配向欠陥はなく、50μm未満の配向欠陥の密度は0.1個以下/cm2であった。ヘイズを測定したところ、2.9%であった。
【0052】
【発明の効果】
磁場配向を用いた光軸が傾いた光学異方フィルムの製造において、装置及び維持コストが高い電磁石の使用時間を短縮することができる。もしくは、使用時間が同じであれば電磁石の強さが弱くても良い。つまり、電磁石の技術的障壁を低くすることができ、光軸が傾いた光学異方フィルムの大面積化を容易とするものである。以上のことから、本発明の製造方法は、光軸が斜めに傾いた光学フィルムの製造に有用である。
【図面の簡単な説明】
【図1】 光軸がフィルム法線に対して角度θ傾き、一辺の長さがaの正方形の光学異方フィルム(面積A=a2)を示す図である。
【図2】 平行磁場を得るために一対の磁石をa×sinθ以上の距離を置くことにより得られた平行磁場により、基板上に坦持し、または2枚の基板間に挟持した重合性液晶材料を配向させる状態を示した図である。
【図3】 一対の磁石により得られた重合性液晶材料に作用する磁力線がお互いに平行でない状態を示した図である。
【図4】 本発明の第二工程における実施態様を示す図であって、配向角をαにした一対の磁石により得られた磁界を印加することより重合性液晶材料の配向欠陥を除去する状態を示した図である。
【図5】 本発明の第二工程における実施態様を示す図であって、複数の永久磁石を並べて磁場を印加した状態を示した図である。
【図6】 本発明の第二工程における実施態様を示す図であって、重合性液晶材料が垂直配向(配向角α=0)するように磁場を印加した状態を示した図である。
【図7】 本発明の第二工程における実施態様を示す図であって、1対のネオジム永久磁石(一個の大きさ:縦5cm×横7cm×厚さ5cm)を6cmの間隔をあけてN極とS極が向かいあうようにした磁界の中に、一辺が7.1cmの正方形の基板上に坦持し、または2枚の基板間に挟持した重合性液晶材料を配向させる状態を示した図である(実施例1)。
【図8】 本発明の第三工程における実施態様を示す図であって、本発明の第二工程を経て実質上配向欠陥がなくなった本発明の重合性液晶材料層を、N極とS極が向かい合うように8cmの距離をおいて配置した半径6cmの円形磁極により配向させる状態を示した図である(実施例1)。
【図9】 本発明の製造方法により得られた光学フィルムの偏光分離距離の測定点を示した図である。
【図10】 本発明の第二工程における実施態様を示す図であって、1対のネオジム永久磁石(一個の大きさ:縦5cm×横5cm×厚さ2cm)を2cmの間隔をあけてN極とS極が向かいあうようにした磁界の中に、一辺が5cmの正方形の基板上に坦持し、または2枚の基板間に挟持した重合性液晶材料を配向させる状態を示した図である(実施例2)。
【図11】 本発明の第三工程における実施態様を示す図であって、本発明の第二工程を経て実質上配向欠陥がなくなった本発明の重合性液晶材料層を、N極とS極が向かい合うように8cmの距離をおいて配置した半径6cmの円形磁極により配向させる状態を示した図である(実施例2)。
【図12】 本発明の製造方法により得られた光学フィルムの偏光分離距離の測定点を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an optical anisotropic film having an inclined optical axis.
[0002]
[Prior art]
After obtaining a polymerizable liquid crystal material layer in which a liquid crystal compound having a polymerizable functional group (hereinafter, polymerizable liquid crystal compound) or a polymerizable liquid crystal composition containing at least one of these compounds is aligned in a liquid crystal state, is aligned. When irradiated with ultraviolet rays or an electron beam, a polymer in which the alignment structure of liquid crystal molecules is fixed can be produced. Among the polymers obtained in this way, a polymerizable liquid crystal material having a thickness of several mm to several mm is oriented obliquely with respect to the thickness direction, and is prepared by fixing the alignment state. Optical anisotropic films can be applied to optical applications. As means for orienting the polymerizable liquid crystal material obliquely, methods for applying a magnetic field at an angle to the polymerizable liquid crystal material layer are described in JP-A Nos. 5-215921 and 8-122708.
[0003]
In order to produce an optical anisotropic film in which the tilt angle of the optical axis is uniform in the in-plane direction by this method, a sufficient magnet interval with respect to the size of the optical anisotropic film (facing a parallel magnetic field) A uniform parallel magnetic field having a distance between a pair of magnets) and a cross-sectional area and having a certain strength or more is required. Specifically, as shown in FIG. 1, an optical anisotropic film (area A = a) whose optical axis is inclined at an angle θ with respect to the film normal and whose side length is a. 2 2), as shown in FIG. 2, a distance of at least a × sin θ is necessary as the magnet spacing. Assuming that the cross-sectional area of the uniform parallel magnetic field is equal to the magnetic pole area, the cross-sectional area of the parallel magnetic field is at least a 2 × cosθ (= A × cosθ) is required. If the magnetic pole area is smaller than this, the magnetic lines of force acting on the polymerizable liquid crystal material are not parallel to each other as shown in FIG. 3, and the inclination of the liquid crystal molecules is not uniform in the in-plane direction. As the anisotropy of the magnetic susceptibility of the polymerizable liquid crystal material is larger, the alignment can be achieved even if the magnetic field is weaker. However, the alignment of the polymerizable liquid crystal material requires a magnetic field strength of about 2 to 4 kG or more.
[0004]
Considering these, even if the strongest neodymium magnet available at present as a permanent magnet is used, the optical anisotropic film can be produced only having a size of several centimeters at most. Therefore, in order to produce an optical anisotropic film having a size of several centimeters or more, it is necessary to use an electromagnet or a superconducting magnet.
[0005]
The strength of the magnetic field is inversely proportional to the square of the distance between the magnets. When one side (a) of the film becomes large, in order to manufacture an optical film having an optical axis tilted with an optical film tilt angle of θ, the distance between the magnetic poles is at least (a × sinθ) or more. It is necessary to increase the distance between the magnetic poles. For this reason, the strength of the magnetic field is (a × sinθ) 2 It becomes smaller in inverse proportion to. In order to increase the strength of the magnetic field, there has been a problem that the magnetic field generator becomes rapidly large, the technical barrier becomes high, and the apparatus cost and the maintenance cost increase. In addition, when a magnetic field having a weak magnetic field is applied, alignment defects are not completely removed, and it takes a long time to obtain complete alignment. In other words, the alignment of the polymerizable liquid crystal material is not instantaneously obtained by a magnetic field, but takes a time required for the alignment in order to obtain a desired alignment state after applying the magnetic field. In order to shorten the time required for orientation, a magnetic field stronger than the above-mentioned 2 to 4 kG is required. The time required for alignment can be shortened as the viscosity of the polymerizable liquid crystal material is lower, but considering that the viscosity of the polymerizable liquid crystal material is in the range of several tens to several thousand mPa · s, at least 4 to If there is no magnetic field strength of 8 kG or more, the alignment time will be as long as several minutes or more, and productivity will deteriorate. Considering productivity in this way, the technical obstacles of the magnetic field generator are further increased, exceeding the level that can be reasonably available at the present time, or the device cost and the maintenance cost become unrealistically high. There was a problem.
[0006]
That is, if an optically anisotropic film is manufactured with high productivity using magnetic field orientation means, there is a problem that the technical obstacle of the magnetic field generator becomes very high. In addition, if the cost of the magnetic field generator is to be reduced, the productivity of the optical anisotropic film is deteriorated. This problem has been particularly serious in the production of optical films having a size of several centimeters or more.
[0007]
[Problems to be solved by the invention]
Provided is a method for producing an optical film having an inclined optical axis with high productivity without being greatly limited in terms of magnet technology and cost.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the magnetic field alignment of the polymerizable liquid crystal material was examined in detail, and as a result, it was found that the rate-determining step in the magnetic field alignment was the removal of alignment defects. And it discovered that the said subject could be solved by providing the orientation process specialized in the removal of the orientation defect before the magnetic field orientation process for obtaining a desired orientation state.
[0009]
That is, the present invention comprises (first step) a step of obtaining a polymerizable liquid crystal material layer by holding a polymerizable liquid crystal material on a substrate or sandwiching between two substrates, and a (second step) polymerization. An alignment defect removal step for making the alignment liquid crystal material layer substantially free from alignment defects by electric field application, magnetic field application, or simultaneous application of electric and magnetic fields, and (third step) uniform alignment of the polymerizable liquid crystal material layer by the magnetic field And providing a method for producing an optically anisotropic film having an inclined optical axis, the method comprising: irradiating a polymerizable liquid crystal material with an active energy ray in an oriented state and curing the active energy ray.
[0010]
Alignment defects are those in which the alignment state of liquid crystal molecules that collectively refers to tilting, point defects, etc. in the liquid crystal dictionary (Edited by the 142nd Committee of Organic Materials for Information Science, Japan Society for the Promotion of Science) . Orientation defects are undesirable because they cause light scattering, and it is necessary to remove them in order to obtain optically good optical films.
[0011]
An electric field application or a magnetic field application is effective in the alignment defect removal step specialized for removing the alignment defects. Unlike the magnetic field application, the electric field application hardly increases the apparatus cost even when the film is enlarged, and the apparatus cost itself is lower than the case of the magnetic field application.
[0012]
Also, in the case of applying a magnetic field for the purpose of removing alignment defects, unlike the magnetic field applied when fixing the desired alignment state, the magnetic field lines acting on the polymerizable liquid crystal material may not be parallel to each other. good. That is, a magnetic field state as shown in FIG. Such a magnetic field is lower in apparatus cost and maintenance cost than those in which the magnetic lines of force acting on the polymerizable liquid crystal material as shown in FIG. 2 are parallel to each other.
[0013]
Use of a permanent magnet is effective for applying a magnetic field for the purpose of removing orientation defects. Even if the magnetic field area of each permanent magnet is small, it does not have to be a parallel magnetic field. Therefore, it is possible to apply a magnetic field by arranging a plurality of permanent magnets as shown in FIG.
In this way, the flexibility of device design can be expanded, and an orientation method with low device cost and maintenance cost can be applied by using an electric field or permanent magnetic field, which is very useful for improving productivity.
[0014]
When the step of removing alignment defects is completed to a state where there is substantially no alignment defect, a magnetic field alignment step for aligning the polymerizable liquid crystal material layer in a desired alignment state is performed next. In this process, if the magnetic lines of force acting on the polymerizable liquid crystal material layer are parallel to each other, a desired alignment state without alignment defects can be quickly achieved simply by applying a magnetic field that is strong enough to align the polymerizable liquid crystal material. Can be achieved. Since the removal of the alignment defects, which is rate-limiting for reaching the desired alignment state, has already been achieved in the previous step, the magnetic field strength required for the minimum alignment is sufficient. Therefore, the technical barrier of the magnetic field generator can be lowered and the efficiency of the alignment process can be achieved as compared with the case where no alignment defect removal process specialized for removing alignment defects is provided. Furthermore, the apparatus introduction cost and the maintenance cost can be reduced. As described above, by dividing the conventional alignment process into the alignment defect removal process and the alignment process, productivity can be improved and technical and cost obstacles of the magnetic field generator can be reduced. It becomes possible.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Below, a 1st-3rd process is demonstrated in detail.
[0016]
(First step)
In order to carry a polymerizable liquid crystal material on a substrate to obtain a polymerizable liquid crystal material layer, it is preferable to apply the polymerizable liquid crystal material on the substrate by a printing method or a spin coat method. It is preferable to consider so as to obtain a uniform coating thickness over the entire substrate. In application, the polymerizable liquid crystal material may be used as a stock solution or may be dissolved in a solvent. In order to obtain a polymerizable liquid crystal material layer by sandwiching the polymerizable liquid crystal material between two substrates, the polymerizable liquid crystal material is injected into the gap between the two substrates facing each other in parallel with a certain interval. It is preferable to do this. At least one of the two substrates needs to transmit active energy rays such as ultraviolet rays and electron beams.
[0017]
Regardless of the method of supporting or sandwiching, the thickness of the polymerizable liquid crystal material layer is preferably from 0.1 to 3000 μm, preferably from 0.2 to 1000 μm, preferably from 0.5 to 200 μm, particularly preferably from 1 to 150 μm. The layer thickness error is 5 μm or less, preferably 2 μm or less, more preferably 1 μm or less, and particularly preferably 0.5 μm or less.
[0018]
As the substrate, organic materials such as plastic and inorganic materials such as glass and aluminum can be used. It is preferable to use a substrate having excellent surface flatness and excellent substrate thickness uniformity. The surface flatness and thickness errors are 10 μm or less, preferably 5 μm or less, more preferably 2 μm or less, and particularly preferably 1 μm or less.
[0019]
The substrate surface is preferably subjected to an alignment treatment. For example, a vertical alignment film which gives a vertical alignment state, or a horizontal uniaxial alignment film formed by rubbing an organic thin film formed on a substrate can be mentioned. If the substrate itself is an organic material, it may be rubbed as it is.
[0020]
As the polymerizable liquid crystal material, any material that is recognized as a reactive liquid crystal material or a polymerizable liquid crystal material in the technical field of liquid crystal can be used. Such materials include general formula (I)
[0021]
[Chemical 1]
Figure 0004378910
[0022]
[Where X 1 Represents a hydrogen atom or a methyl group, s represents an integer of 0 to 18, t represents 0 when s is 0, t represents 0 or 1 when s is 1 or more, 6-membered ring A, ring B and ring C are each independently a 1,4-phenylene group, a 1,4-phenylene group in which a non-adjacent CH group is substituted with nitrogen, a 1,4-cyclohexylene group, one or two non-adjacent CH 2 Represents a 1,4-cyclohexylene group substituted by an oxygen or sulfur atom, or a 1,4-cyclohexenyl group, and these 6-membered ring A, ring B and ring C further have 1 to 7 carbon atoms. One or more alkyl groups, alkoxy groups, alkanoyl groups, cyano groups or halogen atoms of 1 , Y 2 Are each independently a single bond, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -COO-, -OCO-, -C≡C-, -CH = CH-, -CF = CF-,-(CH 2 ) Four -, -CH 2 CH 2 CH 2 O-, -OCH 2 CH 2 CH 2 -, -CH = CH-CH 2 CH 2 -, -CH 2 CH 2 -CH = CH-, -CH = CH-COO-, -OCO-CH = CH-, -CH 2 CH 2 -COO-, -CH 2 CH 2 -OCO-, -COO-CH 2 CH 2 -, -OCO-CH 2 CH 2 -Represents Y Three Is a single bond, -O-, -OCO-, -COO-, -CH = CH-COO- or formula (II)
[0023]
[Chemical formula 2]
Figure 0004378910
[0024]
(Where X 2 Represents a hydrogen atom or a methyl group, v represents an integer of 0 to 18, w represents 0 when v is 0, and w represents 0 or 1 when v is 1 or more. ) And Z 1 Represents a hydrogen atom, a halogen atom, a cyano group, or a hydrocarbon group having 1 to 20 carbon atoms. Y Three Z represents formula (II), Z 1 Represents a hydrogen atom. A polymerizable liquid crystal material containing a compound represented by the formula: Specific examples of the compound include the following compounds.
[0025]
[Chemical 3]
Figure 0004378910
[0026]
(In the formula, s and v each independently represent an integer of 1 to 18, Y Three , Z 1 Represents the same meaning as in general formula (I).
[0027]
The polymerizable liquid crystal material preferably exhibits a nematic phase even at a temperature of 40 ° C. or lower, and more preferably exhibits a nematic phase at 25 ° C. The viscosity of the polymerizable liquid crystal material is preferably 500 mPa · s or less at 40 ° C. or less, more preferably 500 mPa · s or less at 25 ° C., 300 mPa · s or less at 25 ° C., and particularly preferably at 25 ° C. 200 mPa · s or less.
[0028]
(Second step)
This process is an alignment defect removal process specialized for removing alignment defects. In this step, a state in which there is substantially no alignment defect is obtained. Here, the state where there is no alignment defect can be a state where an alignment defect having a size larger than the detection limit of the optical microscope is not observed. In other words, it means that alignment defects larger than about twice the visible light wavelength (about 0.8 to 1.6 μm) are not observed over the entire area (although there are various types of alignment defects, measurement was performed so as to be the longest on the outer shape. The length is the size of the alignment defect). Actually, there is no alignment defect of 50 μm or more, and if the number of alignment defects less than 50 μm is 1 or less per square centimeter, the optical quality of the optical anisotropic film is hardly deteriorated. It can be assumed that there are no defects. In a state where there is substantially no alignment defect, it is preferable that no alignment defect of 10 μm or more exists, and there are 1 or less alignment defects of less than 10 μm per square centimeter. Further, it is more preferable that no alignment defect of 5 μm or more exists, and 1 or less alignment defects of less than 5 μm per square centimeter. Further, it is particularly preferred that no alignment defect of 5 μm or more exists and 0.5 or less alignment defects of less than 5 μm per square centimeter. Such a substantial alignment defect represented by the size and density of the alignment defect may take a long time to measure in an actual manufacturing process. The degree to which substantial alignment defects are present can be evaluated by haze that is easy to measure. The product of the thickness (d) of the polymerizable liquid crystal material layer and the birefringence index (Δn) (R = Δn × d: the unit is μm) is defined as the calculation retardation, and the haze of the polymerizable liquid crystal material layer (H: the unit is%) ) Divided by retardation (R) is defined as normalized haze (H / R: unit is% / μm), this normalized haze may be 0.36 or less to be substantially free of alignment defects. it can. As a state substantially free of alignment defects, the normalized haze is preferably 0.30 or less, more preferably 0.24 or less, and particularly preferably 0.18 or less. The calculated retardation value used here is only calculated by the product of the thickness (d) of the polymerizable liquid crystal material layer and the birefringence (Δn), and the orientation angle α of the polymerizable liquid crystal material layer is not at all. I can't take it into account.
[0029]
The alignment state of the polymerizable liquid crystal material layer in this step is not necessarily the same as the alignment state in the third step described in detail later. For example, even in the case of producing an optical anisotropic film in which the optical axis is inclined by the angle θ (the long axis direction of the polymerizable liquid crystal material molecules) as shown in FIG. 1, the polymerizable liquid crystal material layer is angled in this step. For example, a vertical alignment state or a horizontal alignment state may be used. Further, the optically anisotropic film to be produced may be oriented in this step at an angle α smaller than a desired tilt angle θ.
The orientation angle α of the electric or magnetic field in the second step (the angle formed between the normal line of the substrate and the electric or magnetic field) is preferably smaller than the inclination θ of the optical axis of the optical film to be produced.
[0030]
In order to eliminate the alignment defects in a short time, it is preferable to perform the second step by using a strong magnetic field and / or a strong electric field as much as possible. The magnetic field strength is inversely proportional to the square of the distance between the magnetic poles when the same magnet is used. The electric field strength is inversely proportional to the distance between the electrodes when the same voltage is used. For this reason, in order to eliminate alignment defects faster and more completely, it is necessary to shorten the distance. In the production of an optical anisotropic film having an orientation in which the optical axis is inclined by θ, when the step of removing alignment defects at an angle (α) smaller than θ is performed in the second step, the magnetic pole (electrode) spacing between the magnetic field and the electric field is reduced. Is proportional to sin α, the smaller the α, the narrower the magnetic pole (electrode) interval, and the magnetic field (electric field) strength can be increased even if the same magnetic field (electric field) is used. For this reason, it is possible to eliminate alignment defects more completely and faster.
[0031]
When α is 0, it is preferable because the magnetic pole (electrode) distance is the shortest. In particular, when an electrode is applied, the electrode can be formed on a substrate that supports or sandwiches the polymerizable liquid crystal material, which is preferable. In the final third step following the second step, it is preferable that a slight tilt angle is given in the second step when rotating to the final target tilt angle θ. From this viewpoint, α in the second step is preferably 3 ° or more, more preferably 5 ° or more, and particularly preferably 10 ° or more.
[0032]
In order to obtain a state substantially free of alignment defects using an electric field, an AC or DC voltage is applied to the polymerizable liquid crystal material layer. Since application of a DC voltage may deteriorate the polymerizable liquid crystal material, it is preferable to apply an AC voltage. The electric field is preferably 0.5 V / μm or more, more preferably 1 V / μm or more, and particularly preferably 2 V / μm or more. When an electric field is used, the absolute value of the dielectric anisotropy of the polymerizable liquid crystal material is preferably 0.5 or more, more preferably 1 or more, and particularly preferably 2 or more. Either sign of dielectric anisotropy (positive or negative) may be used. As an electric field application method, for example, when a polymerizable liquid crystal material is supported on a substrate, a method in which a plurality of comb electrodes are provided on the substrate and a voltage is applied between the comb electrodes, two polymerizable liquid crystal materials are provided. In the case of sandwiching between the two substrates, there can be mentioned a method of providing an electrode on each of the two substrates and applying a voltage between the electrodes.
[0033]
In order to obtain a state substantially free of alignment defects using a magnetic field, it is preferable to apply a magnetic field realized by a pair of magnets having different magnetic poles opposed to the polymerizable liquid crystal material layer. The strength of the magnetic field is preferably 4 kG or more. The magnetic field at this time has a sufficient magnet spacing (distance between a pair of magnets facing each other to obtain a parallel magnetic field) and a parallel magnetic field cross-sectional area (magnetic pole cross-sectional area) as shown in FIG. There is no need to do. For example, as shown in FIG. 4, when producing an optical film having an optical axis tilted with an optical axis tilt angle θ of the optical film to be manufactured, if the orientation angle α in the second step is smaller than θ, the magnet The interval may be smaller than a × sin θ in FIG. 2, and the magnetic pole area B (b × c) is a in FIG. 2 × cosθ (a 2 Since it is the film area A, it may be smaller than A × cos θ). If the magnet spacing is small, a stronger magnetic field can be obtained when magnets having the same strength are used, so that the orientation can be obtained more quickly, and the apparatus and maintenance cost of the magnetic field generator can be reduced. Of course, as shown in FIG. 3, the lines of magnetic force acting on the polymerizable liquid crystal material layer are not parallel to each other, but there is no problem in this step for the purpose of removing alignment defects. In the case of the magnet arrangement as shown in FIG. 4, it is possible that the alignment defects can be removed only in a part of the area A, but by moving the polymerizable liquid crystal material layer in a magnetic field, the area A It becomes possible to remove alignment defects throughout. In addition, as shown in FIG. 5, by providing a plurality of magnet pairs, the efficiency of removing orientation defects can be improved. As shown in FIG. 6, a magnetic field may be applied so that the polymerizable liquid crystal material is vertically aligned (alignment angle α = 0). Such an arrangement can reduce the distance between the magnets to the thickness of the polymerizable liquid crystal material layer, so that a strong magnetic field can be easily obtained, and is a preferable arrangement from the viewpoint of shortening the time of the alignment defect removal step. is there. As described above, the process of making alignment defects substantially free uses an electric field, uses a magnetic field that does not have to be parallel to each other, or uses a combination of these. The inclination angle of the optical axis of the optical film to be finally produced and the orientation angle of the polymerizable liquid crystal material in this step do not necessarily coincide with each other, and the orientation angle α in the second step is It is characterized by being preferably smaller than the inclination angle θ of the optical axis.
[0034]
(Third process)
In this step, the alignment angle of the polymerizable liquid crystal material layer is matched with the tilt angle of the optical axis of the optical film to be finally produced by using a magnetic field, and then the electron beam is applied to the polymerizable liquid crystal material. It is a step of curing by irradiating active energy rays such as ultraviolet rays. It is preferable that the magnetic field used is a magnetic field realized by a magnet pair formed by opposing different magnetic poles. What is important here is to uniformly align the polymerizable liquid crystal material using a magnetic field. Therefore, unlike the second step, it is necessary to use a magnetic field generator having a sufficient gap between the magnet pairs and the cross-sectional area with respect to the area of the polymerizable liquid crystal material as shown in FIG. That is, the magnetic field lines acting on the polymerizable liquid crystal material must be parallel to each other. That is, in the third step, when the inclination angle of the optical axis of the optical film to be finally produced is θ, the angle α formed between the magnetic field and the substrate is made equal to θ. At this time, when the area of the polymerizable liquid crystal material layer is A and the cross-sectional area of the parallel magnetic field in the pair of magnets is C, it is necessary to satisfy C> A × cos θ. As the strength of the magnetic field, it is sufficient that the strength is more than the minimum necessary to align the liquid crystal material, but 4 kG or more is preferable.
As a means for applying a magnetic field, it is preferable to use an electromagnet or a superconducting magnet.
[0035]
If the orientation angle, which is the angle between the normal of the substrate and the polymerizable liquid crystal layer obtained by the magnetic field or electric field applied to remove orientation defects in the second step, is α (α <θ), the third step , So that the orientation angle α = θ, and the orientation angle α is made equal to the inclination angle θ of the final optical axis. At this time, the orientation angle of the magnetic field may be directly changed from α to θ, or may be changed stepwise or continuously from α to θ.
[0036]
The uniformity of the orientation of the polymerizable liquid crystal material can be evaluated by the standard deviation of the tilt angle when the tilt angle of the polymerizable liquid crystal material layer is measured at a plurality of points. If the standard deviation is within 3 degrees, the uniformity can be used without any problem. If the tilt angle of the polymerizable liquid crystal material cannot be measured directly, retardation (optical phase difference: product of birefringence and thickness of the polymerizable liquid crystal material layer) or polarization separation distance (on the polymerizable liquid crystal material layer with the tilted optical axis) When a natural light beam is incident, it is separated into two polarized light beams whose vibration directions are orthogonal, and the distance between the light beams is defined as a polarized light separation distance. The orientation angle can be measured by a crystal rotation method known as a method for measuring the pretilt angle of the liquid crystal cell. Retardation can be measured by the Senarmon method or the like. The polarization separation distance can be measured by placing an object to be measured on a microscale and observing it with a polarization microscope. The retardation value is at most about 2 to 5 μm, which is a measurable region. If the retardation value exceeds this value, it is preferable to evaluate the retardation value based on the polarization separation distance. Specifically, when the thickness of the polymerizable liquid crystal material layer is 10 to 20 μm or less, or the inclination angle of the polymerizable liquid crystal molecules is in the range of 0 to 60 degrees, the retardation is easier to evaluate, and the polymerizable liquid crystal material layer In many cases, the polarization separation distance is easier to evaluate when the thickness of the film is 20 μm or more, or when the inclination of the polymerizable liquid crystal molecules is in the range of 60 to 90 degrees. When evaluating by retardation, the standard deviation is preferably 10 nm or less, more preferably 5 nm or less, and particularly preferably 1 nm or less. When the evaluation is performed using the polarization separation distance, the standard deviation is preferably 1 μm or less, more preferably 0.5 μm or less, and particularly preferably 0.1 μm or less.
[0037]
Irradiation of active energy rays such as electron beams and ultraviolet rays needs to be performed with the above-described magnetic field applied. When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used. In addition, when polymerization is performed with the liquid crystal composition sandwiched between two substrates, at least the substrate on the irradiated surface side is given appropriate transparency to active energy rays such as ultraviolet rays and electron beams. Must be. The temperature during irradiation is preferably within a temperature range in which the liquid crystal state of the polymerizable liquid crystal material to be used is maintained. In particular, it is preferable to carry out the polymerization at a temperature as close to room temperature as possible, that is, typically at a temperature of 25 ° C., in order to avoid unintentional induction of thermal polymerization. The intensity of ultraviolet rays and electron beams is 0.1mW / cm 2 ~ 2W / cm 2 Is preferred. Strength is 0.1mW / cm 2 In the following cases, it takes a lot of time to complete the photopolymerization and the productivity deteriorates, and 2 W / cm 2 In the above case, there is a risk that the polymerizable liquid crystal compound or the polymerizable liquid crystal composition is deteriorated.
[0038]
The optically anisotropic film of the present invention having an inclined optical axis obtained by polymerization can be subjected to heat treatment for the purpose of reducing initial characteristic changes and achieving stable characteristic expression. The heat treatment temperature is preferably in the range of 50 to 250 ° C., and the heat treatment time is preferably in the range of 30 seconds to 12 hours. The optically anisotropic film with an inclined optical axis produced by such a method can be used by separating from the substrate and used alone or without peeling. Moreover, the obtained optical anisotropic film may be laminated | stacked, and can also be bonded together and used for another board | substrate.
[0039]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is further explained in full detail, this invention is not limited to these Examples. The viscosity was measured at 20 ° C. using an E-type viscometer. Haze was measured based on JIS standard K7361 using NDH2000 (Nippon Denshoku Industries Co., Ltd.). Moreover,% represents mass%.
[0040]
(Specific measurement method for evaluation items)
The orientation angle was measured by a crystal rotation method known as a method for measuring the pretilt angle of the liquid crystal cell. The polarization separation distance was measured by placing an object to be measured on a microscale and observing it with a polarization microscope.
[0041]
Example 1
A polyvinyl alcohol thin film having a thickness of about 100 nm was formed on one side of a square glass substrate having a thickness of 1.1 mm and a 7.1 cm square, and rubbed. The two glass substrates on which the polyvinyl alcohol alignment film was formed in this way were made to face each other so that the alignment film was on the inner side and kept parallel to each other to produce a cell. At this time, the rubbing directions were set to be antiparallel to each other so that the gap between the two substrates was 100 μm.
[0042]
Next, the following polymerizable liquid crystal composition (A) was prepared.
[0043]
[Formula 4]
Figure 0004378910
[0044]
This polymerizable liquid crystal composition (A) exhibited a nematic liquid crystal phase at room temperature (25 ° C.). The nematic phase-isotropic liquid phase transition temperature was 52 ° C. N measured at 589nm e The refractive index of extraordinary light is 1.664, n o The refractive index of ordinary light was 1.505, and the birefringence (Δn) was 0.159. The viscosity was 178 mPa · s. A polymerizable liquid crystal composition (A ′) comprising 0.1 part by mass of a photopolymerization initiator TPO (manufactured by Ciba Specialty Chemicals) was prepared in 99 parts by mass of the polymerizable liquid crystal composition (A). Further, this composition was filtered through a fluororesin membrane filter having a pore diameter of 1 μm. The filtered polymerizable liquid crystal composition (A ′) was poured into the prepared cell at room temperature. Immediately after the injection, when observed with a polarizing microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm. 2 Met. The haze (H) was measured and found to be 7.5%. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit is% / μm) was 0.472. After completion of the implantation, as shown in FIG. 7, in a pair of neodymium permanent magnets (one size: 5 cm long x 7 cm wide x 5 cm thick), the north and south poles face each other, and the normal line of the substrate The magnetic field was placed in a 3600G magnetic field obtained by placing the magnetic field so that the angle α was 45 degrees. After 3 minutes, when observed with a polarizing microscope, alignment defects of 50 μm or more were not observed, and the density of alignment defects of less than 50 μm was 1 or less / cm. 2 It became. The haze was measured and found to be 3.9%. Therefore, the normalized haze (H / R: unit is% / μm) was 0.245. Next, as shown in FIG. 8, with a circular magnetic pole with a radius of 6 cm, the electromagnet is arranged so that the angle α = θ formed by the normal line of the substrate and the magnetic field is 45 degrees so that the N pole and the S pole face each other. It was placed in a 5000G magnetic field for 20 seconds. As shown in FIG. 9, when the polarization separation distance was measured at five points of the cell, they were 10.0, 10.5, 10.5, 10.5, 10.5 μm, and the standard deviation was 0.09 μm. In this state, 40mW / cm 2 The polymerizable liquid crystal composition was cured by irradiating UV rays of 12 seconds. When the optically anisotropic film thus prepared was observed with a polarizing microscope, alignment defects of 50 μm or more were not observed, and the density of alignment defects of less than 50 μm was 0.1 or less / cm. 2 Met. Further, the haze of the obtained optical anisotropic film was measured and found to be 2.8%. When the polarization separation distance was measured at the position shown in FIG. 9, it was 6.5, 7.0, 7.0, 7.0, 7.0 μm.
[0045]
(Comparative Example 1)
A cell was prepared in the same manner as in Example 1, and the polymerizable liquid crystal composition (A ′) prepared and filtered in Example 1 was poured into the cell at room temperature. Immediately after injection, when observed with a polarizing microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm. 2 Met. The haze was measured and found to be 7.5%. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit is% / μm) was 0.472. This is obtained by arranging an electromagnet with a circular magnetic pole having a radius of 6 cm as shown in FIG. 8 so that the north and south poles face each other and the angle θ between the normal line of the substrate and the magnetic field is 45 degrees. 40 mW / cm in this state after being placed in a 5000G magnetic field for 20 seconds 2 The polymerizable liquid crystal composition was cured by irradiating UV rays of 12 seconds. When the optically anisotropic film thus prepared was observed with a polarizing microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 1 / cm 2 Met. When the haze was measured, it was 5.0%.
[0046]
(Comparative Example 2)
A cell was prepared in the same manner as in Example 1, and the polymerizable liquid crystal composition (A ′) prepared and filtered in Example 1 was poured into the cell at room temperature. Immediately after the injection, when observed with a polarizing microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm. 2 Met. The haze was measured and found to be 7.5%. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit is% / μm) was 0.472. This is obtained by arranging an electromagnet with a circular magnetic pole having a radius of 6 cm as shown in FIG. 8 so that the north and south poles face each other and the angle θ between the normal line of the substrate and the magnetic field is 45 degrees. 40 mW / cm in this state after 60 seconds in a magnetic field of 5000G 2 The polymerizable liquid crystal composition was cured by irradiating UV rays of 12 seconds. When the optically anisotropic film thus prepared was observed with a polarizing microscope, alignment defects of 50 μm or more were not observed, but the density of alignment defects of less than 50 μm was 1 / cm / cm. 2 Met. When the haze was measured, it was 4.0%.
[0047]
(Comparative Example 3)
A cell was prepared in the same manner as in Example 1, and the polymerizable liquid crystal composition (A ′) prepared and filtered in Example 1 was poured into the cell at room temperature. Immediately after the injection, when observed with a polarizing microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm. 2 Met. The haze was measured and found to be 7.5%. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit is% / μm) was 0.472. This is a circular magnetic pole with a radius of 6 cm as shown in FIG. 8, so that the N pole and the S pole face each other, and the orientation angle α, which is the angle formed by the normal line of the substrate and the magnetic field, is the tilt angle θ of the optical axis θ = 45 After being placed in a 5000G magnetic field obtained by placing an electromagnet to equal the degree for 120 seconds, in this state 40mW / cm 2 The polymerizable liquid crystal composition was cured by irradiating UV rays of 12 seconds. When the optically anisotropic film thus prepared was observed with a polarizing microscope, alignment defects of 50 μm or more were not observed, and the density of alignment defects of less than 50 μm was 0.1 or less / cm. 2 Met. Further, the haze of the obtained optical anisotropic film was measured and found to be 2.8%.
[0048]
In Example 1 of the present invention, the time for using the apparatus and the electromagnet having a high maintenance cost is 20 seconds, and a good optical anisotropic film having no alignment defect is obtained. In Comparative Example 1, the time for using the electromagnet is the same as 20 seconds, but there is an orientation defect. In Comparative Example 2, the time for using the electromagnet is as long as 60 seconds, but the alignment defects have not been completely removed. In Comparative Example 3, alignment defects could be removed, but the time for using the electromagnet was as long as 120 seconds, and the productivity was poor.
[0049]
(Example 2)
A 5 mm square glass substrate with a thickness of 1.1 mm is immersed in a hexane solution of 0.25 mass% trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane for 5 minutes, washed with water, and dried to form a vertical alignment film. Formed. The two glass substrates on which the vertical alignment films were formed in this way were made to face each other so as to be parallel to each other, thereby producing a cell. At this time, the gap between the two substrates was set to 100 μm. The polymerizable liquid crystal composition (A ′) prepared and filtered in Example 1 was injected into this at room temperature. Immediately after the injection, when observed with a polarizing microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm. 2 Met. Moreover, it was 7.0% when haze was measured. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit is% / μm) was 0.440. After completion of the implantation, as shown in FIG. 10, in a pair of neodymium permanent magnets (one size: 5 cm long × 5 cm wide × 2 cm thick), the north and south poles face each other, and the orientation angle α is 0. It was placed in a magnetic field of 4300G obtained by placing it at a degree (that is, applying a magnetic field in the normal direction). After 3 minutes, when observed with a polarizing microscope, alignment defects of 50 μm or more were not observed, and the density of alignment defects of less than 50 μm was 1 or less / cm. 2 It became. Further, the haze was measured and found to be 3.8%. Therefore, the normalized haze (H / R: unit is% / μm) was 0.239. Next, as shown in FIG. 11, a circular magnetic pole having a radius of 6 cm, a magnetic field of 5000 G obtained by arranging an electromagnet so that the N pole and the S pole face each other and the orientation angle α is 45 degrees equal to θ is 20 Set a second. As shown in FIG. 12, when the polarization separation distances were measured at five points of the cell, they were 9.5, 9.5, 9.5, 9.0, 9.0 μm, and the standard deviation was 0.11 μm. In this state, 40mW / cm 2 The polymerizable liquid crystal composition was cured by irradiating UV rays of 12 seconds. When the optically anisotropic film thus prepared was observed with a polarizing microscope, alignment defects of 50 μm or more were not observed, and the density of alignment defects of less than 50 μm was 0.1 or less / cm. 2 Met. Further, the haze of the obtained optical anisotropic film was measured and found to be 2.9%. When the polarization separation distance was measured at the position shown in FIG. 12, it was 6.5, 6.5, 6.5, 6.5, and 7.0 μm.
[0050]
(Comparative Example 4)
A cell was prepared in the same manner as in Example 2, and the polymerizable liquid crystal composition (A ′) prepared and filtered in Example 1 was poured into the cell at room temperature. Immediately after the injection, when observed with a polarizing microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm. 2 Met. Moreover, it was 7.0% when haze was measured. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit is% / μm) was 0.440. This is obtained by arranging an electromagnet with a circular magnetic pole having a radius of 6 cm as shown in FIG. 11 so that the north and south poles face each other and the angle θ between the normal line of the substrate and the magnetic field is 45 degrees. 40 mW / cm in this state after being placed in a 5000G magnetic field for 20 seconds 2 The polymerizable liquid crystal composition was cured by irradiating UV rays of 12 seconds. When the optically anisotropic film thus prepared was observed with a polarizing microscope, there were no orientation defects of 50 μm or more, but the density of orientation defects of less than 50 μm was 2 or more / cm. 2 Met. When the haze was measured, it was 5.2%.
[0051]
(Comparative Example 5)
A cell was prepared in the same manner as in Example 2, and the polymerizable liquid crystal composition (A ′) prepared and filtered in Example 1 was poured into the cell at room temperature. Immediately after the injection, when observed with a polarizing microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm. 2 Met. Moreover, it was 7.0% when haze was measured. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit is% / μm) was 0.440. This is obtained by arranging an electromagnet with a circular magnetic pole having a radius of 6 cm as shown in FIG. 11 so that the north and south poles face each other and the angle θ between the normal line of the substrate and the magnetic field is 45 degrees. 40 mW / cm in this state after being placed in a 5000 G magnetic field for 180 seconds 2 The polymerizable liquid crystal composition was cured by irradiating UV rays of 12 seconds. When the optically anisotropic film thus prepared was observed with a polarizing microscope, there was no alignment defect of 50 μm or more, and the density of alignment defects of less than 50 μm was 0.1 or less / cm. 2 Met. When the haze was measured, it was 2.9%.
[0052]
【The invention's effect】
In the production of an optically anisotropic film having a tilted optical axis using magnetic field orientation, it is possible to shorten the use time of the apparatus and the electromagnet with high maintenance cost. Alternatively, if the usage time is the same, the strength of the electromagnet may be weak. That is, the technical barrier of the electromagnet can be lowered and the optical anisotropic film with the inclined optical axis can be easily increased in area. From the above, the production method of the present invention is useful for producing an optical film whose optical axis is inclined obliquely.
[Brief description of the drawings]
FIG. 1 is a square optical anisotropic film (area A = a) with an optical axis inclined at an angle θ with respect to the film normal and a side length of a. 2 ).
FIG. 2 shows a polymerizable liquid crystal supported on a substrate or sandwiched between two substrates by a parallel magnetic field obtained by placing a pair of magnets at a distance of a × sin θ or more in order to obtain a parallel magnetic field. It is the figure which showed the state which orientates material.
FIG. 3 is a diagram showing a state where magnetic lines of force acting on a polymerizable liquid crystal material obtained by a pair of magnets are not parallel to each other.
FIG. 4 is a diagram showing an embodiment in the second step of the present invention, in which alignment defects of the polymerizable liquid crystal material are removed by applying a magnetic field obtained by a pair of magnets having an alignment angle α. FIG.
FIG. 5 is a diagram showing an embodiment in the second step of the present invention, and shows a state where a plurality of permanent magnets are arranged and a magnetic field is applied.
FIG. 6 is a diagram showing an embodiment in the second step of the present invention, and is a diagram showing a state in which a magnetic field is applied so that the polymerizable liquid crystal material is vertically aligned (alignment angle α = 0).
FIG. 7 is a diagram showing an embodiment in the second step of the present invention, in which a pair of neodymium permanent magnets (one size: vertical 5 cm × horizontal 7 cm × thickness 5 cm) is spaced N with a spacing of 6 cm. This figure shows the state in which a polymerizable liquid crystal material is aligned on a square substrate with a side of 7.1 cm or sandwiched between two substrates in a magnetic field with the pole and S pole facing each other. Yes (Example 1).
FIG. 8 is a diagram showing an embodiment in the third step of the present invention, wherein the polymerizable liquid crystal material layer of the present invention substantially free of alignment defects after the second step of the present invention is divided into an N pole and an S pole. FIG. 6 is a diagram showing a state of being oriented by a circular magnetic pole having a radius of 6 cm arranged at a distance of 8 cm so as to face each other (Example 1).
FIG. 9 is a diagram showing measurement points of polarization separation distance of an optical film obtained by the production method of the present invention.
FIG. 10 is a diagram showing an embodiment in the second step of the present invention, in which a pair of neodymium permanent magnets (one size: 5 cm long × 5 cm wide × 2 cm thick) are spaced N with an interval of 2 cm. It is a diagram showing a state in which a polymerizable liquid crystal material is aligned on a square substrate with a side of 5 cm or sandwiched between two substrates in a magnetic field in which the pole and the S pole face each other (Example 2).
FIG. 11 is a diagram showing an embodiment in the third step of the present invention, in which the polymerizable liquid crystal material layer of the present invention substantially free of alignment defects after the second step of the present invention is divided into an N pole and an S pole. (Example 2) which shows the state which orientates with the circular magnetic pole of 6 cm radius arrange | positioned at a distance of 8 cm so that may face each other.
FIG. 12 is a diagram showing measurement points of polarization separation distance of an optical film obtained by the production method of the present invention.

Claims (10)

(第一工程)重合性液晶材料を基板上に坦持して、または2枚の基板間に挟持して、重合性液晶材料層を得る工程と、(第二工程)電場印加、磁場印加、または電場と磁場の印加により重合性液晶材料層を、実質上配向欠陥が無い状態にする配向欠陥除去工程と、(第三工程)磁場により重合性液晶材料層を均一配向させ、該配向状態で重合性液晶材料に活性エネルギー線を照射して硬化させる工程とを有し、第二工程で印加する磁場が、異なる磁極を対向させてなる磁石対により実現される平行磁場であり、重合性液晶材料層の面積をAとし、一対の磁石対における平行磁場の断面積をBとし、磁場と基板の法線とのなす角度である配向角をαとしたとき、B≦A×cosαであり、第三工程で印加する磁場が、異なる磁極を対向させてなる磁石対により実現される平行磁場であり、重合性液晶材料層の面積をAとし、一対の磁石対における平行磁場の断面積をCとし、磁場と基板の法線とのなす角度である配向角をαとしたとき、C>A×cosαである光軸が傾いた光学異方フィルムの製造方法。  (First step) A step of obtaining a polymerizable liquid crystal material layer by holding a polymerizable liquid crystal material on a substrate or sandwiching between two substrates, and (second step) electric field application, magnetic field application, Alternatively, an alignment defect removal step for making the polymerizable liquid crystal material layer substantially free from alignment defects by applying an electric field and a magnetic field, and (third step) the polymerizable liquid crystal material layer is uniformly aligned by a magnetic field, and in this alignment state A step of irradiating the polymerizable liquid crystal material with active energy rays and curing, and the magnetic field applied in the second step is a parallel magnetic field realized by a pair of magnets having different magnetic poles facing each other, and the polymerizable liquid crystal When the area of the material layer is A, the cross-sectional area of the parallel magnetic field in the pair of magnets is B, and the orientation angle that is the angle between the magnetic field and the normal of the substrate is α, B ≦ A × cos α, The magnetic field applied in the third step is realized by a pair of magnets with different magnetic poles facing each other. A parallel magnetic field, where the area of the polymerizable liquid crystal material layer is A, the cross-sectional area of the parallel magnetic field in a pair of magnets is C, and the orientation angle, which is the angle between the magnetic field and the normal of the substrate, is α , C> A × cosα, an optically anisotropic film having a tilted optical axis. 第二工程において印加する電場又は磁場と基板の法線とのなす角度である配向角αが、作製する光学フィルムの光軸の傾き角θより小さい請求項1記載の光軸が傾いた光学異方フィルムの製造方法。The optical axis tilted optical difference according to claim 1 , wherein the orientation angle α, which is an angle formed between the electric field or magnetic field applied in the second step and the normal line of the substrate, is smaller than the tilt angle θ of the optical axis of the optical film to be produced. Method of manufacturing a film. 第二工程における実質上配向欠陥が無い状態が、50μm以上の配向欠陥が観察されず、50μm未満の配向欠陥が一平方センチあたり1個以下である状態である請求項1又は2記載の光軸が傾いた光学異方フィルムの製造方法。The optical axis according to claim 1 or 2 , wherein the state in which there is substantially no alignment defect in the second step is a state in which no alignment defect of 50 µm or more is observed and the number of alignment defects of less than 50 µm is 1 or less per square centimeter. A method for producing an optically anisotropic film with a tilt. 第二工程における実質上配向欠陥が無い状態が、規格化ヘイズが0.45以下である状態である請求項1又は2記載の光軸が傾いた光学異方フィルムの製造方法。但し、重合性液晶材料層の厚み(d)と複屈折率(Δn)の積(R=Δn×d:単位はμm)を計算リタデーションと定義し、重合性液晶材料層のヘイズ(H:単位は%)を計算リタデーション(R)で除した値を規格化ヘイズ(H/R:単位は%/μm)と定義する。The method for producing an optically anisotropic film having an inclined optical axis according to claim 1 or 2 , wherein the state having substantially no alignment defect in the second step is a state in which the normalized haze is 0.45 or less. However, the product of the thickness (d) of the polymerizable liquid crystal material layer and the birefringence index (Δn) (R = Δn × d: the unit is μm) is defined as the calculation retardation, and the haze (H: unit) of the polymerizable liquid crystal material layer Is defined as normalized haze (H / R: unit is% / μm). 第二工程で印加する電場が1V/μm以上である請求項1〜4のいずれかに記載の光軸が傾いた光学異方フィルムの製造方法。The method for producing an optically anisotropic film having an inclined optical axis according to any one of claims 1 to 4 , wherein an electric field applied in the second step is 1 V / µm or more. 第二工程で印加する磁場が4kG以上である請求項1〜4のいずれかに記載の光軸が傾いた光学異方フィルムの製造方法。The method for producing an optically anisotropic film having an inclined optical axis according to any one of claims 1 to 4 , wherein the magnetic field applied in the second step is 4 kG or more. 第二工程で印加する磁場が、異なる磁極を対向させてなる永久磁石対により実現される磁場である請求項1の光軸が傾いた光学異方フィルムの製造方法。  2. The method for producing an optical anisotropic film with an inclined optical axis according to claim 1, wherein the magnetic field applied in the second step is a magnetic field realized by a pair of permanent magnets having different magnetic poles opposed to each other. 第二工程において、複数の永久磁石対を使用する請求項7記載の製造方法。The manufacturing method according to claim 7 , wherein a plurality of permanent magnet pairs are used in the second step. 第三工程における均一配向が、重合性液晶材料の傾き角(重合性液晶材料と基板の法線とのなす角)を複数点で測定したときの傾き角の標準偏差が3度以内である請求項1〜8のいずれかに記載の製造方法。Uniform orientation in the third step, the standard deviation of the tilt angle when measured tilt angle of the polymerizable liquid crystal material (angle between the polymerizable liquid crystal material and the normal to the substrate) at a plurality of points is within 3 degrees claims Item 9. The production method according to any one of Items 1 to 8 . 第三工程で印加する磁場が、4kG以上であることを特徴とする請求項1〜8のいずれかに記載の製造方法。The manufacturing method according to any one of claims 1 to 8 , wherein the magnetic field applied in the third step is 4 kG or more.
JP2002053588A 2002-02-28 2002-02-28 Method for producing optically anisotropic film with tilted optical axis Expired - Fee Related JP4378910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053588A JP4378910B2 (en) 2002-02-28 2002-02-28 Method for producing optically anisotropic film with tilted optical axis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053588A JP4378910B2 (en) 2002-02-28 2002-02-28 Method for producing optically anisotropic film with tilted optical axis

Publications (2)

Publication Number Publication Date
JP2003255127A JP2003255127A (en) 2003-09-10
JP4378910B2 true JP4378910B2 (en) 2009-12-09

Family

ID=28664977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053588A Expired - Fee Related JP4378910B2 (en) 2002-02-28 2002-02-28 Method for producing optically anisotropic film with tilted optical axis

Country Status (1)

Country Link
JP (1) JP4378910B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100960496B1 (en) 2003-10-31 2010-06-01 엘지디스플레이 주식회사 Rubbing method of liquid crystal display device
KR100631753B1 (en) 2004-08-30 2006-10-09 주식회사 수성케미칼 Optical film
JP2007121996A (en) * 2005-09-28 2007-05-17 Fujifilm Corp Optical compensation sheet, polarizing plate using the same, and liquid crystal display device
JP4781803B2 (en) * 2005-12-13 2011-09-28 独立行政法人産業技術総合研究所 Orientation control method of organic microcrystal
JP5223151B2 (en) 2008-02-13 2013-06-26 日東電工株式会社 Method for producing optical laminate
JP2020024357A (en) * 2018-08-02 2020-02-13 住友化学株式会社 Optical film
WO2020026804A1 (en) * 2018-08-02 2020-02-06 住友化学株式会社 Optical film
JP7281134B2 (en) * 2019-08-06 2023-05-25 学校法人 工学院大学 OPTICAL ELEMENT MANUFACTURING METHOD AND OPTICAL ELEMENT
JPWO2022025051A1 (en) * 2020-07-28 2022-02-03

Also Published As

Publication number Publication date
JP2003255127A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
KR100208475B1 (en) Method for lc alignment layer with magnetic field process
KR100717564B1 (en) Liquid crystal display device
JP2004046194A (en) Manufacturing method for optical compensator
KR102069477B1 (en) Transmission controllable film
TWI465337B (en) Optical compensation film, method of producing the same, and polarizing plate and liquid crystal display device using the same
US7326449B2 (en) Liquid crystal device
JP4378910B2 (en) Method for producing optically anisotropic film with tilted optical axis
Yoon et al. Giant surfactants for the construction of automatic liquid crystal alignment layers
JP3935489B2 (en) Liquid crystal display
WO2009028429A1 (en) Elliptically polarizing plate, method for producing the same, and liquid crystal display device using the same
JP2004046195A (en) Manufacturing method for optical compensator
WO2008105218A1 (en) Elliptical polarizing plate for vertically aligned liquid crystal display and vertically aligned liquid crystal display using the same
US7075606B2 (en) Method for manufacturing an optical compensator on a transitional substrate
JP4334028B2 (en) Manufacturing method of liquid crystal display element
US8542333B2 (en) Liquid crystal cell alignment surface programming method and liquid cell light modulator devices made thereof
JP5331312B2 (en) Manufacturing method of optical anisotropic body
JP6769921B2 (en) Manufacturing method of liquid crystal alignment film
JPH0875924A (en) Production of substrate having optical anysotropy
KR20030032749A (en) Fabrication Method Of A Retardation Film Using Nematic Liquid Crystals And A Retardation Film Thereby
CN102127457A (en) Alignment layer material, alignment layer and preparation method thereof, and birefringent liquid crystal film and preparation method thereof
JP2007225765A (en) Method for producing optically anisotropic body
Sergan et al. Optical characterization of discotic liquid crystalline films
JPH09244031A (en) Production of liquid crystal cell
EP1573372A1 (en) Optically anisotropic body
JP4150956B2 (en) Substrate having optical anisotropy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4378910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees