JP2003255127A - Manufacturing method for optical anisotropic film with oblique optical axis - Google Patents

Manufacturing method for optical anisotropic film with oblique optical axis

Info

Publication number
JP2003255127A
JP2003255127A JP2002053588A JP2002053588A JP2003255127A JP 2003255127 A JP2003255127 A JP 2003255127A JP 2002053588 A JP2002053588 A JP 2002053588A JP 2002053588 A JP2002053588 A JP 2002053588A JP 2003255127 A JP2003255127 A JP 2003255127A
Authority
JP
Japan
Prior art keywords
liquid crystal
magnetic field
polymerizable liquid
crystal material
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002053588A
Other languages
Japanese (ja)
Other versions
JP4378910B2 (en
Inventor
Hiroshi Hasebe
浩史 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002053588A priority Critical patent/JP4378910B2/en
Publication of JP2003255127A publication Critical patent/JP2003255127A/en
Application granted granted Critical
Publication of JP4378910B2 publication Critical patent/JP4378910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical anisotropic film with an oblique optical axis with good productivity without receiving considerable technical and cost restrictions of a magnet. <P>SOLUTION: A process of removing an alignment defect before magnetic field alignment is provided. Thus, the technical barrier of an electromagnet can be made low and the area of the optical anisotropic film can easily be made large. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光軸が傾いた光学
異方フィルムの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optically anisotropic film having an inclined optical axis.

【0002】[0002]

【従来の技術】重合性官能基を有する液晶性化合物(以
下、重合性液晶化合物)又はこの化合物を少なくとも一
種含有する重合性液晶組成物を、液晶状態で配向させた
重合性液晶材料層を得た後、配向状態で紫外線や電子線
を照射すると、液晶分子の配向構造を固定化した重合体
を作製することができる。このようにして得られた重合
体の中でも、厚みが数mm〜数mm程度の重合性液晶材料
を、厚み方向に対して斜めに傾けて配向させ、配向状態
を固定化することによって作製される光学異方フィルム
は、光学的用途に応用することができる。重合性液晶材
料を斜めに配向させる手段として、重合性液晶材料層に
対して角度をもって磁場を印加させる方法が、特開平5-
215921号公報や特開平8-122708号公報に記載されてい
る。
2. Description of the Related Art A liquid crystal compound having a polymerizable functional group (hereinafter referred to as a polymerizable liquid crystal compound) or a polymerizable liquid crystal composition containing at least one of the compounds is aligned in a liquid crystal state to obtain a polymerizable liquid crystal material layer. After that, by irradiating with ultraviolet rays or electron beams in the aligned state, a polymer in which the aligned structure of liquid crystal molecules is fixed can be produced. Among the polymers obtained in this manner, a polymerizable liquid crystal material having a thickness of several mm to several mm is tilted obliquely with respect to the thickness direction and aligned to fix the alignment state. The optically anisotropic film can be applied to optical applications. As a means for orienting the polymerizable liquid crystal material obliquely, a method of applying a magnetic field to the polymerizable liquid crystal material layer at an angle is disclosed in Japanese Patent Laid-Open No.
It is described in JP-A-215921 and JP-A-8-122708.

【0003】この方法で光軸の傾き角が面内方向で均一
な光学異方フィルムを製造するためには、光学異方フィ
ルムの大きさに対して十分な磁石間隔(平行磁場を得る
ために対向させた一対の磁石間の距離)と断面積を有
し、かつ一定以上の強さの均一な平行磁場が必要とな
る。具体的には、図1に示すように光軸がフィルム法線
に対して角度θ傾き、一辺の長さがaの正方形の光学異
方フィルム(面積A=a2)を製造する場合には、図2に示す
ように、磁石間隔として、少なくともa×sinθの距離が
必要である。均一な平行磁場の断面積を磁極面積と等し
いと考えれば、平行磁場の断面積は、少なくともa2×co
sθ(=A×cosθ)が必要となる。これより磁極面積が小さ
いと、図3に示すように重合性液晶材料に作用する磁力
線がお互いに平行でなくなり、液晶分子の傾きが面内方
向で均一でなくなってしまう。重合性液晶材料の磁化率
の異方性が大きいほど、磁場は弱くても配向を達成でき
るが、重合性液晶材料の配向にはおよそ2〜4kG以上の磁
場の強さが必要である。
In order to manufacture an optically anisotropic film in which the tilt angle of the optical axis is uniform in the in-plane direction by this method, a sufficient magnet spacing (to obtain a parallel magnetic field for the size of the optically anisotropic film is required). A uniform parallel magnetic field having a distance between a pair of magnets facing each other) and a cross-sectional area and having a certain strength or more is required. Specifically, as shown in FIG. 1, in the case of manufacturing a square optical anisotropic film (area A = a 2 ) in which the optical axis is inclined by an angle θ with respect to the film normal, and the length of one side is a. As shown in FIG. 2, at least a distance of a × sin θ is required as the magnet spacing. Assuming that the uniform cross-sectional area of the parallel magnetic field is equal to the magnetic pole area, the cross-sectional area of the parallel magnetic field is at least a 2 × co
sθ (= A × cosθ) is required. If the magnetic pole area is smaller than this, the lines of magnetic force acting on the polymerizable liquid crystal material are not parallel to each other as shown in FIG. 3, and the tilt of the liquid crystal molecules is not uniform in the in-plane direction. As the anisotropy of the magnetic susceptibility of the polymerizable liquid crystal material is larger, the alignment can be achieved even if the magnetic field is weak, but the alignment of the polymerizable liquid crystal material requires a magnetic field strength of approximately 2 to 4 kG or more.

【0004】これらを考慮すると、永久磁石として現時
点で入手可能な最も強いネオジウム系磁石を用いても、
光学異方フィルムの大きさはせいぜい数センチ角程度の
ものしか作製することができない。従って、数センチ角
以上の大きさの光学異方フィルムを作製しようとする場
合には、電磁石もしくは超伝導磁石を用いる必要があ
る。
Considering these points, even if the strongest neodymium magnet available at present as a permanent magnet is used,
The size of the optically anisotropic film can be only about several centimeters square at most. Therefore, in order to manufacture an optically anisotropic film having a size of several centimeters square or more, it is necessary to use an electromagnet or a superconducting magnet.

【0005】磁場の強さは磁石間隔の距離の二乗に反比
例する。フィルムの一辺(a)が大きくなると、光学フィ
ルムの光軸の傾き角がθである光軸が傾いた光学フィル
ムを製造するためには、磁極間の距離を少なくとも(a×
sinθ)以上にする必要があり、磁極間距離が大きくな
る。このため、磁場の強さは、(a×sinθ)2に反比例し
て小さくなってしまう。磁場の強さを増すには、磁場発
生装置は急激に大がかりになり、技術的障壁が高くな
り、装置コスト及び維持コストが高くなってしまうとい
う問題があった。また、弱い磁場の強さを有する磁場の
印加では、完全には配向欠陥が除去されなかったり、完
全な配向を得るには、長時間を要したりすることが問題
であった。つまり、重合性液晶材料の配向は、磁場によ
り瞬時に配向が得られるのではなく、磁場を印加してか
ら所望の配向状態を得るためには、配向に要する時間が
必要である。配向に要する時間を短縮するためには、上
述の2〜4kGよりさらに強い磁場が必要となる。配向に要
する時間は、重合性液晶材料の粘度が低いほど、短縮す
ることができるが、重合性液晶材料の粘度が数十〜数千
mPa・sの範囲にあることを考慮すると、少なくとも4〜8
kG以上の磁場強度がないと、配向時間が数分以上と長く
なってしまい、生産性が悪化してしまう。このように生
産性も考慮すると、磁場発生装置の技術的障害がさらに
高くなり、現時点で合理的に入手できうる水準を超えて
しまう、もしくは装置コスト及び維持コストが現実的で
ないほど高くなってしまうという問題があった。
The strength of the magnetic field is inversely proportional to the square of the distance between the magnets. When one side (a) of the film becomes large, in order to manufacture an optical film in which the optical axis of the optical film has a tilt angle of θ, the distance between the magnetic poles should be at least (a ×
sin θ) or more, which increases the distance between magnetic poles. Therefore, the strength of the magnetic field decreases in inverse proportion to (a × sin θ) 2 . In order to increase the strength of the magnetic field, there has been a problem that the magnetic field generator becomes large in size rapidly, the technical barrier becomes high, and the device cost and the maintenance cost become high. In addition, when a magnetic field having a weak magnetic field strength is applied, it is not possible to completely remove the alignment defect, or it takes a long time to obtain a perfect alignment. In other words, the orientation of the polymerizable liquid crystal material is not instantaneously obtained by the magnetic field, but the time required for the orientation is required to obtain a desired orientation state after applying the magnetic field. To shorten the time required for orientation, a magnetic field stronger than the above-mentioned 2 to 4 kG is required. The time required for alignment can be shortened as the viscosity of the polymerizable liquid crystal material is lower, but the viscosity of the polymerizable liquid crystal material is several tens to several thousands.
Considering that it is in the range of mPas, at least 4-8
If the magnetic field strength is not more than kG, the orientation time will be several minutes or more and the productivity will be deteriorated. In this way, if productivity is taken into consideration, the technical obstacles to the magnetic field generator will be further increased, and it will exceed the reasonably available level at the present time, or the device cost and the maintenance cost will be unrealistically high. There was a problem.

【0006】すなわち、磁場配向手段を用いて光学異方
フィルムを生産性良く製造しようとすると磁場発生装置
の技術的障害が非常に高くなるという問題があった。ま
た、磁場発生装置のコストを低減しようとすると光学異
方フィルムの生産性が悪化してしまうという問題があっ
た。この問題は、数センチ角以上の大きさを有する光学
フィルムの製造では特に深刻なものとなっていた。
That is, there is a problem in that the technical obstacle of the magnetic field generator becomes very high when an optical anisotropic film is produced with high productivity by using the magnetic field orientation means. Further, there has been a problem that the productivity of the optically anisotropic film is deteriorated when the cost of the magnetic field generator is reduced. This problem has been particularly serious in the production of optical films having a size of several centimeters square or more.

【0007】[0007]

【発明が解決しようとする課題】磁石の技術上やコスト
上の制約を大きく受けることなく、光軸が傾いた光学フ
ィルムを生産性良く製造する方法を提供する。
Provided is a method for producing an optical film having an inclined optical axis with high productivity, without being greatly restricted by the technology and cost of magnets.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、重合性液晶材料の磁場配向を詳細に検討した結果、
磁場配向における律速段階は配向欠陥の除去にあること
を見いだした。そして、配向欠陥の除去に特化した配向
工程を、所望の配向状態を得るための磁場配向工程の前
に設けることによって上記課題を解決できることを見い
だした。
In order to solve the above-mentioned problems, as a result of detailed examination of the magnetic field orientation of the polymerizable liquid crystal material,
It was found that the rate-determining step in magnetic field orientation lies in the removal of orientation defects. It has been found that the above problem can be solved by providing an alignment process specialized for removing alignment defects before the magnetic field alignment process for obtaining a desired alignment state.

【0009】すなわち本発明は、(第一工程)重合性液晶
材料を基板上に坦持して、又は2枚の基板間に挟持し
て、重合性液晶材料層を得る工程と、(第二工程)重合性
液晶材料層を、電場印加、磁場印加、又は電場と磁場の
同時印加により実質上配向欠陥が無い状態にする配向欠
陥除去工程と、(第三工程)磁場により重合性液晶材料層
を均一配向させ、配向状態で重合性液晶材料に活性エネ
ルギー線を照射して硬化させる工程とを有する光軸が傾
いた光学異方フィルムの製造方法を提供する。
That is, the present invention comprises (first step) a step of carrying a polymerizable liquid crystal material on a substrate or sandwiching it between two substrates to obtain a polymerizable liquid crystal material layer; Step) the alignment liquid crystal material layer, the alignment defect removal step of making the state substantially free of alignment defects by applying an electric field, a magnetic field, or the simultaneous application of an electric field and a magnetic field, and (the third step) the polymerizable liquid crystal material layer by a magnetic field Is uniformly aligned, and the polymerizable liquid crystal material is irradiated with an active energy ray in the aligned state to be cured, thereby providing a method for producing an optically anisotropic film having an inclined optical axis.

