JP4378864B2 - Composite device and method of operating composite device - Google Patents

Composite device and method of operating composite device Download PDF

Info

Publication number
JP4378864B2
JP4378864B2 JP2000279578A JP2000279578A JP4378864B2 JP 4378864 B2 JP4378864 B2 JP 4378864B2 JP 2000279578 A JP2000279578 A JP 2000279578A JP 2000279578 A JP2000279578 A JP 2000279578A JP 4378864 B2 JP4378864 B2 JP 4378864B2
Authority
JP
Japan
Prior art keywords
temperature
air
humidity
air conditioner
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000279578A
Other languages
Japanese (ja)
Other versions
JP2001289485A (en
Inventor
浩司 山下
文雄 松岡
信正 天笠
勝也 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000279578A priority Critical patent/JP4378864B2/en
Publication of JP2001289485A publication Critical patent/JP2001289485A/en
Application granted granted Critical
Publication of JP4378864B2 publication Critical patent/JP4378864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Telephonic Communication Services (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Selective Calling Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えばスーパーマーケットやコンビニエンスストアのように冷凍装置と空調装置が共存する空間の空気温度や湿度の制御に関するものである。またこの発明は空調機以外の冷熱負荷となる照明やレンジなどの機器や装置が存在する室内の複合装置に関するものである。
【0002】
【従来の技術】
従来、例えばスーパーマーケットやコンビニエンスストア等の店舗では、食品陳列用ショーケースは品物毎に保存温度が異なり、冷蔵食品用では0゜C−10゜Cに保存し、一方店内の対顧客用空調温度は夏季には25゜C近辺に、冬期暖房時は20゜C−25゜Cに設定される。各種ショーケースや冷凍庫などの低温保存の機器にとっては扉開放時や機器壁面からの店内の空気温度湿度が負荷となり、特にオープンショーケースではエアーカーテンからの侵入負荷となる。このような低温機器にとっては店内温度と湿度が低い方が負荷が少なく望ましい。一方店内の人間にとっては快適と感ずる温度に幅があり、温度、湿度、気流などによりこの快適と感ずる室内環境の対人間感覚温度を形成している。従って、低温食品保存機器の冷凍システムにとって低負荷で、且つ、室内に出入する人間にとって快適な温度と感ずる範囲を維持できることが望ましい。この様に複数の種類の置かれた空間における複合装置の制御に対し、特開平11−206014号公報記載の技術が知られている。
【0003】
図27にこの技術を説明する。店舗Aには管理・制御部51が設けられ、通信ポート60を介して空調機52、冷凍機53、ショーケース54、換気扇55、照明56、制御盤57を管理、制御している。空調機52は通信ポート60からデータを送受して自らの空調能力を制御する。冷凍機53等、の各機器はそれぞれ対応する状態量を検出するセンサ、53b、54b、55b、56bを有し、その検出信号を各インターフェース53a、54a、55a、56aを介して通信ポート60と送受し、それぞれの設定状態を制御するが、各機器の設定状態はあらかじめ設定された優先度にしたがった順序で管理、制御される。制御盤57は電力系統から交流電力を受電し、許容電力を超えたか否かを監視する。これは制御盤に設けられた電流センサ57bにて電流値を検出しインターフェース57aを介して通信ポート60とデータの送受を行う。室温センサ58と外気温センサ59のデータも同様に送られる。この様に設けられた空調機52ではリモコンや管理・制御部で運転モードや室温の設定が行われるが、外気温度センサ59の検出に応じて設定温度を変更して、電力消費の削減を図る。また電流センサ57bの検出に応じてデマンド制御をあらかじめ決められた順序で行い、ピークカットなどが可能である。また照度センサ56bからの信号によりあらかじめ設定された照明器具の照度を低下させて無駄な電力の消費を押さえる。
【0004】
この様に従来の技術では個々の機器にセンサーを設けそれぞれの機器を制御する形態としていた。また、オープンタイプの低温ショーケースが設置された店内を空調する空気調和機に対し需要電力を低減する技術として、特開平9−196432号公報のものが知られている。これは外気温度センサ、店内温度センサ、店内湿度センサにより検出したデータと、低温ショーケースの冷凍能力を決め、機器の冷熱負荷を演算して機器の変換効率指標を求め、更にこれを演算して需要電力を算出し、推測する需要電力が減る方向に設定温度を変えようと言うもので、冷凍サイクルの温度データなどから各式を利用して需要電力を算出している。また時間帯別や季節帯に於ける割引電力料金については特開平6−165374号公報、特開平11−41808号公報などにより知られている。またピーク回避方法については特開平3−291096号公報の技術などが知られている。
【0005】
【発明が解決しようとする課題】
相互に冷熱負荷となり影響しあう複合装置に対し、従来は個々の機器対応のエネルギー対策であり、他の機器の影響がほとんど考えられていなかった。また、特定の機器の組み合せに対しての提案も上記のように冷熱負荷を推測して需要電力を算出するもので装置の能力毎に式を変えて求めるなど複雑な演算を必要とし、かつ、需要電力を低減する方向で空気調和機の設定温度を設定するという目的は記載されていてもどのようにして設定するかの方法が不明であり、実現が出来ないものであった。さらに、人間の快適性に対するなど個々の装置の本来の目的から離れた提案で、本来の目的が何の考慮も払われておらず、実用的とは言い難い制御内容であった。
【0006】
本発明は、冷房、暖房、換気、または除湿等を行う空調装置、食品などを保存する冷凍装置、あるいは照明装置のような発熱装置等が相互に冷熱負荷として影響しあう装置を複合装置として捉え、それぞれ本来の個々の装置は目的達成の動作を維持しながら全体として省エネルギーを図ろうと言うものである。又本発明は個々の機器や装置の動作の無駄をおさえ他の機器や装置に影響しないようにするものである。更に本発明は、季節など時間とともに変わる環境の変化に対し省エネルギー、快適性、食品の鮮度維持のような複合装置の異なる目的を並立させようと言うものである。更にこの発明は食品店舗などの複合装置のランニングコストを各装置への悪影響無しに下げようと言うものである。またこの発明は複合装置の消費電力の費用を外部電力における料金契約の無駄を省いて低減しようと言うものである。またこの発明は複合装置の使用する電力を有効に使う装置および方法を提案するものである。
【0014】
【課題を解決するための手段】
本発明に係る複合装置は、食品を収納する冷凍装置の開口から冷熱が供給される室内と、室内の温湿度を検出する室内温湿度検出手段と、室内に設けられ、室内温湿度検出手段にて検出された室内湿度を冷凍装置の食品を収納する庫内温度の露点に相当する絶対湿度以上になるように室内の温度に対する湿度を調整する空調装置と、空調装置にて室内の空気の温湿度を設定範囲である目標温湿度ゾーンに維持するとともに、目標値である温湿度を設定する制御装置と、目標値を少しずつ変えて計測する冷凍装置および空調装置のそれぞれの入力の和を記憶する記憶手段と、を備えたものである。
【0015】
本発明に係る複合装置は、冷凍装置の入力と空調装置の入力を合計するとともに、空調装置の少しずつ変化させる目標値である設定温度または設定湿度または吹き出す風速あるいは風量の設定値を変化させて合計入力が小さくなる方向の設定値を選択するものである。
【0016】
本発明に係る複合装置は、空気調和を行う室内の目標設定値として、冷房時はあらかじめ設定された目標温湿度ゾーン中の高い温度に設定し、暖房時はあらかじめ設定された目標温湿度ゾーン中の低い温度に設定するものである。
【0017】
本発明に係る複合装置は、室内に外気を導入する外気導入手段と、外気の温湿度を計測する外気温湿度検出手段と、を備え、計測された外気の温湿度またはタイマーによる時刻またはあらかじめ設定されたカレンダー情報に基づいて、空調装置の設定温度または設定湿度または吹き出す風速あるいは風量を変化させるものである。
【0018】
本発明に係る複合装置は、室内に外気を導入する外気導入手段と、外気の温湿度を計測する外気温湿度検出手段と、を備え、計測された外気の温湿度またはタイマーによる時刻またはあらかじめ設定されたカレンダー情報に基づいて、空調装置にて維持する室内空気の温湿度範囲である目標温湿度ゾーンを調整するものである。
【0019】
本発明に係る複合装置は、室内に外気を導入する外気導入手段と、外気の温湿度を計測する外気温湿度検出手段と、を備え、計測された外気のエンタルピーを算出し、室内空気のエンタルピーと外気のエンタルピーを比較して外気導入手段の運転や停止を行うとともに、室内温度が氷結などの問題を起こす最低温度にならない範囲に外気導入手段の運転を停止させる温度リミッターを設けるものである。
【0020】
本発明に係る複合装置は、室内に配置され室内の温度より低い温度の冷熱を供給する冷凍装置の庫内の温度を検出する庫内温度検出手段と、庫内温度検出手段が設定された第1の目標温度に達した場合前記庫内への冷熱の供給を行う冷媒の循環を開閉弁にて遮断する前記冷凍装置に設けられた冷媒循環遮断手段と、第1の目標温度より高い温度である第2の目標温度に庫内の温度が到達した場合冷凍装置に設けられた圧縮機の回転速度を小さく制御する能力制御装置と、を備え、庫内の温度の変動を抑えるように第1の目標温度と第2の目標温度との間の温度差を設定するものである。
【0021】
本発明に係る複合装置の運転方法は、空調装置で空調される室内空気の温湿度と室外空気の温度を検出し記憶する空気温湿度検出ステップと、室内に開口を有する食品を収納する冷凍装置の庫内の温度を求め庫内温度を露点とする絶対湿度を算出する湿度算出ステップと、空気温湿度検出ステップにて記憶された温湿度から空調装置の入力を演算し、冷凍装置の入力との和を求め、この入力の和の内小さくなる室内空気の温湿度であって、かつ、絶対湿度以上になるように選択された室内空気の温度に対する湿度を空調装置の運転の目標値に設定するステップと、を備えたものである。
【0022】
本発明に係る複合装置は、室内の天井付近に配置され交流を整流しインバータを介し電力が供給され照明を行う照明装置と、室内に配置され室内へ空気調和された空気を吹き出し照明装置近傍に循環させる空調装置と、照明装置の周囲に設けられ照明装置の周囲の室内を循環する空気温度を計測する温度検出手段と、温度検出手段にて検出された照明装置の周囲の温度に応じてインバータにより照明装置への入力を制御する制御手段と、を備えたものである。
【0023】
本発明に係る複合装置は、室内の天井付近に配置され交流を整流しインバータを介し電力が供給され照明を行う照明装置と、室内の天井付近に配置され室内へ空気調和された空気を吹き出し口から吹き出す空調装置と、照明装置の周囲に設けられ照明装置の周囲の室内を循環する空気温度を計測する温度検出手段と、空調装置の吹き出し口を覆い吹き出し口から吹き出される空気の一部を天井付近に沿って流し照明装置に導く通風ガイドと、を備え、照明装置に空気を循環させて温度検出手段にて検出された照明装置の周囲の温度を一定の明るさを確保する範囲に抑えるものである。
【0024】
本発明に係る複合装置は、照明装置の周囲の室内を循環する空気温度を20℃から30℃の範囲に抑えるものである。
【0025】
本発明に係る複合装置は、屋外に設けられ照明を行う照明装置を覆うとともに、照明装置に空気を流通させて内部に熱がたまらないように下部と上部に穴を設けたカバーと、カバー内部に設けられ照明装置周囲の温度を検出する温度検出手段と、照明装置に印加する電圧をインバータにより変えて照明の明るさを変える制御手段と、を備え、温度検出手段にて検出された温度に応じてインバータを制御し照明装置を一定の明るさを保つものである。
【0026】
本発明に係る複合装置は、特定の時間帯に対しては、照明装置の周囲の温度低下にあわせてインバータの電圧を低下させるものである。
【0027】
本発明に係る複合装置は、低温である冷熱または高温である温熱を発生させる発熱装置と、発熱装置の配置された室内に対し冷房または暖房を行う空調装置と、室内の上部に配置され照明を行う照明装置と、発熱装置および空調装置および照明装置の少なくとも2種類以上の装置を複数の種類の電源に接続可能な電気回路接続手段と、発熱装置および空調装置および照明装置の少なくとも2種類以上の装置の消費電力を合計する演算装置と、を備え、合計された消費電力が所定の値に達した場合、少なくとも1つの装置と1種類の電源との電気回路の接続を切り替えて、別の種類の電源に接続するものである。
【0028】
本発明に係る複合装置は、低温である冷熱または高温である温熱を発生させる機器と、発熱装置の配置された室内に対し冷房または暖房を行う空調装置と、室内の上部に配置され照明を行う照明装置と、発熱装置および空調装置および照明装置の少なくとも2種類以上の装置を複数の種類の電源に接続可能な電気回路接続手段と、を備え、発熱装置および空調装置および照明装置の少なくとも2種類以上の装置が接続された電源を、あらかじめ設定された時間帯は、別の電源に接続するものである。
【0031】
【発明の実施の形態】
実施の形態1.
図1乃至図5は、本発明の一例である構成を説明する図であって、図1は本発明に於ける装置説明図、図2はコンビニエンスストアの外観説明図、図3は図2の店舗を上から見た部分透視説明図、図4は本発明の構成の信号伝送部分説明図、図5は本発明の構成の制御回路図である。図1において、1はコンビニエンスストアなどの食品を扱う店舗、2は店内に設置され食品などを冷蔵して収納するショーケース、3はショーケース内下部の機械室に設置されエアーカーテンの気流9やショーケース2の庫内に収納される食品を冷却するように循環される空気を冷却するショーケース内蒸発器、4はショーケース2の冷凍サイクルを形成する凝縮器5、圧縮機6、膨張装置7を収納する室外機、8は防露ヒーター、20はショーケース2の開口から侵入する空気である店内侵入気流、10は空調装置52の室内側熱交換器、11は店内温湿度検出手段、12は空調装置52の冷凍サイクルを形成する室外熱交換器14、圧縮機13、四方弁15、膨張装置16を収納する室外機、17は外気温度を検出する外気温度検出手段であって、室外機4や室外機12などに設けられた空気温度検出素子を利用すれば良い。18は冷凍空調複合空気環境制御装置であるコントローラーである。このコントローラー18は図1のごとく室内の壁面に取り付けられたり、室外や、冷凍装置の中や、空調装置の中などに設けられていて良いことは当然である。96は冷凍サイクルの冷媒を循環させる配管である。
【0032】
次に図1の動作について説明する。冷凍装置であるショーケース2では、夏期または冬期に拘わらず年中品物を冷蔵または冷凍して食品を保存している。冷凍装置の系統サイクルは室内に配置されたショーケースと室外に配置された室外機との間を配管96で接続した冷凍サイクルを構成し、圧縮機6で高温高圧に圧縮されたガス冷媒は凝縮機5で凝縮され膨張装置7で膨張して蒸発器で低温の冷媒となる。ショーケース下部の機械室に配置された送風ファンにより吸込んだ空気を蒸発器3で冷却し、低温空気としてショーケース2の背面風路を経由して上部吹出し口より庫内に吹出すとともに、その外側でエアーカーテン9を形成する気流とし再び温度TRiの空気として送風ファンで吸込む。この様にショーケース2は開口をエアーカーテンで封鎖して庫内温度TRを設定された低温に維持し、且つ、湿度ΦRを高湿に維持し食品の鮮度維持を行っている。しかも顧客は自由に開口から品物を取り出すことが出来る。更にショーケース2には装置本体表面の温度を上げて露付きを防止するため防露ヒーター8が装着されている。
【0033】
さらに、空調装置では、夏期は冷房運転となり、配管96にて接続された冷凍サイクルでは、空調用室外機12に設けている圧縮機13で高温高圧に圧縮されたガス冷媒は四方弁15を通り室外熱交換器14で凝縮し液化し、膨張装置16で暖熱膨張し低圧低温の液とガスの二相冷媒となって室内熱交換器10にいたり、店内1の空気を冷房して再び空調装置の室外器12に帰還する。店内1の空気は室内ファン21により循環しており、この循環する空気と低温冷媒との熱交換を通して店内1を冷房し、外気温度が30゜C以上でも店内の人のいる位置は、温湿度検出手段11で検出された室内の温度Tiや湿度Φiに応じて空調装置52が温度や湿度の調整を行うのであらかじめ設定された温度設定値に応じ例えば23−26゜C程度の快適な目標温度に保たれることになる。
【0034】
図2において、71はコンビニエンスストアなどの店舗が一角を占めているビル、72は店の看板である外部照明、73は人の接近により開閉して戸外からの室内への空気の流通を防止するとともに自動開閉する開閉ドア、74は外部壁75に固定され模様95が書かれた透明なガラス壁、76は空調装置の室内に面したグリル、77は縦横多数の配列により室内を常に明るく照らす室内照明装置、78は公衆電話、80はこの店舗の分電盤である。また例えばショーケース2の室外機4と空調装置52の室外機12が重ねられて据え付けられている。
【0035】
図3は、店舗を上から見て各機器の配置状況を透視して説明する図で、53は室内壁面にショーケース2と同様に配置された庫内温度がショーケースより低く、且つ、ガラス戸で開閉して内部の食品を取り出す冷凍庫、81は電力を伝える電灯線、43は空調装置の制御部、44は冷凍庫の制御部、45はショーケースの制御部である。この電灯線81を介してコントローラ18と各機器の制御部とが信号の送受を行っている。82は換気扇、83は換気扇からの外気を開閉するダンパー22を介して導入したり、空調装置52の室内側熱交換器10で冷却された空気を室内に吹出す室内グリル76に運ぶ天井内に配置されたダクトである。なお空調装置52の室内への吹出し口はこの様に本体52に設けたり、ダクトを介して別の吹出し口を設けたり、この吹出し口グリルの内部に設けた循環送風機によるなど多くの方法が可能である。なお空調装置には室内空気を吸込む吸込み口と室内へ空調された空気を吹出す吹出し口が設けられており、天井埋め込みの空調装置ではグリルの中央から吸い込んで周囲から吹出す構成などが採用されている。更に空調装置は天井埋め込みだけでなく、側壁の天井近傍に設けても良いし、天井面にぶら下げて固定しても良い。側壁に取り付ける場合は上部から吸込み、下部から吹出し、また、天井取付の場合は下面から吸込み側面から吹出すような構成である。
【0036】
23は天井面と面一の室内グリル76の吹出し口外周縁部を室内側から覆うようにして、吹出した風の一部を天井面に沿って流す通風ガイドである。室内グリル76の吹出す風の大半は室内に循環させるが、この風の流れを利用して天井面から突出して配置された多数の露出した蛍光燈へ風を送ることにより蛍光燈周囲の温度を一定の範囲に押さえる役割を果たす。当然ながらグリル76や空調装置本体52を天井面から若干突出させ側方、すなわちグリル内部の風向板の方向を変化させて天井面に沿った風の流れを作り出す構造にしても良い。また天井付近の側壁から空気を吹出す空調装置を使用する場合は天井面に沿った流れを作り出すグリル構造が必要で、更に天井全面に分布して配置された蛍光燈へ空気の流れをほぼ行き渡らせるため、少なくとも一つの壁面全体に分布させた吹出し口から吹出させるなどの通風ガイドの効果が一層得られるような構造が望ましい。なおグリルにて天井に沿う流れを作り出すのは間欠的、すなわち時間間隔をおいて送風方向を切り替えても良い。このような通風ガイドにより温度範囲が一定範囲で使用される蛍光燈は光束が効率の一定の状態で維持されるので温度により明るくなったり暗くなることなく所望の照度を維持でき、店舗としての照明効果を十分に発揮することが出来る。
【0037】
図4は、図3の信号の送受を行う通信手段を説明する図で、32は空調装置52の内部に設けられた制御部43に取り付けられた基板のマイコン、43aはマイコン32と接続され通信手段33、変・復調手段34、結合手段35からなる通信インターフェース、36は各機器の制御部と電灯線81でつながりコントローラ18に設けられマイコンと接続される通信インターフェース、37は無線など他の通信により各機器の制御部とつながる通信インターフェース、39は電話線などで電話局46を介してサービスセンター47や携帯電話48につながるモデムである。各機器の制御部に取り付けられたマイコンは、各機器の運転停止や例えば換気扇や空調またはショーケース内照明のスイッチ動作、暖房や冷房の運転モードの切替え、温度や湿度の設定やセンサーからの温度情報に基づく温度制御、運転状態等がマイコン内に記憶された動作と演算された結果に基づき制御動作の指示として行われる。この回路の動作として通信手段33は自分当ての受信電文を選別しマイコン32へ指示を出したりマイコン32の指示により送信電文を組み立てる。すなわちコントローラ18より発振された自分当ての受信電文を選別して内容、例えばサービスセンターからの温度設定値の変更をマイコン32に伝える。また逆にマイコン32の指示により送信電文、同様に現在の設定温度の値をコントローラ18へ送信する。
【0038】
送信電文は発信元アドレス、送信先アドレス、内容などで構成される。変・復調手段34はディジタル信号をアナログ信号へ、また逆にデータを決められた変調方式により変調する変調回路で、変調方式としては例えば振幅変調や位相変調が用いられる。電灯線を通じて信号を送る場合は50−450kHz周波数帯が電波法により定められている。結合手段35は信号を電灯線に乗せるためのトランスなどを含む結合回路で、また電灯線よりの信号を取り出す。この結合手段35により電灯線と通信インターフェース36を介してコントローラ18へ伝えられた信号は、モデム39から電話局46などを通して電話回線や衛星回線などにより外部へ連絡される。この様にコントローラ18と各機器の制御部との間で送信と受信が繰り返され情報のやり取りや運転の指示などが簡単に行われる。このような既存の電灯線を使用した信号の送受により特別な信号配線を巡らす必要がなくなり、工事が簡単で確実な送受信が可能になる。なお室内の信号の送受は他の通信法式、例えば無線、赤外線、や既存の空調制御などに使われている通信用の配線を使用しても良い。
【0039】
図5は、図1から図4までに述べてきた店舗のような室内に配置された複合装置の省エネルギーを行う制御を行う運用システムの流れを説明する図で、43cは分電盤80に設けられ検出した空調機の入力を検出するセンサWA、43bは空調機の温度設定値TS、湿度設定値ΦSが設定される空調機の制御部43に設けられ外気温度TOと外気湿度ΦOを検出するセンサ、44bは冷凍機の制御部44に設けられ外気温度TOと外気湿度ΦOを検出するセンサであるが、この外気温度または湿度のセンサは、空調機の制御部43か、あるいは冷凍機の制御部44のどちらか一方に設ければ良い。45bはショーケースの制御部45に設けられ庫内温度TRを検出するセンサ、41はコントローラ18に設けられ通信線を介して空調機の制御部43、冷凍機の制御部44、ショーケースの制御部45等と接続され各機器の運用アルゴリズムに基づいて各機器間の状態量に一定の相関関係を取らせながら制御を行う、センサ群管理手段41aと、運用アルゴリズム手段41bと、制御データ手段41cと、通信用データ加工手段41dから構成される管理制御部である。センサ群管理手段41aは制御データ手段41cに格納された各機器の状態量を一括管理し、共通物理量と個別機器対応物理量と機器相関物理量に分類して管理している。共通物理量は先に述べた外気温度のようなものである。個別機器対応物理量は冷凍機の特定個所の圧力のようにその機械のみの物理量である。
【0040】
機器相関物理量は店内温度のように冷凍機と空調機の両方に関係する物理量であって省エネルギーを得るために運用するアルゴリズムに関係する物理量である。冷房、暖房、換気、または除湿等を行う空調装置、食品などを保存する冷凍装置、あるいは照明装置のような発熱装置等が相互に冷熱負荷として影響しあう装置を複合装置として捉え、すなわちショーケースの庫内の低温空気のような冷凍機の発生する冷熱は店内空気温度を下げる役割を果たすので、それぞれ本来の個々の装置は目的達成の動作を維持しながら、全体として省エネルギーを図ろうと言う場合、個々の機械で独立した量と相互に関連した量とは区分けして処理する必要がある。独立した量は個々の機械の中で制御するのに必要でありその中で処理すれば良いが、相互に関係した量はコントローラ18のように一括制御を行うか相互に通信でデータを交換する必要がある。運用アルゴリズム手段41bは例えばショーケース省エネ運用アルゴリズムなどを含みあらかじめ管理・制御部41内に構築しておいて、新規に追加する場合や改定や削除する場合には外部から電話回線やモデム39などを介して変更が可能である。更に制御データ手段41cの一部も外部から電話回線を介して例えば電力料金の改定値が管理・制御部へ送られてくる。通信用データ加工手段41dはインターフェース43a、44a、45aを通し各機器とやり取りし、あるいはモデム39を通して制御データ手段41cの内の外部に送るデータと、逆に外部から受け取るデータを加工して制御データ手段41cに渡す。
【0041】
図5において空調機分電盤センサ43cの空調機消費電力WAと、冷凍機機分電盤センサ44cの冷凍機消費電力WRと、ショーケース機分電盤センサ45cのショーケース消費電力WSとを通信線42を介して、管理・制御部41に送信し、この運用アルゴリズム手段41bにて空調機消費電力検出手段WAと冷凍機消費電力検出手段WRとショーケース消費電力検出手段WSの各検出手段で検出された電力が合計されるとともに、この合計した総和が常に小となるように店内目標温度である温度設定値TSや空調装置52の室内ファン21の回転速度などの変更が繰り替えされる。これは温度設定値TSや空調装置52の室内ファン21の回転速度などがあらかじめ与えられた量変更され、これにより消費電力が変更前より小さいことが確認されると、小さい消費電力が得られるこれらの設定データは空調機にフィードバックされ、この動作を繰り返すことにより常に消費電力が最小の方向へ向かう制御が可能になる。
【0042】
次に本発明の運用アルゴリズムの詳細を説明する。図6は空調装置の冷房時の成績係数COPを示したもので、横軸は蒸発器として機能する空調装置の室内熱交換器10の吸込み空気温度Tei、すなわち循環する空気の店内温度で、空調装置が天井付近に設けられる場合は室内空気の最も高い温度である。縦軸は成績係数COPで、COP=能力(Q)/入力(W)の式で定義される。なお図中に記載されているTciは凝縮機として機能している室外熱交換器14の吸込み空気温度である外気温度Toである。空調装置の成績係数COPは、夏期冷房時では図6のように店内の空気温度Teiが高いほど成績係数COPが良くなる。また外気温度Toが低いほど成績係数COPが良くなる。すなわちTci=30゜Cというごとく一定の外気温度では店内の空気温度がA2=20゜Cより、A1=25゜Cのように高いほど、成績係数COPが良くなり、同一能力Qを実現するためには上記の式のように入力が少なくて済む。また、B1、B2の点で示すように同一の室内空気温度では外気温度が低い方が成績係数COPが良くなり、同一能力Qを実現するためには上記の式のように入力が少なくて済む。
【0043】
一方冷凍装置の一つであるショーケースの熱負荷構成比率の一例(冷凍空調便覧より)を図7に示す。図7では多段型と平型、冷凍と冷蔵のような分類と、エアカーテンが1重か多重かで分けて説明しており、これによるとショーケースの熱負荷は、入れ替わり空気負荷q1と伝導熱負荷q2と放射熱負荷q3と内部負荷q4から構成されており、特に入れ替わり空気負荷q1が多段型ショーケースの主たる熱負荷となっている。これは図1のショーケース2に於ける庫内への店内からの侵入空気20の熱負荷に相当する。なお図7の表ではエアカーテン風量、周囲空気侵入量、周囲空気侵入比率も示している。この図に記すように多段型の場合はエアカーテンを多重にしても入れ替わり空気負荷が大きいことを示している。図8にショーケースへの侵入空気温度に対するショーケースの熱負荷を示す。横軸はショーケースへの侵入空気温度Ti(゜C)であり、縦軸はショーケースの熱負荷QR(Kcal/h)で、店内の空気温度が上昇するに連れ、すなわち20゜Cから30゜Cになるに連れ、ショーケースの熱負荷は増大し、従って冷凍システムの入力が増大する。以上のように空調装置では店内の温度が上昇するに連れ成績係数COPが良くなり入力が減少するのに対し、冷凍装置では店内の空気温度が上昇するに連れてショーケースの熱負荷が増大し入力が増加する。従って冷凍装置の入力と空調装置の入力の総和が小さくなる店内の空気温度Tiが存在する。
【0044】
図5に示すように分電盤80で入力である電力または電圧と電流をセンサ43C、45Cで検出している。空調装置52とショーケース2の入力は管理・制御部41に通信され、この入力の合計が求められる。次に、あらかじめ決められた手順により空調装置52の温度設定値TS、すなわち店内の空気温度Tiをその温度にしたいと言う目標値が変更される。この変更により入力の合計値WA+WSが変更前より大きいか小さいかを判断する。この判断の結果、入力の合計値WA+WSが小さくなる方の温度設定値を選択し、管理・制御部41は空中装置の制御部43へこの温度設定値を指示する。この変更は目標温度を高くする方向でも低くする方向でも良いが、一定時間間隔で連続して変更を行う場合は、前の回の変更で合計の入力が小さくなった方向、例えば店内の空気温度に対する温度設定値が高い方向に変更した時に入力合計が小さくなる場合は次の回も温度が高くなる方向の温度設定値に変更し、この時入力の合計が逆に増えれば反対方向、すなわち目標値を下げる方向で設定値を変化させる。この変更する範囲をあらかじめ決めておけば人が存在する空間の温度はその温度範囲の中で上がったり、下がったり、あるいは一定の温度にとどまることになる。この温度範囲は季節により、あるいは暖房や冷房の運転モードによって変更できるし、これらの変更は管理・制御部へ外部から電話回線を通して、あるいは室内のコントローラに設けたスイッチで行っても良い。
【0045】
店舗のみならず、住宅の室内、作業場、事務所、等多くの室内には、冷房、暖房、換気、または除湿等を行う空調装置、食品などを保存する冷凍装置、あるいは照明装置やパソコンのような発熱装置等が室内の空気を通して相互に冷熱負荷として影響しあう。このような装置の間では、上記の空調装置とショーケースのごとく室内の空気温度を通して消費電力を反対の方向に動かす組み合せが存在する。このような空調装置とショーケースの組み合せ、場合によっては開閉扉を開閉する機会の多い冷凍機や冷凍倉庫と空調装置の組み合せ、照度を一定に保とうとする照明装置と空調装置の組み合せなど多くのケースが存在し、更にこの複合装置は2種類に限定されず3種類、4種類の組み合せが存在する。なお各種類の装置、例えば空調装置やショーケースなどが複数台存在する場合はそれらの合計を捉えれば良いことは当然である。このような室内の空調を行う装置の目標温度設定を少しずつ変えて計測した合計入力の低い方で判断すると言う簡単な方法で複合装置の省エネルギー運転を行うことが出来る。なお図1では室内の温度と湿度の両方の検出手段について説明してきたが、上記のように温度だけの検出手段で省エネ運転が行えることになる。なお湿度を含めた顕熱潜熱全体を含めた省エネルギー運転については後述する。
【0046】
なお今までの説明では温湿度設定手段として、室内の温度目標値である温度設定値を変更する対象として説明している。室内の温度をこの設定値に接近させる運転を行えばよく、これが直接的で理解され易い。しかし、この温度設定値を変えなくとも別の操作により入力の合計が変化できるものがあればそれでも良いことは当然である。例えば空調装置52の室内ファン21の回転速度を変化させ室内へ吹出す通風の風速や風量を変えることでも良い。冷房運転時室内ファンの回転速度を低下させると蒸発器である室内熱交換器との熱交換の割合が低くなり蒸発温度、すなわち室内熱交換器の温度も下がる。これにより室外熱交換器の凝縮温度も下がり、冷凍サイクルを駆動する圧縮機の負荷が低下し入力が低下する。この時空気温度は蒸発温度が下がるので低下し空調装置吹出し温度が下がり、空調装置の入力は低下する。すなわち室内ファン21の回転速度を上下することにより室内空気の吹出し温度が変化し、これに基づき空調装置の入力が下がる方向を見付ければ良い。空調装置の室内ファンはファン速度を多段階に変更できるが、このファン速度を落とすことにより設定温度を変えない場合は湿度を下げることが出来る。但し目標値を下げても直ちに入力が変化するわけでなく、また他の影響もあるので時間を置いた平均的な傾向での判断を行う。
【0047】
また、各季節や時間帯、運転モード等により過去のデータより温度設定値やファン速度を決めておきその値に保つ運転を行ない入力の合計が所定値以下になるかどうか検出し、この値が得られる方向に温度設定値やファン速度を変更するような制御も可能である。この場合、外気温度を検出し、外気温度に応じて設定値や設定値の調整範囲を動かすようにすれば更に精度の高い制御が可能になる。冷凍装置の入力と空調装置の入力の合計が小さくなる方向に室内温度の目標である空調装置の温湿度設定値を変える説明と空調装置の室内へ吹出す風速或いは風量の変更のため室内ファンのファン速度を変える説明をしたが、室内へ吹出す風速或いは風量を合計入力の下がる方向へ変化させて設定する温湿度設定手段として、空調装置やダクト内の通風抵抗を変化させて設定する構造も可能である。グリルのシャッター開閉角度を変えたり、ダクト内にダンパー22を設けこの角度により室内へ吹出す風速や風量を変えることが出来る。また空調装置の吸込み口などに設けられているフィルターを疎のものと密のものに季節により変えても良い。複数の温湿度調整手段を運転状態に応じて切り替えて使用すれば無理な運転を引き起こすことなく容易に省エネルギーを得ることが出来る。
【0048】
別の温湿度調整手段として外気の導入により室内の温度他を調整する手段が存在する。外気を室内に導入する場合給気扇を使用し、入り口にフィルターを設けることにより新鮮、かつ、清浄な空気を必要に応じて室内に入れることが出来る。この際、外気を室内に給気するファンと室内の空気を外部に排気するファンとを設け、かつ、室内の熱エネルギーを無駄にしないため給気と排気との間で熱交換する熱交換器を設けることが考えられる。図9に外気導入手段の一例を示す。61は外気を風路26から風路27へ通して室内に取り入れる給気用送風機、62は室内の空気を風路28から風路29へ通して外部に排気する排気用送風機、63は給気と排気との間で熱交換する熱交換器、64、65、66は空気中に含まれる埃や塵を取り除くフィルター、68はバイパス風路であって、熱交換をしない場合にバイパスダンパー67により切り替えられて室内空気はバイパス風路68を通して直接排気される。通常熱交換は昼間外気のエンタルピーが大きいときに行われ、これが小さい夜間は給排気のみ行われる。すなわち店内の空気のエンタルピーを小さくする方向であれば、空調負荷やショーケースの負荷が少なくなる。
【0049】
図9における熱交換器63は空気と空気の熱交換器であり、この内部の給気と排気を隔てる部材に水分を通さない金属などを使用すれば温度のみを交換する顕熱交換器となり、水分を通す紙などの多孔質体を使用すれば温度と湿度を同時に交換する全熱交換器となる。室内負荷が大きいスーパーマーケットや負荷の増大により冬期や中間期にも冷房を必要とするビルなどでは低温の外気による冷房効果を得るため全熱交換器にバイパス風路を設けた装置を使用する。又室内の汚れた空気を排出するには換気扇で排気をすれば良いが、この場合給気は隙間から自然に入ってくるだけなので給気もした方がよりきれいになる。特にスーパーやコンビニのような店舗では只排気すると室内が負圧になりドアが空いたときなどに外気が入ってきて空調負荷の増大や汚れた空気を吸い込むなどのため、給気扇によりフィルターで除塵された清浄な空気を吸い込むと良い。
【0050】
今までの説明は主として24時間営業のコンビニの例で説明したが、大型のスーパーなどでは昼間は人と食品が共存し、夜間は人がいない環境であるため、別の構成、動作により、より省エネルギー化を図ることが出来る。図10はスーパーにおける冷凍起電力消費量の実測結果の一例で、1999年4月に財団法人日本エネルギー研究所から発行された、産業部門における電力消費実測結果からの一考察、に記載のスーパーにおける冷凍機起電力消費量の実測結果である。図においてA店とS店における2つの店舗において実測調査を行っている。図10に記載の昼間とは店舗の営業時間内で、A店では10時-21時、S店では10時-20時を示す。又夜間とは営業時間外でA店では21時-10時、S店では20時-10時を示す。図10に示す冷食、すなわち冷凍用の冷凍機の消費電力は両方の店舗とも店舗の営業時間外である夜間においても昼間と大差ない消費電力を使用しており、両方の店舗の平均で夜間に昼間の約80パーセントもの電力を消費している。
【0051】
その他の冷蔵用の冷凍機においても平均で夜間は昼間の約50パーセントもの電力量を消費している。冷凍機に接続されているショーケースにおいては先に説明したように空気の入れ替わり負荷が主たる熱負荷であり、この入れ替わり負荷は店内の温度が低いほど小さくなる。店舗の営業時間外である夜間には店内に人が居ないため、店内温度を人の快適温度領域である23−26゜Cに保つ必要はなく、もっと低い温度にしてもかまわない。スーパーにおいては一般的に冷凍機の消費電力のほうが空調機の消費電力より大きいため、冷凍機の消費電力と空調機の消費電力の総和は店内の温度が低いほど小さくなる。したがってスーパーなどの店舗においては、夜間に店内の温度を可能な限り低い温度にすることで消費電力の総和を小さくすることが出来る。
【0052】
図11は店舗における複合装置の構成を説明する図で、17は外気温湿度を検出する外気温湿度検出手段、24は外気を店内に導入する給気扇である外気導入手段、25は外気導入手段に内蔵されたファン、その他は図1と同一である。冷凍機及び空調機の基本的な動作は今まで説明した内容と同一である。コントローラ18内にはタイマーが内蔵されており、店内温湿度検出手段11と外気温湿度検出手段17とで検出した店内及び店外の温湿度情報及びタイマー情報に基づき、空調機52及び外気導入手段24の制御を行っている。なお空調機52は季節によらず特別の場合を除き冷房運転をさせるものとするが、空調機52には設定温度の下限があり、これを最低設定温度と称する。ビル管法・建築基準法では室内温度管理の基準を17-28゜Cとしており、一般に冷房時は19゜C、暖房時は17゜Cを制御の下限値としている。
【0053】
店内及び店外の空気のエンタルピーはそれそれの温度及び湿度を計測することにより簡単に求められる。空気のエンタルピーの計算式は、エンタルピーi=0.240*温度+(0.431*温度+597.3)*絶対湿度、で求められ、絶対湿度は計測した相対湿度から簡単に換算される。次にこのエンタルピーを用い、外気導入手段の一例として、全熱交換器を使用した場合の換気熱損失の防止及び外気の空調への活用の制御について図12及び図13で説明する。図12は外気を空調に利用する新換気空調における動作を説明する図で、季節などの時期により、あるいは昼間と夜など時間により換気空調をオンオフさせたり、全熱交換器の熱交換を行ったり、バイパスにより熱交換をさせないなどの運転状況を示している。特に図12では大型スーパーにおける昼間の動作を説明しており、図12の上部の表は制御項目である熱交換風路と換気空調の運転オンオフの動作を示し、下部のフローチャートにてこの動作が室内空気の温度と湿度によるエンタルピーと外気の温度と湿度によるエンタルピーにて判断している状況を示す制御フローを説明している。なお室内空気のエンタルピーは店内の温度や湿度の目標値として設定した空気の状態から求めたものを使用し、外気のエンタルピーは外気の温度と湿度を計測し使用する。但し湿度は季節後とにあらかじめ定めておいたり、天気状況によりその都度切り替えても良いことは当然である。
【0054】
図12において制御対象は新換気空調である、給気扇と排気扇のオンオフ動作と、これがオンしているときに熱交換を行うかどうかを説明している。この動作のために、使用する情報として、店外温度・湿度の計測値、ユーザーが設定した空調機運転モード、エアコン店内設定温度、時刻や休日かなどのカレンダー情報がある。なお店内設定湿度はパソコンなどであらかじめ設定しておく。又室内と屋外の空気のエンタルピーが大きいか小さいかにより換気空調の動作を切り替えるが、この切り替えに安定性を持たせるため,熱交換ありからなしへ、又は、熱交換なしからありへはヒステリシス動作を設定する。このヒステリシスの条件であるΔi1、Δi1‘は、やはり同様に設定しておき、エンタルピの一単位(1kcal/kg)又は二単位(2kcal/kg)などより選択する。これにより制御の誤動作やハンチングを押さえることが出来る。なお空気のエンタルピーはすでに説明しているように、エンタルピーi=0.240*温度+(0.431*温度+597.3)*絶対湿度、の計算式で求められ、絶対湿度は計測した相対湿度もしくは記憶された値から簡単に求められる。
【0055】
図1他では室内機と室外機を分離し配管で接続する構成で説明したが、室内の空気の温度又は湿度を変化させるものであればどのような構成でも良い。除湿機の様に蒸発器と凝縮器を一体に構成する室内機と室外機を分離しない構造でも、オイルヒーターなど暖房には別の装置をエアコンと組合せて空気調和を行うものでも良い。一般のエアコンのように圧縮機をモーターで駆動させる構成に対し、圧縮機をエンジンで駆動し、エンジンの廃熱を冷媒の蒸発熱に利用し、暖房時のエネルギー効果を得ようというGHP空調機でも良い。このGHP空調機は暖房時にガスエンジンにより圧縮機を駆動し冷媒を圧縮し、この高温冷媒が室内で空気を暖房する。ガスエンジン及び排ガス熱交換器で過熱された冷却水は、冷媒循環サイクルに設けたアキュムレータ内部の冷媒温水熱交換器で冷媒と熱交換する。一方冷房サイクルでは圧縮機からの高温冷媒は室外熱交換器である凝縮器にて外気により冷却され、室内の蒸発器で室内空気から熱を奪って冷房を行う。このGHP空調機の室内機の構成、動作はモーターを圧縮機駆動に利用した一般のエアコンと同じである。
【0056】
図12の制御のフローでは、まずコントローラに設けられたマイコンに記憶されているカレンダー機能により、休日かどうかや、営業時間内であって、準備時間帯や営業時間外では無いことを判断する。ここで準備時間帯を設けたのは、お客さんや従業者が居る営業時間と無人の営業時間外の時間帯との間でいきなり温度の調整を切り替えようとしても店内の物や空間の熱時定数による遅れがあるので、人間への悪い影響を避けるため途中の時間を設けている。
【0057】
営業時間内であれば、次に空調機運転モードが判断される。通常ユーザーがリモコンで設定するが基本として冷房にしておき必要に応じて変えるなども可能である。エアコンが停止状態であれば換気と排気の風路間は、図9のバイパス風路68をバイパスさせて熱交換は行わない。この状態で昼間は換気用送風機と排気用送風機をオンさせて店内への新鮮な空気の導入と汚れた空気の排出を行う。
【0058】
空調機運転モードが冷房時には外気のエンタルピーioが店内目標空気温度及び湿度から得られるエンタルピーimよりも大きいかどうかを判断する。この時制御の安定性を得るため、店内の目標値のエンタルピーに若干エンタルピーを多くするためio>im+Δi1とする。ここで外気のエンタルピーが店内空気の目標値のエンタルピーよりも小さい状態であれば、再度、io<im−Δi1とエンタルピーの大小を判断する。ここで外気のエンタルピーが店内目標値のエンタルピーより小さい状態なら外気を有効に生かすことを考えて熱交換をしないバイパス風路の状態で換気と排気をオンし店内空調装置を使わずに空調を行う。外気のエンタルピーが店内目標値のエンタルピーより大きい状態なら、すなわち外気のエンタルピーと店内目標値のエンタルピーが似たような近い状態ならそれまでの熱交換状態を継続する。一方、io>im+Δi1における判断で、外気のエンタルピーが店内空気の目標値のエンタルピーよりも大きい状態であれば、熱交換器エレメント63にて温度及び湿度の全熱交換を行い、フィルター64、65、66にて清浄な空気として換気及び排気を行う。これにより外気の大きなエンタルピーにより店内の冷房空調負荷を大きくして空調機や又それにより影響を受ける冷凍機の使用エネルギーを増やさないようにしている。
【0059】
運転モードが暖房に設定されている場合、io<im−Δi1‘とエンタルピーの大小を判断する。ここで外気のエンタルピーが店内目標値エンタルピーよりも小さい状態であれば、熱交換器エレメント63にて温度及び湿度の全熱交換を行い、外気の小さなエンタルピーにより店内の暖房空調負荷を大きくして空調機の使用エネルギーを増やさないようにしている。もし、ここで外気のエンタルピーが店内目標値エンタルピーよりも大きい状態であれば、再度、io>im+Δi1‘とエンタルピーの大小を判断する。ここで外気のエンタルピーが店内目標値のエンタルピーより大きい状態なら外気を有効に生かすことを考えて熱交換をしないバイパス風路の状態で換気と排気をオンし空調を行う。外気のエンタルピーが店内目標値のエンタルピーより小さい状態なら、すなわち外気のエンタルピーと店内目標値のエンタルピーが似たような近い状態ならそれまでの熱交換状態を継続し熱交換の動作を変更しない。エンタルピーの判断にこのようなヒステリシスを取り入れることにより制御の誤動作やハンチングを防ぐことが出来る。
【0060】
次に夜間における新換気空調の動作を図13にて説明する。営業時間外、ここでは22時-9時とするが、外気のエンタルピーioが空調を行う店内目標最低空気温度、ここでは19゜Cとするが、から得られるエンタルピーi19゜Cよりも大きいかどうかを判断する。この時制御の安定性を得るため、店内の最低目標値のエンタルピーに若干エンタルピーを多くするためio>i19゜C+Δi6とする。先に説明したように、切り替えに安定性を持たせるため,エンタルピーや温度の判断にはヒステリシス動作を設定する。このヒステリシスの条件であるΔi6は、やはり同様にヒステリシス設定のため、エンタルピの一単位(1kcal/kg)又は二単位(2kcal/kg)又は三単位などより選択出来るようにしておく。これにより制御の誤動作やハンチングを押さえることが出来る。もしここで外気のエンタルピーが最低室温目標値のエンタルピーよりも高い場合には、ガスエンジン駆動形式の空調室内機GHPの全数9台に対し、空調設定温度を目標最低温度である19゜Cに設定した冷房運転を行う。この最低設定温度は装置で運転が可能な低い温度に設定すれば良く、19゜Cより低い温度の運転が可能であれば低いほど省エネルギーの効果がある。但し、低温領域であればこの設定温度は若干高い状態でもかまわないことは当然である。風速はパソコンで設定しておく。これにより、室内に配置された冷凍装置への影響を出来るだけ小さくして冷凍装置と空調装置の合計の使用エネルギーを少なく出来る。
【0061】
なお、ガスエンジン駆動形式の空調装置の場合、電気を消費するモーターの変わりにガソリンエンジンを使用するが、エネルギーである熱量で換算すればガソリンと電気の使用エネルギーの合計は簡単に行えるし、必要に応じて燃費でおきかえればエネルギー価格での合計も可能である。
【0062】
図13において、io>i19゜C+Δi6の判断の後で、エンタルピーのヒステリシスを考慮したio<i19゜C−Δi6の判断を行い、外気が高い状態、すなわち外気と空調最低目標値の両エンタルピーが近い値であれば前からの運転状態をそのまま継続させて誤動作を防止する。しかしこの判断でも外気温度のエンタルピーが最低設定温度である19゜Cのエンタルピーより低ければ、外気を有効に生かす運転を行うが、例えば室内温度を零度以下の外気と同じ条件にすれば室内装置などに氷結などの問題を起こすので、店内温度Tiに、この場合は店内最低温度Tmin=5゜Cというリミッターを設ける。すなわち判断式Ti<Tmin−ΔT6にて、室内温度Tiがリミッター5゜Cより小さければすべてを停止させて外気の導入をしない。なおヒステリシスの条件であるΔT6は、やはり同様にヒステリシス設定のため、エンタルピの一単位(1kcal/kg)又は二単位(2kcal/kg)より選択出来るようにしておく。
【0063】
判断式Ti<Tmin−ΔT6にて室内の温度がリミッターである5゜Cより大きいと判断した場合、ハンチング対策として再度判断式Ti>Tmin+ΔT6にて室内の温度がリミッターである5゜Cより大きいかを判断して室内の温度がほぼ5゜C前後である場合は前からの運転状態をそのまま継続させる。室内の温度がリミッターの温度より高い場合は、室内機の運転をユーザー設定どおりにすると共に、換気空調を熱交換を行わない風路に切り替えて外気を有効に生かす給気と排気を行う。
【0064】
以上は外気導入手段として、全熱交換器を設けた給気扇と排気扇の組合せ構造のものを取り上げ、かつ、外気と室内空気の目標値に対するエンタルピーを空気温度と湿度の計測値から換算して求め、大小を比較して空調装置を制御し、室内の冷凍装置と空調装置の使用エネルギーの少ない運転を行う構成及び制御内容を説明してきた。この比較を行う場合厳密にエネルギー比較を行うのでエンタルピーを求めることにしたが、湿度が季節によっては、あまり変わらないことがあり、あるいは湿度をほぼ一定値としても影響が少ない場合が多いことを考慮し、図12、図13のエンタルピの代わりに室内の空調に関する設定温度値と外気の温度値との温度で比較して制御しても良い。これにより、夏季夜間や休日などの店外の温度もしくはエンタルピーが室内空調で可能な低い設定温度、例えば19゜Cもしくはその最低設定温度におけるエンタルピー、よりも高い場合、コントローラ18は空調装置の室内機52を店内の温度か制御できる最低設定温度もしくはその近傍になるように動作させ、外気導入手段24は動作させない。これにより室内の空調を制御できる低い温度に保ち外気を取り入れて冷凍装置の負荷が増大することを防ぐ運転を行う。
【0065】
又冬期夜間や無人になるなどの条件では、店外の空気の温度もしくはエンタルピーが最低設定温度、例えば19゜Cもしくはその最低設定温度時のエンタルピーよりも低い場合は、コントローラ18は外気導入手段24を動作させて外気を導入して店内の温度もしくは温湿度を店外の温度もしくは温湿度に近づける。これにより店外をエアコンで制御可能な温度よりさらに下げて冷凍装置の省エネルギー化を図ることが出来る。但しこの場合店内を零度以下などに下げさせないため、少し余裕を付けたリミッター温度、例えば5゜Cという温度よりも下げないようにリミッター温度より低い温度の外気は導入させない。中間季は店内及び店外の温度もしくは温湿度情報に基づき、上記で説明した動作のいずれかを選択する。このように制御することで店内に人が居ない夜間における冷凍装置の消費エネルギーと空調装置の消費エネルギーの合計を可能な限り小さくすることが出来、これらの入力の料金を低く押さえることが可能になる。以上給気用と排気用の2つのファンを使用する場合を例に説明を行ったが、給気用のファンのみを設置しても同様な効果が得られる。但し給気用のファンのみの場合は、室内の圧力が上がって、給気扇の前後差圧が大きくなって給気量が減るなどの影響も考えられる。
【0066】
次に防露ヒーターの省エネルギーを説明する。図14はショーケース2に装着した防露ヒーターの稼働率を示す図である。横軸は店内空気の相対湿度で縦軸は防露ヒーターの稼働率であって、店内空気の温度をパラメータとして記載している。同一店内空気の温度Ti(゜C)、例えば20゜Cでも店内空気の相対湿度Φi(%)が70%時の防露ヒーター稼働率A=65%であるのに対し、店内空気の相対湿度が60%のB点での防露ヒーターの稼働率B=35%である。従って同一店内空気の温度Ti(゜C)でも、相対湿度Φi(%)が低いほど防露ヒーターの稼働率が下がり、ヒーター入力低減とショーケースへのヒーターからの熱伝導による熱負荷を低減でき冷凍装置にとって省エネルギーになる。
【0067】
図15は空調分野で良く使用されている空気線図であり、空気線図は一般の空気である湿り空気の状態を示す図で、直線関係で表されるエンタルピiと絶対湿度xとを斜交軸にとり、温度などの関連する各データを大気圧一定としてまとめたものである。図注のエンタルピーは先に説明した式に基づいて記載されている。絶対湿度と相対湿度の関係や顕熱と潜熱の関係なども記載され、横軸は温度を取り縦軸の絶対湿度とはほぼ直交する関係となる。式を使わないでもこの図をマイコンに記憶させると相対湿度と絶対湿度の換算やエンタルピーの計算を簡単に求めることが出来る。図15の中のAはオープンショーケース庫内の温湿度状態を示し、庫内の空気温度TR=5゜C、湿度ΦR=100%の低温多湿の鮮度を維持する状態を示す。オープンショーケースの庫内は魚、野菜などを冷蔵する場合が多く、その場合は冷蔵温度が低く、相対湿度が図15の飽和線である湿度ΦR=100%として食品鮮度を維持する必要があり、この温湿度条件に対しエアーカーテンからの侵入空気となる店内空気の温湿度条件は図に於けるB点の空気温度を20゜Cとすると相対湿度が37%以上必要となる。すなわち鮮度維持のために湿度ΦR=100%を維持する必要があり、侵入空気となる店内空気の湿度Φiは、店内空気の温度20゜Cの時、同一絶対湿度以上が必要となり、この絶対湿度の線と温度20゜Cの線の交点であるB点に於ける相対湿度37%を必要とする。
【0068】
従って、空調装置が制御して目標値に接近させようとする店内空気の目標湿度は防露ヒーターの稼働率を下げてヒーターの省エネルギーとするためなるべく湿度が低い方が望ましい。一方店内空気の目標湿度はオープンショーケースの侵入空気により庫内の湿度低下を招くことになり、庫内の食品の鮮度維持からはある値以上が必要になる。すなわち、店内に於ける最低湿度条件が存在し、この値は空気温度により決まることになる。すなわち店内空気の湿度に対し装置の機能を維持するための条件が存在する。この様な鮮度維持のためのある値以上の湿度を必要としない場合には店舗への来店者が静電気により異常を感じない程度の湿度を最低湿度条件として省エネルギー運転を行えば良い。なお、湿度の目標値に対し湿度を制御する内容を説明したが、防露ヒーターの稼働率を下げてヒーターの省エネルギーを得るため、簡易的に空調装置やダクト内の通風抵抗を変化させて設定する構造があり、グリルのシャッター開閉角度を変えたり、ダクト内にダンパー22を設けこの角度により室内へ吹出す風速や風量を変えることが出来る。また空調装置の吸込み口などに設けられているフィルターを疎のものと密のものに変える等があり、夏から冬に変わる際、すなわち冷房運転モード時は通風抵抗を大きくするようにし、冬から夏に変わる際、すなわち暖房運転モードでは通風抵抗を小さくすれば良い。この通風抵抗を変える際、空調装置の運転モードの信号で変えても良いが、もっと簡便な方法として季節が変わる時の保守時に手動でグリルやダンパーの傾きを変えたり、通風面積の異なるグリルやダンパーに取り替えても良い。この様に夏に向かう時にグリルの通風孔を狭くする構造に設定したりフィルターを密なものに変えたりして、面積を縮小させると、暖房よりも冷房運転時風速が下がり、蒸発器である室内熱交換器との熱交換の割合が低くなり蒸発温度、すなわち室内熱交換器の温度も下がる。これにより室外熱交換器の凝縮温度も下がり、冷凍サイクルを駆動する圧縮機の負荷が低下し入力が低下する。この時空気温度は蒸発温度が下がるので低下し空調装置吹出し温度が下がり、またこの時湿度が低下し防露ヒーターの稼働率が下がりエネルギーを低減するように空調装置の入力は低下する。
【0069】
以上のように冷凍装置と空調装置を複合装置として省エネルギーを計る冷凍空調複合空気環境を制御する制御装置は、冷凍装置にとって熱負荷となる店内空気の温湿度を空調装置の冷房運転時の目標店内空気の温湿度とのパラメータとし冷凍装置の入力と空調装置の入力の総和が小さくなる方向で温度と湿度の目標値を設定し、省エネルギー運転を行うことが出来る。この際、各装置の本来の機能、人間の快適性を維持する店内空気の温湿度ゾーンを維持し、ショーケース庫内の食品の鮮度を維持するものを並立させるものである。
【0070】
図16に冷凍装置と空調装置を複合装置として省エネルギーを計る冷凍空調複合空気環境を制御する制御装置の制御フローを示す。図1のコントローラ18のマイコンの制御動作がスタートすると、ステップ101で外気温度Toを検出し、ステップ102でオープンショーケース内温度TRを検出する。ここで複数のオープンショーケース群がある場合はそのうち最も庫内の温度が高い庫内温度TRを検出する。ステップ103では庫内温度TRを露点温度とする絶対湿度XAを算出する。この算出は図15の空気線図のデータを管理・制御部41に記憶させても良いし絶対湿度と相対湿度の関係式を記憶させても良い。ステップ104では夏期冷房期間中の人間にとって快適とみなされる温度ゾーンTi=24−28゜Cの間の数パターンの店内空気の温度を用意する。その各温度Tiに対し絶対湿度XAとなる相対湿度ΦiをΦi=f(XA,Ti)=Cを求め、温度と相対湿度の組として数パターンを用意する。ステップ105では空調装置の入力WAを空調装置の記憶させたデータより求めるがこの求め方は後述する。ステップ106では同様に冷凍装置の入力WRを求める。ステップ107では空調装置の入力WAと冷凍装置の入力WRの和の内の最も小さくなる店内の空気温度Tiと湿度Φiの組み合せを選択する。ここで使用する空調装置と冷凍装置の記憶させるデータは、図17に示すように蒸発器側吸込み空気温度、湿度、凝縮器側吸込み空気温度に応じて冷凍装置と空調装置の各々に特有な線図である。図17の横軸TWB(゜C)は湿球温度を示しており、乾球温度Tiと相対湿度Φiにより図15の空気線図状または関係式から求められる。これらの温度や湿度は温湿度検出手段11で検出される。図17の縦軸は入力W(kw)であり、図が示すように冷凍装置、空調装置とも湿球温度TWB(゜C)が高いほど入力が増大し、外気温度Toが高いほど入力が増大する。この様にステップ105での演算は空調装置として記憶させた図17の特性よりWA=f(Ti,Φi,To)として求められる。ショーケースの方はステップ106のようにWB=f(TR,ΦR,Ti,Φi,To)として求められる。
【0071】
図18にて同様な演算方法を説明する。ステップ111からステップ114までは図16と同一である。但しショーケース内温度は検出することなくあらかじめ設定された温度を使用している。ステップ115で前のステップで準備された店内の温湿度(Ti,Φi)の組から湿球温度TiWB(゜C)をTiWB=f2(Ti,Φi)として換算する。この換算式は図15の空気線図を式化したものである。ステップ116では店内空気の湿球温度TiWB(゜C)と外気温度Toより空調機入力をWA=f3(TiWB,To)として求める。この式f3は空調装置のパーフォーマンスデータを式化したものでこのデータを図19に示す。図19の横軸は室外吸込み空気乾球温度、すなわち室外熱交換器14の吸込み空気温度で外気温度Toである。縦軸は入力比と能力比を示しており、空調装置の定格入力(kw)と定格能力(kcal/h)に対する比であり据え付けられて使用される装置が決まれば必然的に定格値が決まるのでこの縦軸は入力と能力を示している。この図19に示されるように外気温度に応じて入力(kw)は決められた値になるが、室内吸込み空気湿球温度TiWB(゜C)により図のように変化する。なおこのパーフォーマンスデータは同様な機種では同じデータを使用できるしまたインバータ駆動の圧縮機を使用する場合は外温度に応じて運転する範囲毎に変化するデータとなる。
【0072】
ステップ117は冷凍装置の入力を求めるもので冷凍機の蒸発温度Teと外気温度Toから冷凍機入力WBを求める。ここで蒸発温度Teはショーケース設定温度Tsと連動しており装置により決められているが、ショーケースの庫内空気の温度の設定値Ts=0−10゜Cの時はTe=−10゜Cである。ステップ117の冷凍装置入力WB=f4(Te,To)は図20のデータより決定される。図20の横軸は蒸発温度、縦軸に消費電力、冷凍能力、電流の各データを示す。パラメータとして冷媒の種類R502,R22,R12と、凝縮ユニット周囲温度ATすなわち外気温度Toをとっている。ショーケースの場合は蒸発温度を装置から決まる温度とし、冷凍サイクルの冷媒の種類と外気温度により図20のデータを記憶させ、または式化して入力である消費電力を求めることが出来る。ステップ118は防露ヒータの入力WHを示し、これも装置により決まるヒータの電力Hと防露ヒータ稼働率ηhにより、WH=ηh*Hで計算される。防露ヒータ稼働率ηhは図14にて説明したように店内空気の温度Tiと店内湿度のΦi等の他の要因により決定される。この様に防露ヒータの入力はWH=f5(H,Ti,Φi)で求められる。ステップ119は冷凍装置の入力WRを冷凍機の入力WRと防露ヒータの入力WHで計算する。ステップ120は空調装置の全入力WAと冷凍装置の全入力Wbの総和が小さい店内温湿度(Ti,Φi)が数パターンの中から選択されて出力される。
【0073】
以上のように外気温度と室内空気の温度と湿度を検出するだけで冷凍装置と空調装置のように複合装置が相互に影響し合う空間の空気に対し最もエネルギーの少ない運転が簡単に行える。しかもどのような装置を使用していてもその装置の定格入力などの基本的なデータを使用するだけで演算処理できるので、既に操業しているコンビニエンスストアに対しても湿度検出装置を追加するぐらいで既設装置の簡単なデータを利用し必要な記憶手段や演算手段をマイコンに搭載したコントローラを準備すれば安価に且つ容易にエネルギーの少ない運転を行えるので多くの店舗に採用でき、大きなエネルギーセービングが可能になり、地球環境対策としても有効である。
【0074】
冬期暖房運転時の冷凍空調複合環境に於ける制御の説明を次に示す。図21は室内に配置された各装置の構成を説明する図であり、図1とほぼ同一であるが、空調装置の室外機12に収納された四方弁15の回路が異なる。圧縮機13を出た高温高圧のガス冷媒は四方弁15を経由して室内側熱交換器10に循環され店内を暖房し、冷媒は凝縮液化して室外機12に運ばれ、膨張装置16で低圧低温の二相冷媒となり、室外熱交換器14で蒸発ガス化して再び四方弁5を経由して圧縮機13に吸入される。図6で空調装置の成績係数を説明したが、冬期暖房運転時は室外熱交換器が蒸発機となっており、蒸発機の吸込み空気温度Teiすなわち外気温度Toが0゜C近辺の時、凝縮器側吸込み空気温度Tciつまり店内温度Tiが、図6のB2の点30゜Cより、B1の点20゜Cのように低いほど成績係数は良くなり、入力は小さくなる。
【0075】
一方、冷凍装置の方は、夏期、冬期を問わず、年中冷蔵や冷凍の温度が変わらないので同一の運転を行い、店内の温湿度が低いほど入力が小さくなる。この事から冬期暖房運転時は冷凍装置入力と空調装置入力の和を最小にする店内設定温度は人間が快適と感ずる温度ゾーンの中で最低の温度にすれば良いことが分かる。更に、もし室内ファンの回転速度でこれを設定すればファンから吹出される気流の温度を低くすることにより入力が下がる。
【0076】
図22は図1とは別の例を説明するシステムの構成図で、30は冷凍装置2の室外機4の中で圧縮機6の電気入力を検出する冷凍装置の入力検出装置、31は空調装置52の室外機12に収納された圧縮機13の電気入力を検出する空調装置の入力検出装置である。
【0077】
冷凍空調複合環境制御装置であるコントローラ18は、夏期冷房運転時は店内空気の設定温度Tiをあらかじめ設定したり外部から変更して設定した人間が快適と感じる温度ゾーン内で、入力検出装置30、31の検出値の和を求め、この和の値が最小値となるように実際の運転を続けながら小さい値を選択し続けていくものである。また冬期暖房運転時は人間が快適と感ずる温度ゾーンの内の低い温度を店内の空気設定温度とする。この様に夏期と冬期の設定を、すなわち冷房運転と暖房運転の温度設定値の取り方をあらかじめ変えておけば、より簡単な方法、構成でエネルギーを少なくする運転のための制御装置が出来る。この様に、この構成は例えばコントローラを冷凍装置、または空調装置のマイコンを利用して設けることが出来るので簡単な構造で本発明の効果が得られる。しかも直接負荷に結びつく圧縮機の入力を直接計測するので他の要素の影響が入らないため負荷の変化を明確に把握できこの発明の制御でどの程度のエネルギー節減効果が得られたかを正確に把握でき他の対策との区別がわかりやすい。
【0078】
以上のように複合装置に対し省エネルギーを得る技術を説明してきたがコンビニエンスストアのように24時間営業で連続して運転している店舗の場合特にこの効果が得られることになる。但し多くの冷凍装置や多くの空調装置を同時に運転させているスーパーのような24時間営業をしない店舗でも、この様に空間を通して影響しあう装置が共存する、すなわち、広いスペースの同一室内ばかりでなくダクト通風を介してや同一の集中制御装置による運転を行うことにより同一状態の空気の温湿度状況になるビルなどの各部屋に対してなど、温熱と冷熱が相互に影響し合う環境であれば有効なことは言うまでもない。さらに24時間営業を行わないスーパーのようなテンポでは、先に説明したように夜間の無人状態を活用した省エネルギー対策を図ることができる。
【0079】
以上までの説明で室内に配置された冷凍装置の発生する冷熱を室内空気の負荷として捉え、室内空気の空調を行う例をいくつか説明したが、図1のショーケースに侵入する室内空気20の負荷が
小さくなったり、個々の冷凍装置で負荷が小さい場合には冷凍装置の冷熱を発生させる圧縮機6の能力を小さくすることにより冷凍装置の入力を下げることが出来、これが時間経過を伴って空調負荷から空調装置の入力に影響を与える。もし店舗への人の出入りや外気温度の変化などの外的要素の変化が少なければ本発明の制御により複合装置の入力の合計が少ないところで落ち着く。但し、冷凍装置の圧縮機の能力を大きく変化させると温度の変動が起こり、このハンチングによって複合装置全体に無だな運転を引き起こし余計なエネルギーを使うことになる。
【0080】
図23に冷凍装置の構成図を示す。図23において、101aは圧縮機、101bは圧縮機を駆動する圧縮機モーター、102は凝縮器、103は圧縮機に吸入される冷媒ガスの圧力を計測する圧力センサーで、これらから冷凍機101が構成される。冷媒配管107で冷凍機101と接続される複数のショーケース106には電磁開閉弁108、膨張弁108a、蒸発器109が配置され、各ショーケース毎に冷媒配管107にて供給される冷媒によりショーケースの庫内を冷却している。110はショーケース内に設けられショーケースコントローラー用庫内温度112の情報に基づき電磁弁108を開閉しているショーケースコントローラー、105は能力制御用庫内温度113の情報により圧縮機のインバーターである能力可変装置104を制御するインバーターコントローラーである能力制御装置である。
【0081】
圧縮機101aから吐出され凝縮器102にて凝縮された冷媒は、冷媒配管107を介して複数のショーケースのそれぞれの蒸発器へ並列に供給される。各ショーケースには個々に冷媒供給をオンオフさせる電磁弁と膨張弁が設けられ、個々のショーケースの庫内の目標温度に対して温度に応じて冷媒の供給を個々に停止させることが出来る。なおショーケースコントローラ110で庫内温度以外に圧力センサー103が低圧になったことを検知して電磁弁をオンオフさせても良いが、ショーケースの電磁弁は庫内温度を一定に保とうとしてオンオフを繰り返すため、冷媒の流れや庫内の温度がハンチングして無駄なエネルギーを使うことになる。なお複数のショーケースをショーケース群としてどれか群れの代表温度を捉え制御しても良い。
【0082】
次にこのようなインバータ駆動冷凍機の制御について説明する。インバーターコントローラーである能力制御装置105は圧縮機101aが運転を開始すると、インバータである能力可変装置に起動時回転数設定信号を出力すると共に、ショーケース106の、計測している庫内温度113の温度情報を信号線によって取り入れる。なお温度情報以外の設定温度、電磁開閉弁108の閉動作点、ショーケース6の庫内温度の制御幅である温度調整ディファレンシャル、インバータ制御の目標温度はあらかじめインバーターコントローラ105のマイコンに記憶させたり、あるいは温度情報から間接的に取り入れることが出来る。インバータコントローラ105はショーケース内の庫内温度と設定温度との温度偏差が小さくなるように圧縮機の運転容量を制御する。一方ショーケースコントローラ110はショーケースの庫内温度112の温度情報により、ショーケース106の庫内温度が電磁開閉弁閉動作点まで下がると電磁開閉弁108を閉じて冷媒の流れを停止させてショーケース106の冷却運転を停止させる。冷却運転停止により庫内温度が上昇し電磁開閉弁の閉動作点より庫内温度の制御幅である温度調整ディファレンシャル分だけ上昇したレベルに達すると電磁弁108を開ける制御を行い冷媒を循環させてショーケース106の冷却を行う。なお温度調整ディファレンシャルは例えば2゜C程度である。
【0083】
ショーケース106は複数設けられており、各ショーケースは除霜運転用のヒータ容量が重ならないように個々に電磁弁を閉じて除霜運転を行う。又複数台のうち設備容量や設備の内容がばらばらの場合が多い。一般的に特定のショーケースを運転停止させるため電磁弁が必要であり、この開閉のみで温度調整を行うが、電磁開閉弁108が閉じられると冷媒供給が停止される。この停止されたショーケースの蒸発器109は冷媒の出口のみが開放された状態となり、圧縮機101aから見ると蒸発器109内の冷媒を吸入するという一種の真空引きの状態となって、冷媒サイクル全体から見ると冷媒の通路が狭くなった状態で圧縮に対する吸入ガス圧力が低下し、圧縮機この低下を圧力センサー101aは吸入ガス圧力が設定圧力以下になると停止するように制御されている。このようなフィードバック制御では平均温度を得るための変動が大きく、冷やし過ぎや圧縮機の発停損失のような無駄が多くなる。
【0084】
そこで図23において庫内温度を検出器113で検出し、これがインバータ制御の目標温度に近づくようにインバータ104をコントロールして圧縮機駆動用モーターの回転速度を増減させる制御を行うことで圧縮機の無駄な起動停止などををなくした省エネルギー運転を行うことが出来る。但しこの制御においてインバータ制御の目標温度は電磁開閉弁の閉動作点よりも高い温度に設定する必要があり、かつ、インバータ制御の目標温度と電磁開閉弁の閉動作点の温度との差が小さいとショーケース106の蒸発器109の冷却により温度の下がりが速い場合、モーターの回転数制御が行われる前、あるいはその効果が現れる前に電磁開閉弁108が閉となってしまい庫内温度差の変化が大きい状態が続く。これに対し、例えば電磁開閉弁の閉動作点の設定温度を-1゜C、電磁開閉弁の開動作点の設定温度を1゜C、目標温度設定値1.5゜Cとするごとく、電磁開閉弁の閉動作点とインバータ制御の目標温度設定値との間を空けると、電磁開閉弁の動作よりインバータ制御の動作を優先させることができスムーズな庫内温度変化、入力変動などが得られ無駄な運転を押さえることが出来る。
【0085】
このような制御を行うことで電磁開閉弁の頻繁な開閉が無くなり温度の変動を小さくして省エネルギー化を図ると共に機器寿命を低下させることも無くなる。特に一定速度の圧縮機の運転による冷却を行う冷凍装置や、電磁開閉弁の開閉動作に基づいた圧力の変動を検出し圧縮機の回転速度を変化させる制御を行う冷凍装置に対し、庫内温度を検出し目標温度になるように検出温度と設定値との温度差に基づいて圧縮機用モータに印加する電圧の周波数を変えるインバータ装置をショーケース装置全体を新設する際に設けるときのみならず、既設の設備へインバータ装置を追加増設することにより、すなわち庫内温度検出装置、この温度情報を受けインバータの制御を行う能力制御装置、この制御によりモーターを駆動するインバータ回路を増設し、かつ、庫内温度を検出する温度センサーを庫内に追設し、この温度センサーからの温度情報をインバータ装置へ信号として送る有線や無線の通信手段を設けるという増設工事を行い、さらにこのインバータ制御を電磁開閉弁の制御より優先させる運転を行うことにより、冷凍装置の入力を大幅に減らすことが出来る。又室内に設置された空調装置又は他の手段によって室内の温度もしくは湿度を通常の居住環境の値よりも低く制御するようにすると冷凍装置の入力をさらに減らすことが出来る。この様に圧縮機モーターが起動停止する前に、インバータにより圧縮機の回転数を低減して温度調整するので、冷凍装置の入力は大きく変動することなくスムーズに下げることが出来、空調装置の入力との和を求める場合時間経過に伴う変動が少ない正確なデータが得られ、この結果、入力が変動することにより入力の合計が減少する方向に空調装置の温度設定値等を変更する場合、動作遅れに対し入力の変動が悪影響を与えることが防止できるので、したがって簡単な方法で誤動作の少ない省エネルギー運転を行うことが出来る。
【0086】
実施の形態2.
次に照明装置と空調装置の複合装置について説明する。図24は照明装置に対する制御構成を説明する図で、41は図5で説明した管理・制御部、72は屋外照明である外部照明装置、93aは管理制御部41とインターフェース72aで接続されている温度検出手段、77は屋内照明である店内照明装置、93bは管理制御部41とインターフェース77aで接続されている温度検出手段である。図25は複合装置に対する電源からの電気回路図を示し、93は分電盤80に収納され3相200ボルトの電源91と単相200ボルトの電源92に、それぞれ電流検出回路97と電圧検出回路98で接続され電力を計測する消費電力計測装置、86は空調装置などに使用される圧縮機を駆動するモーター85の電源であるインバータ、87はスイッチ回路、88は整流回路90は電源91と切り替えるとともに電源となる電池からの電力を負荷に供給する充放電回路、84は他の冷熱装置であって例えば店内に配置された電子レンジである。図26は照明装置に使用される蛍光燈の周囲温度による明るさの変化を説明する図で、横軸は蛍光燈の周囲温度、縦軸は明るさの変化率である。蛍光燈の場合ガラス管内の水銀蒸気圧が周囲温度により変わるため、光の発生効率が変わり光束が変わるのでこの変化率を図26に示している。
【0087】
次ぎに図24の動作について説明する。屋外照明である外部照明装置72は図2に記載されているように内部に収納された蛍光燈を光を通すカバーで覆いカバーの下部は空気が流通するように開口しており、またカバー上部にも空気抜きの穴があけてありこれにより内部に熱がたまらないようにしてある。またカバー内部には蛍光燈周囲の温度を検出する温度検出手段93aが配置されている。また図2のように室内の照明である店内照明装置は露出された蛍光燈が縦横に多数配列され、天井面から若干の空間をおいて室内に飛び出した形で固定されている。天井面にはこの照明装置だけでなく、空調装置76が設けられ室内空気を吸込んで空調された空気を吹出している。店内照明の蛍光燈の周囲の空気温度の検出は別途センサーを設けても良いが、ここでは空調装置の吸込み温度を検出する温度検出手段11の信号を利用する。エアコンのような空調装置の場合大抵が空気吸込み口が天井付近に設けられるので兼用が可能である。この屋外照明装置72および店内照明装置77のそれぞれの蛍光燈の周囲の温度を検出する温度検出手段93a,93bから信号が管理・制御部41にインターフェース72a,77aを介して通信線42で送られる。管理・制御部41の動作および電話回線を通しての動作は上記で説明したものと同様である。
【0088】
図25において、空調装置52の圧縮機13を駆動するモーター85への電源として第1に3相200Vの外部の電力会社から供給される外部電源91がある。大型の空調装置や冷凍装置では一般に3相200ボルト電源が使われる。この交流電源からの交流を整流回路88aにて整流し直流としてインバータ86aにて室温を室温設定値に接近させるために必要な周波数の電圧としモータへ供給することによりモータの回転速度とトルクが得られる。モーター85に電力が供給されない時は充放電回路を充電として電池90へ電源91からの電力が供給され、電池90への充電が行われる。店内の最も電力消費量が大きくなる時間帯では、この3相電源の電力を減らすため、すなわちピークカットとしてこの外部電源91が切り離され。この供給がないときは電池90からスイッチ回路87aがインバータと接続されてこのインバータを制御してモーターが駆動される。
【0089】
一方照明装置77への電力供給は単相200Vの外部電源92、スイッチ回路87c、整流回路88b、インバータ86b、を介して供給される。照明装置の温度検出手段93bの温度に応じてインバータ86bは照明装置77への電圧を変化させる。この外部電源92からは単相200V使用、これは単相200ボルトでも、単相100ボルトでも使える配線になっているが、の照明以外の家電機器、例えば電子レンジの電源供給も行っている。外部電源92が例えば契約などにより電気代が高くなったり使える量が制限するような場合の時間帯や季節では、この単相電源の電力を減らすため、すなわち電気代節約などのため電池90からスイッチ回路87bをとおしての直流が照明装置に供給される。この時はスイッチ回路87cと87aは遮断された状態で充放電回路は放電を行う状態に接続が切り替えられているなお電池と照明装置の電圧の違いはインバータにて調整される。
【0090】
なお図25において電池を電源としないで直接外部電源91からスイッチ回路87a,87bをとおして照明装置77へ直流を供給しても良いことは当然である。図25の構成において、3相外部電源91と単相の外部電源92はそれぞれ電流センサ97と電圧センサ98により消費電力計測手段93により入力が計測されている。外部電源91側の電力は上記説明のごとく圧縮機モーター、すなわち空調装置や冷凍装置の入力、電池への充電入力などが含まれるとともに、回路が切り替えられて照明装置の電力にも使用され、外部電源91側の電力の合計にこれらの消費電力が含まれる。また外部電源92側の電力は上記説明のごとく店内照明装置77や他の家電機器、例えば電子レンジ84などへ電力が供給される。外部電源92側の電力の合計にこれらの消費電力が含まれる。このとき各装置のブロック毎、或いは各電力供給の種類毎に電力量を計測しておく。
【0091】
図26は蛍光燈に於ける周囲温度と明るさの変化率の関係を示しており、実線と破線で2種類の蛍光燈の変化率を示す。屋外照明は店の宣伝のため明るさが必要であり、また、店舗内では商品に十分な明るさの光束を照射する必要があるが、図26の例では温度が20度より低い場合や30度より高い場合は全光束が数%以上低下する。外部の照明装置で温度が低くなると数十%も低下し暗い印象を与える。また蛍光燈の放熱により熱がこもるような場合は温度が高くなると同様に暗くなる。この対策として従来は照明の本数や能力を上げて温度が高くなりすぎても低くなりすぎても必要な照度を確保していたが、図3で説明したように通風ガイド23を設け風の流れを作るようにしたり、外部照明のカバーに空気の流れを考えた開口を設けるなどにより温度を一定範囲に押さえる構成が可能である。更に、図25のインバータ86bにより照明装置77へ印加される電圧を変えることにより照明の明るさを変えることができる。蛍光燈の場合電源電圧の増減により電力も全光速も比例して増減する。すなわち蛍光燈の周囲の温度を計測していればこの温度に応じて一定の照度、すなわち明るさを保つことが出来る。この結果、無駄な能力の照明としなくても良くなる。
【0092】
またコンビニエンスストアの深夜時間帯のように周囲との関係であまり明るさを要求されないような場合は屋外照明の電圧を温度の低下に合わせて下げられる。店内冷房時の室内温度を深夜時間帯で高めに設定したり、店内暖房時の室内温度を深夜時間帯でやや低めに設定したりした場合、昼間の温度設定値との変化幅に合わせていずれの時も照明装置に印加する電圧値を下げることにより空調装置の温度調整と照明装置の明るさ調整を温度を検出するだけで同時に行え、すなわち2重の省エネルギー運転を木目細かく行える。この様に空調と照明と言う複合した装置を同時に行えることになる。しかもこのような運転方法の設定は、管理・制御部41の運用アルゴリズムの中で季節や時間帯に応じ、また暖房や冷房などの運転モードにより、あらかじめ温度の設定を行うだけで温度と明るさを同時に調整出来、空調装置と照明の本来の役割を維持しつつ無駄なエネルギーを使わないように合計の入力を制御できる。なお従来の店舗では十分に余裕のある照明装置、例えば本数や能力を上げておき温度が冷えた時や高すぎる温度でも明るさが一定以上あるようにしていたが、照度センサーを設け一定の明るさを確保した上でこれ以上明るくなる場合には照明装置への入力電圧を下げて無駄を省くことが出来る。すなわち照度センサーは照明装置の温度検出手段の役割を果たすことになり、空調装置の吸込み温度、すなわち、室内空気の温度、との2重の検出により確実に、しかも来店者に満足を与える照明効果を得ることができる。
【0093】
実施の形態3.
図25において外部電源91、92は種類の異なる電源である。このような外部から供給され種類の異なる電源を有するとともに、内部電源として電池、太陽電池、燃料電池などを設けることが出来る。複数の供給電源から電力を供給する場合、負荷である電気を消費する複数の装置とは電源との接続を図25のように各配線やスイッチ、電圧などを調整する整流回路やインバータなどの変換回路、等の電気回路を通して、切替え可能に接続する必要がある。この発明では、このような供給電源と装置相互間の接続する場合、外部電源が複数種類ある場合、別の契約形態が採用されるケースが多く、それぞれ個々の電力量を計測し、この個々の電力量を合計し、計測された個々の電力および合計された電力に応じて上記で述べてきた運用アルゴリズムを適用して、各装置はエネルギーの少ない運転を行い消費電力を下げ、且つ、電気代の易い電力の種類に切り替えることが出来る。すなわち複数の種類の電源を切替え可能に設けたので最も安い電気代になる電源を選択できる。複数の種類の外部電源とは、異なる電力会社と契約したり、また時間帯により安くなる契約の電気を使用したり、また、季節により安くなる契約の電気を使用したり、また契約電力量により制限がある場合この契約と異なり制限を回避出来る契約の電気を使用する電源等を意味する。
【0094】
どの外部電源を使うか、また、各種電池を電源とする内部電源を使うかを、その電源の種類毎に消費電力を消費電力計測手段93にて計測しておき、その種類の電源の使用電力を検出し、且つ、管理・制御部41にあらかじめ設定され記憶された運用方法で評価して実施の形態5で述べた回路を切り替える選択をすれば良い。時間帯や季節による電気代、容量制限などの契約の条件をあらかじめマイコン内に設定させ、この設定を外部から変更可能にしておくことにより、電力量に応じた電気代が石油などの価格により変更された場合、直ちに電気代の演算を変えることができ、電気代で電気回路の切替えを選択しておけば安い方を選択することが出来る。この様な構成により契約電力量を無駄に使わない運用やピーク時の対策など一層効率的な運用が可能になる。この運用アルゴリズムとして単に合計電力の小さい方向を選ぶのでなく、消費エネルギー費用、これはカロリー換算分のほかのエネルギーも含むが、すなわち各種エネルギーの消費エネルギー量と各種熱源の単位エネルギー当たりの利用料金を掛け合わせた費用の小さい方を選択するので、電源や熱源の種類に応じ、また、季節や時間帯など契約条件に応じて計算させる必要がある。本発明では、従来個々の装置の制御としてしか捉えなかった制御を相互の影響を考えて、個々の電力および合計電力と言う面から、複合装置として捉え一緒に且つエネルギーを少なくする運用を考えたものである。更に複数の種類の異なる電源を用い、地域として最も電気を有効に使う対策が外部から電力を供給する場合の契約や電圧の違いに現れているので、この契約に示される電気代や制限容量などを切り替えられるようにしたものである。すなわち個々の装置の省エネルギーから、相互に影響し合う複合装置の運転を通し地球環境対策として有効な装置および方法を提案するものである。すなわち、熱的な影響のみならず、外部から供給される電力量としての相互の影響を含めた運転方法により、社会全体がエネルギーの少ない方向に家庭電気機器や設備機器の運用を採用することが出来る。更にこの負荷に供給する電源に接続された電気回路に使用される各装置に対しても、例えばインバータなどのように電気を消費するものも装置の一つと成り、この電力量を含め消費電力計測手段93では計測しているので、最も有効な省エネルギーまたは安価な電気代を得ることができる。
【0095】
以上のように本発明では複合装置が共存する空間に対し、マイコンで冷凍装置の入力と空調装置の入力を合計するとともに設定温度または設定湿度を変化させる際、時間を置いてこの設定温度を変化させる等も可能である。また、この発明では冷凍装置、空調装置、照明装置など多くの装置が熱的や電気的に相互に影響を及ぼす状態で共存している場合でも、省エネルギー対策や安価な電気代とする対策は個々の装置や機器の対策しか取られていなかったものを、種類の異なる装置を複合装置として捉え、冷熱や温熱の相互のやり取りを、また電力のやり取り等を、例えば個々の電力量を計測し冷凍装置の入力と空調装置の入力を合計するとともに、設定温度または設定湿度を変化させて合計入力が小さくなる方向の設定値を選択させる、簡単な構成で安定したエネルギー低減が計れる様にし、更にまた熱的な影響がある装置間だけでなく、同一配線で電力や電気代が合計される装置間で無駄な電気代を排除できるので、しかもこの両者の影響が重畳される無駄も排除できるので大幅な節約が可能になる。更に店舗などで説明してきたが、オフィスなどの一般ビルや住宅に対しても相互に熱的な影響のある空間に設けられた装置間、或いは同一配線で電力を相互に融通しあっている装置間であれば無駄を排除する本発明が成り立つことは当然で同様な効果、すなわち全体としてエネルギーの無駄や電気代の無駄を省き、個々の住宅、個々の店舗、個々のビル、個々の工場、個々の地域等で、個々の外部電源の種類を切り替えて、複合装置の電力の融通を簡単に行えるので現存する電力設備を有効に利用できるなど地球環境保護に役立てると言う効果が得られることは当然である。
【0096】
以上のように本発明の複合装置は、室内に配置され低温保管品を収納する冷凍装置と、室内の空気調和を行う空調装置と、室内温度の目標である空調装置の温度設定値をまたは空調装置の室内へ吹き出す風速あるいは風量を変更する温湿度設定手段と、を備え冷凍装置の入力と空調装置の入力の合計が小さくなる方向の変更を選択するので、室内空間の温冷熱の相互影響を含めた省エネルギー簡単に得られる。
【0097】
本発明に係る複合装置は、室内に配置され低温保管品を収納する冷凍装置と、室内の空気調和を行う空調装置と、冷凍装置の入力と空調装置の入力の合計が小さくなるように室内の温度および湿度を調整する制御手段と、を備えたので、相互の温度と湿度の影響を含めた制御が可能になる。
【0098】
本発明に係る複合装置は、冷凍装置と空調装置は温冷熱を発生させる熱源サイクルをそれぞれ別個に有するとともに、冷凍装置の入力と空調装置の入力の合計は熱源サイクルのそれぞれの入力の合計を含むので、使用入力の大きな部分を含み大きな省エネルギー効果が得られる。
【0099】
本発明に係る複合装置は、冷凍装置のショーケース開口部または冷凍庫の本体扉部が室内に配置され、空調装置はヒートポンプシステムで冷暖房された空気を吹き出す吹き出し部分が室内に配置されているので、空気を介して各装置間の相互影響が最も大きな部分を含み大きな省エネルギー効果が得られる。
【0100】
本発明に係る複合装置は、冷凍装置のショーケース開口部または冷凍庫の本体扉部が配置され、かつ、空調装置のヒートポンプシステムで冷暖房された空気を吹き出す吹き出し部分が配置された室内と、冷凍装置の入力と空調装置の入力を検出し、この合計入力が所定値以下になるように室内の温度あるいは湿度を設定する温湿度設定手段と、室内に外気を導入する外気導入手段と、室内の温度あるいは湿度を検出し温度設定手段の設定した温度あるいは湿度になるように空調装置または外気導入手段を制御する制御手段と、を備えたので、簡単な構成で大きな省エネルギー効果が得られる。
【0101】
本発明に係る複合装置は、温度設定値または室内へ吹き出す風速あるいは分量の設定は外部からの通信により変更可能であるので、フレキシブルな運転が可能である。
【0102】
【発明の効果】
以上のように本発明に係る複合装置は、食品を収納する冷凍装置の開口から冷熱が供給される室内と、室内の温湿度を検出する室内温湿度検出手段と、室内に設けられ、室内温湿度検出手段にて検出された室内湿度を冷凍装置の食品を収納する庫内温度の露点に相当する絶対湿度以上になるように室内の温度に対する湿度を調整する空調装置と、空調装置にて室内の空気の温湿度を設定範囲である目標温湿度ゾーンに維持するとともに、目標値である温湿度を設定する制御装置と、目標値を少しずつ変えて計測する冷凍装置および空調装置のそれぞれの入力を記憶する記憶手段と、を備えたものであるので、湿度を含む室内の空気を対象にエネルギー低減が計れる。
【0103】
本発明に係る複合装置は、冷凍装置の入力と空調装置の入力を合計するとともに、空調装置の少しずつ変化させる目標値である設定温度または設定湿度または吹き出す風速あるいは風量の設定値を変化させて合計入力が小さくなる方向の設定値を選択するものであるので、簡単な構成で安定したエネルギー低減が計れる。
【0104】
本発明に係る複合装置は、空気調和を行う室内の目標設定値として、冷房時はあらかじめ設定された目標温湿度ゾーン中の高い温度に設定し、暖房時はあらかじめ設定された目標温湿度ゾーン中の低い温度に設定するので、安定した運転で快適性を損なうことなく大きな省エネルギー効果が得られる。
【0105】
本発明に係る複合装置は、室内に外気を導入する外気導入手段と、外気の温湿度を計測する外気温湿度検出手段と、を備え、計測された外気の温湿度またはタイマーによる時刻またはあらかじめ設定されたカレンダー情報に基づいて、空調装置の設定温度または設定湿度または吹き出す風速あるいは風量を変化させるので、無理な運転をせずに容易に省エネルギーを得ることができる。
【0106】
本発明に係る複合装置は、室内に外気を導入する外気導入手段と、外気の温湿度を計測する外気温湿度検出手段と、を備え、計測された外気の温湿度またはタイマーによる時刻またはあらかじめ設定されたカレンダー情報に基づいて、空調装置にて維持する室内空気の温湿度範囲である目標温湿度ゾーンを調整するので、快適性を維持できるとともに容易に省エネルギーを得ることができる。
【0107】
本発明に係る複合装置は、本発明に係る複合装置は、室内に外気を導入する外気導入手段と、外気の温湿度を計測する外気温湿度検出手段と、を備え、計測された外気のエンタルピーを算出し、室内空気のエンタルピーと外気のエンタルピーを比較して外気導入手段の運転や停止を行うとともに、室内温度が氷結などの問題を起こす最低温度にならない範囲に外気導入手段の運転を停止させる温度リミッターを設けるので、外気を有効に生かすとともに、室内装置などに氷結の問題を起こすことが無くなる。
【0108】
本発明に係る複合装置は、室内に配置され室内の温度より低い温度の冷熱を供給する冷凍装置の庫内の温度を検出する庫内温度検出手段と、庫内温度検出手段が設定された第1の目標温度に達した場合前記庫内への冷熱の供給を行う冷媒の循環を開閉弁にて遮断する前記冷凍装置に設けられた冷媒循環遮断手段と、第1の目標温度より高い温度である第2の目標温度に庫内の温度が到達した場合冷凍装置に設けられた圧縮機の回転速度を小さく制御する能力制御装置と、を備え、庫内の温度の変動を抑えるように第1の目標温度と第2の目標温度との間の温度差を設定するので、冷媒サイクルにおける無駄な運転が防止され、庫内の温度変化などを抑制することができる。
【0109】
本発明に係る複合装置の運転方法は、空調装置で空調される室内空気の温湿度と室外空気の温度を検出し記憶する空気温湿度検出ステップと、室内に開口を有する食品を収納する冷凍装置の庫内の温度を求め庫内温度を露点とする絶対湿度を算出する湿度算出ステップと、空気温湿度検出ステップにて記憶された温湿度から空調装置の入力を演算し、冷凍装置の入力との和を求め、この入力の和の内小さくなる室内空気の温湿度であって、かつ、絶対湿度以上になるように選択された室内空気の温度に対する湿度を空調装置の運転の目標値に設定するステップと、を備えたので、収納する食品の鮮度を維持しながら、湿度を含む室内の空気を対象にエネルギー低減が計れる。
【0110】
本発明に係る複合装置は、室内の天井付近に配置され交流を整流しインバータを介し電力が供給され照明を行う照明装置と、室内に配置され室内へ空気調和された空気を吹き出し照明装置近傍に循環させる空調装置と、照明装置の周囲に設けられ照明装置の周囲の室内を循環する空気温度を計測する温度検出手段と、温度検出手段にて検出された照明装置の周囲の温度に応じてインバータにより照明装置への入力を制御する制御手段と、を備えたので、簡単な構成で性能に影響を与えることなくエネルギー低減が可能である。
【0111】
本発明に係る複合装置は、室内の天井付近に配置され交流を整流しインバータを介し電力が供給され照明を行う照明装置と、室内の天井付近に配置され室内へ空気調和された空気を吹き出し口から吹き出す空調装置と、照明装置の周囲に設けられ照明装置の周囲の室内を循環する空気温度を計測する温度検出手段と、空調装置の吹き出し口を覆い吹き出し口から吹き出される空気の一部を天井付近に沿って流し照明装置に導く通風ガイドと、を備え、照明装置に空気を循環させて温度検出手段にて検出された照明装置の周囲の温度を一定の明るさを確保する範囲に抑えるので、簡単な構造で無駄な能力の照明としなくとも良い。
【0112】
本発明に係る複合装置は、照明装置の周囲の室内を循環する空気温度を20℃から30℃の範囲に抑えるので、簡単に必要な照度を確保しエネルギー低減を図ることができる。
【0113】
本発明に係る複合装置は、屋外に設けられ照明を行う照明装置を覆うとともに、照明装置に空気を流通させて内部に熱がたまらないように下部と上部に穴を設けたカバーと、カバー内部に設けられ照明装置周囲の温度を検出する温度検出手段と、照明装置に印加する電圧をインバータにより変えて照明の明るさを変える制御手段と、を備え、温度検出手段にて検出された温度に応じてインバータを制御し照明装置を一定の明るさを保つので、屋外で必要な照度を確保しエネルギー低減を図ることができる。
【0114】
本発明に係る複合装置は、特定の時間帯に対しては、照明装置の周囲の温度低下にあわせてインバータの電圧を低下させるので、簡単に省エネルギーを図ることができる。
【0115】
本発明に係る複合装置は、低温である冷熱または高温である温熱を発生させる発熱装置と、発熱装置の配置された室内に対し冷房または暖房を行う空調装置と、室内の上部に配置され照明を行う照明装置と、発熱装置および空調装置および照明装置の少なくとも2種類以上の装置を複数の種類の電源に接続可能な電気回路接続手段と、発熱装置および空調装置および照明装置の少なくとも2種類以上の装置の消費電力を合計する演算装置と、を備え、合計された消費電力が所定の値に達した場合、少なくとも1つの装置と1種類の電源との電気回路の接続を切り替えて、別の種類の電源に接続するので、確実に電気代の少ない電源を選択できる。
【0116】
本発明に係る複合装置は、低温である冷熱または高温である温熱を発生させる機器と、発熱装置の配置された室内に対し冷房または暖房を行う空調装置と、室内の上部に配置され照明を行う照明装置と、発熱装置および空調装置および照明装置の少なくとも2種類以上の装置を複数の種類の電源に接続可能な電気回路接続手段と、を備え、発熱装置および空調装置および照明装置の少なくとも2種類以上の装置が接続された電源を、あらかじめ設定された時間帯は、別の電源に接続するもで、どのような契約によろうと簡単に安い電源を選択できる。
【図面の簡単な説明】
【図1】 この発明の実施の形態の例による複合装置の構成説明図。
【図2】 この発明の実施の形態の例による複合装置の外観説明図。
【図3】 この発明の実施の形態の例による複合装置の構成説明図。
【図4】 この発明の実施の形態の例による複合装置の通信構成説明図。
【図5】 この発明の実施の形態の例による複合装置の制御構成説明図。
【図6】 この発明の実施の形態の例による複合装置の特性説明図。
【図7】 この発明の実施の形態の例による複合装置の特性説明図。
【図8】 この発明の実施の形態の例による複合装置の特性説明図。
【図9】 この発明の実施の形態の例による複合装置の構成説明図。
【図10】 この発明の実施の形態の例による複合装置の特性説明図。
【図11】 この発明の実施の形態の例による複合装置の構成説明図。
【図12】 この発明の実施の形態の例による複合装置の制御構成説明図。
【図13】 この発明の実施の形態の例による複合装置の制御構成説明図。
【図14】 この発明の実施の形態の例による複合装置の特性説明図。
【図15】 この発明の実施の形態の例による複合装置の特性説明図。
【図16】 この発明の実施の形態の例による複合装置のフローチャート。
【図17】 この発明の実施の形態の例による複合装置の特性説明図。
【図18】 この発明の実施の形態の例による複合装置のフローチャート。
【図19】 この発明の実施の形態の例による複合装置の特性説明図。
【図20】 この発明の実施の形態の例による複合装置の特性説明図。
【図21】 この発明の実施の形態の例による複合装置の構成説明図。
【図22】 この発明の実施の形態の例による複合装置の構成説明図。
【図23】 この発明の実施の形態の例による複合装置の構成説明図。
【図24】 この発明の別の実施の形態の例による複合装置の制御構成説明図。
【図25】 この発明の別の実施の形態の例による複合装置の回路構成説明図。
【図26】 この発明の別の実施の形態の例による複合装置の特性説明図。
【図27】 従来の複合装置の制御構成説明図。
【符号の説明】
1 食品店舗、 2 ショーケース、 3 蒸発器、 4 冷凍装置の室外機、 5 凝縮器、 6 圧縮機、 7 膨張装置、 8 防露ヒーター、 9 エアーカーテン、 10 空調装置の室内側熱交換器、11 温湿度検出装置、12 空調装置の室外機、 13 圧縮機、 14 室外熱交換器、 15 四方弁、 16 膨張装置、 17 外気温度又は温湿度検出手段、 18 コントローラ、 20 ショーケースへの店内侵入気流、 21 室内ファン、 22 ダンパー、 23 通風ガイド、 30 冷凍装置の入力検出装置、 31 空調装置の入力検出装置、 32 マイコン、 33 通信手段、 34 変復調手段、 35 結合手段、 36通信インターフェース、 37 通信インターフェース、 38 マイコン、 39 モデム、 41 管理・制御装置、 42 通信線、 43 空調装置の制御部、 44 冷凍装置の制御部、 45 ショーケースの制御部、 46 電話局、 47 サービスセンター、 51 管理・制御部、 52 空調機、 53 冷凍機、 54 ショーケース、 55 換気扇、 56 照明、 57 制御盤、 58 室温センサ、 59 外気温センサ、 60 通信ポート、 71 ビル、 72 外部照明装置、 73 開閉ドア、 74 ガラス壁、 75 外部壁、 76 空調装置室内グリル、 77 室内照明装置、 78 公衆電話、 80 分電盤、 81電灯線、 82 換気扇、 83 ダクト、 84 電子レンジ、 85 圧縮機用モーター、 86 インバータ、 87 スイッチ回路、 88 整流回路、 89 充放電回路、 90 電池、 91 3相200V電源、 92 単相200V電源、 93 消費電力計測装置、 95 模様、 96 配管、97 電流センサ、 98 電圧センサ、 WA 空調入力、 WR 冷凍入力、 WS ショーケース入力、 Ts 店内温度設定値、Φs 店内湿度設定値、 To 外気温度、 Tos ショーケース内温度設定値、 Ti 店内温度、Φis 店内湿度、 TR ショーケース内温度、 ΦR ショーケース内温度。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to control of air temperature and humidity in a space where a refrigeration apparatus and an air conditioner coexist, for example, in a supermarket or a convenience store. The present invention also relates to an indoor complex apparatus in which devices and devices such as lighting and a range that become a cooling load other than an air conditioner exist.
[0002]
[Prior art]
Traditionally, in stores such as supermarkets and convenience stores, food display showcases are stored at different temperatures for each item, and for refrigerated foods, they are stored at 0 ° C-10 ° C, while the air conditioning temperature for customers in the store is It is set around 25 ° C in summer and 20 ° C-25 ° C during winter heating. For low temperature storage devices such as various showcases and freezers, the air temperature and humidity in the store from the wall of the device or from the wall of the device is a load, and particularly in an open showcase, an intrusion load from the air curtain. For such low-temperature equipment, a lower in-store temperature and humidity are preferable because of less load. On the other hand, there is a wide range of temperatures that people feel comfortable in the store, and the temperature, humidity, airflow, etc. form the temperature of human beings in the indoor environment that feels comfortable. Therefore, it is desirable to maintain a temperature range that is low for a refrigeration system of a low-temperature food storage device and that is comfortable for a person entering and exiting a room. A technique described in Japanese Patent Application Laid-Open No. 11-206014 is known for controlling a composite apparatus in a plurality of types of spaces.
[0003]
FIG. 27 illustrates this technique. The store A is provided with a management / control unit 51, which manages and controls the air conditioner 52, the refrigerator 53, the showcase 54, the ventilation fan 55, the illumination 56, and the control panel 57 via the communication port 60. The air conditioner 52 transmits and receives data from the communication port 60 to control its air conditioning capability. Each device such as the refrigerator 53 has a sensor 53b, 54b, 55b, 56b for detecting a corresponding state quantity, and the detection signal is transmitted to the communication port 60 via each interface 53a, 54a, 55a, 56a. Transmission and reception are performed, and the respective setting states are controlled, and the setting states of the respective devices are managed and controlled in an order according to preset priorities. The control panel 57 receives AC power from the power system and monitors whether or not the allowable power is exceeded. The current value is detected by a current sensor 57b provided on the control panel, and data is transmitted to and received from the communication port 60 via the interface 57a. Data of the room temperature sensor 58 and the outside air temperature sensor 59 are also sent in the same manner. In the air conditioner 52 provided in this way, the operation mode and the room temperature are set by the remote controller or the management / control unit, but the set temperature is changed according to the detection of the outside air temperature sensor 59 to reduce power consumption. . Further, demand control is performed in a predetermined order according to the detection of the current sensor 57b, and a peak cut or the like is possible. Further, the illuminance of the luminaire set in advance is reduced by a signal from the illuminance sensor 56b to suppress unnecessary power consumption.
[0004]
As described above, in the conventional technique, each device is provided with a sensor to control each device. Japanese Patent Laid-Open No. 9-196432 is known as a technique for reducing power demand for an air conditioner that air-conditions a store where an open type low-temperature showcase is installed. This determines the data detected by the outside air temperature sensor, the in-store temperature sensor, the in-store humidity sensor and the refrigeration capacity of the low-temperature showcase, calculates the cooling load of the device to calculate the conversion efficiency index of the device, and further calculates this The demand power is calculated and the set temperature is changed in a direction in which the estimated demand power decreases, and the demand power is calculated using each equation from the temperature data of the refrigeration cycle. Further, discounted electricity charges according to time zones and seasonal zones are known from JP-A-6-165374, JP-A-11-41808, and the like. As for the peak avoidance method, a technique disclosed in Japanese Patent Laid-Open No. 3-291096 is known.
[0005]
[Problems to be solved by the invention]
In contrast to complex devices that interact with each other as a cooling load, energy countermeasures for individual devices have hitherto been considered, and the effects of other devices have hardly been considered. In addition, the proposal for the combination of specific equipment is also to calculate the demand power by estimating the cooling load as described above, and requires complicated calculations such as changing the formula for each capacity of the device, and Even if the purpose of setting the set temperature of the air conditioner in the direction of reducing the power demand is described, the method of how to set it is unknown and cannot be realized. Furthermore, the proposal was far from the original purpose of each device, such as for human comfort, and the original purpose did not take any consideration into consideration, and the control content was hardly practical.
[0006]
The present invention regards an air conditioner that performs cooling, heating, ventilation, or dehumidification, a refrigeration apparatus that stores food, etc., or a heat generating device such as a lighting device that affects each other as a cooling load as a composite device. The original individual devices are intended to save energy as a whole while maintaining the operation of achieving the objective. In addition, the present invention suppresses the waste of operation of individual devices and apparatuses so as not to affect other devices and apparatuses. In addition, the present invention seeks to combine different purposes of the composite device, such as energy saving, comfort, and food freshness, against environmental changes that change with time, such as the season. Furthermore, the present invention is intended to reduce the running cost of a complex apparatus such as a food store without adversely affecting each apparatus. Further, the present invention is intended to reduce the cost of the power consumption of the composite apparatus by eliminating the waste of the charge contract for the external power. The present invention also proposes an apparatus and method for effectively using the power used by the composite apparatus.
[0014]
[Means for Solving the Problems]
  The composite apparatus according to the present invention includes a room to which cold heat is supplied from an opening of a refrigeration apparatus for storing food, an indoor temperature / humidity detection means for detecting the indoor temperature and humidity, and an indoor temperature / humidity detection means provided in the room. An air conditioner that adjusts the humidity relative to the indoor temperature so that the detected indoor humidity is equal to or higher than the absolute humidity corresponding to the dew point of the temperature in the refrigerator housing food, and the temperature of the indoor air in the air conditioner Maintains the humidity in the target temperature / humidity zone that is the setting range, and stores the sum of the inputs of the control device that sets the target temperature / humidity and the refrigeration and air conditioning devices that measure the target value little by little. Storage means.
[0015]
  The composite apparatus according to the present invention adds the input of the refrigeration apparatus and the input of the air conditioner, and changes the set temperature or set humidity, or the set value of the blown air speed or air volume, which is a target value to be changed little by little. A setting value is selected in a direction in which the total input becomes smaller.
[0016]
The composite apparatus according to the present invention sets a target set value for the air conditioning room to a high temperature in a preset target temperature / humidity zone during cooling, and in a preset target temperature / humidity zone during heating. The temperature is set to a low temperature.
[0017]
The composite apparatus according to the present invention includes an outside air introduction unit that introduces outside air into the room and an outside air temperature / humidity detection unit that measures the temperature and humidity of the outside air. Based on the calendar information, the set temperature or set humidity of the air conditioner or the blown air speed or air volume is changed.
[0018]
The composite apparatus according to the present invention includes an outside air introduction unit that introduces outside air into the room and an outside air temperature / humidity detection unit that measures the temperature and humidity of the outside air. The target temperature / humidity zone, which is the temperature / humidity range of the indoor air maintained by the air conditioner, is adjusted based on the calendar information.
[0019]
The composite apparatus according to the present invention includes an outside air introduction unit that introduces outside air into the room, and an outside air temperature / humidity detection unit that measures the temperature and humidity of the outside air, calculates an enthalpy of the measured outside air, and And an enthalpy of the outside air are operated and stopped, and a temperature limiter for stopping the operation of the outside air introducing means is provided in a range where the room temperature does not reach the lowest temperature causing a problem such as freezing.
[0020]
The composite apparatus according to the present invention includes an internal temperature detection means for detecting the internal temperature of the freezer that is disposed indoors and supplies cold heat at a temperature lower than the indoor temperature, and an internal temperature detection means in which the internal temperature detection means is set. A refrigerant circulation shut-off means provided in the refrigeration apparatus for shutting off the circulation of the refrigerant for supplying cold heat to the inside with an on-off valve when a target temperature of 1 is reached, and a temperature higher than the first target temperature. A capacity control device that controls the rotational speed of the compressor provided in the refrigeration apparatus to be small when the temperature in the refrigerator reaches a certain second target temperature, and controls the first so as to suppress fluctuations in the temperature in the refrigerator. The temperature difference between the target temperature and the second target temperature is set.
[0021]
The operation method of the composite apparatus according to the present invention includes an air temperature / humidity detecting step for detecting and storing the temperature and humidity of indoor air and the temperature of outdoor air that are air-conditioned by an air conditioner, and a refrigeration apparatus for storing food having an opening in the room Calculating the absolute humidity with the internal temperature as the dew point and calculating the input of the air conditioner from the temperature and humidity stored in the air temperature and humidity detection step, The temperature of the room air that is smaller than the sum of the inputs and the humidity relative to the temperature of the room air that is selected to be higher than the absolute humidity is set as the target value for the operation of the air conditioner And a step of performing.
[0022]
The composite apparatus according to the present invention includes an illuminating device that is arranged near the ceiling of the room and rectifies an alternating current and is supplied with electric power via an inverter to illuminate, and air that is arranged indoors and is air-conditioned indoors near the lighting apparatus. An air conditioner to be circulated, a temperature detection means for measuring an air temperature circulating around a room around the illumination apparatus, and an inverter according to the ambient temperature of the illumination apparatus detected by the temperature detection means And a control means for controlling the input to the lighting device.
[0023]
The composite device according to the present invention includes an illumination device that is arranged near the indoor ceiling and rectifies alternating current and is supplied with electric power via an inverter to perform illumination, and an air outlet that is arranged near the indoor ceiling and is air-conditioned into the room. An air conditioner that blows out the air, temperature detection means that measures the temperature of the air that circulates around the interior of the lighting device, and covers a portion of the air that blows off the air outlet from the air outlet. A ventilation guide that flows along the vicinity of the ceiling and leads to the illuminating device, and circulates air through the illuminating device to keep the temperature around the illuminating device detected by the temperature detecting means within a range that ensures a certain brightness. Is.
[0024]
The composite apparatus according to the present invention suppresses the air temperature circulating in the room around the lighting apparatus within a range of 20 ° C to 30 ° C.
[0025]
The composite device according to the present invention covers an illumination device that is provided outdoors and illuminates, and has a cover provided with holes in the lower and upper portions so that heat does not accumulate inside the illumination device by circulating air, A temperature detecting means for detecting the ambient temperature of the lighting device and a control means for changing the voltage applied to the lighting device by an inverter to change the brightness of the lighting, according to the temperature detected by the temperature detecting means. Thus, the inverter is controlled to keep the lighting device at a constant brightness.
[0026]
The composite apparatus according to the present invention reduces the voltage of the inverter in accordance with a decrease in the temperature around the lighting apparatus for a specific time period.
[0027]
A composite device according to the present invention includes a heat generating device that generates cold or high temperature heat, an air conditioner that cools or heats the room in which the heat generating device is disposed, and an illumination that is disposed in an upper portion of the room. An illuminating device, an electric circuit connecting means capable of connecting at least two types of heat generating device, air conditioning device, and lighting device to a plurality of types of power supplies; and at least two types of heating device, air conditioning device, and lighting device An arithmetic device that totals the power consumption of the device, and when the total power consumption reaches a predetermined value, switch the electrical circuit connection between at least one device and one type of power supply to another type To be connected to the power supply.
[0028]
The composite apparatus according to the present invention is a device that generates cold or high temperature heat, an air conditioner that cools or heats the room in which the heat generating device is disposed, and an illumination that is disposed in the upper part of the room. And an electric circuit connecting means capable of connecting at least two types of devices, ie, a heat generating device, an air conditioner, and a lighting device, to a plurality of types of power supplies, and at least two types of the heat generating device, the air conditioner, and the lighting device The power source to which the above devices are connected is connected to another power source during a preset time zone.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 to FIG. 5 are diagrams for explaining a configuration that is an example of the present invention. FIG. 1 is a diagram for explaining an apparatus according to the present invention, FIG. 2 is a diagram for explaining the appearance of a convenience store, and FIG. FIG. 4 is a partial perspective explanatory diagram of the store as viewed from above, FIG. 4 is a signal transmission partial explanatory diagram of the configuration of the present invention, and FIG. 5 is a control circuit diagram of the configuration of the present invention. In FIG. 1, 1 is a store that handles food such as a convenience store, 2 is a showcase that is installed in the store and stores food refrigerated, 3 is installed in a machine room at the lower part of the showcase, An in-showcase evaporator that cools the air circulated so as to cool the food stored in the storage of the showcase 2, 4 is a condenser 5 that forms the refrigeration cycle of the showcase 2, a compressor 6, and an expansion device 7 is an outdoor unit for storing 7, 8 is a dew-proof heater, 20 is an intrusion air flow in the store which is air entering from the opening of the showcase 2, 10 is an indoor heat exchanger of the air conditioner 52, 11 is a temperature / humidity detection means in the store, Reference numeral 12 denotes an outdoor heat exchanger 14, which forms a refrigeration cycle of the air conditioner 52, a compressor 13, a four-way valve 15, and an outdoor unit that houses an expansion device 16. Reference numeral 17 denotes an outside air temperature detecting means for detecting the outside air temperature. There are, it may be utilized an air temperature detecting element provided in such an outdoor unit 4 and the outdoor unit 12. Reference numeral 18 denotes a controller which is a refrigeration air-conditioning combined air environment control device. Of course, the controller 18 may be attached to the wall surface of the room as shown in FIG. 1, or may be provided outside the room, in the refrigeration apparatus, in the air conditioner, or the like. Reference numeral 96 denotes a pipe for circulating the refrigerant of the refrigeration cycle.
[0032]
Next, the operation of FIG. 1 will be described. In the showcase 2 which is a refrigeration apparatus, foods are preserved by refrigeration or freezing of goods throughout the year regardless of summer or winter. The system cycle of the refrigeration apparatus constitutes a refrigeration cycle in which a showcase disposed indoors and an outdoor unit disposed outdoors are connected by a pipe 96, and the gas refrigerant compressed to high temperature and high pressure by the compressor 6 is condensed. It is condensed by the machine 5 and expanded by the expansion device 7 to become a low-temperature refrigerant in the evaporator. The air sucked by the blower fan arranged in the machine room at the lower part of the showcase is cooled by the evaporator 3 and blown out as a low temperature air from the upper outlet through the rear air passage into the cabinet. The airflow is formed on the outside to form the air curtain 9, and the air at the temperature TRi is again sucked by the blower fan. In this way, the showcase 2 seals the opening with an air curtain to maintain the internal temperature TR at a set low temperature, and maintains the humidity ΦR at a high humidity to maintain the freshness of the food. Moreover, the customer can freely take out the item from the opening. Furthermore, a dew-proof heater 8 is attached to the showcase 2 in order to increase the temperature of the surface of the apparatus body and prevent dew condensation.
[0033]
Further, in the air conditioner, the cooling operation is performed in the summer, and in the refrigeration cycle connected by the pipe 96, the gas refrigerant compressed to high temperature and high pressure by the compressor 13 provided in the air conditioner outdoor unit 12 passes through the four-way valve 15. Condensed and liquefied by the outdoor heat exchanger 14, heated and expanded by the expansion device 16, converted into a two-phase refrigerant of low pressure and low temperature into the indoor heat exchanger 10, or air in the store 1 was cooled and air-conditioned again. Return to the outdoor unit 12 of the apparatus. The air in the store 1 is circulated by the indoor fan 21, and the store 1 is cooled through heat exchange between the circulating air and the low-temperature refrigerant. The air conditioner 52 adjusts the temperature and humidity according to the indoor temperature Ti and humidity Φi detected by the detection means 11, so that a comfortable target temperature of, for example, about 23 to 26 ° C. is set according to a preset temperature setting value. Will be kept.
[0034]
In FIG. 2, 71 is a building where a store such as a convenience store occupies a corner, 72 is an external lighting which is a signboard of the store, and 73 is opened and closed by the approach of a person to prevent air circulation from the outside to the room An open / close door that automatically opens and closes, 74 is a transparent glass wall that is fixed to the external wall 75 and has a pattern 95 written thereon, 76 is a grill that faces the interior of the air conditioner, and 77 is a room that constantly illuminates the interior brightly by a large number of vertical and horizontal arrangements. An illumination device, 78 is a public telephone, and 80 is a distribution board of this store. Further, for example, the outdoor unit 4 of the showcase 2 and the outdoor unit 12 of the air conditioner 52 are stacked and installed.
[0035]
FIG. 3 is a view for explaining the arrangement state of each device as seen from above the store, and 53 is the same as the showcase 2 on the indoor wall surface, the inside temperature is lower than the showcase, and glass A freezer that opens and closes with a door to take out food inside, 81 is a power line that transmits electric power, 43 is a control unit of the air conditioner, 44 is a control unit of the freezer, and 45 is a control unit of the showcase. The controller 18 and the control unit of each device perform transmission / reception of signals via the power line 81. 82 is a ventilation fan, 83 is introduced through a damper 22 that opens and closes the outside air from the ventilation fan, or air that has been cooled by the indoor heat exchanger 10 of the air conditioner 52 is blown into the indoor grill 76 that blows the air indoors. It is an arranged duct. In addition, the air outlet to the room of the air conditioner 52 can be provided in the main body 52 in this way, another air outlet can be provided via a duct, or a circulation fan provided in the inside of the air outlet grill. It is. The air conditioner has a suction port for sucking in indoor air and a blowout port for blowing air conditioned into the room, and a ceiling-embedded air conditioner adopts a configuration that sucks in from the center of the grill and blows it out from the surroundings. ing. Furthermore, the air conditioner may be provided in the vicinity of the ceiling of the side wall as well as embedded in the ceiling, or may be fixed by hanging from the ceiling surface. In the case of mounting on the side wall, the air is sucked in from the upper part and blown out from the lower part.
[0036]
Reference numeral 23 denotes a ventilation guide that covers the outer peripheral edge of the blowout opening of the indoor grill 76 flush with the ceiling surface from the indoor side, and allows a part of the blown wind to flow along the ceiling surface. Most of the wind blown out from the indoor grill 76 is circulated in the room. By using this wind flow, the wind is sent to a number of exposed fluorescent lamps arranged so as to protrude from the ceiling surface. It plays a role to hold down to a certain range. Naturally, the grill 76 and the air conditioner main body 52 may be slightly protruded from the ceiling surface to change the direction of the wind direction plate inside the grill, that is, the direction of the wind direction plate inside the grill to create a flow of wind along the ceiling surface. In addition, when using an air conditioner that blows out air from the side wall near the ceiling, a grill structure that creates a flow along the ceiling surface is required, and the air flow is almost distributed to the fluorescent lamps that are distributed over the entire ceiling surface. Therefore, it is desirable to have a structure that can further obtain the effect of the ventilation guide such as blowing from the outlets distributed over at least one wall surface. Note that the flow along the ceiling in the grill may be intermittent, that is, the air blowing direction may be switched at time intervals. Fluorescent fluorescent lamps that are used in a certain temperature range with such ventilation guides can maintain the desired illuminance without becoming brighter or darker due to the temperature because the luminous flux is maintained in a constant state of efficiency. The effect can be fully exhibited.
[0037]
FIG. 4 is a diagram for explaining communication means for transmitting and receiving the signal of FIG. 3, wherein 32 is a microcomputer on the board attached to the control unit 43 provided inside the air conditioner 52, and 43 a is connected to the microcomputer 32 for communication. A communication interface comprising means 33, modulation / demodulation means 34, and coupling means 35, 36 is a communication interface connected to the control unit of each device by a power line 81 and connected to the microcomputer 18 and 37 is another communication such as wireless communication. The communication interface 39 is connected to the control unit of each device, and 39 is a modem connected to the service center 47 and the mobile phone 48 via the telephone station 46 via a telephone line or the like. The microcomputer installed in the control unit of each device stops the operation of each device, for example, switches the ventilation fan, air conditioning or showcase lighting, switches the operation mode of heating or cooling, sets the temperature or humidity, and the temperature from the sensor. The temperature control based on the information, the operation state, etc. are performed as an instruction of the control operation based on the operation stored in the microcomputer and the calculated result. As the operation of this circuit, the communication means 33 selects a received message for itself and issues an instruction to the microcomputer 32 or assembles a transmission message according to the instruction of the microcomputer 32. That is, the received message transmitted from the controller 18 is selected and the content, for example, the change of the temperature set value from the service center is transmitted to the microcomputer 32. On the contrary, the transmission telegram and the current set temperature value are transmitted to the controller 18 in accordance with an instruction from the microcomputer 32.
[0038]
The transmission message is composed of a transmission source address, a transmission destination address, contents, and the like. The modulation / demodulation means 34 is a modulation circuit that modulates a digital signal into an analog signal and, conversely, data by a predetermined modulation method. As the modulation method, for example, amplitude modulation or phase modulation is used. When sending a signal through a power line, the 50-450 kHz frequency band is defined by the Radio Law. The coupling means 35 is a coupling circuit including a transformer for placing a signal on the power line, and takes out a signal from the power line. The signal transmitted to the controller 18 by the coupling means 35 through the power line and the communication interface 36 is communicated to the outside through a telephone line 46, a telephone line 46, etc. from the modem 39. In this manner, transmission and reception are repeated between the controller 18 and the control unit of each device, and information exchange, operation instructions, and the like are easily performed. The transmission and reception of signals using such an existing electric light line eliminates the need for a special signal wiring, so that construction can be performed easily and reliably. Note that transmission / reception of indoor signals may use other communication methods, for example, wireless, infrared, or communication wiring used for existing air conditioning control.
[0039]
FIG. 5 is a diagram for explaining the flow of an operation system that performs control for energy saving of a composite device arranged in a room such as the store described in FIGS. 1 to 4, and 43 c is provided in the distribution board 80. The detected sensors WA and 43b for detecting the input of the air conditioner are provided in the control unit 43 of the air conditioner in which the temperature set value TS and humidity set value ΦS of the air conditioner are set, and detect the outside air temperature TO and the outside air humidity ΦO. The sensor 44b is a sensor provided in the control unit 44 of the refrigerator to detect the outside air temperature TO and the outside air humidity ΦO. The sensor of the outside air temperature or humidity is the control unit 43 of the air conditioner or the control of the refrigerator. What is necessary is just to provide in either one of the parts 44. FIG. 45b is a sensor provided in the control unit 45 of the showcase to detect the internal temperature TR, 41 is provided in the controller 18 and is controlled by the control unit 43 of the air conditioner, the control unit 44 of the refrigerator, and the control of the showcase via the communication line. The sensor group management means 41a, the operation algorithm means 41b, and the control data means 41c, which are connected to the unit 45 etc. and perform control while taking a certain correlation between the state quantities between the devices based on the operation algorithm of each device. And a management control unit composed of the communication data processing means 41d. The sensor group management unit 41a collectively manages the state quantities of the devices stored in the control data unit 41c, and classifies them into common physical quantities, physical quantities corresponding to individual apparatuses, and apparatus correlation physical quantities. The common physical quantity is like the outside temperature described above. A physical quantity corresponding to an individual device is a physical quantity of only that machine, such as a pressure at a specific part of a refrigerator.
[0040]
The equipment correlation physical quantity is a physical quantity related to both the refrigerator and the air conditioner, such as the in-store temperature, and is related to an algorithm used for obtaining energy saving. An air conditioner that performs cooling, heating, ventilation, or dehumidification, a refrigeration device that stores food, or a heating device such as a lighting device interacts as a cold load with each other as a combined device, that is, a showcase The cold generated by the refrigerator, such as the low-temperature air in the warehouse, serves to lower the air temperature in the store, so that each individual device is intended to save energy as a whole while maintaining its intended operation. In addition, it is necessary to separate and treat the independent quantity and the correlated quantity in each machine. Independent quantities are necessary to control in each machine and can be processed in them, but the quantities related to each other can be collectively controlled like the controller 18 or exchange data by communication with each other. There is a need. The operation algorithm means 41b includes, for example, a showcase energy saving operation algorithm and is built in advance in the management / control unit 41. When a new addition, revision, or deletion is performed, a telephone line or a modem 39 is externally connected. Can be changed via Further, a part of the control data means 41c is also sent from the outside to the management / control unit, for example, a revised value of the power charge via the telephone line. The communication data processing means 41d communicates with each device through the interfaces 43a, 44a and 45a, or processes data sent to the outside of the control data means 41c through the modem 39, and conversely receives data from the outside to control data. Passed to means 41c.
[0041]
In FIG. 5, the air conditioner power consumption WA of the air conditioner distribution board sensor 43c, the refrigerator power consumption WR of the refrigerator machine distribution board sensor 44c, and the showcase power consumption WS of the showcase machine distribution board sensor 45c. This is transmitted to the management / control unit 41 via the communication line 42, and the operation algorithm means 41b detects each of the air conditioner power consumption detection means WA, the refrigerator power consumption detection means WR, and the showcase power consumption detection means WS. In addition, the detected power is summed, and changes such as the temperature set value TS that is the in-store target temperature and the rotational speed of the indoor fan 21 of the air conditioner 52 are repeated so that the total sum is always small. This is because the temperature set value TS, the rotational speed of the indoor fan 21 of the air conditioner 52, etc. are changed by a given amount, and if it is confirmed that the power consumption is smaller than before the change, these can obtain a small power consumption. The setting data is fed back to the air conditioner, and by repeating this operation, it becomes possible to always control the power consumption in the minimum direction.
[0042]
Next, details of the operational algorithm of the present invention will be described. FIG. 6 shows the coefficient of performance COP during cooling of the air conditioner. The horizontal axis represents the intake air temperature Tei of the indoor heat exchanger 10 of the air conditioner functioning as an evaporator, that is, the in-store temperature of the circulating air. When the device is installed near the ceiling, it is the highest temperature of the room air. The vertical axis represents the coefficient of performance COP, which is defined by the equation COP = capability (Q) / input (W). In addition, Tci described in the figure is the outside air temperature To which is the intake air temperature of the outdoor heat exchanger 14 functioning as a condenser. As for the coefficient of performance COP of the air conditioner, the coefficient of performance COP improves as the air temperature Tei in the store increases as shown in FIG. The coefficient of performance COP is improved as the outside air temperature To is lower. That is, at a constant outside air temperature such as Tci = 30 ° C, the higher the air temperature in the store, such as A1 = 25 ° C than A2 = 20 ° C, the better the coefficient of performance COP and the same ability Q is realized. Requires less input as in the above equation. Also, as indicated by points B1 and B2, the coefficient of performance COP is better when the outside air temperature is lower at the same indoor air temperature, and less input is required as in the above equation to achieve the same capability Q. .
[0043]
On the other hand, an example of a heat load component ratio of a showcase that is one of the refrigeration apparatuses (from the Refrigeration and Air Conditioning Manual) is shown in FIG. In FIG. 7, the classification such as multi-stage type and flat type, freezing and refrigeration, and whether the air curtain is single or multiple are explained, and according to this, the heat load of the showcase is switched with the air load q1 and the conduction. It is composed of a heat load q2, a radiant heat load q3, and an internal load q4. In particular, the air load q1 is changed to be the main heat load of the multistage showcase. This corresponds to the heat load of the intrusion air 20 from the store into the store in the showcase 2 of FIG. The table in FIG. 7 also shows the air curtain air volume, the ambient air intrusion amount, and the ambient air intrusion ratio. As shown in this figure, in the case of the multistage type, even if the air curtain is multiplexed, the air load is changed and the air load is large. FIG. 8 shows the heat load of the showcase with respect to the temperature of air entering the showcase. The horizontal axis represents the air temperature Ti (° C) entering the showcase, and the vertical axis represents the heat load QR (Kcal / h) of the showcase, as the air temperature in the store rises, that is, from 20 ° C to 30 ° C. As the temperature increases, the heat load of the showcase increases, thus increasing the input of the refrigeration system. As described above, in the air conditioner, the coefficient of performance COP is improved and the input is decreased as the in-store temperature is increased, whereas in the refrigeration apparatus, the heat load of the showcase is increased as the in-store air temperature is increased. Input increases. Therefore, there is an air temperature Ti in the store where the sum of the input of the refrigeration apparatus and the input of the air conditioner becomes small.
[0044]
As shown in FIG. 5, the power or voltage and current that are input by the distribution board 80 are detected by the sensors 43C and 45C. The inputs of the air conditioner 52 and the showcase 2 are communicated to the management / control unit 41, and the sum of these inputs is obtained. Next, the temperature setting value TS of the air conditioner 52, that is, the target value for setting the air temperature Ti in the store to that temperature is changed by a predetermined procedure. By this change, it is determined whether the total value WA + WS of the input is larger or smaller than before the change. As a result of this determination, the temperature setting value with the smaller total input value WA + WS is selected, and the management / control unit 41 instructs the temperature setting value to the control unit 43 of the aerial apparatus. This change may be in the direction of increasing or decreasing the target temperature. However, if the change is made continuously at regular time intervals, the direction in which the total input has decreased in the previous change, for example, the air temperature in the store If the total input becomes smaller when the temperature setting value is changed in the higher direction, change to the temperature setting value in the direction where the temperature will increase again the next time. Change the set value in the direction of decreasing the value. If the range to be changed is determined in advance, the temperature of the space where the person exists will rise, fall or stay at a constant temperature within the temperature range. This temperature range can be changed according to the season or according to the heating or cooling operation mode. These changes may be made to the management / control unit from the outside through a telephone line or by a switch provided in the indoor controller.
[0045]
Not only stores, but also indoors such as houses, workplaces, offices, etc., such as air conditioners that perform cooling, heating, ventilation, or dehumidification, refrigeration devices that store food, etc., lighting devices, and personal computers Various heat generating devices and the like influence each other as a cooling load through indoor air. Among such devices, there is a combination of moving the power consumption in the opposite direction through the air temperature in the room like the air conditioner and the showcase. There are many combinations of such air conditioners and showcases, and in some cases, combinations of refrigerators and refrigeration warehouses and air conditioners that often open and close the doors, and combinations of lighting and air conditioners that keep the illuminance constant. There are cases, and this composite device is not limited to two types, and there are three types and four types of combinations. Of course, when there are a plurality of devices of various types, such as air conditioners and showcases, it is natural that the total of them should be captured. The energy saving operation of the composite apparatus can be performed by a simple method in which determination is made based on the lower total input measured by changing the target temperature setting of the apparatus that performs air conditioning in the room little by little. In FIG. 1, the detection means for both the indoor temperature and humidity has been described. However, as described above, the energy-saving operation can be performed by the detection means for only the temperature. The energy saving operation including the entire sensible heat latent heat including humidity will be described later.
[0046]
In the description so far, the temperature / humidity setting means has been described as an object to change the temperature set value, which is the indoor temperature target value. It suffices to perform an operation that brings the room temperature close to this set value, which is straightforward and easy to understand. However, as long as there is something that can change the total input by another operation without changing the temperature setting value, it is of course possible. For example, the rotational speed of the indoor fan 21 of the air conditioner 52 may be changed to change the air speed and the amount of air blown into the room. When the rotational speed of the indoor fan is lowered during the cooling operation, the rate of heat exchange with the indoor heat exchanger, which is an evaporator, decreases, and the evaporation temperature, that is, the temperature of the indoor heat exchanger also decreases. As a result, the condensation temperature of the outdoor heat exchanger also decreases, the load on the compressor that drives the refrigeration cycle decreases, and the input decreases. At this time, the air temperature is lowered because the evaporation temperature is lowered, the temperature of the air conditioner is lowered, and the input of the air conditioner is lowered. In other words, it is only necessary to find the direction in which the input temperature of the air conditioner decreases based on the change of the indoor air blowing temperature by increasing or decreasing the rotational speed of the indoor fan 21. The indoor fan of the air conditioner can change the fan speed in multiple stages, but if the set temperature is not changed by reducing the fan speed, the humidity can be lowered. However, even if the target value is lowered, the input does not change immediately, and there are other effects, so judgment is made based on an average trend over time.
[0047]
In addition, the temperature setting value and fan speed are determined from past data according to each season, time zone, operation mode, etc., and operation is performed to maintain the value, and it is detected whether the total input is less than the predetermined value. It is also possible to perform control such as changing the temperature set value and the fan speed in the obtained direction. In this case, if the outside air temperature is detected and the set value or the adjustment range of the set value is moved according to the outside air temperature, control with higher accuracy becomes possible. The explanation of changing the temperature / humidity setting value of the air conditioner, which is the target of the room temperature, in the direction that the total of the input of the refrigeration device and the input of the air conditioner becomes smaller, and Although the explanation has been made on changing the fan speed, as a temperature / humidity setting means for setting the wind speed or air volume to be blown into the room in the direction of decreasing the total input, there is also a structure in which the ventilation resistance in the air conditioner or duct is changed and set. Is possible. The shutter opening / closing angle of the grill can be changed, or the damper 22 can be provided in the duct to change the wind speed and the amount of air blown into the room. Also, the filter provided at the air inlet of the air conditioner may be changed between sparse and dense filters depending on the season. If a plurality of temperature and humidity adjusting means are switched and used according to the operating state, energy saving can be easily obtained without causing unreasonable driving.
[0048]
As another temperature / humidity adjusting means, there is a means for adjusting the indoor temperature and the like by introducing outside air. When introducing outside air into the room, an air supply fan is used, and a filter is provided at the entrance to allow fresh and clean air to enter the room as needed. At this time, a heat exchanger that provides a fan for supplying the outside air into the room and a fan for exhausting the room air to the outside, and exchanges heat between the supply air and the exhaust so as not to waste indoor heat energy. It is conceivable to provide FIG. 9 shows an example of the outside air introducing means. 61 is an air supply blower that takes outside air from the air passage 26 through the air passage 27 into the room, 62 is an exhaust air fan that exhausts indoor air from the air passage 28 to the air passage 29, and 63 is air supply. Is a heat exchanger for exchanging heat between the exhaust and the exhaust, 64, 65, 66 are filters for removing dust and dust contained in the air, 68 is a bypass air passage, and is provided with a bypass damper 67 when heat exchange is not performed. The room air is switched and exhausted directly through the bypass air passage 68. Usually, heat exchange is performed during daytime when the enthalpy of the outside air is large, and only when the air is small at night, supply and exhaust are performed. That is, if the direction of reducing the enthalpy of air in the store is reduced, the air conditioning load and the load on the showcase are reduced.
[0049]
The heat exchanger 63 in FIG. 9 is an air-to-air heat exchanger, and a sensible heat exchanger that exchanges only the temperature if a metal that does not allow moisture to pass through is used as a member that separates the air supply and exhaust inside. If a porous material such as paper that passes moisture is used, it becomes a total heat exchanger that simultaneously exchanges temperature and humidity. In supermarkets with large indoor loads and buildings that require cooling during winter and intermediate periods due to increased loads, a device with a bypass air passage is used in the total heat exchanger to obtain a cooling effect due to low temperature outside air. In addition, exhausting dirty air in the room can be done by exhausting with a ventilation fan, but in this case, the air supply only enters naturally through the gap, so that it is cleaner to supply air. Especially in stores such as supermarkets and convenience stores, when the air is exhausted, the room becomes negative pressure and the outside air comes in when the door is open, etc., increasing the air conditioning load or sucking in dirty air. Inhale clean dust-free air.
[0050]
The explanation up to now has mainly been explained with an example of a 24-hour convenience store. However, in large supermarkets and the like, people and food coexist in the daytime and there are no people in the nighttime. Energy saving can be achieved. FIG. 10 is an example of the actual measurement result of the refrigeration electromotive force consumption in the supermarket. In the supermarket described in April 1999, a consideration from the actual power consumption measurement result in the industrial sector issued by the Japan Energy Research Institute. It is an actual measurement result of refrigerator electromotive force consumption. In the figure, actual surveys are conducted at two stores, A store and S store. The daytime described in FIG. 10 is within the business hours of the store, and indicates 10 o'clock to 21 o'clock at the store A and 10 o'clock to 20 o'clock at the store S. The nighttime is outside business hours, and it is 21 o'clock to 10 o'clock at store A and 20 o'clock to 10 o'clock at store S. The cold power shown in FIG. 10, that is, the power consumption of the freezer for freezing, uses power consumption that is not much different from daytime even at night, which is outside the business hours of both stores. About 80 percent of electricity is consumed in the daytime.
[0051]
On average, other refrigerators for refrigeration consume about 50 percent of electricity during the day. In the showcase connected to the refrigerator, the air exchange load is the main heat load as described above, and this exchange load becomes smaller as the in-store temperature is lower. Since there are no people in the store at night, which is outside the business hours of the store, it is not necessary to keep the store temperature at 23-26 ° C., which is a comfortable temperature range for people, and a lower temperature may be used. In a supermarket, since the power consumption of a refrigerator is generally larger than the power consumption of an air conditioner, the sum of the power consumption of the refrigerator and the power consumption of the air conditioner becomes smaller as the in-store temperature is lower. Therefore, in a store such as a supermarket, the total power consumption can be reduced by setting the temperature in the store as low as possible at night.
[0052]
FIG. 11 is a diagram for explaining the configuration of a composite apparatus in a store, 17 is an outside air temperature / humidity detecting means for detecting outside air temperature / humidity, 24 is an outside air introduction means that is an air supply fan for introducing outside air into the shop, and 25 is an outside air introduction unit. The fan built in the means and others are the same as in FIG. The basic operations of the refrigerator and the air conditioner are the same as described above. A timer is built in the controller 18, and the air conditioner 52 and the outside air introduction means are based on the temperature and humidity information and timer information inside and outside the store detected by the store temperature and humidity detection means 11 and the outside temperature and humidity detection means 17. 24 controls are performed. The air conditioner 52 is allowed to perform a cooling operation except in special cases regardless of the season. The air conditioner 52 has a lower limit of the set temperature, which is referred to as a minimum set temperature. In the Building Pipe Law and Building Standard Law, the standard for indoor temperature management is 17-28 ° C, and in general, 19 ° C during cooling and 17 ° C during heating are the lower limit of control.
[0053]
The enthalpy of air inside and outside the store can be easily determined by measuring the temperature and humidity of each. The formula for calculating the enthalpy of air is obtained by: enthalpy i = 0.240 * temperature + (0.431 * temperature + 597.3) * absolute humidity, and the absolute humidity is simply converted from the measured relative humidity. Next, using this enthalpy, as an example of the outside air introduction means, prevention of ventilation heat loss and control of utilization of outside air for air conditioning when a total heat exchanger is used will be described with reference to FIGS. FIG. 12 is a diagram for explaining the operation of the new ventilation air-conditioning system that uses outside air for air-conditioning. The ventilation air-conditioning system is turned on / off according to the time of the season, etc. This shows the operating status such as heat exchange by bypass. In particular, FIG. 12 illustrates daytime operations in a large supermarket, and the upper table in FIG. 12 shows the operation items of heat exchange air passages and ventilation air conditioning operations that are control items, and this operation is illustrated in the lower flowchart. The control flow which shows the situation judged by the enthalpy by the temperature and humidity of indoor air and the enthalpy by the temperature and humidity of outside air is demonstrated. The enthalpy of indoor air is obtained from the air condition set as the target value of the temperature and humidity in the store, and the enthalpy of outside air is used by measuring the temperature and humidity of the outside air. However, it is natural that the humidity may be determined in advance after the season or may be switched each time depending on the weather conditions.
[0054]
In FIG. 12, the controlled object is the new ventilation air conditioning, which describes the on / off operation of the supply fan and the exhaust fan and whether heat exchange is performed when this is on. For this operation, the information used includes calendar information such as measured values of outside temperature / humidity, air conditioner operation mode set by the user, set temperature in the air conditioner store, time and holidays. The in-store humidity is set in advance using a personal computer. The operation of ventilation air conditioning is switched depending on whether the enthalpy of indoor and outdoor air is large or small. In order to make this switching stable, hysteresis operation is performed with or without heat exchange. Set. The hysteresis conditions Δi1 and Δi1 ′ are set in the same manner, and are selected from one unit (1 kcal / kg) or two units (2 kcal / kg) of enthalpy. As a result, control malfunction and hunting can be suppressed. As already explained, the enthalpy of air is obtained by the formula of enthalpy i = 0.240 * temperature + (0.431 * temperature + 597.3) * absolute humidity, and the absolute humidity is measured relative humidity. Alternatively, it can be easily obtained from the stored value.
[0055]
In FIG. 1 and others, the configuration in which the indoor unit and the outdoor unit are separated and connected by piping has been described, but any configuration may be used as long as the temperature or humidity of the indoor air is changed. A structure that does not separate an indoor unit and an outdoor unit that integrally form an evaporator and a condenser, such as a dehumidifier, may be an air heater such as an oil heater that is combined with an air conditioner for air conditioning. A GHP air conditioner that uses the motor to drive the compressor and uses the engine waste heat to evaporate heat of the refrigerant to obtain the energy effect during heating, compared to a configuration in which the compressor is driven by a motor like a general air conditioner. But it ’s okay. This GHP air conditioner drives a compressor by a gas engine during heating to compress refrigerant, and this high-temperature refrigerant heats the air indoors. The cooling water superheated by the gas engine and the exhaust gas heat exchanger exchanges heat with the refrigerant in the refrigerant hot water heat exchanger inside the accumulator provided in the refrigerant circulation cycle. On the other hand, in the cooling cycle, the high-temperature refrigerant from the compressor is cooled by outside air in a condenser which is an outdoor heat exchanger, and is cooled by taking heat from indoor air in an indoor evaporator. The configuration and operation of the indoor unit of this GHP air conditioner are the same as those of a general air conditioner that uses a motor to drive the compressor.
[0056]
In the control flow of FIG. 12, it is first determined by the calendar function stored in the microcomputer provided in the controller whether it is a holiday or that it is within business hours and is not within a preparation time zone or business hours. The preparation time zone was set up when the temperature of the items and spaces in the store was hot, even when the temperature adjustment was suddenly switched between the business hours when customers and employees were located and the time outside the unmanned business hours. Since there is a delay due to a constant, a halfway time is provided to avoid adverse effects on humans.
[0057]
If it is within business hours, then the air conditioner operation mode is determined. Usually set by the user with the remote control, but it is possible to change the air conditioning as needed. If the air conditioner is stopped, the ventilation and exhaust air passages bypass the bypass air passage 68 in FIG. 9 and heat exchange is not performed. In this state, the ventilation fan and the exhaust fan are turned on in the daytime to introduce fresh air into the store and discharge dirty air.
[0058]
When the air conditioner operation mode is cooling, it is determined whether the enthalpy io of the outside air is greater than the enthalpy im obtained from the in-store target air temperature and humidity. At this time, in order to obtain control stability, io> im + Δi1 is set to slightly increase the enthalpy of the target value in the store. Here, if the enthalpy of the outside air is smaller than the enthalpy of the target value of the in-store air, io <im−Δi1 and the magnitude of the enthalpy are determined again. Here, if the enthalpy of the outside air is smaller than the enthalpy of the target value in the store, considering the effective use of the outside air, the ventilation and exhaust are turned on in the bypass air passage without heat exchange and air conditioning is performed without using the store air conditioner. . If the enthalpy of the outside air is larger than the enthalpy of the in-store target value, that is, if the enthalpy of the outside air and the enthalpy of the in-store target value are similar, the heat exchange state until then is continued. On the other hand, if the enthalpy of the outside air is larger than the enthalpy of the target value of the in-store air as determined by io> im + Δi1, the heat exchanger element 63 performs total heat and temperature exchange, and the filters 64, 65, At 66, ventilation and exhaust are performed as clean air. As a result, the air conditioning load in the store is increased by the large enthalpy of the outside air so that the energy used by the air conditioner and the refrigerator affected by the air conditioner is not increased.
[0059]
When the operation mode is set to heating, io <im−Δi1 ′ and the magnitude of enthalpy are determined. If the enthalpy of the outside air is smaller than the in-store target value enthalpy, the heat exchanger element 63 performs total heat and temperature heat exchange, and the air conditioning load is increased by increasing the heating and air conditioning load in the store by the small enthalpy of the outside air. The energy used by the machine is not increased. If the enthalpy of the outside air is larger than the in-store target value enthalpy, io> im + Δi1 ′ is again determined as to whether the enthalpy is large or small. Here, if the enthalpy of the outside air is larger than the enthalpy of the in-store target value, air conditioning is performed by turning on ventilation and exhausting in a bypass air passage in which heat exchange is not performed in consideration of effectively utilizing the outside air. If the enthalpy of the outside air is smaller than the enthalpy of the in-store target value, that is, if the enthalpy of the outside air and the enthalpy of the in-store target value are similar, the heat exchange state until then is continued and the heat exchange operation is not changed. By incorporating such hysteresis in the determination of enthalpy, control malfunction and hunting can be prevented.
[0060]
Next, the operation of the new ventilation air conditioning at night will be described with reference to FIG. Outside business hours, here from 22:00 to 9 o'clock, but the enthalpy io of the outside air is the target minimum air temperature in the store where air conditioning is performed, here 19 ° C, but whether it is greater than the enthalpy i 19 ° C obtained from Judging. At this time, in order to obtain control stability, io> i19 ° C + Δi6 is set to slightly increase the enthalpy of the minimum target value in the store. As described above, a hysteresis operation is set for the determination of enthalpy and temperature in order to make the switching stable. Similarly, Δi6 which is a condition of the hysteresis is set so that it can be selected from one unit (1 kcal / kg), two units (2 kcal / kg), three units, or the like for the hysteresis setting. As a result, control malfunction and hunting can be suppressed. If the enthalpy of the outside air is higher than the enthalpy of the minimum room temperature target value, the air conditioning set temperature is set to the target minimum temperature of 19 ° C for all nine gas engine driven air conditioning indoor units GHP. Cooling operation is performed. The minimum set temperature may be set to a low temperature at which the apparatus can be operated. The lower the temperature that can be operated at a temperature lower than 19 ° C., the lower the energy saving effect. However, it is a matter of course that the set temperature may be slightly higher in the low temperature range. Set the wind speed on your computer. Thereby, the influence on the freezing apparatus arrange | positioned indoors can be made as small as possible, and the total use energy of a freezing apparatus and an air conditioner can be decreased.
[0061]
In the case of an air conditioner driven by a gas engine, a gasoline engine is used instead of a motor that consumes electricity. However, if converted by the amount of heat, which is energy, the total energy consumed by gasoline and electricity can be easily and necessary. Depending on the fuel consumption, the total energy price is also possible.
[0062]
In FIG. 13, after the determination of io> i19 ° C + Δi6, the determination of io <i19 ° C−Δi6 in consideration of the enthalpy hysteresis is performed, and the outside air is high, that is, both the enthalpies of the outside air and the minimum air conditioning target value are close. If it is a value, the previous operating state is continued as it is to prevent malfunction. However, even in this judgment, if the enthalpy of the outside temperature is lower than the enthalpy of 19 ° C which is the minimum set temperature, the operation is performed to make effective use of the outside air. In this case, a limiter of the in-store minimum temperature Tmin = 5 ° C. is provided. That is, in the judgment formula Ti <Tmin−ΔT6, if the room temperature Ti is lower than the limiter 5 ° C., all are stopped and the outside air is not introduced. It should be noted that ΔT6, which is a hysteresis condition, is similarly set for hysteresis so that it can be selected from one unit (1 kcal / kg) or two units (2 kcal / kg) of enthalpy.
[0063]
If it is determined that the room temperature is higher than 5 ° C which is the limiter in the judgment formula Ti <Tmin−ΔT6, whether the room temperature is again higher than 5 ° C which is the limiter in the judgment formula Ti> Tmin + ΔT6 as a countermeasure against hunting. If the room temperature is about 5 ° C, the previous operating state is continued. When the room temperature is higher than the limiter temperature, the indoor unit is operated as set by the user, and the ventilation air conditioning is switched to a wind path that does not perform heat exchange to supply and exhaust air effectively using the outside air.
[0064]
In the above, the outside air introduction means is a combination of a supply air fan and an exhaust fan with a total heat exchanger, and the enthalpy for the target values of the outside air and room air is converted from the measured values of the air temperature and humidity. Thus, the configuration and control contents for controlling the air conditioner by comparing the size and controlling the air conditioner and performing the operation with less energy consumption of the indoor refrigeration apparatus and the air conditioner have been described. When making this comparison, we decided to calculate the enthalpy because we performed a strict energy comparison, but considering that the humidity may not change much depending on the season, or even if the humidity is almost constant, there are many cases where the effect is small. However, instead of the enthalpy of FIGS. 12 and 13, control may be performed by comparing the set temperature value related to the indoor air conditioning with the temperature value of the outside air. Thus, if the temperature or enthalpy outside the store during summer nights or holidays is higher than a low set temperature that can be achieved by indoor air conditioning, for example, 19 ° C. or the enthalpy at its minimum set temperature, the controller 18 sets the indoor unit of the air conditioner. 52 is operated so that the temperature in the store is at or near the minimum set temperature that can be controlled, and the outside air introduction means 24 is not operated. As a result, the temperature is kept at a low temperature at which the indoor air conditioning can be controlled, and an operation is performed to prevent an increase in the load of the refrigeration apparatus by taking in outside air.
[0065]
If the temperature or enthalpy of the air outside the store is lower than the minimum set temperature, for example, 19 ° C. or the enthalpy at the minimum set temperature under conditions such as nighttime in winter or unattended, the controller 18 uses the outside air introduction means 24. Is operated to introduce outside air to bring the temperature or temperature / humidity inside the store closer to the temperature or temperature / humidity outside the store. As a result, the outside of the store can be further lowered from the temperature that can be controlled by the air conditioner, and energy can be saved in the refrigeration apparatus. However, in this case, since the inside of the store is not lowered to below 0 ° C. or the like, outside air having a temperature lower than the limiter temperature is not introduced so as not to lower the limiter temperature with a little allowance, for example, 5 ° C. In the middle season, one of the operations described above is selected based on the temperature or temperature / humidity information inside and outside the store. By controlling in this way, the total energy consumption of the refrigeration system and the energy consumption of the air conditioner at night when there are no people in the store can be made as small as possible, and the charges for these inputs can be kept low. Become. The case where two fans for air supply and exhaust are used has been described as an example, but the same effect can be obtained even if only the fan for air supply is installed. However, in the case where only the air supply fan is used, there is a possibility that the pressure in the room is increased, the differential pressure across the air supply fan is increased, and the air supply amount is reduced.
[0066]
Next, the energy saving of the dew-proof heater will be described. FIG. 14 is a diagram showing the operating rate of the dew-proof heater attached to the showcase 2. The horizontal axis represents the relative humidity of the store air, and the vertical axis represents the operating rate of the dew-proof heater. The temperature of the store air is described as a parameter. Even if the temperature Ti (° C) of the same store air, for example, 20 ° C, the relative humidity Φi (%) of the store air is 70% when the dew-proof heater operation rate A is 65%, whereas the relative humidity of the store air Is the operating rate B of the dew-proof heater at point B of 60% = 35%. Therefore, even if the air temperature Ti (° C) in the same store is lower, the lower the relative humidity Φi (%), the lower the operating rate of the dew-proof heater, and the lower the heat input due to reduced heater input and heat conduction from the heater to the showcase. Energy saving for refrigeration equipment.
[0067]
FIG. 15 is an air diagram often used in the air-conditioning field. The air diagram is a diagram showing the state of humid air, which is general air. The enthalpy i and the absolute humidity x expressed by a linear relationship are obliquely shown. This is a summary of the data related to temperature, etc., assuming that the atmospheric pressure is constant. The enthalpy of the figure is based on the formula explained above. The relationship between absolute humidity and relative humidity, the relationship between sensible heat and latent heat, and the like are also described. The horizontal axis represents temperature, and the vertical axis represents a relationship that is substantially orthogonal to the absolute humidity. If this figure is stored in the microcomputer without using an equation, conversion of relative humidity and absolute humidity and calculation of enthalpy can be easily obtained. A in FIG. 15 shows the temperature / humidity state in the open showcase cabinet, and shows the state of maintaining the freshness of the low temperature and high humidity with the air temperature TR = 5 ° C. and the humidity ΦR = 100%. The open showcase is often refrigerated with fish, vegetables, etc. In that case, the refrigeration temperature is low, and it is necessary to maintain the freshness of food by setting the relative humidity to the humidity ΦR = 100%, which is the saturation line in FIG. With respect to this temperature / humidity condition, the temperature / humidity condition of the in-store air that becomes the intrusion air from the air curtain requires a relative humidity of 37% or more when the air temperature at point B in the figure is 20 ° C. That is, it is necessary to maintain the humidity ΦR = 100% in order to maintain freshness. The humidity Φi of the store air that becomes the intruding air needs to be equal to or higher than the same absolute humidity when the store air temperature is 20 ° C. Requires a relative humidity of 37% at point B, which is the intersection of this line and the 20 ° C. line.
[0068]
Therefore, it is desirable that the target humidity of the store air that is controlled by the air conditioner to approach the target value is as low as possible in order to reduce the operating rate of the dew-proof heater and save energy of the heater. On the other hand, the target humidity of the store air will cause a decrease in the humidity in the cabinet due to the intrusion air of the open showcase, and a certain value or more is required for maintaining the freshness of the food in the cabinet. That is, there is a minimum humidity condition in the store, and this value is determined by the air temperature. That is, there is a condition for maintaining the function of the apparatus against the humidity of the store air. When humidity higher than a certain value for maintaining freshness is not required, energy saving operation may be performed by setting the humidity at which the store visitor does not feel abnormalities due to static electricity as a minimum humidity condition. In addition, the content of controlling the humidity with respect to the target humidity value has been explained, but in order to reduce the operating rate of the dew-proof heater and to save the heater energy, it is set by simply changing the ventilation resistance in the air conditioner or duct It is possible to change the shutter opening / closing angle of the grill, or to provide a damper 22 in the duct to change the wind speed and the amount of air blown into the room. In addition, the filter provided at the air inlet of the air conditioner may be changed from a sparse filter to a dense filter. When changing from summer to winter, that is, in the cooling operation mode, the ventilation resistance is increased. When changing to summer, that is, in the heating operation mode, the ventilation resistance may be reduced. When changing this ventilation resistance, it may be changed with the signal of the air conditioner operation mode, but as a simpler method, the inclination of the grill and damper can be changed manually during maintenance when the season changes, the grill with different ventilation areas, etc. You may replace it with a damper. In this way, when setting the structure to narrow the ventilation hole of the grill when going to summer or changing the filter to a dense one and reducing the area, the wind speed during cooling operation is lower than the heating, and it is an evaporator The rate of heat exchange with the indoor heat exchanger decreases, and the evaporation temperature, that is, the temperature of the indoor heat exchanger also decreases. As a result, the condensation temperature of the outdoor heat exchanger also decreases, the load on the compressor that drives the refrigeration cycle decreases, and the input decreases. At this time, the air temperature is lowered as the evaporation temperature is lowered, the air conditioner blowout temperature is lowered, and at this time, the humidity is lowered, the operation rate of the dew-proof heater is lowered, and the input of the air conditioner is lowered.
[0069]
As described above, the control device for controlling the combined refrigeration and air-conditioning air environment that saves energy by combining the refrigeration system and the air-conditioning system is used to determine the temperature and humidity of the in-store air that is a heat load for the refrigeration system. It is possible to perform energy-saving operation by setting target values of temperature and humidity in such a direction that the sum of the input of the refrigeration apparatus and the input of the air conditioner becomes smaller as a parameter of the temperature and humidity of the air. At this time, the temperature and humidity zone of the store air that maintains the original functions of each device and human comfort is maintained, and the products that maintain the freshness of the food in the showcase cabinet are arranged side by side.
[0070]
FIG. 16 shows a control flow of a control device for controlling a refrigerating and air-conditioning composite air environment that saves energy by combining a refrigerating device and an air conditioning device. When the control operation of the microcomputer of the controller 18 in FIG. 1 is started, the outside air temperature To is detected in Step 101, and the open showcase temperature TR is detected in Step 102. Here, when there are a plurality of open showcase groups, the inside temperature TR having the highest inside temperature is detected. In step 103, the absolute humidity XA is calculated with the inside temperature TR as the dew point temperature. For this calculation, the air diagram data of FIG. 15 may be stored in the management / control unit 41 or a relational expression between absolute humidity and relative humidity may be stored. In step 104, several patterns of in-store air temperatures are prepared between the temperature zones Ti = 24-28 ° C. that are considered comfortable for humans during the summer cooling period. For each temperature Ti, relative humidity Φi that becomes absolute humidity XA is obtained as Φi = f (XA, Ti) = C, and several patterns are prepared as a set of temperature and relative humidity. In step 105, the input WA of the air conditioner is obtained from the data stored in the air conditioner. This method will be described later. In step 106, the input WR of the refrigeration apparatus is similarly obtained. In step 107, the combination of the store air temperature Ti and the humidity Φi, which is the smallest of the sum of the input WA of the air conditioner and the input WR of the refrigeration system, is selected. As shown in FIG. 17, the data stored in the air conditioner and the refrigerating apparatus used here is a line specific to each of the refrigerating apparatus and the air conditioner according to the evaporator side intake air temperature, humidity, and condenser side intake air temperature. FIG. The horizontal axis TWB (° C.) in FIG. 17 indicates the wet bulb temperature, and is obtained from the air diagram of FIG. 15 or the relational expression based on the dry bulb temperature Ti and the relative humidity Φi. These temperatures and humidity are detected by the temperature / humidity detecting means 11. The vertical axis in FIG. 17 is the input W (kw), and as shown in the figure, the input increases as the wet bulb temperature TWB (° C) increases, and the input increases as the outside air temperature To increases. To do. Thus, the calculation in step 105 is obtained as WA = f (Ti, Φi, To) from the characteristics of FIG. 17 stored as the air conditioner. The showcase is obtained as WB = f (TR, ΦR, Ti, Φi, To) as in step 106.
[0071]
A similar calculation method will be described with reference to FIG. Steps 111 to 114 are the same as those in FIG. However, the preset temperature is used without detecting the temperature in the showcase. In step 115, the wet bulb temperature TiWB (° C) is converted as TiWB = f2 (Ti, Φi) from the set of temperature and humidity (Ti, Φi) in the store prepared in the previous step. This conversion formula is obtained by formulating the air diagram of FIG. In step 116, the air conditioner input is obtained as WA = f3 (TiWB, To) from the wet bulb temperature TiWB (° C) of the store air and the outside air temperature To. This formula f3 is a formula of the performance data of the air conditioner, and this data is shown in FIG. The horizontal axis in FIG. 19 is the outdoor intake air dry bulb temperature, that is, the intake air temperature of the outdoor heat exchanger 14 and the outdoor air temperature To. The vertical axis shows the input ratio and the capacity ratio, which is the ratio between the rated input (kw) and the rated capacity (kcal / h) of the air conditioner, and the rated value is inevitably determined if the installed and used equipment is determined. So this vertical axis shows input and ability. As shown in FIG. 19, the input (kw) becomes a predetermined value according to the outside air temperature, but changes as shown in the figure depending on the indoor intake air wet bulb temperature TiWB (° C.). The same performance data can be used for similar models, and when an inverter-driven compressor is used, the performance data changes for each operating range depending on the outside temperature.
[0072]
In step 117, the input of the refrigeration apparatus is obtained, and the refrigerator input WB is obtained from the evaporation temperature Te and the outside air temperature To of the refrigerator. Here, the evaporating temperature Te is linked to the showcase set temperature Ts and is determined by the apparatus. However, when the set temperature Ts = 0-10 ° C of the showcase interior air, Te = -10 °. C. The refrigeration unit input WB = f4 (Te, To) in step 117 is determined from the data in FIG. In FIG. 20, the horizontal axis represents the evaporation temperature, and the vertical axis represents power consumption, refrigeration capacity, and current data. As parameters, the refrigerant types R502, R22, R12 and the condensing unit ambient temperature AT, that is, the outside air temperature To are taken. In the case of a showcase, the evaporation temperature is set to a temperature determined by the apparatus, and the data of FIG. 20 is stored or formulated according to the type of refrigerant in the refrigeration cycle and the outside air temperature, and the power consumption as an input can be obtained. Step 118 shows the input WH of the dew-proof heater, which is also calculated as WH = ηh * H from the heater power H determined by the apparatus and the dew-proof heater operating rate ηh. As described with reference to FIG. 14, the dew-proof heater operating rate ηh is determined by other factors such as the temperature Ti of the store air and Φi of the store humidity. In this way, the input of the dew-proof heater is obtained by WH = f5 (H, Ti, Φi). In step 119, the input WR of the refrigeration apparatus is calculated by the input WR of the refrigerator and the input WH of the dew-proof heater. In step 120, the in-store temperature and humidity (Ti, Φi) having a small sum of all inputs WA of the air conditioner and all inputs Wb of the refrigeration apparatus are selected from several patterns and output.
[0073]
As described above, by detecting only the outside air temperature, the temperature and humidity of the room air, it is possible to easily perform the operation with the least energy with respect to the air in the space where the composite apparatus influences each other like the refrigeration apparatus and the air conditioner. Whatever equipment you are using, you can perform arithmetic processing simply by using basic data such as the rated input of the equipment, so you can add a humidity detection device even to a convenience store that is already in operation. By using a simple data of existing equipment and preparing a controller with the necessary storage means and calculation means installed in the microcomputer, it can be operated at low cost and easily with less energy, so it can be adopted in many stores, and big energy saving It is possible and effective as a global environmental measure.
[0074]
The explanation of the control in the combined refrigeration and air conditioning environment during the winter heating operation is as follows. FIG. 21 is a diagram for explaining the configuration of each device arranged indoors, which is almost the same as FIG. 1, but the circuit of the four-way valve 15 housed in the outdoor unit 12 of the air conditioner is different. The high-temperature and high-pressure gas refrigerant leaving the compressor 13 is circulated to the indoor heat exchanger 10 via the four-way valve 15 to heat the store, and the refrigerant is condensed and liquefied and conveyed to the outdoor unit 12. It becomes a low-pressure, low-temperature, two-phase refrigerant, is evaporated into gas in the outdoor heat exchanger 14, and is sucked into the compressor 13 again via the four-way valve 5. Fig. 6 explains the coefficient of performance of the air conditioner. During the winter heating operation, the outdoor heat exchanger is an evaporator, and when the intake air temperature Tei of the evaporator, that is, the outside air temperature To is near 0 ° C, condensation occurs. The coefficient of performance becomes better and the input becomes smaller as the container-side intake air temperature Tci, that is, the in-store temperature Ti, is lower than the point 30 ° C. of B2 in FIG.
[0075]
On the other hand, the refrigeration system operates in the same way because the temperature of refrigeration and freezing does not change year-round, regardless of summer or winter, and the lower the temperature and humidity in the store, the smaller the input. From this, it is understood that the set temperature in the store that minimizes the sum of the input of the refrigeration system and the input of the air conditioning system during the winter heating operation may be set to the lowest temperature in the temperature zone in which humans feel comfortable. Furthermore, if this is set by the rotational speed of the indoor fan, the input is lowered by lowering the temperature of the airflow blown from the fan.
[0076]
FIG. 22 is a configuration diagram of a system for explaining an example different from FIG. 1. Reference numeral 30 denotes an input detection device for a refrigeration apparatus that detects an electrical input of the compressor 6 in the outdoor unit 4 of the refrigeration apparatus 2. It is an input detection device of an air conditioner that detects an electrical input of the compressor 13 housed in the outdoor unit 12 of the device 52.
[0077]
The controller 18, which is a combined refrigeration and air-conditioning environment control device, sets the preset temperature Ti of the store air in advance or changes it from the outside during the summer cooling operation, and the input detection device 30, The sum of 31 detected values is obtained, and a small value is continuously selected while continuing the actual operation so that the sum value becomes the minimum value. In winter heating operation, the lower temperature in the temperature zone that humans feel comfortable is set as the air setting temperature in the store. In this way, if the summer and winter settings, that is, how to set the temperature setting values for the cooling operation and the heating operation are changed in advance, a control device for operation with less energy can be achieved with a simpler method and configuration. In this way, this configuration can provide the effect of the present invention with a simple structure, for example, since the controller can be provided by using a refrigeration apparatus or a microcomputer of an air conditioner. Moreover, since the compressor input directly connected to the load is directly measured, the influence of other elements does not enter, so it is possible to clearly grasp the change in load and accurately understand how much energy saving effect is obtained by the control of the present invention. Can be easily distinguished from other measures.
[0078]
As described above, the technology for obtaining energy saving with respect to the composite apparatus has been described. However, this effect can be obtained particularly in the case of a store operating continuously for 24 hours like a convenience store. However, even in stores that do not operate 24 hours a day, such as supermarkets that operate many refrigeration units and many air conditioning units at the same time, devices that affect each other through this space coexist, that is, only in the same room in a large space. For example, in an environment where the heat and cold affect each other, such as in a building or other room where the temperature and humidity of the air is in the same state by operating through the duct ventilation or using the same centralized control device Needless to say, it is effective. Furthermore, at a tempo such as a supermarket that does not operate 24 hours a day, as described above, it is possible to take energy saving measures by utilizing the unattended state at night.
[0079]
In the above description, the cold heat generated by the refrigeration apparatus arranged indoors is considered as a load of room air, and some examples of air conditioning of the room air have been described. However, the room air 20 entering the showcase of FIG. Load
When the load is small or the load of each refrigeration apparatus is small, the input of the refrigeration apparatus can be lowered by reducing the capacity of the compressor 6 that generates the cold heat of the refrigeration apparatus. Affects the input of the air conditioner. If there are few changes in external factors such as people coming in and out of the store and changes in the outside air temperature, the control of the present invention will settle down when the total input of the composite device is small. However, if the capacity of the compressor of the refrigeration system is changed greatly, temperature fluctuations occur, and this hunting causes unnecessary operation in the entire composite apparatus and uses extra energy.
[0080]
FIG. 23 shows a configuration diagram of the refrigeration apparatus. In FIG. 23, 101a is a compressor, 101b is a compressor motor that drives the compressor, 102 is a condenser, 103 is a pressure sensor that measures the pressure of refrigerant gas sucked into the compressor, and the refrigerator 101 is connected to these. Composed. A plurality of showcases 106 connected to the refrigerator 101 through the refrigerant pipes 107 are provided with an electromagnetic on-off valve 108, an expansion valve 108a, and an evaporator 109. The inside of the case is cooled. 110 is a showcase controller which is provided in the showcase and opens and closes the electromagnetic valve 108 based on information on the showcase controller internal temperature 112, and 105 is a compressor inverter based on the information on the capacity control internal temperature 113. This is a capacity control device that is an inverter controller that controls the capacity variable device 104.
[0081]
The refrigerant discharged from the compressor 101a and condensed in the condenser 102 is supplied in parallel to the respective evaporators of the plurality of showcases via the refrigerant pipe 107. Each showcase is provided with an electromagnetic valve and an expansion valve for individually turning on and off the refrigerant supply, and the supply of the refrigerant can be individually stopped according to the temperature with respect to the target temperature in the warehouse of each showcase. The showcase controller 110 may detect that the pressure sensor 103 has become a low pressure in addition to the inside temperature, and turn on and off the solenoid valve. However, the showcase solenoid valve is turned on and off to keep the inside temperature constant. In order to repeat the process, the flow of the refrigerant and the temperature in the cabinet are hunting, and wasteful energy is used. Note that a plurality of showcases may be used as a showcase group to control the representative temperature of any group.
[0082]
Next, control of such an inverter driven refrigerator will be described. When the compressor 101a starts operation, the capacity control device 105, which is an inverter controller, outputs a startup rotation speed setting signal to the capacity variable device, which is an inverter, and also shows the measured internal temperature 113 of the showcase 106. The temperature information is taken in by the signal line. The preset temperature other than the temperature information, the closing operation point of the electromagnetic on-off valve 108, the temperature adjustment differential that is the control range of the temperature inside the showcase 6 and the target temperature of the inverter control are stored in advance in the microcomputer of the inverter controller 105, Or it can take in indirectly from temperature information. The inverter controller 105 controls the operating capacity of the compressor so that the temperature deviation between the internal temperature in the showcase and the set temperature becomes small. On the other hand, the showcase controller 110 closes the electromagnetic on-off valve 108 to stop the refrigerant flow when the inside temperature of the showcase 106 falls to the electromagnetic on-off valve closing operation point based on the temperature information on the showcase in-case temperature 112. The cooling operation of the case 106 is stopped. When the cooling operation is stopped and the internal temperature rises and reaches a level that is increased by the temperature adjustment differential that is the control width of the internal temperature from the closing operation point of the electromagnetic on-off valve, the control is performed to open the electromagnetic valve 108 and the refrigerant is circulated. The showcase 106 is cooled. The temperature adjustment differential is, for example, about 2 ° C.
[0083]
A plurality of showcases 106 are provided, and each showcase performs the defrosting operation by individually closing the solenoid valves so that the heater capacities for the defrosting operation do not overlap. In many cases, the capacity of equipment and the contents of equipment vary. In general, an electromagnetic valve is required to stop the operation of a specific showcase, and the temperature is adjusted only by opening and closing. However, when the electromagnetic opening / closing valve 108 is closed, the supply of refrigerant is stopped. The stopped showcase evaporator 109 is in a state in which only the outlet of the refrigerant is opened, and when viewed from the compressor 101a, it is in a kind of evacuation state in which the refrigerant in the evaporator 109 is sucked into the refrigerant cycle. When viewed from the whole, the suction gas pressure with respect to the compression is lowered in a state where the refrigerant passage is narrowed, and the compressor is controlled so that the pressure sensor 101a stops the reduction when the suction gas pressure becomes lower than the set pressure. In such feedback control, fluctuations for obtaining the average temperature are large, and waste such as excessive cooling and loss of compressor start / stop increases.
[0084]
Therefore, in FIG. 23, the internal temperature is detected by the detector 113, and the compressor 104 is controlled by controlling the inverter 104 so as to approach the target temperature of the inverter control to increase or decrease the rotational speed of the compressor driving motor. It is possible to perform energy-saving operation that eliminates unnecessary start and stop. However, in this control, it is necessary to set the target temperature of inverter control to a temperature higher than the closing operation point of the electromagnetic on-off valve, and the difference between the target temperature of inverter control and the temperature of the closing operation point of the electromagnetic on-off valve is small. If the temperature drops rapidly due to the cooling of the evaporator 109 of the showcase 106, the electromagnetic on-off valve 108 is closed before the motor speed control is performed or before the effect appears, and the temperature difference in the chamber is reduced. The state of great change continues. On the other hand, for example, when the set temperature of the closing point of the electromagnetic on-off valve is -1 ° C, the set temperature of the opening point of the electromagnetic on-off valve is 1 ° C, and the target temperature setting value is 1.5 ° C. If there is a gap between the on / off valve closing operation point and the target temperature setting value for inverter control, the inverter control operation can be prioritized over the electromagnetic on / off valve operation, resulting in smooth internal temperature changes and input fluctuations. You can suppress useless driving.
[0085]
By performing such control, frequent opening / closing of the electromagnetic on-off valve is eliminated, temperature fluctuation is reduced, energy saving is achieved, and the device life is not reduced. Especially for refrigeration equipment that performs cooling by operating a compressor at a constant speed, and for refrigeration equipment that detects changes in pressure based on the opening / closing operation of an electromagnetic on-off valve and performs control to change the rotational speed of the compressor. Not only when an inverter device that changes the frequency of the voltage applied to the compressor motor based on the temperature difference between the detected temperature and the set value so that the target temperature is detected when the showcase device is newly installed. By adding an additional inverter device to the existing equipment, that is, an internal temperature detection device, a capacity control device that controls the inverter in response to this temperature information, an inverter circuit that drives the motor by this control, and Wired or wireless communication means that adds a temperature sensor to detect the temperature in the chamber and sends temperature information from the temperature sensor to the inverter as a signal Performs expansion work of providing further the inverter control by performing the operation to override the control of the solenoid valve, it is possible to greatly reduce the input of the refrigeration system. Further, if the temperature or humidity in the room is controlled to be lower than the normal living environment value by an air conditioner installed in the room or other means, the input of the refrigeration apparatus can be further reduced. In this way, before the compressor motor starts and stops, the inverter adjusts the temperature by reducing the rotation speed of the compressor, so the input of the refrigeration system can be lowered smoothly without significant fluctuations, and the input of the air conditioner If you change the temperature setting value of the air conditioner in such a direction that the total of the input decreases as a result of the input fluctuation, the operation will be performed. Since it is possible to prevent the fluctuation of the input from adversely affecting the delay, it is possible to perform an energy saving operation with few malfunctions by a simple method.
[0086]
Embodiment 2. FIG.
Next, a combined device of the lighting device and the air conditioner will be described. FIG. 24 is a diagram illustrating a control configuration for the lighting device, 41 is the management / control unit described in FIG. 5, 72 is an external lighting device that is outdoor lighting, and 93a is connected to the management control unit 41 through an interface 72a. Temperature detection means, 77 is an in-store lighting device that is indoor lighting, and 93b is temperature detection means connected to the management control unit 41 through an interface 77a. FIG. 25 shows an electric circuit diagram from the power source for the composite apparatus. 93 is housed in a distribution board 80, and a current detecting circuit 97 and a voltage detecting circuit are respectively supplied to a three-phase 200 volt power source 91 and a single-phase 200 volt power source 92. 98 is a power consumption measuring device connected to measure power, 86 is an inverter that is a power source of a motor 85 that drives a compressor used in an air conditioner, 87 is a switch circuit, 88 is a rectifier circuit 90 and a power source 91 is switched. A charge / discharge circuit 84 for supplying power from a battery serving as a power source to a load is another cooling / heating device, for example, a microwave oven disposed in a store. FIG. 26 is a diagram for explaining the change in brightness depending on the ambient temperature of the fluorescent lamp used in the lighting device. The horizontal axis represents the ambient temperature of the fluorescent lamp and the vertical axis represents the change rate of the brightness. In the case of a fluorescent lamp, since the mercury vapor pressure in the glass tube changes depending on the ambient temperature, the light generation efficiency changes and the luminous flux changes. This rate of change is shown in FIG.
[0087]
Next, the operation of FIG. 24 will be described. As shown in FIG. 2, the external illumination device 72, which is an outdoor illumination, covers the fluorescent lamp housed inside with a cover that allows light to pass through, and the lower part of the cover is open so that air can circulate. There is also a hole for venting air so that heat does not accumulate inside. A temperature detecting means 93a for detecting the temperature around the fluorescent lamp is disposed inside the cover. Further, as shown in FIG. 2, the in-store lighting device, which is indoor lighting, has a large number of exposed fluorescent lamps arranged vertically and horizontally, and is fixed in such a manner that it protrudes into the room with a slight space from the ceiling surface. On the ceiling surface, not only this lighting device but also an air conditioner 76 is provided to suck in indoor air and blow out air that has been air-conditioned. Although a sensor may be separately provided for detecting the air temperature around the fluorescent lamp of the in-store lighting, a signal from the temperature detecting means 11 for detecting the suction temperature of the air conditioner is used here. In the case of an air conditioner such as an air conditioner, the air inlet is usually provided near the ceiling, so that it can be used in combination. Signals are sent from the temperature detection means 93a, 93b for detecting the ambient temperature of the fluorescent lamps of the outdoor lighting device 72 and the in-store lighting device 77 to the management / control unit 41 via the interfaces 72a, 77a. . The operation of the management / control unit 41 and the operation through the telephone line are the same as those described above.
[0088]
In FIG. 25, there is an external power source 91 supplied from an external power company of a three-phase 200V first as a power source for the motor 85 that drives the compressor 13 of the air conditioner 52. Large phase air conditioners and refrigeration units generally use a three-phase 200 volt power source. The AC rotation from the AC power source is rectified by a rectifier circuit 88a and converted to DC as a voltage having a frequency necessary to bring the room temperature close to the room temperature setting value by an inverter 86a. It is done. When electric power is not supplied to the motor 85, electric power from the power source 91 is supplied to the battery 90 by charging the charge / discharge circuit, and the battery 90 is charged. In the time zone in which the power consumption is greatest in the store, the external power supply 91 is disconnected to reduce the power of the three-phase power supply, that is, as a peak cut. When this supply is not present, the switch circuit 87a is connected to the inverter from the battery 90, and the motor is driven by controlling the inverter.
[0089]
On the other hand, power is supplied to the lighting device 77 through a single-phase 200V external power source 92, a switch circuit 87c, a rectifier circuit 88b, and an inverter 86b. The inverter 86b changes the voltage to the illumination device 77 in accordance with the temperature of the temperature detection means 93b of the illumination device. This external power supply 92 uses single-phase 200V, which can be used for either single-phase 200 volts or single-phase 100 volts, but also supplies power to household appliances other than lighting, such as a microwave oven. In the time zone or season when the external power supply 92 becomes expensive due to a contract or the like, or the amount that can be used is limited, the switch from the battery 90 is used to reduce the power of the single-phase power supply, that is, to save the electricity bill. The direct current through the circuit 87b is supplied to the lighting device. At this time, the switch circuits 87c and 87a are cut off and the charge / discharge circuit is switched to the state of discharging. The difference between the voltage of the battery and the lighting device is adjusted by the inverter.
[0090]
In FIG. 25, it is natural that direct current may be supplied from the external power source 91 to the lighting device 77 through the switch circuits 87a and 87b without using the battery as a power source. In the configuration of FIG. 25, the inputs of the three-phase external power supply 91 and the single-phase external power supply 92 are measured by the power consumption measuring means 93 by the current sensor 97 and the voltage sensor 98, respectively. As described above, the power on the external power source 91 side includes a compressor motor, that is, an input of an air conditioner or a refrigeration device, a charge input to a battery, etc. These power consumptions are included in the total power on the power supply 91 side. Further, as described above, the electric power on the external power source 92 side is supplied to the in-store lighting device 77 and other home appliances such as the microwave oven 84. These power consumptions are included in the total power on the external power supply 92 side. At this time, the amount of power is measured for each block of each device or for each type of power supply.
[0091]
FIG. 26 shows the relationship between the ambient temperature and the change rate of brightness in the fluorescent lamp, and the change rates of the two types of fluorescent lamps are indicated by a solid line and a broken line. The outdoor lighting needs to be bright for advertising of the store, and it is necessary to irradiate the product with a sufficiently bright light beam in the store. In the example of FIG. 26, the temperature is lower than 20 degrees or 30 When it is higher than the degree, the total luminous flux is decreased by several% or more. When the temperature is lowered by an external lighting device, the image is lowered by several tens of percent to give a dark impression. Also, when the heat is trapped by the heat radiation of the fluorescent lamp, it becomes dark as the temperature rises. Conventionally, as a countermeasure, the required number of illuminations and the ability to increase the illumination to secure the necessary illuminance even if the temperature becomes too high or too low. However, as described with reference to FIG. The temperature can be controlled within a certain range by providing an opening in consideration of the air flow in the cover of the external lighting. Further, the brightness of the illumination can be changed by changing the voltage applied to the illumination device 77 by the inverter 86b of FIG. In the case of a fluorescent lamp, the power and the total speed of light increase or decrease in proportion to the power supply voltage. That is, if the temperature around the fluorescent lamp is measured, a certain illuminance, that is, brightness can be maintained according to this temperature. As a result, it is not necessary to make useless illumination.
[0092]
In addition, when the brightness is not so required due to the surroundings, such as at a midnight time at a convenience store, the voltage of the outdoor lighting can be lowered in accordance with the decrease in temperature. If the room temperature during indoor cooling is set higher during the midnight hours, or the room temperature during indoor heating is set slightly lower during the midnight hours, either Also in this case, the temperature value of the air conditioner and the brightness of the lighting device can be adjusted simultaneously by detecting the temperature by lowering the voltage value applied to the lighting device, that is, double energy-saving operation can be performed finely. In this way, a combined device of air conditioning and lighting can be performed simultaneously. In addition, the setting of such an operation method can be achieved by simply setting the temperature in advance in accordance with the season and time zone in the operation algorithm of the management / control unit 41 and the operation mode such as heating or cooling. The total input can be controlled so that unnecessary energy is not used while maintaining the original roles of the air conditioner and lighting. In conventional stores, lighting devices with sufficient margin, such as increasing the number and capacity to keep the brightness above a certain level even when the temperature is cold or too high, are provided with an illuminance sensor. In the case where the brightness becomes brighter than this while ensuring the thickness, the input voltage to the lighting device can be lowered to eliminate waste. In other words, the illuminance sensor plays the role of temperature detection means of the lighting device, and the lighting effect that reliably satisfies the customer by double detection of the suction temperature of the air conditioner, that is, the temperature of the indoor air. Can be obtained.
[0093]
Embodiment 3 FIG.
In FIG. 25, external power sources 91 and 92 are different types of power sources. In addition to having different types of power supplies supplied from the outside, batteries, solar cells, fuel cells, and the like can be provided as internal power supplies. When power is supplied from a plurality of power supplies, a plurality of devices that consume electricity as a load are connected to the power supply, as shown in FIG. 25, and each wiring, switch, voltage, etc. are adjusted, such as a rectifier circuit or an inverter. It is necessary to switchably connect through an electric circuit such as a circuit. In this invention, when connecting between such a power supply and the device, when there are a plurality of types of external power supplies, different contract forms are often adopted, and each individual power amount is measured and each individual power supply is measured. Applying the operation algorithm described above according to the measured individual power and the total power, each device operates with less energy to reduce the power consumption, and It is possible to switch to a type of power that is easy to handle. That is, since a plurality of types of power supplies are provided so as to be switchable, the power supply that provides the cheapest electricity bill can be selected. With multiple types of external power sources, you can contract with different power companies, use contracted electricity that is cheaper depending on the time of day, use contracted electricity that is cheaper depending on the season, and depending on the amount of contracted power When there is a restriction, unlike this contract, it means a power source that uses electricity of a contract that can avoid the restriction.
[0094]
The power consumption measuring means 93 measures the power consumption for each type of power source and determines which external power source is to be used and whether to use the internal power source with various batteries as the power source. And a selection to switch the circuit described in the fifth embodiment may be performed by evaluating with an operation method preset and stored in the management / control unit 41. By setting the contract conditions such as electricity charges according to time and season, capacity restrictions, etc. in the microcomputer in advance and making this setting changeable from the outside, the electricity charge according to the amount of power changes depending on the price of oil, etc. In such a case, the calculation of the electricity bill can be immediately changed, and if the switching of the electric circuit is selected by the electricity bill, the cheaper one can be selected. Such a configuration enables more efficient operations such as operations that do not waste the contract power consumption and countermeasures during peak hours. Rather than simply selecting the direction of lower total power as the operation algorithm, the energy consumption cost, which includes other energy equivalent to calorie conversion, that is, the amount of energy consumed for each type of energy and the usage fee per unit energy for each type of heat source Since the one with the lower cost is selected, it is necessary to calculate according to the contract conditions such as the season and the time zone according to the type of power source and heat source. In the present invention, in consideration of mutual influences, the control that was previously considered only as the control of each individual device was considered as a composite device from the aspect of individual power and total power, and the operation was considered to reduce energy together. Is. In addition, since there are multiple types of different power sources and the most effective use of electricity in the region appears in the contract and voltage differences when supplying power from the outside, the electricity bill and limited capacity indicated in this contract, etc. Can be switched. That is, the present invention proposes a device and method effective as a global environmental measure through the operation of a complex device that influences each other from energy saving of individual devices. In other words, it is possible for society as a whole to adopt household electric appliances and facility equipment in a direction with less energy by operating methods that include not only thermal effects but also mutual effects as the amount of power supplied from the outside. I can do it. Furthermore, for each device used in the electrical circuit connected to the power supply that supplies this load, one that consumes electricity, such as an inverter, becomes one of the devices, and power consumption is measured including this amount of power. Since the measurement is performed by the means 93, the most effective energy saving or inexpensive electricity bill can be obtained.
[0095]
As described above, in the present invention, when the combined device coexists in the space where the input of the refrigeration device and the input of the air conditioning device are summed by the microcomputer and the set temperature or set humidity is changed, this set temperature is changed over time. It is also possible to make it. Also, in this invention, even when many devices such as refrigeration equipment, air conditioning equipment, and lighting equipment coexist in a state where they affect each other thermally and electrically, there are individual measures for energy saving measures and inexpensive electricity bills. However, it is possible to measure the amount of individual electric energy, for example, by measuring the amount of each individual electric power. In addition to summing the input of the device and the input of the air conditioner, changing the set temperature or set humidity to select the set value in a direction that reduces the total input, so that stable energy reduction can be achieved with a simple configuration, and again It is possible to eliminate wasteful electricity bills not only between devices that have thermal effects but also between devices where power and electricity costs are summed with the same wiring, and there is also waste that the effects of both are superimposed Because it divided to allow significant savings. In addition, as explained at stores, etc., devices that are used in general buildings and residences such as offices are installed in spaces that have thermal effects on each other, or devices that use the same wiring to exchange power. It is natural that the present invention that eliminates waste is effective if it is between, that is, waste of energy and waste of electricity as a whole is omitted, and individual houses, individual stores, individual buildings, individual factories, It can be used to protect the global environment, such as by switching the type of external power supply in each region and easily allowing the power of the combined device to be used, so that existing power facilities can be used effectively. Of course.
[0096]
  As described above, the present inventionThis combined device is a refrigeration device that is placed indoors to store low-temperature storage items, an air conditioner that performs indoor air conditioning, and a wind speed that blows the temperature setting value of the air conditioner that is the target of the room temperature into the air conditioner room Alternatively, the temperature and humidity setting means for changing the air volume is provided, and the change in the direction in which the total of the input of the refrigeration device and the input of the air conditioning device becomes smaller is selected. It is done.
[0097]
In the present inventionSuch a composite apparatus includes a refrigeration apparatus that is placed indoors to store a low-temperature storage product, an air conditioner that performs indoor air conditioning, and the indoor temperature and humidity so that the sum of the input of the refrigeration apparatus and the input of the air conditioner is reduced. And a control means for adjusting the temperature, so that the control including the influence of the mutual temperature and humidity becomes possible.
[0098]
In the present inventionSuch a composite apparatus is used because the refrigeration apparatus and the air conditioner have separate heat source cycles for generating heat and cold, and the sum of the input of the refrigeration apparatus and the input of the air conditioner includes the sum of the respective inputs of the heat source cycle. A large energy saving effect is obtained including a large part of the input.
[0099]
In the present inventionIn such a composite apparatus, the showcase opening part of the refrigeration apparatus or the main body door part of the freezer is arranged in the room, and the air conditioner is arranged in the room with a blowing part for blowing out the air that has been air-conditioned by the heat pump system. Thus, a large energy saving effect can be obtained, including the part where the mutual influence between the devices is the largest.
[0100]
In the present inventionSuch a composite apparatus includes a room in which a showcase opening of a refrigeration apparatus or a main body door of a freezer is arranged, and a blowout part that blows out air that has been air-conditioned by a heat pump system of an air conditioner, and an input of the refrigeration apparatus Temperature and humidity setting means for detecting the input of the air conditioner and setting the room temperature or humidity so that the total input is a predetermined value or less, the outside air introduction means for introducing outside air into the room, and the room temperature or humidity. And a control means for controlling the air conditioner or the outside air introduction means to detect and set the temperature or humidity set by the temperature setting means, so that a large energy saving effect can be obtained with a simple configuration.
[0101]
In the present inventionIn such a composite apparatus, the temperature setting value or the setting of the wind speed or amount of air blown into the room can be changed by communication from the outside, so that flexible operation is possible.
[0102]
【The invention's effect】
As described above, the composite apparatus according to the present invention is provided in a room to which cold heat is supplied from an opening of a freezing apparatus that stores food, indoor temperature and humidity detection means for detecting the indoor temperature and humidity, and the indoor temperature. An air conditioner that adjusts the humidity relative to the indoor temperature so that the indoor humidity detected by the humidity detecting means is equal to or higher than the absolute humidity corresponding to the dew point of the temperature in the refrigerator housing the food in the refrigerator. The temperature and humidity of the air is maintained in the target temperature and humidity zone that is the setting range, and the control device that sets the temperature and humidity that is the target value, and the input of the refrigeration system and air conditioner that measure the target value little by little Therefore, energy can be reduced for indoor air including humidity.
[0103]
The composite apparatus according to the present invention adds the input of the refrigeration apparatus and the input of the air conditioner, and changes the set temperature or set humidity, or the set value of the blown air speed or air volume, which is a target value to be changed little by little. Since the set value is selected in such a direction that the total input becomes smaller, stable energy reduction can be achieved with a simple configuration.
[0104]
The composite apparatus according to the present invention sets a target set value for an air conditioning room to a high temperature in a preset target temperature / humidity zone during cooling, and in a preset target temperature / humidity zone during heating. Since the temperature is set at a low temperature, a large energy saving effect can be obtained without impairing comfort in stable driving.
[0105]
The composite apparatus according to the present invention includes an outside air introduction unit that introduces outside air into the room, and an outside air temperature / humidity detection unit that measures the temperature and humidity of the outside air. Since the set temperature or set humidity of the air conditioner or the wind speed or the amount of air blown out is changed based on the calendar information, energy saving can be easily obtained without excessive operation.
[0106]
The composite apparatus according to the present invention includes an outside air introduction unit that introduces outside air into the room, and an outside air temperature / humidity detection unit that measures the temperature and humidity of the outside air. Since the target temperature / humidity zone, which is the temperature / humidity range of the indoor air maintained by the air conditioner, is adjusted based on the calendar information, comfort can be maintained and energy saving can be easily obtained.
[0107]
The composite apparatus according to the present invention includes an external air introduction unit that introduces outside air into the room, and an outside air temperature / humidity detection unit that measures the temperature and humidity of the outside air, and the measured enthalpy of the outside air. Calculate and compare the enthalpy of indoor air and the enthalpy of outside air to operate and stop the outside air introduction means, and stop the operation of the outside air introduction means within the range where the room temperature does not reach the lowest temperature causing problems such as freezing. Since the temperature limiter is provided, the outside air is effectively utilized and the problem of icing in the indoor device is eliminated.
[0108]
The composite apparatus according to the present invention includes an internal temperature detection means for detecting the internal temperature of the freezer that is disposed indoors and supplies cold heat at a temperature lower than the indoor temperature, and an internal temperature detection means in which the internal temperature detection means is set. A refrigerant circulation shut-off means provided in the refrigeration apparatus for shutting off the circulation of the refrigerant for supplying cold heat to the inside with an on-off valve when a target temperature of 1 is reached, and a temperature higher than the first target temperature. A capacity control device that controls the rotational speed of the compressor provided in the refrigeration apparatus to be small when the temperature in the refrigerator reaches a certain second target temperature, and controls the first so as to suppress fluctuations in the temperature in the refrigerator. Since the temperature difference between the target temperature and the second target temperature is set, useless operation in the refrigerant cycle is prevented, and temperature changes in the refrigerator can be suppressed.
[0109]
The operation method of the composite apparatus according to the present invention includes an air temperature / humidity detecting step for detecting and storing the temperature and humidity of indoor air and the temperature of outdoor air that are air-conditioned by an air conditioner, and a refrigeration apparatus for storing food having an opening in the room Calculating the absolute humidity with the internal temperature as the dew point and calculating the input of the air conditioner from the temperature and humidity stored in the air temperature and humidity detection step, The temperature of the room air that is smaller than the sum of the inputs and the humidity relative to the temperature of the room air that is selected to be higher than the absolute humidity is set as the target value for the operation of the air conditioner Energy reduction can be achieved for indoor air including humidity while maintaining the freshness of the food to be stored.
[0110]
The composite apparatus according to the present invention includes an illuminating device that is arranged near the ceiling of the room and rectifies an alternating current and is supplied with electric power via an inverter to illuminate, and air that is arranged indoors and is air-conditioned indoors near the lighting apparatus. An air conditioner to be circulated, a temperature detection means for measuring an air temperature circulating around a room around the illumination apparatus, and an inverter according to the ambient temperature of the illumination apparatus detected by the temperature detection means Therefore, it is possible to reduce energy without affecting performance with a simple configuration.
[0111]
The composite device according to the present invention includes an illumination device that is arranged near the indoor ceiling and rectifies alternating current and is supplied with electric power via an inverter to perform illumination, and an air outlet that is arranged near the indoor ceiling and is air-conditioned into the room. An air conditioner that blows out the air, temperature detection means that measures the temperature of the air that circulates around the interior of the lighting device, and covers a portion of the air that blows from the air outlet. A ventilation guide that flows along the vicinity of the ceiling and leads to the illuminating device, and circulates air through the illuminating device to keep the temperature around the illuminating device detected by the temperature detecting means within a range that ensures a certain brightness. Therefore, it is not necessary to use a simple structure and useless lighting.
[0112]
In the composite apparatus according to the present invention, the air temperature circulating in the room surrounding the lighting apparatus is suppressed to a range of 20 ° C. to 30 ° C., so that necessary illuminance can be easily ensured and energy can be reduced.
[0113]
The composite device according to the present invention covers a lighting device that is provided outdoors and illuminates, and has a cover provided with holes in the lower and upper portions so that heat does not accumulate inside the lighting device by circulating air, Provided with a temperature detecting means for detecting the temperature around the lighting device, and a control means for changing the brightness applied by changing the voltage applied to the lighting device with an inverter, according to the temperature detected by the temperature detecting means. Since the inverter is controlled to keep the lighting device at a certain brightness, the necessary illuminance can be secured outdoors and energy can be reduced.
[0114]
Since the composite device according to the present invention reduces the voltage of the inverter in accordance with a decrease in the temperature around the lighting device during a specific time period, energy saving can be easily achieved.
[0115]
A composite device according to the present invention includes a heat generating device that generates cold or high temperature heat, an air conditioner that cools or heats the room in which the heat generating device is disposed, and an illumination that is disposed in an upper portion of the room. An illuminating device, an electric circuit connecting means capable of connecting at least two types of devices such as a heat generating device, an air conditioner, and an illuminating device to a plurality of types of power supplies; and at least two types of heat generating devices, an air conditioner, and an illuminating device An arithmetic device that totals the power consumption of the device, and when the total power consumption reaches a predetermined value, switch the electrical circuit connection between at least one device and one type of power supply to another type Because it is connected to a power source, it is possible to select a power source with less electricity bill.
[0116]
The composite device according to the present invention is a device that generates cold or high temperature heat, an air conditioner that cools or heats the room in which the heat generating device is disposed, and an illumination that is disposed in the upper part of the room. And an electric circuit connecting means capable of connecting at least two kinds of devices, ie, a heat generating device, an air conditioner, and a lighting device, to a plurality of types of power supplies, and at least two types of the heat generating device, the air conditioner, and the lighting device The power supply to which the above devices are connected can be connected to another power supply during a preset time period, and a cheap power supply can be easily selected regardless of the contract.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 2 is an external explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 3 is a configuration explanatory diagram of a composite apparatus according to an embodiment of the present invention.
FIG. 4 is an explanatory diagram of the communication configuration of the composite apparatus according to the example of the embodiment of the present invention.
FIG. 5 is an explanatory diagram of the control configuration of the composite apparatus according to the example of the embodiment of the present invention.
FIG. 6 is a characteristic explanatory diagram of a composite apparatus according to an embodiment of the present invention.
FIG. 7 is a characteristic explanatory diagram of a composite apparatus according to an embodiment of the present invention.
FIG. 8 is a characteristic explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 9 is a configuration explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 10 is a characteristic explanatory diagram of a composite apparatus according to an embodiment of the present invention.
FIG. 11 is a configuration explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 12 is an explanatory diagram of the control configuration of the composite apparatus according to the example of the embodiment of the present invention.
FIG. 13 is an explanatory diagram of the control configuration of the composite apparatus according to the example of the embodiment of the present invention.
FIG. 14 is a characteristic explanatory diagram of a composite apparatus according to an embodiment of the present invention.
FIG. 15 is a characteristic explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 16 is a flowchart of the composite apparatus according to the embodiment of the present invention.
FIG. 17 is a characteristic explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 18 is a flowchart of the composite apparatus according to the embodiment of the present invention.
FIG. 19 is a characteristic explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 20 is a characteristic explanatory diagram of the composite apparatus according to the example of the embodiment of the present invention.
FIG. 21 is a configuration explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 22 is a configuration explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 23 is a configuration explanatory diagram of a composite apparatus according to an example of an embodiment of the present invention.
FIG. 24 is an explanatory diagram of a control configuration of a composite apparatus according to another example of the present invention.
FIG. 25 is an explanatory diagram of a circuit configuration of a composite apparatus according to another embodiment of the present invention.
FIG. 26 is a characteristic explanatory diagram of a composite apparatus according to another example of the present invention.
FIG. 27 is an explanatory diagram of a control configuration of a conventional composite apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Food store, 2 Showcase, 3 Evaporator, 4 Outdoor unit of freezing apparatus, 5 Condenser, 6 Compressor, 7 Expansion apparatus, 8 Dew-proof heater, 9 Air curtain, 10 Indoor heat exchanger of air-conditioning apparatus, DESCRIPTION OF SYMBOLS 11 Temperature / humidity detection apparatus, 12 Air conditioner outdoor unit, 13 Compressor, 14 Outdoor heat exchanger, 15 Four-way valve, 16 Expansion device, 17 Outside air temperature or temperature / humidity detection means, 18 Controller, 20 Intrusion into showcase Airflow, 21 Indoor fan, 22 Damper, 23 Ventilation guide, 30 Refrigeration unit input detection device, 31 Air conditioner input detection device, 32 Microcomputer, 33 Communication means, 34 Modulation / demodulation means, 35 Coupling means, 36 Communication interface, 37 Communication Interface, 38 Microcomputer, 39 Modem, 41 Management / Control device, 42 communication line, 43 control unit for air conditioning device, 44 control unit for refrigeration device, 45 control unit for showcase, 46 telephone station, 47 service center, 51 management / control unit, 52 air conditioner, 53 refrigerator, 54 Showcase, 55 Ventilation fan, 56 Lighting, 57 Control panel, 58 Room temperature sensor, 59 Outside air temperature sensor, 60 Communication port, 71 Building, 72 External lighting device, 73 Open / close door, 74 Glass wall, 75 External wall, 76 Air conditioner Indoor grill, 77 indoor lighting device, 78 pay phone, 80 distribution board, 81 electric wire, 82 ventilation fan, 83 duct, 84 microwave oven, 85 motor for compressor, 86 inverter, 87 switch circuit, 88 rectifier circuit, 89 charge Discharge circuit, 90 batteries, 91 3-phase 200V electricity Source, 92 single-phase 200V power supply, 93 power consumption measuring device, 95 pattern, 96 piping, 97 current sensor, 98 voltage sensor, WA air conditioning input, WR freezing input, WS showcase input, Ts in-store temperature setting value, Φs in-store humidity Set value, To outdoor temperature, Tos showcase temperature setpoint, Ti store temperature, Φis store humidity, TR showcase temperature, ΦR showcase temperature.

Claims (8)

食品を収納する冷凍装置の開口から冷熱が供給される室内と、前記室内の温湿度を検出する室内温湿度検出手段と、前記室内に設けられ、前記室内温湿度検出手段にて検出された室内湿度を前記冷凍装置の食品を収納する庫内温度の露点に相当する絶対湿度以上になるように前記室内の温度に対する湿度を調整する空調装置と、前記空調装置にて前記室内の空気の温湿度を設定範囲である目標温湿度ゾーンに維持するとともに、目標値である温湿度を設定する制御装置と、前記目標値を少しずつ変えて計測する前記冷凍装置および前記空調装置のそれぞれの入力の和を記憶する記憶手段と、を備えたことを特徴とする複合装置。  A room to which cold heat is supplied from an opening of a freezer that stores food, an indoor temperature / humidity detecting means for detecting the temperature / humidity of the room, and a room provided in the room and detected by the indoor temperature / humidity detecting means An air conditioner that adjusts the humidity relative to the indoor temperature so that the humidity is equal to or higher than the absolute humidity corresponding to the dew point of the temperature inside the refrigerator housing the food, and the temperature and humidity of the indoor air in the air conditioner Is maintained in the target temperature / humidity zone that is the set range, and the sum of the inputs of the control device that sets the temperature / humidity that is the target value, the refrigeration device that measures the target value little by little, and the air conditioner. And a storage means for storing the information. 冷凍装置の入力と空調装置の入力を合計するとともに、前記空調装置の少しずつ変化させる目標値である設定温度または設定湿度または吹き出す風速あるいは風量の設定値を変化させて合計入力が小さくなる方向の設定値を選択することを特徴とする請求項1に記載の複合装置。  In addition to adding the input of the refrigeration unit and the input of the air conditioner, changing the set temperature or set humidity or the set value of the blown air speed or air volume, which is the target value to be changed gradually, reduces the total input. The composite apparatus according to claim 1, wherein a setting value is selected. 空気調和を行う室内の目標設定値として、冷房時はあらかじめ設定された目標温湿度ゾーン中の高い温度に設定し、暖房時はあらかじめ設定された目標温湿度ゾーン中の低い温度に設定することを特徴とする請求項1または2に記載の複合装置。  As a target setpoint for indoor air conditioning, set a high temperature in the preset target temperature / humidity zone during cooling, and set a low temperature in the preset target temperature / humidity zone during heating. The composite apparatus according to claim 1, wherein the composite apparatus is characterized. 室内に外気を導入する外気導入手段と、前記外気の温湿度を計測する外気温湿度検出手段と、を備え、計測された外気の温湿度またはタイマーによる時刻またはあらかじめ設定されたカレンダー情報に基づいて、前記空調装置の設定温度または設定湿度または吹き出す風速あるいは風量を変化させることを特徴とする請求項1または2または3に記載の複合装置。  An outside air introduction means for introducing outside air into the room, and an outside air temperature and humidity detection means for measuring the temperature and humidity of the outside air. 4. The composite apparatus according to claim 1, 2 or 3, wherein the set temperature or set humidity of the air conditioner or the speed or amount of air blown out is changed. 室内に外気を導入する外気導入手段と、前記外気の温湿度を計測する外気温湿度検出手段と、を備え、計測された外気の温湿度またはタイマーによる時刻またはあらかじめ設定されたカレンダー情報に基づいて、空調装置にて維持する室内空気の温湿度範囲である目標温湿度ゾーンを調整することを特徴とする請求項1または2または3に記載の複合装置。  An outside air introduction means for introducing outside air into the room, and an outside air temperature and humidity detection means for measuring the temperature and humidity of the outside air. 4. The composite apparatus according to claim 1, wherein a target temperature / humidity zone which is a temperature / humidity range of indoor air maintained by the air conditioner is adjusted. 室内に外気を導入する外気導入手段と、前記外気の温湿度を計測する外気温湿度検出手段と、を備え、計測された前記外気のエンタルピーを算出し、室内空気のエンタルピーと前記外気のエンタルピーを比較して前記外気導入手段の運転や停止を行うとともに、室内温度が氷結などの問題を起こす最低温度にならない範囲に前記外気導入手段の運転を停止させる温度リミッターを設けることを特徴とする請求項1ないし5のいずれかに記載の複合装置。  An outside air introduction unit that introduces outside air into the room, and an outside air temperature and humidity detection unit that measures the temperature and humidity of the outside air, and calculates the enthalpy of the measured outside air, A temperature limiter is provided for operating and stopping the outside air introduction means in comparison and stopping the operation of the outside air introduction means in a range where the room temperature does not reach a minimum temperature causing problems such as freezing. The composite device according to any one of 1 to 5. 室内に配置され前記室内の温度より低い温度の冷熱を供給する冷凍装置の庫内の温度を検出する庫内温度検出手段と、前記庫内温度検出手段が設定された第1の目標温度に達した場合前記庫内への冷熱の供給を行う冷媒の循環を開閉弁にて遮断する前記冷凍装置に設けられた冷媒循環遮断手段と、前記第1の目標温度より高い温度である第2の目標温度に前記庫内の温度が到達した場合前記冷凍装置に設けられた圧縮機の回転速度を小さく制御する能力制御装置と、を備え、前記庫内の温度の変動を抑えるように前記第1の目標温度と前記第2の目標温度との間の温度差を設定することを特徴とする請求項1ないし6のいずれかに記載の複合装置。  An internal temperature detection means for detecting the temperature in the refrigerator of the refrigeration apparatus that is disposed indoors and supplies cold heat at a temperature lower than the indoor temperature, and reaches the first target temperature set by the internal temperature detection means. In this case, the refrigerant circulation shut-off means provided in the refrigeration apparatus for shutting off the circulation of the refrigerant for supplying the cold heat to the inside with the on-off valve, and the second target that is higher than the first target temperature. A capacity control device that controls a small rotational speed of a compressor provided in the refrigeration apparatus when the temperature in the storage reaches the temperature, and the first control so as to suppress fluctuations in the temperature in the storage The composite apparatus according to claim 1, wherein a temperature difference between a target temperature and the second target temperature is set. 空調装置で空調される室内空気の温湿度と室外空気の温度を検出し記憶する空気温湿度検出ステップと、前記室内に開口を有する食品を収納する冷凍装置の庫内の温度を求め前記庫内温度を露点とする絶対湿度を算出する湿度算出ステップと、前記空気温湿度検出ステップにて記憶された温湿度から前記空調装置の入力を演算し、前記冷凍装置の入力との和を求め、この入力の和の内小さくなる前記室内空気の温湿度であって、かつ、前記絶対湿度以上になるように選択された前記室内空気の温度に対する湿度を前記空調装置の運転の目標値に設定するステップと、を備えたことを特徴とする複合装置の運転方法。  An air temperature / humidity detecting step for detecting and storing the temperature and humidity of indoor air to be air-conditioned by the air conditioner and the temperature of the outdoor air, and determining the temperature in the refrigerator of the refrigerator for storing food having an opening in the room A humidity calculating step for calculating an absolute humidity with a dew point as a temperature, and calculating the input of the air conditioner from the temperature and humidity stored in the air temperature and humidity detecting step, and obtaining the sum of the input of the refrigeration device, A step of setting the humidity for the temperature of the room air selected so as to be equal to or higher than the absolute humidity as a temperature / humidity of the room air that is smaller than a sum of inputs as a target value for operation of the air conditioner And a method of operating the composite apparatus.
JP2000279578A 2000-01-31 2000-09-14 Composite device and method of operating composite device Expired - Lifetime JP4378864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279578A JP4378864B2 (en) 2000-01-31 2000-09-14 Composite device and method of operating composite device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000021704 2000-01-31
JP2000-21704 2000-01-31
JP2000279578A JP4378864B2 (en) 2000-01-31 2000-09-14 Composite device and method of operating composite device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009166836A Division JP4877366B2 (en) 2000-01-31 2009-07-15 Compound equipment

Publications (2)

Publication Number Publication Date
JP2001289485A JP2001289485A (en) 2001-10-19
JP4378864B2 true JP4378864B2 (en) 2009-12-09

Family

ID=26584471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279578A Expired - Lifetime JP4378864B2 (en) 2000-01-31 2000-09-14 Composite device and method of operating composite device

Country Status (1)

Country Link
JP (1) JP4378864B2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3816884B2 (en) * 2003-03-17 2006-08-30 東芝キヤリア株式会社 Air conditioning system for stores
JP2006042964A (en) * 2004-08-02 2006-02-16 Sanyo Electric Co Ltd Showcase
EP1850440B1 (en) 2005-02-08 2017-07-05 Kazuo Miwa Building energy management system
JP4505363B2 (en) * 2005-03-29 2010-07-21 東洋熱工業株式会社 Control method of cold / hot water in air conditioning system
JP4594146B2 (en) * 2005-03-29 2010-12-08 東洋熱工業株式会社 Optimum control method for variable air volume of air conditioning system
JP4703299B2 (en) * 2005-07-20 2011-06-15 三洋電機株式会社 Air conditioner
JP2007060848A (en) * 2005-08-26 2007-03-08 Sanyo Electric Co Ltd Apparatus and method for controlling electric energy and its program
JP4579810B2 (en) * 2005-11-08 2010-11-10 株式会社山武 Air conditioning control system
JP4544220B2 (en) * 2006-09-01 2010-09-15 ダイキン工業株式会社 Refrigeration equipment
JP5247132B2 (en) * 2007-11-30 2013-07-24 三洋電機株式会社 Air conditioning system
JP5044440B2 (en) * 2008-02-20 2012-10-10 パナソニック株式会社 Heating system
JP2009236342A (en) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd Centralized control device for showcase
JP2011257072A (en) * 2010-06-09 2011-12-22 Panasonic Electric Works Co Ltd Energy management apparatus
JP5440872B2 (en) * 2010-09-22 2014-03-12 清水建設株式会社 Environment-linked control device
JP5318059B2 (en) * 2010-09-28 2013-10-16 三菱電機株式会社 Control device for air conditioning system and air conditioning system provided with the control device
JP4993014B2 (en) * 2010-09-30 2012-08-08 ダイキン工業株式会社 Controller and air conditioning system
JP5758663B2 (en) * 2011-03-23 2015-08-05 三菱電機株式会社 Air conditioner
JP5627522B2 (en) * 2011-03-25 2014-11-19 三菱電機株式会社 Air conditioner
JP5627523B2 (en) * 2011-03-25 2014-11-19 三菱電機株式会社 Air conditioner
JP5773757B2 (en) * 2011-05-31 2015-09-02 三菱電機株式会社 Air conditioning system
JP5758749B2 (en) * 2011-09-05 2015-08-05 三菱電機株式会社 Refrigeration / refrigeration system
US9170628B2 (en) 2011-10-28 2015-10-27 Technomirai Co., Ltd. Energy-savings control system for showcases, refrigerators and freezers
JP2014099113A (en) * 2012-11-15 2014-05-29 Samsung R&D Institute Japan Co Ltd Electric appliance network system
CN104823001B (en) * 2012-12-06 2018-07-27 松下知识产权经营株式会社 Space environment managing device, space environment management system and space environment management method
JP6228025B2 (en) * 2014-02-04 2017-11-08 パナソニック株式会社 Cooling system
JP6387777B2 (en) 2014-06-13 2018-09-12 富士通株式会社 Evaluation program, evaluation method, and evaluation apparatus
JP6402509B2 (en) * 2014-06-26 2018-10-10 富士電機株式会社 Waste heat treatment equipment
JP6341012B2 (en) * 2014-09-10 2018-06-13 富士電機株式会社 Air supply switching device
JP6233283B2 (en) * 2014-11-26 2017-11-22 富士電機株式会社 Air conditioning system, air conditioner control device, and air conditioner control method
JP2018204944A (en) * 2017-05-30 2018-12-27 パナソニックIpマネジメント株式会社 Ventilation method, control device and ventilation system
JP2019164056A (en) * 2018-03-20 2019-09-26 東京電力ホールディングス株式会社 Fresh air leakage amount measurement method and fresh air leakage amount measuring device
JP6635455B1 (en) * 2019-06-07 2020-01-22 株式会社 テクノミライ Digital smart air control system for store products
CN112503667A (en) * 2021-01-21 2021-03-16 广东浩特普尔空调有限公司 Constant dew point temperature variable flow heat pump dehumidification type precise air conditioner and control method thereof
CN113685913B (en) * 2021-08-02 2023-03-21 重庆海尔空调器有限公司 Control method of fresh air conditioner
CN114094139B (en) * 2022-01-18 2022-04-22 武汉海亿新能源科技有限公司 Fuel cell system with multi-level thermal management control
CN114508830B (en) * 2022-01-25 2024-05-07 小米科技(武汉)有限公司 Method for controlling operation of air conditioner, electronic equipment and storage medium
KR102549711B1 (en) 2022-10-19 2023-06-30 (재)한국건설생활환경시험연구원 Ai based total energy management system for high energy efficiency of logistics center

Also Published As

Publication number Publication date
JP2001289485A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JP4378864B2 (en) Composite device and method of operating composite device
JP4877366B2 (en) Compound equipment
CN102272533B (en) Air-conditioning control apparatus, cooling system, and air-conditioning control program
CA2100280C (en) Auxiliary outside air refrigeration system
JP3861294B2 (en) Refrigeration equipment
JP4618304B2 (en) Store energy equipment operation system
CN110736145A (en) double-air-duct air conditioner and dehumidification method and system thereof
CN103471211A (en) Air conditioner with variable cooling capacity
JP3528633B2 (en) Air conditioner and control method thereof
JP4269324B2 (en) Thermal device arrangement method, air conditioner, thermal device apparatus and operation method thereof, air conditioning / illumination apparatus and operation method thereof, illumination apparatus and operation method thereof
JPS602505Y2 (en) air conditioner
JP5627522B2 (en) Air conditioner
JP2001208421A (en) Method of arranging heat apparatus, and air conditioner and heat apparatus and their operation method, and air- conditioning and illuminating device and its operation method, and illuminator and its operation method
JPH09196432A (en) Air conditioner and method for controlling air conditioner
KR20040042089A (en) Air conditioner for economizing power
CN218120033U (en) Electrodeless dehumidification air conditioner heat pump all-in-one that adjusts temperature
KR101064372B1 (en) Apparatus for controlling a refrigerant of multi air conditioner
JP2000088423A (en) Controller for low temperature showcase
JP5318059B2 (en) Control device for air conditioning system and air conditioning system provided with the control device
KR102342487B1 (en) Air conditioner and control method thereof
CN115662259A (en) Air conditioner display device and system
JPS61256162A (en) Air heat-source heat pump device
Hasan et al. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN OF A VRF AIR CONDITIONING SYSTEM WITH ENERGY CONSERVATION ON COMMERCIAL BUILDING
CN2531333Y (en) Dual-purpose machine for refrigerator and cold-storage air conditioner
Proctor et al. System Optimization of Residential Ventilation, Space Conditioning and Thermal Distribution

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4378864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term