【0010】配向欠陥とは液晶辞典(倍風館、日本学術
振興会情報科学用有機材料第142委員会編)にある転傾、
点欠陥などを総称した液晶分子の配向状態が連続してい
ないものである。配向欠陥は光散乱の原因となるため好
ましくなく、光学的に良質な光学フィルムを得るために
は除去する必要がある。
Alignment defects are tilts in the liquid crystal dictionary (Baifukan, Japan Society for the Promotion of Science, Organic Materials for Information Science, 142nd Committee),
The alignment state of liquid crystal molecules, which is a generic term for point defects and the like, is not continuous. Alignment defects are not preferable because they cause light scattering and must be removed in order to obtain an optical film of good optical quality.

【0011】配向欠陥の除去に特化した配向欠陥除去工
程には、電場印加もしくは磁場印加が有効である。電場
印加は、磁場印加と異なり、フィルムが大面積化して
も、装置コストの上昇はほとんど無く、装置コスト自体
も磁場印加の場合と比較して安価ですむ。
An electric field application or a magnetic field application is effective for the alignment defect removing process specialized for removing alignment defects. Unlike the magnetic field application, the electric field application hardly increases the device cost even if the film has a large area, and the device cost itself is less expensive than the case of applying the magnetic field.

【0012】また、配向欠陥の除去を目的とした磁場印
加の場合には、所望の配向状態を固定化する際に印加す
る磁場とは異なり、重合性液晶材料に作用する磁力線は
お互いに平行でなくても良い。つまり、図3に示したよ
うな磁場の状態でも良い。このような磁場は、図2に示
したような重合性液晶材料に作用する磁力線がお互いに
平行であるものと比較して装置コスト、維持コストが低
廉である。
Further, in the case of applying a magnetic field for the purpose of removing alignment defects, unlike the magnetic field applied when fixing a desired alignment state, the lines of magnetic force acting on the polymerizable liquid crystal material are parallel to each other. You don't have to. That is, the magnetic field state shown in FIG. 3 may be used. Such a magnetic field is low in device cost and maintenance cost as compared with the magnetic field lines acting on the polymerizable liquid crystal material being parallel to each other as shown in FIG.

【0013】配向欠陥の除去を目的とする磁場の印加に
は、永久磁石の使用が有効である。一つ一つの永久磁石
の磁場面積は小さくとも、平行磁場である必要がないた
め、図5に示すように複数の永久磁石を並べて磁場を印
加することが可能である。このようにすれば、装置設計
の融通度を広げることができ、電場や永久磁場の使用に
より装置コストや維持コストが安い配向方法を適用する
ことでき、生産性の向上に非常に有用である。
Use of a permanent magnet is effective for applying a magnetic field for the purpose of removing alignment defects. Even if the magnetic field area of each permanent magnet is small, it does not need to be a parallel magnetic field, so it is possible to apply a magnetic field by arranging a plurality of permanent magnets as shown in FIG. In this way, the flexibility of device design can be widened, and an orientation method with low device cost and maintenance cost can be applied by using an electric field or a permanent magnetic field, which is very useful for improving productivity.

【0014】実質上配向欠陥がない状態まで配向欠陥の
除去する工程が完了すれば、重合性液晶材料層を固定化
したい所望の配向状態に配向させるための磁場配向工程
を次に行う。この工程では、重合性液晶材料層に作用す
る磁力線がお互いに平行であれば、重合性液晶材料を配
向させる程度の強さの磁場を印加するだけで、迅速に配
向欠陥の無い所望の配向状態を達成することができる。
所望の配向状態に到達するための律速となる配向欠陥の
除去が既に前工程で達成されているため、最小限の配向
に必要な磁場の強さで十分である。そのため、配向欠陥
の除去に特化した配向欠陥除去工程を設けない場合と比
較して、磁場発生装置の技術的障壁を低くでき配向工程
の効率化を達成することができる。更に装置導入コスト
及び維持コストを低減することができる。以上のよう
に、従来の配向工程を配向欠陥除去工程と配向工程の2
つに分割することにより、生産性が良好になり、かつ磁
場発生装置の技術的、コスト的な障害を軽減することが
可能となる。
When the process of removing the alignment defects is completed to a state where there are substantially no alignment defects, a magnetic field alignment process for aligning the polymerizable liquid crystal material layer to a desired alignment state to be immobilized is next performed. In this process, if the lines of magnetic force acting on the polymerizable liquid crystal material layer are parallel to each other, a magnetic field having a strength sufficient to align the polymerizable liquid crystal material is simply applied to quickly obtain a desired alignment state without alignment defects. Can be achieved.
Since the removal of the alignment defect, which becomes the rate-determining condition for reaching the desired alignment state, has already been achieved in the previous step, the magnetic field strength required for the minimum alignment is sufficient. Therefore, the technical barrier of the magnetic field generator can be lowered and the efficiency of the alignment process can be improved as compared with the case where the alignment defect removal process specialized for removal of alignment defects is not provided. Further, the device introduction cost and the maintenance cost can be reduced. As described above, the conventional alignment process is divided into the alignment defect removal process and the alignment process.
By dividing into two, it becomes possible to improve the productivity and reduce technical and cost obstacles of the magnetic field generator.

【0015】[0015]

【発明の実施の形態】以下に、第一〜第三工程を詳細に
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The first to third steps will be described in detail below.

【0016】(第一工程)重合性液晶材料を基板上に担
持して重合性液晶材料層を得るには、基板上に重合性液
晶材料を印刷法やスピンコート法で塗布することが好ま
しい。基板上の全体にわたって、均一な塗布厚みを得ら
れるよう配慮することが好ましい。塗布の際には、重合
性液晶材料を原液のまま用いても、溶媒に溶かしても良
い。重合性液晶材料を2枚の基板間に挟持して重合性液
晶材料層を得るには、一定の間隔を持って平行に対向さ
せた2枚の基板間の間隙に、重合性液晶材料を注入する
のが好ましい。2枚の基板のうち、少なくとも一方は紫
外線や電子線等の活性エネルギー線を透過する必要があ
る。
(First Step) In order to carry the polymerizable liquid crystal material on the substrate to obtain the polymerizable liquid crystal material layer, it is preferable to apply the polymerizable liquid crystal material on the substrate by a printing method or a spin coating method. It is preferable to give consideration to obtain a uniform coating thickness over the entire substrate. At the time of coating, the polymerizable liquid crystal material may be used as it is as a stock solution or may be dissolved in a solvent. In order to obtain a polymerizable liquid crystal material layer by sandwiching a polymerizable liquid crystal material between two substrates, a polymerizable liquid crystal material is injected into the gap between two substrates that face each other in parallel with a certain distance. Preferably. At least one of the two substrates needs to transmit active energy rays such as ultraviolet rays and electron rays.

【0017】担持又は挟持のいずれの方法を用いるにし
ても、重合性液晶材料層の厚みは0.1〜3000μmが好まし
く、0.2〜1000μmが好ましく、0.5〜200μmが好まし
く、1〜150μmが特に好ましい。層の厚みの誤差は、5μ
m以下、好ましくは2μm以下、さらに好ましくは1μm以
下、特に好ましくは0.5μm以下である。
Whichever method of supporting or sandwiching is used, the thickness of the polymerizable liquid crystal material layer is preferably 0.1 to 3000 μm, preferably 0.2 to 1000 μm, preferably 0.5 to 200 μm, and particularly preferably 1 to 150 μm. Layer thickness error is 5μ
m or less, preferably 2 μm or less, more preferably 1 μm or less, particularly preferably 0.5 μm or less.

【0018】基板として用いることができるのは、プラ
スチック等の有機材料、ガラス及びアルミニウム等の無
機材料である。表面の平坦性が優れ、基板厚みの均一性
に優れる基板を用いることが好ましい。表面の平坦性及
び厚みの誤差は、10μm以下、好ましくは5μm以下、さ
らに好ましくは2μm以下、特に好ましくは1μm以下であ
る。
Organic materials such as plastics and inorganic materials such as glass and aluminum can be used as the substrate. It is preferable to use a substrate having excellent surface flatness and excellent substrate thickness uniformity. The errors in surface flatness and thickness are 10 μm or less, preferably 5 μm or less, more preferably 2 μm or less, and particularly preferably 1 μm or less.

【0019】基板の表面には配向処理をしておくことが
好ましい。例えば、垂直配向状態を与える垂直配向膜の
形成や、有機薄膜を基板に形成しラビングしたような水
平一軸配向膜が挙げられる。基板自体が有機材料であれ
ば、そのままラビング処理しても良い。
The surface of the substrate is preferably oriented. For example, a vertical alignment film that gives a vertical alignment state may be formed, or a horizontal uniaxial alignment film formed by rubbing an organic thin film on a substrate may be used. If the substrate itself is an organic material, the rubbing treatment may be performed as it is.

【0020】重合性液晶材料は、液晶の技術分野で反応
性の液晶材料もしくは重合性の液晶材料と認識される材
料であれば用いることができる。このような材料として
は、一般式(I)
As the polymerizable liquid crystal material, any material which is recognized as a reactive liquid crystal material or a polymerizable liquid crystal material in the technical field of liquid crystals can be used. As such a material, general formula (I)

【0021】[0021]

【化1】 [Chemical 1]

【0022】[式中、X1は水素原子又はメチル基を表
し、sは0〜18の整数を表し、sが0のときtは0を表し、
sが1以上のときtは0又は1を表し、6員環A、環B及び環C
はそれぞれ独立的に、1,4-フェニレン基、隣接しないCH
基が窒素で置換された1,4-フェニレン基、1,4-シクロヘ
キシレン基、1つ又は隣接しない2つのCH2基が酸素若し
くは硫黄原子で置換された1,4-シクロヘキシレン基、又
は1,4-シクロヘキセニル基を表し、これらの6員環A、環
B及び環Cは、さらに炭素原子数1〜7のアルキル基、アル
コキシ基、アルカノイル基、シアノ基又はハロゲン原子
で一つ以上置換されていても良く、Y1、Y2はそれぞれ独
立的に単結合、-CH2CH2-、-CH2O-、-OCH2-、-COO-、-OC
O-、-C≡C-、-CH=CH-、-CF=CF-、-(CH2)4-、-CH2CH2CH2
O-、-OCH2CH2CH2-、-CH=CH-CH2CH2-、-CH2CH2-CH=CH-、
-CH=CH-COO-、-OCO-CH=CH-、-CH2CH2-COO-、-CH2CH2-OC
O-、-COO-CH2CH2-、-OCO-CH2CH2-を表し、Y3は単結合、
-O-、-OCO-、-COO-、-CH=CH-COO-又は式(II)
[In the formula, X 1 represents a hydrogen atom or a methyl group, s represents an integer of 0 to 18, and when s is 0, t represents 0,
When s is 1 or more, t represents 0 or 1, and is a 6-membered ring A, ring B or ring C.
Are each independently a 1,4-phenylene group, non-adjacent CH
1,4-phenylene group whose group is substituted with nitrogen, 1,4-cyclohexylene group, one or two CH 2 groups not adjacent to each other 1,4-cyclohexylene group substituted with an oxygen or sulfur atom, or Represents a 1,4-cyclohexenyl group, these 6-membered ring A, ring
B and ring C may be further substituted with one or more alkyl groups having 1 to 7 carbon atoms, alkoxy groups, alkanoyl groups, cyano groups or halogen atoms, and Y 1 and Y 2 are each independently a single group. bond, -CH 2 CH 2 -, - CH 2 O -, - OCH 2 -, - COO -, - OC
O -, - C≡C -, - CH = CH -, - CF = CF -, - (CH 2) 4 -, - CH 2 CH 2 CH 2
O-, -OCH 2 CH 2 CH 2- , -CH = CH-CH 2 CH 2- , -CH 2 CH 2 -CH = CH-,
-CH = CH-COO-, -OCO-CH = CH-, -CH 2 CH 2 -COO-, -CH 2 CH 2 -OC
Represents O-, -COO-CH 2 CH 2- , -OCO-CH 2 CH 2- , Y 3 is a single bond,
-O-, -OCO-, -COO-, -CH = CH-COO- or formula (II)

【0023】[0023]

【化2】 [Chemical 2]

【0024】(式中、X2は水素原子又はメチル基を表
し、vは0〜18の整数を表し、vが0のときwは0を表し、v
が1以上のときwは0又は1を表す。)を表し、Z1は水素原
子、ハロゲン原子、シアノ基、炭素原子1〜20の炭化水
素基を表す。但しY3が式(II)を表すときは、Z1は水素原
子を表す。]で表される化合物を含有する重合性液晶材
料を挙げることができる。具体的な化合物の例として
は、例えば以下のような化合物を挙げることができる。
(In the formula, X 2 represents a hydrogen atom or a methyl group, v represents an integer of 0 to 18, w is 0 when v is 0, v
When is 1 or more, w represents 0 or 1. ), Z 1 represents a hydrogen atom, a halogen atom, a cyano group, or a hydrocarbon group having 1 to 20 carbon atoms. However, when Y 3 represents the formula (II), Z 1 represents a hydrogen atom. ] The polymerizable liquid crystal material containing the compound represented by these can be mentioned. Examples of specific compounds include the following compounds.

【0025】[0025]

【化3】 [Chemical 3]

【0026】(式中、s、vはそれぞれ独立的に1〜18の整
数を表し、Y3、Z1は一般式(I)におけるものと同じ意味
を表す)。
(In the formula, s and v each independently represent an integer of 1 to 18, and Y 3 and Z 1 have the same meanings as in formula (I)).

【0027】重合性液晶材料は、40℃以下の温度でもネ
マチック相を呈するものが好ましく、25℃においてネマ
チック相を呈するものがさらに好ましい。また、重合性
液晶材料の粘度は、40℃以下において500mPa・s以下が
好ましく、さらに好ましくは25℃において500mPa・s以
下であり、25℃において300mPa・s以下であり、特に好
ましくは25℃において200mPa・s以下である。
The polymerizable liquid crystal material preferably exhibits a nematic phase even at a temperature of 40 ° C. or lower, and more preferably exhibits a nematic phase at 25 ° C. The viscosity of the polymerizable liquid crystal material is preferably 500 mPa · s or less at 40 ° C. or less, more preferably 500 mPa · s or less at 25 ° C., 300 mPa · s or less at 25 ° C., and particularly preferably at 25 ° C. It is 200 mPa · s or less.

【0028】(第二工程)本工程が、配向欠陥の除去に
特化した配向欠陥除去工程である。この工程で、実質上
配向欠陥が無い状態を得る。ここで配向欠陥が無い状態
とは、光学顕微鏡の検出限界以上の大きさの配向欠陥が
観察されない状態とすることができる。つまり、可視光
波長の2倍程度(約0.8〜1.6μm)より大きな配向欠陥が面
積全体にわたって観察されないことをいう(配向欠陥の
形は種々存在するが、外形上、一番長くなるよう測定し
た長さを配向欠陥の大きさとする)。実際には50μm以上
の配向欠陥が存在せず、50μm未満の配向欠陥が1平方セ
ンチあたり1個以下であれば、光学異方フィルムの光学
的品質をほとんど劣化させないので、この状態を実質上
配向欠陥が無いとすることができる。実質上配向欠陥が
無い状態としては、10μm以上の配向欠陥が存在せず、1
0μm未満の配向欠陥が1平方センチあたり1個以下である
ことが好ましい。更には5μm以上の配向欠陥が存在せ
ず、5μm未満の配向欠陥が1平方センチあたり1個以下が
さらに好ましい。また、5μm以上の配向欠陥が存在せ
ず、5μm未満の配向欠陥が1平方センチあたり0.5個以下
が特に好ましい。このような配向欠陥の大きさと密度に
より表される実質上の配向欠陥は、実際の製造工程にお
いては測定に多大な時間がかかる場合がある。実質上の
配向欠陥の存在する程度は、測定が容易なヘイズで評価
することができる。重合性液晶材料層の厚み(d)と複屈
折率(Δn)の積(R=Δn×d:単位はμm)を計算リタデーシ
ョンと定義し、重合性液晶材料層のヘイズ(H:単位は%)
をリタデーション(R)で除した値を規格化ヘイズ(H/R:
単位は%/μm)と定義したとき、この規格化ヘイズが0.36
以下を、実質上配向欠陥が無い状態とすることができ
る。実質上配向欠陥が無い状態としては、規格化ヘイズ
が0.30以下が好ましく、0.24以下がさらに好ましく、0.
18以下が特に好ましい。なお、ここで用いている計算リ
タデーション値はあくまでも、重合性液晶材料層の厚み
(d)と複屈折率(Δn)の積で計算されるもので、重合性液
晶材料層の配向角αは一切考慮にいれない。
(Second Step) This step is an alignment defect removing step specialized for removing alignment defects. In this step, a state in which there are substantially no alignment defects is obtained. Here, the state in which there is no alignment defect can be a state in which no alignment defect having a size larger than the detection limit of the optical microscope is observed. That is, it means that alignment defects larger than about twice the visible light wavelength (about 0.8 to 1.6 μm) are not observed over the entire area (there are various alignment defect shapes, but the outer shape was measured to be the longest). The length is the size of the alignment defect). Actually, there is no alignment defect of 50 μm or more, and if the number of alignment defects of less than 50 μm is 1 or less per 1 cm 2, the optical quality of the optically anisotropic film is hardly deteriorated. It can be assumed that there is no defect. In the state where there is substantially no alignment defect, there is no alignment defect of 10 μm or more, and
It is preferable that the number of alignment defects of less than 0 μm is 1 or less per 1 cm 2. Furthermore, it is more preferable that the alignment defects of 5 μm or more do not exist, and that the number of alignment defects of less than 5 μm is 1 or less per 1 cm 2. Further, it is particularly preferable that the alignment defects of 5 μm or more do not exist and the number of alignment defects of less than 5 μm is 0.5 or less per 1 cm 2. Such a substantial alignment defect represented by the size and density of the alignment defect may take a lot of time to measure in the actual manufacturing process. The degree of substantial alignment defects can be evaluated by haze, which is easy to measure. The product of the thickness (d) of the polymerizable liquid crystal material layer and the birefringence (Δn) (R = Δn × d: unit is μm) is defined as the calculation retardation, and the haze of the polymerizable liquid crystal material layer (H: unit is% )
Is the standard haze (H / R:
When the unit is% / μm), this normalized haze is 0.36
The following can be a state in which there is substantially no alignment defect. As a state having substantially no alignment defect, the normalized haze is preferably 0.30 or less, more preferably 0.24 or less, and 0.
18 or less is particularly preferable. The calculated retardation value used here is only the thickness of the polymerizable liquid crystal material layer.
It is calculated by the product of (d) and the birefringence (Δn), and the orientation angle α of the polymerizable liquid crystal material layer is not taken into consideration at all.

【0029】本工程における重合性液晶材料層の配向状
態は、後で詳述する第三工程における配向状態と必ずし
も同じである必要は無い。例えば、図1に示したような
光軸が(重合性液晶材料分子の長軸方向が)角度θ傾いて
いる光学異方フィルムを作製する場合においても、本工
程において重合性液晶材料層を角度θ傾けた配向状態を
とらせる必要は無く、例えば垂直配向状態や水平配向状
態をとらせても良い。また、作製する光学異方フィルム
に所望の傾き角θより小さい角度αに本工程で配向させ
ても良い。第二工程における電場又は磁場の配向角度α
(基板の法線と電場又は磁場がなす角)が、作製する光学
フィルムの光軸の傾きθより小さいことが好ましい。
The alignment state of the polymerizable liquid crystal material layer in this step does not necessarily have to be the same as the alignment state in the third step described in detail later. For example, even in the case of producing an optical anisotropic film in which the optical axis as shown in FIG. 1 (the major axis direction of the polymerizable liquid crystal material molecule) is inclined by the angle θ, the polymerizable liquid crystal material layer is angled in this step. It is not necessary to take the orientation state inclined by θ, and for example, the vertical orientation state or the horizontal orientation state may be taken. Further, the optical anisotropic film to be produced may be oriented in this step at an angle α smaller than a desired tilt angle θ. Orientation angle α of the electric or magnetic field in the second step
The (angle formed by the normal line of the substrate and the electric field or magnetic field) is preferably smaller than the inclination θ of the optical axis of the optical film to be produced.

【0030】短い時間で配向欠陥を解消するためには、
できるだけ強い磁界及び又は強い電界により第二工程を
行うことが好ましい。磁界強度は、同じ磁石を用いた場
合、磁極間の距離の二乗に反比例する。電界強度は同じ
電圧を用いた場合、電極間距離に反比例する。このた
め、配向欠陥の解消をより速く、より完全に行うために
は上記距離を短くする必要がある。光軸がθ傾いた配向
を有する光学異方フィルムの製造において、第二工程で
θより小さい角度(α)の傾きで配向欠陥を除去する工程
を行うと、磁場及び電場の磁極(電極)間隔はsinαに比
例するため、αが小さい方が磁極(電極)間隔狭くなり、
同じ強さの磁場(電場)を用いても磁場(電場)強度をあげ
ることができる。このため配向欠陥の解消をより完全
に、より速くすることができる。
In order to eliminate the alignment defect in a short time,
It is preferable to carry out the second step with a magnetic field and / or an electric field that is as strong as possible. The magnetic field strength is inversely proportional to the square of the distance between the magnetic poles when the same magnet is used. The electric field strength is inversely proportional to the distance between the electrodes when the same voltage is used. Therefore, it is necessary to shorten the distance in order to eliminate alignment defects faster and more completely. In the production of an optical anisotropic film having an orientation in which the optical axis is tilted by θ, if the step of removing the alignment defect at an angle (α) smaller than θ is performed in the second step, the magnetic pole (electrode) spacing of the magnetic field and the electric field is increased. Is proportional to sin α, the smaller α the narrower the magnetic pole (electrode) spacing,
The strength of the magnetic field (electric field) can be increased by using a magnetic field (electric field) of the same strength. Therefore, the elimination of alignment defects can be completed more completely and faster.

【0031】αが0であるとき、磁極(電極)距離が最も
短くなるため好ましい。特に電極を印加する場合は、重
合性液晶材料を坦持又は挟持する基板上に電極を形成で
きるため好ましい。第二工程に続く第三工程最終におい
て、最終目的の傾き角θまで回転させる際には、第二工
程において少し傾き角が与えられていることが好まし
い。この観点からは、第二工程のαは、3度以上、さら
に好ましくは5度以上、特に好ましくは10度以上が好ま
しい。
When α is 0, the magnetic pole (electrode) distance becomes the shortest, which is preferable. In particular, when an electrode is applied, it is preferable because the electrode can be formed on the substrate that carries or holds the polymerizable liquid crystal material. In the final step of the third step following the second step, it is preferable that a slight inclination angle is given in the second step when rotating to the final inclination angle θ. From this viewpoint, α in the second step is preferably 3 degrees or more, more preferably 5 degrees or more, and particularly preferably 10 degrees or more.

【0032】電場を用いて実質上配向欠陥が無い状態を
得るには、重合性液晶材料層に交流又は直流電圧印加を
行う。直流電圧の印加は、重合性液晶材料を劣化させる
可能性があるので、交流電圧を印加するのが好ましい。
電場は0.5V/μm以上が好ましく、1V/μm以上がさらに好
ましく、2V/μm以上が特に好ましい。電場を用いる場合
には、重合性液晶材料の誘電率異方性の絶対値は、0.5
以上が好ましく、1以上がさらに好ましく、2以上が特に
好ましい。誘電率異方性の符号(正か負か)は、どちらで
も良い。電場印加方法としては、例えば、重合性液晶材
料を基板上に担持する場合には、基板上に複数の櫛形電
極を設けて、櫛形電極間に電圧を印加する方法、重合性
液晶材料を2枚の基板間に挟持する場合には、2枚の基板
上のそれぞれに電極を設けて、この電極間に電圧を印加
する方法を挙げることができる。
In order to obtain a state in which there is substantially no alignment defect using an electric field, an AC or DC voltage is applied to the polymerizable liquid crystal material layer. The application of a DC voltage may deteriorate the polymerizable liquid crystal material, and therefore it is preferable to apply an AC voltage.
The electric field is preferably 0.5 V / μm or more, more preferably 1 V / μm or more, particularly preferably 2 V / μm or more. When an electric field is used, the absolute value of the dielectric anisotropy of the polymerizable liquid crystal material is 0.5.
The above is preferable, 1 or more is more preferable, and 2 or more is particularly preferable. The sign of the dielectric anisotropy (positive or negative) may be either. As an electric field applying method, for example, when a polymerizable liquid crystal material is carried on a substrate, a plurality of comb-shaped electrodes are provided on the substrate and a voltage is applied between the comb-shaped electrodes, and two polymerizable liquid crystal materials are used. In the case of sandwiching between the substrates, there may be mentioned a method in which an electrode is provided on each of the two substrates and a voltage is applied between the electrodes.

【0033】磁場を用いて、実質上配向欠陥が無い状態
を得るには、重合性液晶材料層に、異なる磁極を対向さ
せてなる磁石対により実現される磁場を作用させるのが
好ましい。磁場の強さとしては、4kG以上であることが
好ましい。この際の磁場は、図2に示したようにフィル
ムに対して十分な磁石間隔(平行磁場を得るために対向
させた一対の磁石間の距離)と平行磁場断面積(磁極断面
積)を具備する必要は無い。例えば、図4に示したよう
に、作製する光学フィルムの光軸の傾き角がθである光
軸が傾いた光学フィルムを作製するにあたり、第二工程
における配向角αをθより小さくすると、磁石間隔は図
2におけるa×sinθより小さくても良く、磁極面積B(b×
c)は図2におけるa2×cosθ(a2はフィルム面積Aであるの
で、A×cosθ)より小さくても良い。磁石間隔が小さい
と、同じ強さの磁石を用いた場合、より強い磁場が得ら
れるので、配向をより迅速に得ることができ、また磁場
発生装置の装置及び維持コストを低減できる。当然なが
ら、図3に示したように重合性液晶材料層に作用する磁
力線はお互いに平行な状態とはならないが、配向欠陥の
除去を目的とする本工程においては何ら問題無い。図4
のような磁石配置の場合、配向欠陥を除去できるのは面
積Aのうち、一部分に限られてしまう可能性があるが、
重合性液晶材料層を磁場中で移動させることにより、面
積A全体にわたって配向欠陥を除去することが可能にな
る。また、図5に示したように、磁石対を複数設けるこ
とによって、配向欠陥除去の効率を向上させることがで
きる。図6に示すように、重合性液晶材料が垂直配向(配
向角α=0)するように磁場を印加しても良い。このよう
な配置は、磁石間隔の距離を重合性液晶材料層の厚み程
度まで小さくすることができるので、強い磁場を容易に
得ることができ、配向欠陥除去工程の時間短縮の観点か
ら好ましい配置である。以上のように、実質上配向欠陥
が無い状態にする工程は、電場の利用、重合性液晶材料
に作用する磁力線はお互いに平行な状態では無くてもよ
い磁場の利用、もしくはこれらの組み合わせを利用する
ものであり、また最終的に作製しようとする光学フィル
ムの光軸の傾き角と、本工程における重合性液晶材料の
配向角は必ずしも一致していなくて良く、第二工程の配
向角αが光軸の傾き角θより小さいことが好ましいとい
うことで特徴付けられる。
In order to obtain a state in which there is substantially no alignment defect by using a magnetic field, it is preferable to apply a magnetic field realized by a pair of magnets having different magnetic poles facing each other to the polymerizable liquid crystal material layer. The strength of the magnetic field is preferably 4 kG or more. The magnetic field at this time has a sufficient magnet spacing (distance between a pair of magnets facing each other to obtain a parallel magnetic field) and a parallel magnetic field cross-sectional area (magnetic pole cross-sectional area) with respect to the film as shown in FIG. There is no need to do it. For example, as shown in FIG. 4, in producing an optical film in which the optical axis of the optical film to be produced has an optical axis inclination angle of θ, when the orientation angle α in the second step is made smaller than θ, the magnet Interval is figure
2 may be smaller than a × sin θ, and the magnetic pole area B (b ×
c) may be smaller than a 2 × cos θ (a 2 is the film area A, so A × cos θ) in FIG. If the magnet spacing is small, a stronger magnetic field can be obtained when using magnets of the same strength, so that orientation can be obtained more quickly, and the apparatus and maintenance cost of the magnetic field generator can be reduced. As a matter of course, the magnetic lines of force acting on the polymerizable liquid crystal material layer are not parallel to each other as shown in FIG. 3, but there is no problem in this step for removing alignment defects. Figure 4
In the case of such a magnet arrangement, it is possible that the alignment defects can be removed only in a part of the area A.
By moving the polymerizable liquid crystal material layer in a magnetic field, it becomes possible to remove alignment defects over the entire area A. Further, as shown in FIG. 5, by providing a plurality of magnet pairs, the efficiency of alignment defect removal can be improved. As shown in FIG. 6, a magnetic field may be applied so that the polymerizable liquid crystal material is vertically aligned (alignment angle α = 0). In such an arrangement, the distance between the magnets can be reduced to about the thickness of the polymerizable liquid crystal material layer, so that a strong magnetic field can be easily obtained and a preferable arrangement is obtained from the viewpoint of shortening the time of the alignment defect removing step. is there. As described above, in the step of substantially eliminating alignment defects, use of an electric field, use of a magnetic field in which lines of magnetic force acting on the polymerizable liquid crystal material do not have to be parallel to each other, or a combination thereof is used. In addition, the inclination angle of the optical axis of the optical film to be finally produced and the orientation angle of the polymerizable liquid crystal material in this step do not necessarily match, and the orientation angle α in the second step is It is characterized in that it is preferably smaller than the inclination angle θ of the optical axis.

【0034】(第三工程)本工程は、最終的に作製しよ
うとする光学フィルムの光軸の傾き角に、重合性液晶材
料層の配向角度を、磁場を利用することにより一致させ
た後、重合性液晶材料に電子線、紫外線等の活性エネル
ギー線を照射して硬化させる工程である。用いる磁場は
異なる磁極を対向させてなる磁石対により実現される磁
場を作用させるのが好ましい。ここで重要なのは磁場を
利用して重合性液晶材料を均一に配向させることであ
る。従って第二工程と異なり、図2に示したように重合
性液晶材料の面積に対して十分な磁石対の間隔と断面積
を持つ磁場発生装置を利用する必要がある。つまり、重
合性液晶材料に作用する磁力線がお互いに平行である必
要がある。すなわち、第三工程において、最終的に作製
しようとする光学フィルムの光軸の傾き角がθである場
合には、磁場と基板となす角αをθと等しくする。この
際、重合性液晶材料層の面積をA、一対の磁石対におけ
る平行磁場の断面積をCしたとき、C>A×cosθとなるよ
うにする必要がある。磁場の強さとしては、液晶材料を
配向させることができる必要最低限以上の強さがあれば
良いが、4kG以上が好ましい。磁場を印加える手段とし
ては、電磁石もしくは超伝導磁石を使用することが好ま
しい。
(Third Step) In this step, after aligning the orientation angle of the polymerizable liquid crystal material layer with the tilt angle of the optical axis of the optical film to be finally manufactured by utilizing a magnetic field, This is a step of curing the polymerizable liquid crystal material by irradiating it with active energy rays such as electron beams and ultraviolet rays. The magnetic field used is preferably a magnetic field realized by a pair of magnets having different magnetic poles facing each other. What is important here is to uniformly align the polymerizable liquid crystal material using a magnetic field. Therefore, unlike the second step, it is necessary to use a magnetic field generator having a sufficient gap and cross-sectional area of the magnet pair with respect to the area of the polymerizable liquid crystal material, as shown in FIG. That is, the lines of magnetic force acting on the polymerizable liquid crystal material need to be parallel to each other. That is, in the third step, when the inclination angle of the optical axis of the optical film to be finally manufactured is θ, the angle α formed between the magnetic field and the substrate is made equal to θ. At this time, when the area of the polymerizable liquid crystal material layer is A and the cross-sectional area of the parallel magnetic field in the pair of magnets is C, it is necessary that C> A × cos θ. As for the strength of the magnetic field, it is sufficient if the strength is at least the minimum necessary for orienting the liquid crystal material, but 4 kG or more is preferable. As a means for applying a magnetic field, it is preferable to use an electromagnet or a superconducting magnet.

【0035】第二工程で配向欠陥を除去するために印加
した磁場又は電場により得られた重合性液晶層と基板の
法線がなす角である配向角がα(α<θ)である場合、第
三工程において、配向角度α=θとなるように印加し、
配向角度αを最終の光学軸の傾き角θと等しくする。こ
の際には、磁場の配向角度をαから直接θに変えても良
いし、αからθへ段階的に或いは連続的に変更させても
良い。
In the second step, when the orientation angle, which is the angle formed by the normal line between the polymerizable liquid crystal layer and the substrate obtained by the magnetic field or electric field applied to remove the orientation defect is α (α <θ), In the third step, application is performed so that the orientation angle α = θ,
The orientation angle α is made equal to the final tilt angle θ of the optical axis. At this time, the orientation angle of the magnetic field may be changed directly from α to θ, or may be changed from α to θ stepwise or continuously.

【0036】重合性液晶材料の配向の均一性は、重合性
液晶材料層の傾き角を複数点で測定した時の傾き角の標
準偏差で評価できる。標準偏差が3度以内であれば、均
一性としては問題無く使用することができる。重合性液
晶材料の傾き角を直接測定できない場合は、リタデーシ
ョン(光学位相差:複屈折率と重合性液晶材料層の厚み
の積)もしくは偏光分離距離(光軸が傾いた重合性液晶材
料層に自然光線が入射すると振動方向が直交する2つの
偏光光線に分離される。その光線間の距離を偏光分離距
離と定義する)で評価できるので、これらの標準偏差で
評価すれば良い。配向角は、液晶セルのプレチルト角を
測定する方法として知られるクリスタルローテーション
法等で測定することができる。リタデーションは、セナ
ルモン法等で測定することができる。偏光分離距離は、
マイクロスケールの上に被測定物を置き、これを偏光顕
微鏡で観察することにより測定することができる。リタ
デーション値は、せいぜい2〜5μm程度までが測定可能
領域であるので、これを越える場合には偏光分離距離で
評価するのが好ましい。具体的には、重合性液晶材料層
の厚みが10〜20μm以下、もしくは、重合性液晶分子の
傾き角が0〜60度の範囲にあるときにはリタデーション
の方が評価しやすく、重合性液晶材料層の厚みが20μm
以上、もしくは、重合性液晶分子の傾きが60〜90度の範
囲にあるときには偏光分離距離の方が評価しやすい場合
が多い。リタデーションで評価する場合には、その標準
偏差10nm以下が好ましく、5nm以下がさらに好ましく、
1nm以下が特に好ましい。偏光分離距離で評価する場合
には、その標準偏差として1μm以下が好ましく、0.5μm
以下がさらに好ましく、0.1μm以下が特に好ましい。
The uniformity of the orientation of the polymerizable liquid crystal material can be evaluated by the standard deviation of the inclination angles when the inclination angle of the polymerizable liquid crystal material layer is measured at a plurality of points. If the standard deviation is within 3 degrees, it can be used without any problem as uniformity. If the tilt angle of the polymerizable liquid crystal material cannot be measured directly, retardation (optical retardation: product of birefringence and thickness of polymerizable liquid crystal material layer) or polarization separation distance (for a polymerizable liquid crystal material layer with an inclined optical axis) When a natural ray is incident, it is separated into two polarized rays whose vibration directions are orthogonal to each other. The distance between the rays is defined as the polarization separation distance.) Therefore, the standard deviation of these can be used for the evaluation. The orientation angle can be measured by a crystal rotation method or the like which is known as a method for measuring the pretilt angle of the liquid crystal cell. The retardation can be measured by the Senarmont method or the like. The polarization separation distance is
The measurement can be performed by placing an object to be measured on a microscale and observing it with a polarization microscope. Since the retardation value is within a measurable region up to about 2 to 5 μm at most, it is preferable to evaluate by the polarization separation distance when it exceeds this value. Specifically, when the thickness of the polymerizable liquid crystal material layer is 10 to 20 μm or less, or when the tilt angle of the polymerizable liquid crystal molecules is in the range of 0 to 60 degrees, the retardation is easier to evaluate, and the polymerizable liquid crystal material layer Has a thickness of 20 μm
In many cases, the polarization separation distance is easier to evaluate when the tilt of the polymerizable liquid crystal molecule is in the range of 60 to 90 degrees. When evaluated by retardation, its standard deviation is preferably 10 nm or less, more preferably 5 nm or less,
It is particularly preferably 1 nm or less. When evaluating the polarization separation distance, the standard deviation is preferably 1 μm or less, 0.5 μm
The following is more preferable, and 0.1 μm or less is particularly preferable.

【0037】電子線、紫外線等の活性エネルギー線の照
射は、上述の磁場を印加した状態で行う必要がある。紫
外線を使用する場合、偏光光源を用いても良いし、非偏
光光源を用いても良い。また、液晶組成物を2枚の基板
間に挟持させた状態で重合を行う場合には、少なくとも
照射面側の基板は紫外線や電子線等の活性エネルギー線
に対して適当な透明性が与えられていなければならな
い。照射時の温度は、使用する重合性液晶材料の液晶状
態が保持される温度範囲内であることが好ましい。特
に、意図しない熱重合の誘起を避ける意味から可能な限
り室温に近い温度、即ち、典型的には25℃での温度で重
合させることが好ましい。紫外線や電子線の強度は、0.
1mW/cm2〜2W/cm2が好ましい。強度が0.1mW/cm2以下の場
合、光重合を完了させるのに多大な時間が必要になり生
産性が悪化してしまい、2W/cm2以上の場合、重合性液晶
化合物又は重合性液晶組成物が劣化してしまう危険があ
る。
Irradiation with active energy rays such as electron beams and ultraviolet rays must be performed with the above-mentioned magnetic field applied. When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used. When the liquid crystal composition is sandwiched between two substrates for polymerization, at least the substrate on the irradiation surface side is provided with appropriate transparency to active energy rays such as ultraviolet rays and electron rays. Must be The temperature at the time of irradiation is preferably within a temperature range in which the liquid crystal state of the polymerizable liquid crystal material used is maintained. In particular, it is preferable to carry out the polymerization at a temperature as close to room temperature as possible, that is, typically at a temperature of 25 ° C., in the sense of avoiding unintended induction of thermal polymerization. The intensity of ultraviolet rays and electron beams is 0.
1 mW / cm 2 to 2 W / cm 2 is preferable. If the strength is 0.1 mW / cm 2 or less, a large amount of time is required to complete the photopolymerization, resulting in poor productivity, and if 2 W / cm 2 or more, the polymerizable liquid crystal compound or the polymerizable liquid crystal composition is used. There is a risk that things will deteriorate.

【0038】重合によって得られた本発明の光軸が傾い
た光学異方フィルムは、初期の特性変化を軽減し、安定
的な特性発現を図ることを目的として熱処理を施すこと
もできる。熱処理の温度は50〜250℃の範囲で、また熱
処理時間は30秒〜12時間の範囲が好ましい。このような
方法によって製造される光軸が傾いた光学異方フィルム
は基板から剥離して単体で用いることも、剥離せずに用
いることもできる。また、得られた光学異方フィルムは
積層してもよいし、他の基板に貼り合わせて使用するこ
ともできる。
The optically anisotropic film having an inclined optical axis of the present invention obtained by polymerization can be subjected to a heat treatment for the purpose of reducing initial characteristic changes and achieving stable characteristics. The heat treatment temperature is preferably in the range of 50 to 250 ° C., and the heat treatment time is preferably in the range of 30 seconds to 12 hours. The optical anisotropic film having an inclined optical axis manufactured by such a method can be used alone after peeling from the substrate, or can be used without peeling. Further, the obtained optically anisotropic film may be laminated or may be used by being attached to another substrate.

【0039】[0039]

【実施例】以下、実施例を挙げて本発明を更に詳述する
が、本発明はこれらの実施例に限定されるものではな
い。粘度はE型粘度計を用いて20℃において測定した。
ヘイズはNDH2000(日本電色工業株式会社製)を用いてJIS
規格K7361に基づいて測定した。また、%は質量%を表
す。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. The viscosity was measured at 20 ° C. using an E type viscometer.
For haze, use NDH2000 (Nippon Denshoku Industries Co., Ltd.)
Measured according to standard K7361. Moreover,% represents mass%.

【0040】(評価項目の具体的な測定方法)配向角
は、液晶セルのプレチルト角を測定する方法として知ら
れるクリスタルローテーション法で測定した。偏光分離
距離は、マイクロスケールの上に被測定物を置き、これ
を偏光顕微鏡で観察することにより測定した。
(Specific Measuring Method of Evaluation Items) The orientation angle was measured by the crystal rotation method known as a method for measuring the pretilt angle of the liquid crystal cell. The polarization separation distance was measured by placing an object to be measured on a microscale and observing it with a polarization microscope.

【0041】(実施例1)厚み1.1mmで7.1cm角の正方形
ガラス基板の片面に、厚み約100nmのポリビニルアルコ
ール薄膜を形成しラビング処理した。このようにしてポ
リビニルアルコール配向膜を形成したガラス基板2枚
を、配向膜が内側になるようにして、お互いに平行を保
つように対向させてセルを作製した。このとき、2枚の
基板の間隙は100μmとなるよう、ラビング方向はお互い
に反平行(アンチパラレル)になるように設定した。
(Example 1) A polyvinyl alcohol thin film having a thickness of about 100 nm was formed on one surface of a square glass substrate having a thickness of 1.1 mm and a size of 7.1 cm square and rubbed. Two glass substrates with the polyvinyl alcohol alignment film thus formed were placed facing each other so that the alignment films were on the inner side and kept parallel to each other. At this time, the gap between the two substrates was set to 100 μm, and the rubbing directions were set to be antiparallel to each other.

【0042】次に、以下の重合性液晶組成物(A)を調製
した。
Next, the following polymerizable liquid crystal composition (A) was prepared.

【0043】[0043]

【化4】 [Chemical 4]

【0044】この重合性液晶組成物(A)は、室温(25℃)
でネマチック液晶相を呈した。ネマチック相−等方性液
体相転移温度は52℃であった。また、589nmで測定したn
e(異常光の屈折率)は1.664で、no(常光の屈折率)は1.50
5、複屈折率(Δn)は0.159であった。粘度は178mPa・sで
あった。この重合性液晶組成物(A)99質量部に、光重合
開始剤TPO(チバスペシャリティケミカルズ社製)0.1質量
部からなる重合性液晶組成物(A')を調製した。さらにこ
の組成物を孔径1μmのフッ素樹脂製メンブランフィル
ターで濾過した。この濾過した重合性液晶組成物(A')を
作製したセルに室温にて注入した。注入直後は、偏光顕
微鏡で観察したところ50μm以上の配向欠陥が観察さ
れ、50μm未満の配向欠陥の密度は3個以上/cm2であっ
た。また、ヘイズ(H)を測定したところ、7.5%であっ
た。膜厚は100μmなので、計算リタデーション(R)は15.
9μmとなる。従って、規格化ヘイズ(H/R:単位は%/μm)
は0.472となった。注入完了後、図7に示すように、1対
のネオジム永久磁石(一個の大きさ:縦5cm×横7cm×厚
さ5cm)においてN極とS極が向かいあうように、又基板の
法線と磁場のなす角αが45度になるように配置して得ら
れる3600Gの磁場に置いた。3分間経過後、偏光顕微鏡で
観察したところ50μm以上の配向欠陥は観察されず、50
μm未満の配向欠陥の密度は1個以下/cm2となった。ま
た、ヘイズを測定したところ3.9%であった。従って、規
格化ヘイズ(H/R:単位は%/μm)は0.245となった。次に
図8に示すように半径6cmの円形磁極で、N極とS極が向か
い合うように電磁石を基板の法線と磁場のなす角α=θ
が45度になるように配置して得られる5000Gの磁場に20
秒間おいた。図9に示すようにセルの5カ所の点について
偏光分離距離を測定したところ、10.0、10.5、10.5、1
0.5、10.5μmであり、標準偏差は0.09μmであった。こ
の状態で、40mW/cm2の紫外線を12秒照射して重合性液晶
組成物を硬化させた。このようにして作製した光学異方
フィルムを偏光顕微鏡で観察したところ、50μm以上の
配向欠陥は観察されず、50μm未満の配向欠陥の密度は
0.1個以下/cm2であった。また、得られた光学異方フィ
ルムのヘイズを測定したところ2.8%であった。図9にし
めす位置で偏光分離距離を測定したところ、6.5、7.0、
7.0、7.0、7.0μmであった。
This polymerizable liquid crystal composition (A) is at room temperature (25 ° C.).
And exhibited a nematic liquid crystal phase. The nematic phase-isotropic liquid phase transition temperature was 52 ° C. Also, n measured at 589 nm
e (refractive index of extraordinary light) in 1.664, n o (refractive index of ordinary light) is 1.50
5, the birefringence (Δn) was 0.159. The viscosity was 178 mPa · s. A polymerizable liquid crystal composition (A ′) comprising 0.1 part by mass of a photopolymerization initiator TPO (manufactured by Ciba Specialty Chemicals) in 99 parts by mass of the polymerizable liquid crystal composition (A) was prepared. Further, this composition was filtered through a fluororesin membrane filter having a pore size of 1 μm. The filtered polymerizable liquid crystal composition (A ′) was injected into the prepared cell at room temperature. Immediately after the injection, when observed by a polarization microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm 2 . The haze (H) was measured and found to be 7.5%. Since the film thickness is 100 μm, the calculated retardation (R) is 15.
It becomes 9 μm. Therefore, normalized haze (H / R: Unit is% / μm)
Was 0.472. After the implantation is completed, as shown in Fig. 7, in a pair of neodymium permanent magnets (one size: 5 cm in length × 7 cm in width × 5 cm in thickness), so that the N pole and the S pole face each other and the normal line of the substrate. It was placed in a magnetic field of 3600 G obtained by arranging so that the angle α formed by the magnetic field was 45 degrees. After 3 minutes, when observed by a polarization microscope, no alignment defect of 50 μm or more was observed.
The density of orientation defects of less than μm was 1 or less / cm 2 . Moreover, the haze was measured and found to be 3.9%. Therefore, the normalized haze (H / R: unit:% / μm) was 0.245. Next, as shown in FIG. 8, with a circular magnetic pole having a radius of 6 cm, the angle between the normal of the substrate and the magnetic field α = θ so that the N pole and the S pole face each other.
20 in a magnetic field of 5000 G obtained by arranging so that it becomes 45 degrees
I left it for a second. When the polarization separation distance was measured at five points on the cell as shown in FIG. 9, 10.0, 10.5, 10.5, 1
0.5 and 10.5 μm, and the standard deviation was 0.09 μm. In this state, the polymerizable liquid crystal composition was cured by irradiating with ultraviolet light of 40 mW / cm 2 for 12 seconds. When the optical anisotropic film thus produced was observed with a polarization microscope, no alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was
It was 0.1 or less / cm 2 . The haze of the obtained optically anisotropic film was measured and found to be 2.8%. When the polarization separation distance was measured at the position shown in Fig. 9, 6.5, 7.0,
It was 7.0, 7.0 and 7.0 μm.

【0045】(比較例1)実施例1と同様にセルを作製
し、これに実施例1で調製・濾過した重合性液晶組成物
(A')を室温にて注入した。注入直後は、偏光顕微鏡で観
察したところ、50μm以上の配向欠陥が観察され、50μm
未満の配向欠陥の密度は3個以上/cm2であった。また、
ヘイズを測定したところ、7.5%であった。膜厚は100μm
なので、計算リタデーション(R)は15.9μmとなる。従っ
て、規格化ヘイズ(H/R:単位は%/μm)は0.472となっ
た。これを、図8に示すように半径6cmの円形磁極で、N
極とS極が向かい合うように、又基板の法線と磁場のな
す角度θが45度になるように電磁石を配置して得られる
5000Gの磁場に20秒間おいた後、この状態で40mW/cm2
紫外線を12秒照射して重合性液晶組成物を硬化させた。
このようにして作製した光学異方フィルムを偏光顕微鏡
で観察したところ、50μm以上の配向欠陥が観察され、5
0μm未満の配向欠陥の密度は1個以上/cm2であった。ヘ
イズを測定したところ、5.0%であった。
Comparative Example 1 A cell was prepared in the same manner as in Example 1, and the polymerizable liquid crystal composition prepared and filtered in Example 1 was added to the cell.
(A ') was injected at room temperature. Immediately after injection, when observed with a polarization microscope, alignment defects of 50 μm or more were observed,
The density of orientation defects of less than 3 was 3 or more / cm 2 . Also,
When the haze was measured, it was 7.5%. Film thickness is 100 μm
Therefore, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit:% / μm) was 0.472. Using a circular magnetic pole with a radius of 6 cm,
Obtained by arranging electromagnets so that the pole and S pole face each other and the angle θ between the normal of the substrate and the magnetic field is 45 degrees.
After being placed in a magnetic field of 5000 G for 20 seconds, 40 mW / cm 2 of ultraviolet light was irradiated for 12 seconds in this state to cure the polymerizable liquid crystal composition.
When the optical anisotropic film thus produced was observed with a polarization microscope, alignment defects of 50 μm or more were observed.
The density of orientation defects of less than 0 μm was 1 or more / cm 2 . When the haze was measured, it was 5.0%.

【0046】(比較例2)実施例1と同様にセルを作製
し、これに実施例1で調製・濾過した重合性液晶組成物
(A')を室温にて注入した。注入直後は、偏光顕微鏡で観
察したところ50μm以上の配向欠陥が観察され、50μm未
満の配向欠陥の密度は3個以上/cm2であった。また、ヘ
イズを測定したところ、7.5%であった。膜厚は100μmな
ので、計算リタデーション(R)は15.9μmとなる。従っ
て、規格化ヘイズ(H/R:単位は%/μm)は0.472となっ
た。これを、図8に示すように半径6cmの円形磁極で、N
極とS極が向かい合うように、又基板の法線と磁場のな
す角度θが45度になるように電磁石を配置して得られる
5000Gの磁場に60秒間おいた後、この状態で40mW/cm2
紫外線を12秒照射して重合性液晶組成物を硬化させた。
このようにして作製した光学異方フィルムを偏光顕微鏡
で観察したところ、50μm以上の配向欠陥が観察されな
かったものの、50μm未満の配向欠陥の密度が1個以上/c
m2であった。ヘイズを測定したところ、4.0%であった。
Comparative Example 2 A polymerizable liquid crystal composition prepared in the same manner as in Example 1 except that a cell was prepared and filtered in Example 1.
(A ') was injected at room temperature. Immediately after the injection, when observed with a polarization microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm 2 . The haze was measured and found to be 7.5%. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit:% / μm) was 0.472. Using a circular magnetic pole with a radius of 6 cm,
Obtained by arranging electromagnets so that the pole and S pole face each other and the angle θ between the normal of the substrate and the magnetic field is 45 degrees.
After being placed in a magnetic field of 5000 G for 60 seconds, 40 mW / cm 2 of ultraviolet rays was irradiated for 12 seconds in this state to cure the polymerizable liquid crystal composition.
When the optical anisotropic film produced in this manner was observed with a polarization microscope, no alignment defects of 50 μm or more were observed, but the density of alignment defects of less than 50 μm was 1 or more / c.
It was m 2 . When the haze was measured, it was 4.0%.

【0047】(比較例3)実施例1と同様にセルを作製
し、これに実施例1で調製・濾過した重合性液晶組成物
(A')を室温にて注入した。注入直後は、偏光顕微鏡で観
察したところ50μm以上の配向欠陥が観察され、50μm未
満の配向欠陥の密度は3個以上/cm2であった。また、ヘ
イズを測定したところ、7.5%であった。膜厚は100μmな
ので、計算リタデーション(R)は15.9μmとなる。従っ
て、規格化ヘイズ(H/R:単位は%/μm)は0.472となっ
た。これを、図8に示すように半径6cmの円形磁極で、N
極とS極が向かい合うように、又基板の法線と磁場のな
す角度である配向角αが光軸の傾き角θ=45度と等しく
なるように電磁石を配置して得られる5000Gの磁場に120
秒間おいた後、この状態で40mW/cm2の紫外線を12秒照射
して重合性液晶組成物を硬化させた。このようにして作
製した光学異方フィルムを偏光顕微鏡で観察したとこ
ろ、50μm以上の配向欠陥は観察されず、50μm未満の配
向欠陥の密度は0.1個以下/cm2であった。また、得られ
た光学異方フィルムのヘイズを測定したところ2.8%であ
った。
(Comparative Example 3) A polymerizable liquid crystal composition prepared in the same manner as in Example 1 except that a cell was prepared and filtered in Example 1.
(A ') was injected at room temperature. Immediately after the injection, when observed with a polarization microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm 2 . The haze was measured and found to be 7.5%. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit:% / μm) was 0.472. Using a circular magnetic pole with a radius of 6 cm,
A magnetic field of 5000G obtained by arranging electromagnets so that the pole and the S pole face each other and the orientation angle α, which is the angle formed by the magnetic field and the normal line of the substrate, is equal to the inclination angle θ = 45 degrees of the optical axis. 120
After standing for 2 seconds, 40 mW / cm 2 of ultraviolet light was irradiated for 12 seconds in this state to cure the polymerizable liquid crystal composition. When the optical anisotropic film thus produced was observed with a polarizing microscope, no alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 0.1 or less / cm 2 . The haze of the obtained optically anisotropic film was measured and found to be 2.8%.

【0048】本発明の実施例1において、装置及び維持
コストが高い電磁石を用いる時間は20秒であり、配向欠
陥の無い良好な光学異方フィルムが得られている。比較
例1では電磁石を用いる時間は20秒と同じであるが、配
向欠陥が存在する。比較例2では電磁石を用いる時間は6
0秒と長いが、これでも配向欠陥が除去しきれていな
い。比較例3では配向欠陥を除去できたが、電磁石を用
いる時間は120秒と長く、生産性が悪い。
In Example 1 of the present invention, the time for using the apparatus and the electromagnet whose maintenance cost is high is 20 seconds, and a good optical anisotropic film having no alignment defect is obtained. In Comparative Example 1, the time for using the electromagnet is the same as 20 seconds, but there are orientation defects. In Comparative Example 2, the time to use the electromagnet is 6
Although it is as long as 0 seconds, the alignment defects cannot be completely removed even with this. In Comparative Example 3, the alignment defect could be removed, but the electromagnet was used for a long time of 120 seconds and the productivity was poor.

【0049】(実施例2)厚み1.1mmで5cm角の正方形ガ
ラス基板を、0.25質量%トリクロロ(1H、1H、2H、2H-パ
ーフルオロオクチル)シランのヘキサン溶液に5分浸積
後、水洗、乾燥させることにより垂直配向膜を形成し
た。このようにして垂直配向膜を形成したガラス基板2
枚を、お互いに平行を保つように対向させてセルを作製
した。このとき、2枚の基板の間隙は100μmとなるよう
に設定した。これに実施例1で調製・濾過した重合性液
晶組成物(A')を室温にて注入した。注入直後は、偏光顕
微鏡で観察したところ50μm以上の配向欠陥が観察さ
れ、50μm未満の配向欠陥の密度は3個以上/cm2であっ
た。また、ヘイズを測定したところ、7.0%であった。膜
厚は100μmなので、計算リタデーション(R)は15.9μmと
なる。従って、規格化ヘイズ(H/R:単位は%/μm)は0.44
0となった。注入完了後、図10に示すように、1対のネオ
ジム永久磁石(一個の大きさ:縦5cm×横5cm×厚さ2cm)
においてN極とS極が向かいあうように、又配向角αが0
度となるように(すなわち法線方向に磁場を印加)配置し
て得られる4300Gの磁場に置いた。3分間経過後、偏光顕
微鏡で観察したところ50μm以上の配向欠陥は観察され
ず、50μm未満の配向欠陥の密度は1個以下/cm2となっ
た。また、ヘイズを測定したところ3.8%であった。従っ
て、規格化ヘイズ(H/R:単位は%/μm)は0.239となっ
た。次に図11に示すように半径6cmの円形磁極で、N極と
S極が向かい合うように又配向角αがθと等しい45度に
なるように電磁石を配置して得られる5000Gの磁場に20
秒間おいた。図12に示すようにセルの5カ所の点につい
て偏光分離距離を測定したところ、9.5、9.5、9.5、9.
0、9.0μmであり、標準偏差は0.11μmであった。この状
態で、40mW/cm2の紫外線を12秒照射して重合性液晶組成
物を硬化させた。このようにして作製した光学異方フィ
ルムを偏光顕微鏡で観察したところ、50μm以上の配向
欠陥は観察されず、50μm未満の配向欠陥の密度は0.1個
以下/cm2であった。また、得られた光学異方フィルムの
ヘイズを測定したところ2.9%であった。図12にしめす位
置で偏光分離距離を測定したところ、6.5、6.5、6.5、
6.5、7.0μmであった。
(Example 2) A square glass substrate having a thickness of 1.1 mm and 5 cm square was immersed in a hexane solution of 0.25 mass% trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane for 5 minutes, and then washed with water, A vertical alignment film was formed by drying. The glass substrate 2 on which the vertical alignment film is formed in this way
A cell was produced by facing the sheets so as to keep them parallel to each other. At this time, the gap between the two substrates was set to be 100 μm. The polymerizable liquid crystal composition (A ′) prepared and filtered in Example 1 was injected into this at room temperature. Immediately after the injection, when observed with a polarization microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm 2 . The haze was measured and found to be 7.0%. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, normalized haze (H / R: unit is% / μm) is 0.44
It became 0. After the injection is completed, as shown in Figure 10, a pair of neodymium permanent magnets (one size: length 5 cm x width 5 cm x thickness 2 cm)
So that the north and south poles face each other, and the orientation angle α is 0
It was placed in a magnetic field of 4300 G obtained by arranging so as to be at a certain degree (that is, applying a magnetic field in the normal direction). After 3 minutes, when observed with a polarization microscope, no alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 1 or less / cm 2 . The haze was measured and found to be 3.8%. Therefore, the normalized haze (H / R: unit:% / μm) was 0.239. Next, as shown in Fig. 11, a circular magnetic pole with a radius of 6 cm
The magnetic field of 5000 G obtained by arranging the electromagnets so that the S poles face each other and the orientation angle α is 45 degrees equal to θ
I left it for a second. When the polarization separation distances were measured at five points on the cell as shown in FIG. 12, they were 9.5, 9.5, 9.5 and 9.
It was 0, 9.0 μm, and the standard deviation was 0.11 μm. In this state, the polymerizable liquid crystal composition was cured by irradiating with ultraviolet light of 40 mW / cm 2 for 12 seconds. When the optical anisotropic film thus produced was observed with a polarizing microscope, no alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 0.1 or less / cm 2 . Further, the haze of the obtained optically anisotropic film was measured and found to be 2.9%. When the polarization separation distance was measured at the position shown in Fig. 12, it was 6.5, 6.5, 6.5,
It was 6.5 and 7.0 μm.

【0050】(比較例4)実施例2と同様にセルを作製
し、これに実施例1で調製・濾過した重合性液晶組成物
(A')を室温にて注入した。注入直後は、偏光顕微鏡で観
察したところ50μm以上の配向欠陥が観察され、50μm未
満の配向欠陥の密度は3個以上/cm2であった。また、ヘ
イズを測定したところ、7.0%であった。膜厚は100μmな
ので、計算リタデーション(R)は15.9μmとなる。従っ
て、規格化ヘイズ(H/R:単位は%/μm)は0.440となっ
た。これを、図11に示すように半径6cmの円形磁極で、N
極とS極が向かい合うように、又基板の法線と磁場のな
す角度θが45度になるように電磁石を配置して得られる
5000Gの磁場に20秒間おいた後、この状態で40mW/cm2
紫外線を12秒照射して重合性液晶組成物を硬化させた。
このようにして作製した光学異方フィルムを偏光顕微鏡
で観察したところ、50μm以上の配向欠陥はなかったも
のの、50μm未満の配向欠陥の密度は2個以上/cm2であっ
た。ヘイズを測定したところ、5.2%であった。
Comparative Example 4 A polymerizable liquid crystal composition prepared in the same manner as in Example 2 except that a cell was prepared and filtered in Example 1.
(A ') was injected at room temperature. Immediately after the injection, when observed with a polarization microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm 2 . The haze was measured and found to be 7.0%. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit:% / μm) was 0.440. Using a circular magnetic pole with a radius of 6 cm as shown in Fig. 11,
Obtained by arranging electromagnets so that the pole and S pole face each other and the angle θ between the normal of the substrate and the magnetic field is 45 degrees.
After being placed in a magnetic field of 5000 G for 20 seconds, 40 mW / cm 2 of ultraviolet light was irradiated for 12 seconds in this state to cure the polymerizable liquid crystal composition.
When the optical anisotropic film thus produced was observed with a polarizing microscope, there were no alignment defects of 50 μm or more, but the density of alignment defects of less than 50 μm was 2 or more / cm 2 . The haze was measured and found to be 5.2%.

【0051】(比較例5)実施例2と同様にセルを作製
し、これに実施例1で調製・濾過した重合性液晶組成物
(A')を室温にて注入した。注入直後は、偏光顕微鏡で観
察したところ50μm以上の配向欠陥が観察され、50μm未
満の配向欠陥の密度は3個以上/cm2であった。また、ヘ
イズを測定したところ、7.0%であった。膜厚は100μmな
ので、計算リタデーション(R)は15.9μmとなる。従っ
て、規格化ヘイズ(H/R:単位は%/μm)は0.440となっ
た。これを、図11に示すように半径6cmの円形磁極で、N
極とS極が向かい合うように、又基板の法線と磁場のな
す角度θが45度になるように電磁石を配置して得られる
5000Gの磁場に180秒間おいた後、この状態で40mW/cm2
紫外線を12秒照射して重合性液晶組成物を硬化させた。
このようにして作製した光学異方フィルムを偏光顕微鏡
で観察したところ、50μm以上の配向欠陥はなく、50μm
未満の配向欠陥の密度は0.1個以下/cm2であった。ヘイ
ズを測定したところ、2.9%であった。
Comparative Example 5 A polymerizable liquid crystal composition prepared by preparing a cell in the same manner as in Example 2 and preparing and filtering in Example 1
(A ') was injected at room temperature. Immediately after the injection, when observed with a polarization microscope, alignment defects of 50 μm or more were observed, and the density of alignment defects of less than 50 μm was 3 or more / cm 2 . The haze was measured and found to be 7.0%. Since the film thickness is 100 μm, the calculated retardation (R) is 15.9 μm. Therefore, the normalized haze (H / R: unit:% / μm) was 0.440. Using a circular magnetic pole with a radius of 6 cm as shown in Fig. 11,
Obtained by arranging electromagnets so that the pole and S pole face each other and the angle θ between the normal of the substrate and the magnetic field is 45 degrees.
After being placed in a magnetic field of 5000 G for 180 seconds, 40 mW / cm 2 of ultraviolet light was irradiated for 12 seconds in this state to cure the polymerizable liquid crystal composition.
Observation of the optical anisotropic film produced in this way with a polarizing microscope showed no alignment defects of 50 μm or more,
The density of orientation defects of less than 0.1 was 0.1 or less / cm 2 . When the haze was measured, it was 2.9%.

【0052】[0052]

【発明の効果】磁場配向を用いた光軸が傾いた光学異方
フィルムの製造において、装置及び維持コストが高い電
磁石の使用時間を短縮することができる。もしくは、使
用時間が同じであれば電磁石の強さが弱くても良い。つ
まり、電磁石の技術的障壁を低くすることができ、光軸
が傾いた光学異方フィルムの大面積化を容易とするもの
である。以上のことから、本発明の製造方法は、光軸が
斜めに傾いた光学フィルムの製造に有用である。
INDUSTRIAL APPLICABILITY In the production of an optically anisotropic film having an inclined optical axis using magnetic field orientation, it is possible to shorten the use time of an electromagnet, which requires high equipment and maintenance costs. Alternatively, the strength of the electromagnet may be weak if the usage time is the same. That is, the technical barrier of the electromagnet can be lowered, and the area of the optical anisotropic film having an inclined optical axis can be easily increased. From the above, the manufacturing method of the present invention is useful for manufacturing an optical film having an oblique optical axis.

【図面の簡単な説明】[Brief description of drawings]

【図1】 光軸がフィルム法線に対して角度θ傾き、一
辺の長さがaの正方形の光学異方フィルム(面積A=a2
を示す図である。
[Figure 1] Optically anisotropic film with a square shape whose optical axis is tilted at an angle θ with respect to the film normal and whose side length is a (area A = a 2 ).
FIG.

【図2】 平行磁場を得るために一対の磁石をa×sinθ
以上の距離を置くことにより得られた平行磁場により、
基板上に坦持し、または2枚の基板間に挟持した重合性
液晶材料を配向させる状態を示した図である。
[Fig. 2] A pair of magnets a × sin θ to obtain a parallel magnetic field
By the parallel magnetic field obtained by keeping the above distance,
FIG. 6 is a diagram showing a state in which a polymerizable liquid crystal material carried on a substrate or sandwiched between two substrates is oriented.

【図3】 一対の磁石により得られた重合性液晶材料に
作用する磁力線がお互いに平行でない状態を示した図で
ある。
FIG. 3 is a diagram showing a state where magnetic force lines acting on a polymerizable liquid crystal material obtained by a pair of magnets are not parallel to each other.

【図4】 本発明の第二工程における実施態様を示す図
であって、配向角をαにした一対の磁石により得られた
磁界を印加することより重合性液晶材料の配向欠陥を除
去する状態を示した図である。
FIG. 4 is a diagram showing an embodiment in a second step of the present invention, in which alignment defects of the polymerizable liquid crystal material are removed by applying a magnetic field obtained by a pair of magnets having an alignment angle of α. It is the figure which showed.

【図5】 本発明の第二工程における実施態様を示す図
であって、複数の永久磁石を並べて磁場を印加した状態
を示した図である。
FIG. 5 is a diagram showing an embodiment in a second step of the present invention, showing a state in which a plurality of permanent magnets are arranged and a magnetic field is applied.

【図6】 本発明の第二工程における実施態様を示す図
であって、重合性液晶材料が垂直配向(配向角α=0)す
るように磁場を印加した状態を示した図である。
FIG. 6 is a view showing an embodiment in the second step of the present invention, and is a view showing a state in which a magnetic field is applied so that the polymerizable liquid crystal material is vertically aligned (alignment angle α = 0).

【図7】 本発明の第二工程における実施態様を示す図
であって、1対のネオジム永久磁石(一個の大きさ:縦5c
m×横7cm×厚さ5cm)を6cmの間隔をあけてN極とS極が向
かいあうようにした磁界の中に、一辺が7.1cmの正方形
の基板上に坦持し、または2枚の基板間に挟持した重合
性液晶材料を配向させる状態を示した図である(実施例
1)。
FIG. 7 is a diagram showing an embodiment in a second step of the present invention, in which a pair of neodymium permanent magnets (one size: vertical 5c
m × width 7 cm × thickness 5 cm) is carried in a magnetic field such that the N and S poles face each other with a spacing of 6 cm, and is carried on a square substrate with one side of 7.1 cm, or two substrates. It is a figure showing a state of orienting a polymerizable liquid crystal material sandwiched between (Example
1).

【図8】 本発明の第三工程における実施態様を示す図
であって、本発明の第二工程を経て実質上配向欠陥がな
くなった本発明の重合性液晶材料層を、N極とS極が向か
い合うように8cmの距離をおいて配置した半径6cmの円形
磁極により配向させる状態を示した図である(実施例
1)。
FIG. 8 is a diagram showing an embodiment in a third step of the present invention, in which the polymerizable liquid crystal material layer of the present invention in which alignment defects are substantially eliminated through the second step of the present invention is used as an N pole and an S pole. FIG. 8 is a diagram showing a state of orienting with circular magnetic poles having a radius of 6 cm arranged at a distance of 8 cm so as to face each other (Example
1).

【図9】 本発明の製造方法により得られた光学フィル
ムの偏光分離距離の測定点を示した図である。
FIG. 9 is a diagram showing measurement points of a polarization separation distance of an optical film obtained by the manufacturing method of the present invention.

【図10】 本発明の第二工程における実施態様を示す
図であって、1対のネオジム永久磁石(一個の大きさ:縦
5cm×横5cm×厚さ2cm)を2cmの間隔をあけてN極とS極が
向かいあうようにした磁界の中に、一辺が5cmの正方形
の基板上に坦持し、または2枚の基板間に挟持した重合
性液晶材料を配向させる状態を示した図である(実施例
2)。
FIG. 10 is a view showing an embodiment in the second step of the present invention, wherein a pair of neodymium permanent magnets (one size: longitudinal
(5 cm × width 5 cm × thickness 2 cm) is carried on a square substrate with a side of 5 cm or between two substrates in a magnetic field in which the N pole and the S pole face each other with an interval of 2 cm. It is a diagram showing a state of orienting the polymerizable liquid crystal material sandwiched in (example
2).

【図11】 本発明の第三工程における実施態様を示す
図であって、本発明の第二工程を経て実質上配向欠陥が
なくなった本発明の重合性液晶材料層を、N極とS極が向
かい合うように8cmの距離をおいて配置した半径6cmの円
形磁極により配向させる状態を示した図である(実施例
2)。
FIG. 11 is a diagram showing an embodiment in a third step of the present invention, in which the polymerizable liquid crystal material layer of the present invention in which alignment defects are substantially eliminated through the second step of the present invention is used as an N pole and an S pole. FIG. 8 is a diagram showing a state of orienting with circular magnetic poles having a radius of 6 cm arranged at a distance of 8 cm so as to face each other (Example
2).

【図12】 本発明の製造方法により得られた光学フィ
ルムの偏光分離距離の測定点を示した図である。
FIG. 12 is a diagram showing measurement points of the polarization separation distance of the optical film obtained by the manufacturing method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 11:00 B29L 11:00 Fターム(参考) 2H049 BA06 BA42 BC06 2H089 HA04 KA08 QA05 QA11 QA12 QA13 QA15 RA04 SA02 SA18 TA06 2H091 FA11 FC21 FC29 FC30 FD07 FD10 FD12 GA01 HA06 JA02 KA02 LA03 LA11 LA12 LA13 LA16 4F204 AA24 AA44 AB04 AC07 AG01 AH73 AM26 AM27 AM29 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29L 11:00 B29L 11:00 F term (reference) 2H049 BA06 BA42 BC06 2H089 HA04 KA08 QA05 QA11 QA12 QA13 QA15 RA04 SA02 SA18 TA06 2H091 FA11 FC21 FC29 FC30 FD07 FD10 FD12 GA01 HA06 JA02 KA02 LA03 LA11 LA12 LA13 LA16 4F204 AA24 AA44 AB04 AC07 AG01 AH73 AM26 AM27 AM29

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 (第一工程)重合性液晶材料を基板上に坦
持して、または2枚の基板間に挟持して、重合性液晶材
料層を得る工程と、(第二工程)電場印加、磁場印加、ま
たは電場と磁場の印加により重合性液晶材料層を、実質
上配向欠陥が無い状態にする配向欠陥除去工程と、(第
三工程)磁場により重合性液晶材料層を均一配向させ、
該配向状態で重合性液晶材料に活性エネルギー線を照射
して硬化させる工程とを有する光軸が傾いた光学異方フ
ィルムの製造方法。
1. A first step, a step of carrying a polymerizable liquid crystal material on a substrate or sandwiching the substrate between two substrates to obtain a polymerizable liquid crystal material layer, and a (second step) electric field. An alignment defect removing step of making the polymerizable liquid crystal material layer substantially free of alignment defects by applying an electric field, a magnetic field, or an electric field and a magnetic field; and (3rd step) uniformly aligning the polymerizable liquid crystal material layer with a magnetic field. ,
And a step of irradiating a polymerizable liquid crystal material with an active energy ray to cure the material in the aligned state.
【請求項2】 第二工程において印加する電場又は磁場
と基板の法線とのなす角度である配向角αが、作製する
光学フィルムの光軸の傾き角θより小さい請求項1記載
の光軸が傾いた光学異方フィルムの製造方法。
2. The optical axis according to claim 1, wherein an orientation angle α, which is an angle formed by an electric field or a magnetic field applied in the second step and a normal line of the substrate, is smaller than a tilt angle θ of an optical axis of an optical film to be produced. A method for producing an optically anisotropic film with a tilt.
【請求項3】 第二工程における実質上配向欠陥が無い
状態が、50μm以上の配向欠陥が観察されず、50μm未満
の配向欠陥が一平方センチあたり1個以下である状態で
ある請求項1又は2記載の光軸が傾いた光学異方フィルム
の製造方法。
3. The state in which there is substantially no alignment defect in the second step is a state in which no alignment defect of 50 μm or more is observed and the number of alignment defects of less than 50 μm is 1 or less per 1 cm 2. 2. A method for producing an optically anisotropic film having an inclined optical axis as described in 2.
【請求項4】 第二工程における実質上配向欠陥が無い
状態が、規格化ヘイズが0.45以下である状態である請求
項1又は2記載の光軸が傾いた光学異方フィルムの製造方
法。但し、重合性液晶材料層の厚み(d)と複屈折率(Δn)
の積(R=Δn×d:単位はμm)を計算リタデーションと定義
し、重合性液晶材料層のヘイズ(H:単位は%)を計算リタ
デーション(R)で除した値を規格化ヘイズ(H/R:単位は%/
μm)と定義する。
4. The method for producing an optically anisotropic film with an inclined optical axis according to claim 1, wherein the state in which there is substantially no alignment defect in the second step is a state in which the normalized haze is 0.45 or less. However, the thickness of the polymerizable liquid crystal material layer (d) and the birefringence (Δn)
The product (R = Δn × d: unit is μm) is defined as the calculated retardation, and the haze of the polymerizable liquid crystal material layer (H: unit is%) is the normalized haze (H) divided by the calculated retardation (R). / R: Unit is% /
μm).
【請求項5】 第二工程で印加する電場が1V/μm以上で
ある請求項1〜4のいずれかに記載の光軸が傾いた光学異
方フィルムの製造方法。
5. The method for producing an optically anisotropic film having an inclined optical axis according to claim 1, wherein the electric field applied in the second step is 1 V / μm or more.
【請求項6】 第二工程で印加する磁場が4kG以上であ
る請求項1〜4のいずれかに記載の光軸が傾いた光学異方
フィルムの製造方法。
6. The method for producing an optically anisotropic film with an inclined optical axis according to claim 1, wherein the magnetic field applied in the second step is 4 kG or more.
【請求項7】 第二工程で印加する磁場が、異なる磁極
を対向させてなる永久磁石対により実現される磁場であ
る請求項1〜4又は請求項6記載の光軸が傾いた光学異方
フィルムの製造方法。
7. The optical anisotropic method with tilted optical axis according to claim 1 or 4, wherein the magnetic field applied in the second step is a magnetic field realized by a pair of permanent magnets having different magnetic poles facing each other. Film manufacturing method.
【請求項8】 第二工程において、複数の永久磁石対を
使用する請求項7記載の製造方法。
8. The manufacturing method according to claim 7, wherein a plurality of permanent magnet pairs are used in the second step.
【請求項9】 第三工程における均一配向が、重合性液
晶材料の傾き角(重合性液晶材料と基板の法線とのなす
角)を複数点で測定したときの傾き角の標準偏差が3度以
内である請求項1〜8記載の製造方法。
9. The uniform alignment in the third step has a standard deviation of 3 when the tilt angle of the polymerizable liquid crystal material (the angle between the polymerizable liquid crystal material and the normal to the substrate) is measured at a plurality of points. 9. The method according to claim 1, wherein the production method is within the frequency.
【請求項10】 第三工程で印加する磁場が、4kG以上
であることを特徴とする請求項1〜9記載の製造方法。
10. The manufacturing method according to claim 1, wherein the magnetic field applied in the third step is 4 kG or more.
【請求項11】 第三工程で印加する磁場が、異なる磁
極を対向させてなる磁石対により実現される平行磁場で
ある請求項1〜10いずれかに記載の製造方法。
11. The manufacturing method according to claim 1, wherein the magnetic field applied in the third step is a parallel magnetic field realized by a pair of magnets having different magnetic poles opposed to each other.
【請求項12】 第三工程において、重合性液晶材料層
の面積をAとし、一対の磁石対における平行磁場の断面
積をBとし、磁場と基板の法線とのなす角度である配向
角αが、作製する光学フィルムの光軸の傾き角θとした
とき、α=θであって、B≧A×cosθである請求項11記載
の製造方法。
12. In the third step, the area of the polymerizable liquid crystal material layer is A, the cross-sectional area of the parallel magnetic field in the pair of magnets is B, and the orientation angle α which is the angle formed by the magnetic field and the normal line of the substrate. 12. The production method according to claim 11, wherein α = θ and B ≧ A × cos θ, where is an inclination angle θ of the optical axis of the optical film to be produced.
JP2002053588A 2002-02-28 2002-02-28 Method for producing optically anisotropic film with tilted optical axis Expired - Fee Related JP4378910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053588A JP4378910B2 (en) 2002-02-28 2002-02-28 Method for producing optically anisotropic film with tilted optical axis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053588A JP4378910B2 (en) 2002-02-28 2002-02-28 Method for producing optically anisotropic film with tilted optical axis

Publications (2)

Publication Number Publication Date
JP2003255127A true JP2003255127A (en) 2003-09-10
JP4378910B2 JP4378910B2 (en) 2009-12-09

Family

ID=28664977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053588A Expired - Fee Related JP4378910B2 (en) 2002-02-28 2002-02-28 Method for producing optically anisotropic film with tilted optical axis

Country Status (1)

Country Link
JP (1) JP4378910B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100631753B1 (en) 2004-08-30 2006-10-09 주식회사 수성케미칼 Optical film
JP2007121996A (en) * 2005-09-28 2007-05-17 Fujifilm Corp Optical compensation sheet, polarizing plate using the same, and liquid crystal display device
JP2007161828A (en) * 2005-12-13 2007-06-28 National Institute Of Advanced Industrial & Technology Method for controlling orientation of organic microcrystal
JP2009192734A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Method of manufacturing optical laminated body
KR100960496B1 (en) 2003-10-31 2010-06-01 엘지디스플레이 주식회사 Rubbing method of liquid crystal display device
WO2020026804A1 (en) * 2018-08-02 2020-02-06 住友化学株式会社 Optical film
JP2020024357A (en) * 2018-08-02 2020-02-13 住友化学株式会社 Optical film
JP2021026133A (en) * 2019-08-06 2021-02-22 学校法人 工学院大学 Optical element manufacturing method, and optical element
WO2022025051A1 (en) * 2020-07-28 2022-02-03 富士フイルム株式会社 Method for manufacturing optically anisotropic film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100960496B1 (en) 2003-10-31 2010-06-01 엘지디스플레이 주식회사 Rubbing method of liquid crystal display device
KR100631753B1 (en) 2004-08-30 2006-10-09 주식회사 수성케미칼 Optical film
JP2007121996A (en) * 2005-09-28 2007-05-17 Fujifilm Corp Optical compensation sheet, polarizing plate using the same, and liquid crystal display device
JP2007161828A (en) * 2005-12-13 2007-06-28 National Institute Of Advanced Industrial & Technology Method for controlling orientation of organic microcrystal
JP2009192734A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Method of manufacturing optical laminated body
US8821989B2 (en) 2008-02-13 2014-09-02 Nitto Denko Corporation Method for manufacturing optical laminated body
WO2020026804A1 (en) * 2018-08-02 2020-02-06 住友化学株式会社 Optical film
JP2020024357A (en) * 2018-08-02 2020-02-13 住友化学株式会社 Optical film
JP2021026133A (en) * 2019-08-06 2021-02-22 学校法人 工学院大学 Optical element manufacturing method, and optical element
JP7281134B2 (en) 2019-08-06 2023-05-25 学校法人 工学院大学 OPTICAL ELEMENT MANUFACTURING METHOD AND OPTICAL ELEMENT
WO2022025051A1 (en) * 2020-07-28 2022-02-03 富士フイルム株式会社 Method for manufacturing optically anisotropic film

Also Published As

Publication number Publication date
JP4378910B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP2971838B2 (en) Method for producing liquid crystal alignment film by magnetic field treatment
KR102069477B1 (en) Transmission controllable film
JP2004046194A (en) Manufacturing method for optical compensator
Tseng et al. Strengthening of liquid crystal photoalignment on azo dye films: passivation by reactive mesogens
US7326449B2 (en) Liquid crystal device
JP4378910B2 (en) Method for producing optically anisotropic film with tilted optical axis
Yoon et al. Giant surfactants for the construction of automatic liquid crystal alignment layers
JPH07294735A (en) Substrate having optical anisotropy
JP2004046195A (en) Manufacturing method for optical compensator
KR20170103775A (en) Polymerizable liquid crystal composition, and optically anisotropic body, phase difference film, antireflective film, and liquid crystal display element fabricated using same
JP4334028B2 (en) Manufacturing method of liquid crystal display element
US8542333B2 (en) Liquid crystal cell alignment surface programming method and liquid cell light modulator devices made thereof
JP5331312B2 (en) Manufacturing method of optical anisotropic body
JP2011065168A (en) Aligned liquid crystal layer containing lewis acid
US20060014088A1 (en) Optically anisotropic body
JP6769921B2 (en) Manufacturing method of liquid crystal alignment film
JP2007225765A (en) Method for producing optically anisotropic body
JP4622726B2 (en) Manufacturing method of optical anisotropic body
JP4907007B2 (en) Photoreactive polymer liquid crystal for birefringent film and birefringent film using the same
RU2491316C1 (en) Method of liquid crystal cell production
Batalioto et al. Effect of microtextured substrates on the molecular orientation of a nematic liquid-crystal sample
KR20100073751A (en) An o-plate and a fabrication method thereof
JPH0821915A (en) Production of optical anisotropic body
JPH07294905A (en) Liquid crystal display device
JPH07294940A (en) Production of optically anisotropic body and oriented film forming material used therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4378910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees