JP3528633B2 - Air conditioner and control method thereof - Google Patents

Air conditioner and control method thereof

Info

Publication number
JP3528633B2
JP3528633B2 JP31280798A JP31280798A JP3528633B2 JP 3528633 B2 JP3528633 B2 JP 3528633B2 JP 31280798 A JP31280798 A JP 31280798A JP 31280798 A JP31280798 A JP 31280798A JP 3528633 B2 JP3528633 B2 JP 3528633B2
Authority
JP
Japan
Prior art keywords
air
temperature
air conditioner
conditioning
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31280798A
Other languages
Japanese (ja)
Other versions
JPH11201523A (en
Inventor
誠司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31280798A priority Critical patent/JP3528633B2/en
Publication of JPH11201523A publication Critical patent/JPH11201523A/en
Application granted granted Critical
Publication of JP3528633B2 publication Critical patent/JP3528633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空調機以外の冷熱
負荷となるオープンショーケースの様な機器や装置が存
在する食品店舗等室内の空調温度制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to air-conditioning temperature control in a room such as a food store in which an apparatus or device such as an open showcase that is a cold load other than an air conditioner exists.

【0002】[0002]

【従来の技術】通常、空気調和機は、ユーザがリモコン
等を通じて設定する設定室温に実際の室温を近づけるよ
うに制御動作する。したがって、冷房時には、ユーザが
設定温度を低くすると、外気との温度差が大きくなるた
め空気調和機の消費電力は大きくなる。ところが、オー
プンショーケースが存在する食品店舗等の冷房の場合、
オープンショーケースは店舗内空気が負荷の一部となっ
ているため、店舗内空気温度が低ければショーケースの
負荷は小さくなり、同時にその熱源である冷凍機の消費
電力は小さくなる。このように、空気調和機とオープン
ショーケース・冷凍機の消費電力は店舗内空気温度に対
してトレードオフの関係にある。しかしながら、従来の
食品店舗の空気調和機は、単に季節によって冷房/暖房
および設定温度を一律に決めていた。
2. Description of the Related Art Normally, an air conditioner performs a control operation so that an actual room temperature approaches a set room temperature set by a user through a remote controller or the like. Therefore, during cooling, if the user lowers the set temperature, the temperature difference from the outside air increases, and the power consumption of the air conditioner increases. However, in the case of air conditioning in food stores where there are open showcases,
Since the air in the store is a part of the load in the open showcase, if the air temperature in the store is low, the load on the showcase is small, and at the same time, the power consumption of the refrigerator, which is the heat source, is small. In this way, the power consumption of the air conditioner and the open showcase / refrigerator has a trade-off relationship with the air temperature in the store. However, the conventional air conditioners for food stores simply uniformly set the cooling / heating and the set temperature according to the season.

【0003】[0003]

【発明が解決しようとする課題】従来の食品店舗の空気
調和機は上記のような動作であるので、店舗内のオープ
ンショーケースおよび冷凍機の消費電力と空気調和機の
消費電力の合計値に対しては何の考慮もされていないの
で、ユーザの設定した空調設定温度は店舗全体の冷凍冷
蔵空調用のエネルギ消費量が必ずしも定量的に最小とは
なっていないという問題点があった。また店内に設けら
れたショーケースと空気調和装置の需要電力を算出する
技術が特開平9−196432号公報に開示してある
が、具体的な内容として熱負荷を複雑な方法で加算する
ことが記載されているだけで、需要電力を低減する方向
で空気調和機の設定温度を設定するという目的は記載さ
れていてもどのようにして低減し、どのようにして設定
するかなどの具体的な方法は不明であり、且つ、計算条
件の設定がその時その時状態により変化させる必要があ
り実用的ではないという問題があった。本発明は以上の
ような課題を解決するもので冷熱負荷の能力を考慮した
エネルギー効率の良い空調調和装置の制御を提供しよう
と言うものである。また本発明は快適性を確保しながら
年間を通じて消費エネルギーの少ない空気調和装置の制
御を得ようというものである。また本発明は簡単な制御
で汎用性の高い使い勝手の良い空気調和装置を提供する
ものである。
Since the conventional air conditioner for food stores operates as described above, the total value of the power consumption of the open showcase and the refrigerator in the store and the power consumption of the air conditioner is calculated. Since no consideration is given to the air-conditioning set temperature set by the user, the energy consumption for freezing and refrigerating air-conditioning in the entire store is not necessarily quantitatively minimum. A technique for calculating the demand power of a showcase and an air conditioner installed in a store is disclosed in Japanese Patent Laid-Open No. 9-196432, but as a concrete content, the heat load can be added by a complicated method. Even if the purpose of setting the set temperature of the air conditioner in the direction of reducing the power demand is described, even if it is described, the specific method such as how to reduce it and how to set it There is a problem that the method is unclear and the setting of calculation conditions needs to be changed depending on the state at that time, which is not practical. The present invention is intended to solve the above problems, and to provide control of an air conditioning conditioner with good energy efficiency in consideration of the ability of cold heat load. Further, the present invention is to obtain control of an air conditioner that consumes less energy throughout the year while ensuring comfort. The present invention also provides a highly versatile and easy-to-use air conditioner with simple control.

【0004】[0004]

【課題を解決するための手段】この発明に係わる空気調
和装置は、室内の空気調和を行う空気調和機と、この空
気調和された室内空気温度と異なる温度を発生させこの
室内空気を冷却する又はこの室内空気を加熱する冷熱負
荷機器と、空気調和機が室内温度を上下させる目標とす
る設定温度の値を、前記空気調和機と前記冷熱負荷機器
の合計の消費電力量が小さくなるように、外気温度が低
いほど、また前記空気調和機の容量もしくは空調面積と
前記冷熱負荷機器の容量との比が小さいほど小さい値と
するものである。
SUMMARY OF THE INVENTION An air conditioner according to the present invention is an air conditioner for performing indoor air conditioning, and a temperature different from the air-conditioned room air temperature is generated to cool the room air. The cold load equipment for heating the indoor air and the target set temperature value for the air conditioner to raise or lower the indoor temperature are the air conditioner and the cold load equipment.
The outside temperature is low so that the total power consumption of
How much, with the capacity or air conditioning area of the air conditioner
The smaller the ratio with the capacity of the cold load equipment, the smaller the value
To do .

【0005】この発明に係わる空気調和装置は、食品店
舗内の空気調和を行う空気調和機と、食品店舗内のオー
プンショーケースの負荷となる店舗空気を上下させる前
記空気調和機の温度設定値を、外気温度と空気調和機/
冷蔵冷凍オープンショーケースまたは冷凍機の空冷負荷
比率とに応じて変化させるものである。
The air conditioner according to the present invention sets the temperature setting values of the air conditioner for air conditioning in the food store and the air conditioner for raising and lowering the store air which becomes the load of the open showcase in the food store. , Outside temperature and air conditioner /
It is changed in accordance with the refrigerating / freezing open showcase or the air-cooling load ratio of the refrigerator.

【0006】この発明に係わる空気調和装置は、空気調
和機の冷房/暖房運転モード切り換えを、空調設定温度
からの室温の偏差によって自動的に切りかえるものであ
る。
The air conditioner according to the present invention automatically switches the cooling / heating operation mode of the air conditioner according to the deviation of the room temperature from the air conditioning set temperature.

【0007】この発明に係わる空気調和装置は、検出さ
れた外気温度を基に、空調設定温度を空気調和機の外部
で設定しその設定温度を空気調和機に入力することによ
り行うものである。
The air conditioner according to the present invention is performed by setting the air conditioning set temperature outside the air conditioner based on the detected outside air temperature and inputting the set temperature to the air conditioner.

【0008】この発明に係わる空気調和装置は、設定温
度の値を、外気温度及び空気調和機の容量と冷熱負荷機
器の容量との比に応じて、空気調和機及び冷熱負荷機器
の消費電力が小さくなるように変化させるものである。
In the air conditioner according to the present invention, the power consumption of the air conditioner and the cold heat load device can be adjusted according to the outside temperature and the ratio of the capacity of the air conditioner to the capacity of the cold heat load device. It is changed so that it becomes smaller.

【0009】この発明に係わる空気調和装置は、冷熱負
荷機器と空気調和機の電力を検出し検出された電力によ
り設定温度を補正するものである。
The air conditioner according to the present invention detects the electric power of the cold load equipment and the air conditioner, and corrects the set temperature by the detected electric power.

【0010】この発明に係わる空気調和装置の制御方法
は、室内の空気調和を行う空気調和機の容量と、この空
気調和された室内空気温度と異なる温度を発生させこの
室内空気を冷却する又はこの室内空気を加熱する冷熱負
荷機器の容量との比を算出するステップと、外気温度を
検出するステップと、前記外気温度及び前記容量の比か
ら空気調和機が室内温度を上下させる目標とする設定温
度の値を、前記空気調和機と前記冷熱負荷機器の合計の
消費電力量が少なくなるように、あらかじめ設定された
値に設定するステップと、を備えたものである。
The control method of the air conditioner according to the present invention cools the indoor air by generating a temperature different from the capacity of the air conditioner for air conditioning the room and the temperature of the room air which is air-conditioned. A step of calculating the ratio with the capacity of the cold load equipment that heats the indoor air, a step of detecting the outside air temperature, and a target set temperature for the air conditioner to raise or lower the indoor temperature from the ratio of the outside air temperature and the capacity The value of the total of the air conditioner and the cold load equipment
A step of setting to a preset value so that the power consumption amount is reduced .

【0011】この発明に係わる空気調和装置の制御方法
は、配置された領域の空気調和を行う少なくとも1台の
空気調和機及びこの空気調和される領域に配置され空気
調和が行われる空気温度と異なる温度を発生させこの領
域の空気を冷却する又はこの領域の空気を加熱する少な
くとも1台の冷熱負荷機器の複数の各機器の消費電力を
前記領域の空気温度毎に演算するステップと、空気調和
機の容量と冷熱負荷機器の容量との比率を求めこの比率
を変化させたときの領域の空気温度毎に演算された消費
電力を演算するとともに比率毎の低い消費電力に対応す
る空気温度を記憶させるステップと、領域の外部に配置
され空気調和機が空気調和する冷温熱を放熱または吸熱
する外部の温度を検出するステップと、検出された外部
の温度に対し、領域に配置された空気調和機と冷熱負荷
機器の容量の比率により記憶された空気温度を読みだし
て空気調和機の設定温度として設定するステップと、を
備えたものである。
The control method of the air conditioner according to the present invention is different from at least one air conditioner that performs air conditioning of the area where it is arranged and the air temperature that is arranged in this air-conditioned area and that is air-conditioned. Calculating a power consumption of each of a plurality of devices of at least one cooling load device for generating temperature to cool air in this region or to heat air in this region, for each air temperature in the region, and an air conditioner The ratio between the capacity of the air conditioner and the capacity of the cooling / heating equipment is calculated, and the power consumption calculated for each air temperature in the area when this ratio is changed is calculated, and the air temperature corresponding to the low power consumption for each ratio is stored. The step of detecting the temperature of the outside where the air conditioner is arranged outside the area to radiate or absorb the cold heat which is in harmony with the air, and the detected outside temperature. I read out the stored air temperature by the ratio of the capacity of the deployed air conditioner and cooling load equipment is obtained comprising the steps of setting a set temperature of the air conditioner, the.

【0012】この発明に係わる空気調和装置の制御方法
は、室内の空気調和を行う空気調和機の容量として空調
面積を使用し、冷熱負荷機器の容量に対し空調面積が小
さい場合設定温度を低めに設定するものである。
In the control method of the air conditioner according to the present invention, the air conditioning area is used as the capacity of the air conditioner for air conditioning the room, and the set temperature is lowered when the air conditioning area is smaller than the capacity of the cooling load equipment. It is something to set.

【0013】[0013]

【発明の実施の形態】実施の形態1.以下、本発明の実
施形態を図1〜図7に基づいて説明する。図1は本発明
のブロック図、図2は店舗モデル図を示し、食品店舗に
おいては、図2に示すように、空調熱負荷は日射、ドア
開閉などによる外気進入、照明、人員などの一般的な熱
負荷に加え、オープンショーケースの入れ替わり空気の
負荷も存在する。例えば、夏期冷房の場合、ユーザが設
定温度を低くすると、室内と外気との温度差が大きくな
るため空気調和機の消費電力は大きくなる。一方、オー
プンショーケースは店舗内空気が負荷の一部となってい
るため、店舗内空気温度が低ければショーケースの負荷
は小さく、同時にその熱源である冷凍機の消費電力は小
さくなる。このように、空気調和機とオープンショーケ
ース・冷凍機の消費電力は店舗内空気温度に対してトレ
ードオフの関係にある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of the present invention, FIG. 2 is a store model diagram, and in a food store, as shown in FIG. 2, air-conditioning heat load is generally sunlight, entrance of outside air due to opening and closing of doors, lighting, personnel, etc. In addition to the heavy heat load, there is also an air load due to the replacement of the open showcase. For example, in the case of summer cooling, if the user lowers the set temperature, the temperature difference between the indoor air and the outdoor air increases, and the power consumption of the air conditioner increases. On the other hand, in the open showcase, the air in the store is a part of the load, so if the air temperature in the store is low, the load of the showcase is small, and at the same time, the power consumption of the refrigerator, which is the heat source, is small. In this way, the power consumption of the air conditioner and the open showcase / refrigerator has a trade-off relationship with the air temperature in the store.

【0014】一例として、東京の5月日中の代表的な外
気温湿度条件の下、2℃冷蔵用オープンショーケース15
8,000[kcal/h]、-20℃冷凍用オープンショーケース21,9
40[kcal/h]、および空気調和機198,000[kcal/h](空調
面積2,340[m2])の設備容量を持つ、図2に示すような
食品店舗(以下モデル店舗)の室内について、冷蔵冷凍
空調熱負荷を店舗室内空気温度ごとに計算した結果を図
3に示す。図に示すように、冷凍用オープンショーケー
スは店舗内空気温度によらず熱負荷はほぼ一定である
が、冷蔵用オープンショーケースは店舗内空気温度が上
昇すると冷蔵熱負荷は増大する。冷凍の方が冷蔵に比べ
内部負荷比率が高いことと、冷蔵の方が店舗内空気温度
との差が小さいことにより、冷蔵の方が店舗内空気温度
に対する消費電力量の感度が大きくなる。このように冷
蔵と冷凍では室内空気温度に対する負荷熱量の増減の感
度が異なるが、共に室内空気が負荷の一部となってい
る。一方、空調熱負荷(冷房)は店舗内空気温度を高く
設定するほど減少し、本計算例では、24℃以上にしよう
とすると熱負荷がマイナスになって暖房が必要になるこ
とが分かった。なお設備容量としてこの計算では定格能
力で考えたが、これは熱負荷を計測できないためその空
間の最大負荷対応の能力を示す設備容量と外気温度から
負荷を推定したものである。従って例えばエアコンの銘
板の表示値、冷凍機の容量、圧縮機容量、熱交換器の伝
熱面積や能力、電気入力など最大の能力を示すものであ
ればよい。例えば上記空気調和機の容量は、冷房時室内
DB/WB=27/19゜C、室外35゜C、暖房時室
内20゜C、室外DB/WB=7/6゜Cの条件である
定格能力である。
As an example, an open showcase 15 for refrigeration at 2 ° C. under typical ambient temperature and humidity conditions during the day of May in Tokyo 15
8,000 [kcal / h], -20 ℃ freezer open showcase 21,9
Refrigerating and refrigerating the interior of a food store (hereinafter model store) as shown in Fig. 2 with a capacity of 40 [kcal / h] and an air conditioner of 198,000 [kcal / h] (air-conditioning area 2,340 [m2]). The result of calculating the air conditioning heat load for each indoor air temperature in the store is shown in FIG. As shown in the figure, the freezing open showcase has a substantially constant heat load regardless of the air temperature inside the store, but the open showcase for refrigeration increases the cold load when the air temperature inside the store rises. Since the internal load ratio of freezing is higher than that of refrigerating and the difference between refrigerating and in-store air temperature is small, refrigerating becomes more sensitive to power consumption with respect to in-store air temperature. As described above, the sensitivities of increase and decrease of the load heat quantity with respect to the room air temperature are different between the refrigeration and the freezing, but the room air is a part of the load in both cases. On the other hand, the air-conditioning heat load (cooling) decreases as the in-store air temperature is set higher, and in this calculation example, it was found that the heat load becomes negative and heating is required if the temperature is set to 24 ° C or higher. In this calculation, the rated capacity was considered as the installed capacity, but since the heat load cannot be measured, the load is estimated from the installed capacity, which indicates the capacity of the space corresponding to the maximum load, and the outside air temperature. Therefore, for example, the one that shows the maximum value such as the display value of the nameplate of the air conditioner, the capacity of the refrigerator, the capacity of the compressor, the heat transfer area and capacity of the heat exchanger, and the electric input can be used. For example, the capacity of the above-mentioned air conditioner has a rated capacity which is a condition of DB / WB = 27/19 ° C during cooling, 35 ° C outside, 20 ° C indoor during heating, DB / WB = 7/6 ° C outside Is.

【0015】このような方法で年間12ヶ月について各月
の夜間、日中それぞれの代表的外気温湿度条件の下で計
算し、各月ごとの積算消費電力を示したのが図4であ
る。積算消費電力の算出において先ず空調負荷の計算で
は照明の負荷、ショーケース等の冷気が入れ替わる負
荷、そのスペースにおける人の数、換気量、隙間風、パ
ソコン等の機器の発熱量というようなデータとか建物の
場所、向き、壁の材料、窓の大きさやブラインドの有り
無し、ショーケースのナイトカバー等の情報を仮定し、
インテリアゾーン、ペリメータゾーン等に空調領域を分
けて計算している。また冷凍負荷や冷蔵負荷の計算では
ショーケース内空気との入れ替わりに応じた負荷や、シ
ョーケースの照明、熱放射の負荷などを仮定している。
空気調和機や冷凍機などの消費電力量の計算には装置の
能力、消費電力の特性より成績係数を計算し、外気温度
に対する成績係数の特性をあらかじめ求め、これにより
消費電力を算出する。なお冷凍用と冷蔵用の装置では成
績係数が異なるので別個に把握しておく必要がある。こ
れらの各機器の室内の空気温度に対する変化をまとめた
ものが第3図である。第4図のように積算消費電力はこ
れらの装置の合計であり、この室内温度をパラメータと
する合計がその時の仮定された条件での最小の消費電力
に想到すると考えられる。なお、本計算例では、暖房に
ついては、1月〜4月および11,12月にのみ実施と仮定し
た。この結果を見ると、各月ごとに、すなわち外気温度
条件が異なるごとに、店舗内冷蔵冷凍空調合計の月積算
消費電力が最小になる店舗内空調設定温度は異なること
が分かった。
FIG. 4 shows the accumulated power consumption for each month, calculated by the above method under typical ambient temperature and humidity conditions of night and day during each month for 12 months. In the calculation of integrated power consumption, first of all, in the calculation of the air conditioning load, data such as the load of lighting, the load that cool air such as showcase is replaced, the number of people in that space, the ventilation amount, draft, the heat generation amount of equipment such as PC Assuming information such as building location, orientation, wall material, window size and presence of blinds, showcase night cover, etc.,
The air-conditioning area is divided into the interior zone and the perimeter zone for calculation. Further, in the calculation of the refrigerating load and the refrigerating load, it is assumed that the load corresponding to the replacement with the air in the showcase, the lighting of the showcase, and the load of heat radiation.
To calculate the power consumption of an air conditioner or a refrigerator, a coefficient of performance is calculated from the characteristics of the device and the power consumption, the characteristics of the coefficient of performance with respect to the outside temperature are obtained in advance, and the power consumption is calculated from this. Note that the coefficient of performance is different for freezers and refrigerators, so it is necessary to understand them separately. FIG. 3 is a summary of changes in the temperature of each device with respect to the indoor air temperature. As shown in FIG. 4, the integrated power consumption is the total of these devices, and it is considered that the total with the indoor temperature as a parameter reaches the minimum power consumption under the assumed conditions at that time. In this calculation example, heating is assumed to be performed only from January to April and November and December. From this result, it was found that the in-store air-conditioning set temperature at which the total monthly accumulated power consumption of the in-store refrigerating and refrigerating air-conditioning becomes the minimum is different for each month, that is, for each different outside air temperature condition.

【0016】つぎに、冷蔵・冷凍オープンショーケース
の設備容量は固定したまま、店舗空調面積が変わった場
合について、冷蔵冷凍空調合計消費電力が最小になる店
舗内空調設定温度を算出した結果を図5に示す。店舗面
積が小さくなり冷蔵冷凍熱負荷に対する空調熱負荷の比
率(以下、空冷負荷比率)が小さくなるほど、年間を通
して空調温度を従来設定温度(夏期24℃、中間期20℃、
冬期16℃)よりも低めに、逆に、店舗面積が大きくなり
空冷負荷比率が大きくなるほど、中間期から夏期にかけ
ての空調温度を従来より高めに設定することにより店舗
の冷凍冷蔵空調電力消費を少なくできることを見出し
た。
Next, the result of calculating the in-store air-conditioning set temperature at which the total power consumption of the refrigerating / freezing / air-conditioning is minimized when the store air-conditioning area changes while the equipment capacity of the refrigerating / freezing open showcase is fixed is shown in FIG. 5 shows. The smaller the store area and the smaller the ratio of air conditioning heat load to refrigerating freezing heat load (hereinafter referred to as air cooling load ratio), the air conditioning temperature is set to the conventional setting temperature (summer 24 ° C, intermediate 20 ° C,
Lower than 16 ° C in winter, and conversely, as the store area increases and the air-cooling load ratio increases, the air-conditioning temperature from mid-term to summer is set higher than before, reducing the power consumption of refrigerating and refrigerating air-conditioning in the store. I found that I could do it.

【0017】最後に、それぞれの空冷負荷比率に対し
て、最も省エネとなる店舗内空調設定温度で空気調和機
を運転した場合の冷凍冷蔵空調用電力消費量合計の電気
料金を従来の空調設定温度で運転した場合と比較した結
果を図6に示す。年間電気料金低減額はモデル店舗(空
調面積2,340m2、空冷負荷比率0.9)で約20万円(低減率
2.3%)、空冷負荷比率がモデル店舗の半分の場合(空調
面積1,170m2、空冷負荷比率0.45)で約130万円(低減率
16%)、空冷負荷比率がモデル店舗の1.5倍の場合(空調
面積3,500m2、空冷負荷比率1.35)で約60万円(低減率
4.6%)となった。以上のように、店舗面積が小さい(空
冷負荷比率が小さい)方が、中間期から冬期にかけて暖
房用電力需要が増大するため、空調設定温度を低めにす
ることで経済性が良くなることを見出した。なおオープ
ンショーケースは室内機流がきわめて大きいときや人が
殺到して中のものを取り出すときはケース内の冷気が大
量に放出されるし、夜間のナイトカバーにより冷気放出
が抑えられるなどするがこれらの冷気変動は昼間及び夜
間でそれぞれ平均化している。
Finally, for each air-cooling load ratio, the total electricity consumption for refrigerating and refrigerating air-conditioning when the air conditioner is operated at the in-store air-conditioning setting temperature that is the most energy-saving is calculated as the conventional air-conditioning setting temperature. FIG. 6 shows the result of comparison with the case of operating at. Annual electricity bill reduction amount is about 200,000 yen (reduction rate is 2340m2, air-cooling load ratio 0.9) in model stores
2.3%), if the air-cooling load ratio is half that of the model store (air-conditioning area 1,170m2, air-cooling load ratio 0.45), approximately 1.3 million yen (reduction rate
16%), if the air-cooling load ratio is 1.5 times that of the model store (air-conditioning area 3,500 m2, air-cooling load ratio 1.35), approximately 600,000 yen (reduction rate
4.6%). As described above, we found that the smaller the store area (the smaller the air-cooling load ratio), the higher the power demand for heating from the middle season to the winter season, so the lower the air-conditioning set temperature, the better the economy. It was It should be noted that the open showcase releases a large amount of cold air in the case when the indoor unit flow is extremely high or when people are inundated to take out something inside, and the nighttime night cover suppresses the release of cold air. These cold air fluctuations are averaged during the day and night respectively.

【0018】本発明の実施の形態1は、以上の検討結果
を基に、食品店舗における冷凍冷蔵空調の消費電力が最
も少なくなる温度に店舗空調設定温度を自動設定する制
御装置を内蔵した空気調和機である。これを図7におい
て説明する。図7において、1は室外機、2は室内機、
3は圧縮機、4は圧縮機から吐出された冷媒の流れを室
内機か室外機かへ切り換える四方弁、5は室外熱交換
器、6は室外熱交換器に外気を導入する室外ファン、7
は流量制御弁、8は室内熱交換器、9は室内ファンであ
る。
The first embodiment of the present invention is based on the above-mentioned examination results, and is an air conditioner having a built-in control device for automatically setting the store air-conditioning set temperature to a temperature at which the power consumption of the refrigerating and refrigerating air-conditioning in the food store is minimized. It is a machine. This will be described with reference to FIG. In FIG. 7, 1 is an outdoor unit, 2 is an indoor unit,
3 is a compressor, 4 is a four-way valve that switches the flow of the refrigerant discharged from the compressor to an indoor unit or an outdoor unit, 5 is an outdoor heat exchanger, 6 is an outdoor fan that introduces outside air into the outdoor heat exchanger, 7
Is a flow rate control valve, 8 is an indoor heat exchanger, and 9 is an indoor fan.

【0019】圧縮機3の吐出側と四方弁の第1口との間
は、冷媒配管31で接続されており、圧縮機3の吸入側
と四方弁第3口との間は、冷媒配管40で接続されてい
る。四方弁第2口と室外熱交換器5の一端とが冷媒配管
32で、また、四方弁第4口と室内熱交換器8の一端と
が室内熱交換器8側から順に冷媒配管37、38、およ
び39で直列に接続されている。室外熱交換器5の他端
は、冷媒配管33、34、および35を経由して流量制
御弁7に接続されており、該流量制御弁7と室内熱交換
器8の他端の間は、冷媒配管36で接続されている。さ
らに、室外機内の冷媒配管33と冷媒配管40とは冷媒
配管41、毛細管42、冷媒配管43で直列に接続され
ている。
A refrigerant pipe 31 is connected between the discharge side of the compressor 3 and the first port of the four-way valve, and a refrigerant pipe 40 is connected between the suction side of the compressor 3 and the third port of the four-way valve. Connected by. The four-way valve second port and one end of the outdoor heat exchanger 5 are refrigerant pipes 32, and the four-way valve fourth port and one end of the indoor heat exchanger 8 are refrigerant pipes 37, 38 in order from the indoor heat exchanger 8 side. , And 39 are connected in series. The other end of the outdoor heat exchanger 5 is connected to the flow rate control valve 7 via the refrigerant pipes 33, 34, and 35, and between the flow rate control valve 7 and the other end of the indoor heat exchanger 8, They are connected by a refrigerant pipe 36. Further, the refrigerant pipe 33 and the refrigerant pipe 40 in the outdoor unit are connected in series by a refrigerant pipe 41, a capillary tube 42, and a refrigerant pipe 43.

【0020】圧縮機吐出側の冷媒配管31には冷媒の圧
力を検出する圧力センサ21が、毛細管42と圧縮機吸
入側とを接続する冷媒配管43の外管壁には、蒸発温度
を検出する第1の温度センサ22がそれぞれ設置されて
いる。また、室外熱交換器の吸込み側には、外気温度を
検出する第2の温度センサ23が、室内熱交換器の吸込
み側には、室内温度を検出する第3の温度センサ24が
設置されている。室内機内冷媒配管36および37の外
管壁には、それぞれ第4の温度センサ25および第5の
温度センサ26が設置されている。
A pressure sensor 21 for detecting the pressure of the refrigerant is detected in the refrigerant pipe 31 on the compressor discharge side, and an evaporation temperature is detected on the outer pipe wall of the refrigerant pipe 43 connecting the capillary pipe 42 and the compressor suction side. The 1st temperature sensor 22 is installed, respectively. A second temperature sensor 23 for detecting the outside air temperature is installed on the intake side of the outdoor heat exchanger, and a third temperature sensor 24 for detecting the indoor temperature is installed on the intake side of the indoor heat exchanger. There is. A fourth temperature sensor 25 and a fifth temperature sensor 26 are installed on the outer pipe walls of the indoor unit refrigerant pipes 36 and 37, respectively.

【0021】以上のように構成された冷凍サイクルにお
いて、室外熱交換器が凝縮器、室内熱交換器が蒸発器と
して動作する冷房を例に本実施の形態1の動作を説明す
る。圧縮機3から吐出された高温高圧の冷媒蒸気は冷媒
配管31、四方弁4の第1口から第2口、および冷媒配
管32を経て、室外熱交換器5に流入し、ここで、室外
ファン6によって導入された外気と熱交換し、外気に放
熱して、冷媒は凝縮、液化する。この液化した冷媒は、
冷媒配管33、34を経て室内機に導かれ、冷媒配管3
5を経て、流量制御弁7で低圧低温の気液二相冷媒に絞
られる。この二相冷媒は、冷媒配管36を経て室内熱交
換器8に流入し、室内ファン9によって導入された室内
空気と熱交換し、室内空気の熱を奪って冷房し、冷媒は
蒸発、ガス化する。このガス化された冷媒蒸気は、冷媒
配管37、38、および39を経て、四方弁4の第4口
から第3口に抜け、冷媒配管40を通って圧縮機吸入側
に戻り、再び圧縮機に吸入され、高圧高温の蒸気となっ
て吐出されることによって、冷凍サイクルを構成してい
る。
In the refrigeration cycle configured as described above, the operation of the first embodiment will be described by taking an example of cooling in which the outdoor heat exchanger operates as a condenser and the indoor heat exchanger operates as an evaporator. The high-temperature high-pressure refrigerant vapor discharged from the compressor 3 flows into the outdoor heat exchanger 5 via the refrigerant pipe 31, the first to second ports of the four-way valve 4, and the refrigerant pipe 32, where the outdoor fan is The heat is exchanged with the outside air introduced by 6 and the heat is radiated to the outside air, and the refrigerant is condensed and liquefied. This liquefied refrigerant is
It is guided to the indoor unit through the refrigerant pipes 33 and 34, and the refrigerant pipe 3
After passing through 5, the flow control valve 7 restricts the low-pressure low-temperature gas-liquid two-phase refrigerant. This two-phase refrigerant flows into the indoor heat exchanger 8 through the refrigerant pipe 36, exchanges heat with the indoor air introduced by the indoor fan 9, takes away the heat of the indoor air and cools it, and the refrigerant evaporates and gasifies. To do. The gasified refrigerant vapor passes through the refrigerant pipes 37, 38, and 39 from the fourth port to the third port of the four-way valve 4, returns to the compressor suction side through the refrigerant pipe 40, and returns to the compressor. The refrigerating cycle is constituted by being sucked into and discharged as high-pressure and high-temperature vapor.

【0022】以上のような、空気調和機の動作につい
て、その詳細を室内機から説明する。室内機制御装置1
1では、室内熱交換器8ガス側の冷媒配管温Teoを第5
の温度センサ26によって検出し、第4の温度センサ2
5によって検出された室内熱交換器8液側の冷媒配管温
度を蒸発温度Teと見なして、それぞれ室内機制御装置1
1内の室内制御入力部16に取り込まれる。これらの信
号は、室内制御演算部17に送られ、ここで、冷媒が室
内熱交換器を流れる時の圧力損失分を考慮して、SH=Te
o-Te−α(α≧0)として室内熱交換器出口冷媒過熱度
SHを演算する。室内制御演算部17では、この算出され
たSHと室内制御記憶部46に空調機が適正な能力を発揮
するために必要な冷媒流量を制御するため予め設定・記
憶されている第1の目標過熱度SHmlおよび第2の目標過
熱度SHmhとを比較し、SH>SHmhであれば、流量制御弁7
の弁開度を大きくするような指令を出力部18に送り、
室内制御出力部18が流量制御弁7の弁開度を大きくす
る。逆に、SH<SHmlであれば、流量制御弁7の弁開度を
小さくするような指令を室内制御出力部18に送り、室
内制御出力部18が流量制御弁7の弁開度を小さくす
る。ここで、SHml≦SHmhである。このようにして、室内
熱交換器を流れる冷媒の出口状態がある範囲内に収まる
ように制御している。
The operation of the air conditioner as described above will be described in detail from the indoor unit. Indoor unit control device 1
In 1, the 5th refrigerant pipe temperature Teo on the gas side of the indoor heat exchanger 8
Of the fourth temperature sensor 2 detected by the temperature sensor 26 of
The refrigerant pipe temperature on the liquid side of the indoor heat exchanger 8 detected by 5 is regarded as the evaporation temperature Te, and the indoor unit control device 1
1 is taken into the indoor control input unit 16. These signals are sent to the indoor control calculation unit 17, where SH = Te in consideration of the pressure loss amount when the refrigerant flows through the indoor heat exchanger.
o-Te-α (α ≧ 0) as indoor heat exchanger outlet refrigerant superheat
Calculate SH. In the indoor control calculation unit 17, the first target overheat that is set and stored in advance in the calculated SH and the indoor control storage unit 46 to control the refrigerant flow rate required for the air conditioner to exhibit an appropriate capacity. Temperature SHml and the second target superheat degree SHmh, and if SH> SHmh, flow control valve 7
Sends a command to the output unit 18 to increase the valve opening degree of
The indoor control output unit 18 increases the valve opening degree of the flow control valve 7. On the contrary, if SH <SHml, a command for reducing the valve opening of the flow control valve 7 is sent to the indoor control output unit 18, and the indoor control output unit 18 decreases the valve opening of the flow control valve 7. . Here, SHml ≦ SHmh. In this way, the outlet state of the refrigerant flowing through the indoor heat exchanger is controlled to be within a certain range.

【0023】さらに、第3の温度センサ24で検出され
た室内空気温度Taiも、室内機制御装置11内の室内制
御入力部16に取り込まれ、この値と室外機から送られ
てくる室内設定温度Tsetとが該室内制御演算部17に送
られ、ここで、これらの差ΔTa=Tai−Tsetを演算し
て、これに比例した室内ファン速指令値を室内制御出力
部18に送信し、室内制御出力部18が室内ファンの回
転数を制御する。比例係数は室内制御記憶部46に設定
・記憶されている。
Further, the indoor air temperature Tai detected by the third temperature sensor 24 is also taken into the indoor control input section 16 in the indoor unit control device 11, and this value and the indoor set temperature sent from the outdoor unit. Tset is sent to the indoor control calculating unit 17, where the difference ΔTa = Tai−Tset is calculated, and an indoor fan speed command value proportional to this is sent to the indoor control output unit 18 for indoor control. The output unit 18 controls the rotation speed of the indoor fan. The proportional coefficient is set and stored in the indoor control storage unit 46.

【0024】つぎに、室外機について動作を詳細に説明
する。第1の温度センサ22で検出された蒸発温度Te
は、室外機制御装置10内の室外制御入力部12に取り
込まれ、この値が室外制御演算部14に送られ、ここ
で、室外制御記憶部47に冷媒流量を制御する予め設定
・記憶されている第1の蒸発温度目標値Temlおよび第2
の蒸発温度目標値Temhとを比較し、Te<Temlであれば、
圧縮機3の運転周波数を小さくするように、逆に、Te>
Temhであれば圧縮機3の運転周波数を大きくするように
制御指令が室外制御出力部15に送信され、圧縮機3の
運転周波数が制御される。
Next, the operation of the outdoor unit will be described in detail. Evaporation temperature Te detected by the first temperature sensor 22
Is taken into the outdoor control input unit 12 in the outdoor unit control device 10, and this value is sent to the outdoor control calculation unit 14, where it is preset and stored in the outdoor control storage unit 47 to control the refrigerant flow rate. First evaporation temperature target value Teml and second
Evaporation temperature target value of Temh is compared, and if Te <Teml,
To reduce the operating frequency of the compressor 3, conversely, Te>
If it is Temh, a control command to increase the operating frequency of the compressor 3 is transmitted to the outdoor control output unit 15, and the operating frequency of the compressor 3 is controlled.

【0025】室外ファンは、通常、最大値で一定の回転
数で運転されているが、外気温度が特に低い場合で、流
量制御弁の制御範囲よりも小さい高低圧差となって流量
制御が不可能となるような場合には、圧力センサ21で
検出された高圧圧力が室外制御記憶部47に予め設定・
記憶されている第1の目標圧力以上となるように、室外
ファン6の回転数を制御する。
The outdoor fan is normally operated at a constant maximum rotation speed, but when the outside air temperature is particularly low, the high / low pressure difference becomes smaller than the control range of the flow control valve, and the flow control is impossible. In such a case, the high pressure detected by the pressure sensor 21 is preset in the outdoor control storage unit 47.
The rotation speed of the outdoor fan 6 is controlled so as to be equal to or higher than the stored first target pressure.

【0026】室外機制御装置10内では、該空気調和機
が設置された食品店舗等のオープンショーケースまたは
冷凍機の設備容量と該食品店舗等の空気調和機の設備容
量との比率が空冷負荷比率として、室外制御入力部12
を介して入力され、室外制御記憶部47に設定・記憶さ
れている。これと、第2の温度センサ23で検出され、
室外制御入力部12に取り込まれた外気温度とが空調設
定温度演算部13に送られ、外気温度が低いほど、ま
た、空冷負荷比率が小さいほど、低い値の空調設定温度
を選定し、これを室外制御出力部15に送る。室外制御
出力部15は、該空調設定温度を室内機制御装置11内
の室内制御入力部16に送信し、室内空気温度がこの温
度Tsetに近づくように室内ファン回転数を制御する。
In the outdoor unit controller 10, the ratio of the installed capacity of the open showcase or refrigerator of the food store or the like in which the air conditioner is installed to the installed capacity of the air conditioner of the food store or the like is the air cooling load. As a ratio, the outdoor control input unit 12
Is input via the, and is set / stored in the outdoor control storage unit 47. This is detected by the second temperature sensor 23,
The outside air temperature taken into the outdoor control input unit 12 is sent to the air conditioning set temperature calculation unit 13, and the lower the outside air temperature and the smaller the air cooling load ratio, the lower the air conditioning set temperature is selected, and this is selected. It is sent to the outdoor control output unit 15. The outdoor control output unit 15 transmits the air conditioning set temperature to the indoor control input unit 16 in the indoor unit control device 11, and controls the indoor fan rotation speed so that the indoor air temperature approaches this temperature Tset.

【0027】図1に、空調設定温度決定方法の一例と、
全体システム動作をブロック線図で示す。室外機制御装
置10内の室外制御記憶部47には、空冷負荷比率と外
気温度の組合せに対して冷凍機と空気調和機との室内温
度を基にして算定された各消費電力の装置の合計の消費
電力量が最小となると算出された空調設定温度をマトリ
クスにしたもの(空調設定温度マトリクス)を予め記憶
している。空冷負荷比率は、実際に空気調和機が設置さ
れる現場に合わせ、すなわち空気調和機が空調を行う範
囲内における空冷負荷比率=空気調和機設備容量/冷蔵
・冷凍オープンショーケース設備容量によって求めた値
を、ディプスイッチ、プログラム入力、キーボード入
力、音声入力や手書き文字入力等の手段により室外制御
入力部12より予め入力しておく。また、第2の温度セ
ンサ23で検出された外気温度検出値が、時々刻々、自
動的に空気調和機室外機制御装置10内の室外制御入力
部12に入力される。これら空冷負荷比率設定値および
外気温度検出値に対して、空調設定温度記憶部47で予
め記憶されている空調設定温度マトリクスから空調設定
温度を選び出し、空気調和機は店舗内空気温度(室温)
がこの設定温度に近づくように運転する。
FIG. 1 shows an example of an air conditioning set temperature determination method,
The overall system operation is shown in a block diagram. The outdoor control storage unit 47 in the outdoor unit control device 10 stores the total of the devices of each power consumption calculated based on the indoor temperature of the refrigerator and the air conditioner for the combination of the air cooling load ratio and the outside air temperature. A matrix of air-conditioning set temperatures (air-conditioning set temperature matrix) that has been calculated when the power consumption amount is minimized is stored in advance. The air-cooling load ratio was calculated according to the site where the air conditioner is actually installed, that is, the air-cooling load ratio within the air-conditioning range of the air conditioner = air conditioner equipment capacity / refrigeration / freezing open showcase equipment capacity The value is previously input from the outdoor control input unit 12 by means of a DIP switch, program input, keyboard input, voice input, handwritten character input, or the like. Further, the detected value of the outside air temperature detected by the second temperature sensor 23 is automatically input to the outdoor control input unit 12 in the air conditioner outdoor unit control device 10 every moment. With respect to the air-cooling load ratio set value and the outside air temperature detected value, the air-conditioning set temperature is selected from the air-conditioning set temperature matrix stored in advance in the air-conditioning set temperature storage unit 47, and the air conditioner sets the in-store air temperature (room temperature).
Operates so as to approach this set temperature.

【0028】なお、空調設定温度マトリクスは、空冷負
荷比率、外気温度とも3段階程度のレベルに分けて持っ
ておく。空冷負荷比率の入力値は、比率そのものの値を
入力設定してもよいが、予め空冷負荷比率を3段階等に
レベル分けしておき、現地の設備がそのうちのどのレベ
ルになるかを入力する。例えば、空冷負荷比率0.8未満
をレベル「小」、0.8以上1.2未満をレベル「中」、1.2
以上をレベル「大」のように区分けしておき、これら
「小」「中」「大」を入力しても良い。また、これらの
レベルを「1」「2」「3」や「A」「B]「C」のよ
うに区分けして入力しても良い。一方、外気温度検出値
についても同様に、外気温度そのものを入力しても良い
が、外気温度レベルを3段階程度に区分けしておき、例
えば、外気温度16℃未満をレベル「低」、16℃以上
24℃未満をレベル「中」、24℃以上をレベル「高」
のように区分けしておき、現地検出値をこれら「低」
「中」「高」にレベル分けして入力しても良い。また、
これらのレベルを「1」「2」「3」や「A」「B]
「C」のように区分けして入力しても良い。
The air-conditioning set temperature matrix is divided into about three levels for both the air-cooling load ratio and the outside air temperature. As the input value of the air-cooling load ratio, the value of the ratio itself may be input and set, but the air-cooling load ratio is divided into three levels in advance and the level of the local equipment is input. . For example, if the air-cooling load ratio is less than 0.8, the level is "small", and if 0.8 or more and less than 1.2, the level is "medium", 1.2.
The above may be divided into levels such as "large" and these "small", "medium" and "large" may be input. In addition, these levels may be divided and input as “1”, “2”, “3”, “A”, “B”, and “C”. On the other hand, similarly for the outside air temperature detection value, the outside air temperature itself may be input, but the outside air temperature level is divided into about three stages, and for example, an outside air temperature of less than 16 ° C. is set to the level “low”, 16 ° C. Above 24 ° C the level is "medium" and above 24 ° C is the level "high"
It is divided as follows, and the local detection value is these "low"
You may input by dividing into “medium” and “high” levels. Also,
These levels are "1""2""3" and "A""B"
You may input by classifying like "C".

【0029】さらに、空冷負荷比率を設定入力する代わ
りに、空気調和機設備容量およびオープンショーケース
設備容量、あるいは、空気調和機設備容量および冷凍機
設備容量を入力しても良い。空気調和機設備容量は、店
舗内の空調面積で代用することも可能である。この場
合、室外機制御装置10内部の空調設定温度演算部13
で空冷負荷比率を算出して、上記空調設定温度マトリク
スから店舗内の冷蔵冷凍空調用消費電力を最小にする空
調設定温度を選び出すことは言うまでもない。なお空調
面積で代用する場合、天井が高い空間などは下の方の空
調用の対象となる空間の面積でよい。いずれにしろ空調
と冷熱装置の能力の比率、すなわち相対関係が数値やレ
ベルで表せれば良く、この空冷負荷比率と外気温度で空
調機の温度設定値を変化させるものである。
Further, instead of setting and inputting the air cooling load ratio, the air conditioner equipment capacity and the open showcase equipment capacity, or the air conditioner equipment capacity and the refrigerator equipment capacity may be input. The air conditioner installation capacity can be substituted by the air conditioning area in the store. In this case, the air conditioning set temperature calculation unit 13 inside the outdoor unit control device 10
It is needless to say that the air-cooling load ratio is calculated and the air-conditioning set temperature that minimizes the power consumption for refrigerating and freezing air-conditioning in the store is selected from the air-conditioning set temperature matrix. When the air-conditioning area is used instead, a space with a high ceiling or the like may be the area of the lower space to be air-conditioned. In any case, it suffices that the ratio of the capacities of the air conditioner and the cooling / heating device, that is, the relative relationship be expressed by a numerical value or level, and the temperature set value of the air conditioner is changed by the air cooling load ratio and the outside air temperature.

【0030】さらに、空冷負荷比率を算出する際に必要
となる空気調和機設備容量およびオープンショーケース
(または冷凍機)設備容量は、店舗全体を対象とし、店
舗全体を一律の設定温度に設定するようにしたが、空気
調和機がカバーする空調ゾーンごとに空冷負荷比率を算
出し、それぞれ対象となる空気調和機に対応する空冷負
荷比率を設定入力して、空調ゾーンごとに空調設定温度
を変えるようにしても良い。オープンショーケースが存
在しない空調ゾーンは空冷負荷比率が無限大になってし
まうが、このような場合は、空冷負荷比率の最大値とし
たり、レベル「大」に分類したりすることにより対応す
る。さらに上記説明はショーケースのように空調機に与
える冷熱負荷の影響が大きな装置を代表として取り上げ
たが、照明機器などの影響が大きい場合の様に他の冷熱
機器を計算に含めて良いことは当然である。すなわち空
調された室内空気温度と異なる温度を得たり放熱したり
する機器や装置であって、室内空気に直接暴露されてい
るか、室内空気を一部取り込んで冷却しているか、室内
空気を放熱源とし室内の空調負荷に影響のある機器や装
置は対象になる。
Further, the air conditioner equipment capacity and the open showcase (or refrigerator) equipment capacity required when calculating the air-cooling load ratio are set for the entire store and set at a uniform set temperature for the entire store. However, the air-cooling load ratio is calculated for each air conditioning zone covered by the air conditioner, and the air-cooling load ratio corresponding to the target air conditioner is set and input, and the air conditioning set temperature is changed for each air conditioning zone. You may do it. The air-cooling load ratio becomes infinite in the air-conditioning zone where there is no open showcase. In such a case, the maximum value of the air-cooling load ratio or the level "large" is used for handling. Furthermore, in the above explanation, a device such as a showcase that has a large influence of the cooling heat load on the air conditioner was taken as a representative, but it is not necessary to include other cooling and heating devices in the calculation when the influence of lighting equipment is large. Of course. In other words, it is a device or device that obtains a temperature different from the temperature of the air-conditioned room air or radiates heat, whether it is directly exposed to the room air, whether it is a part of the room air taken in and cooled, or the room air is a heat radiation source. Equipment and devices that affect the air conditioning load in the room are targeted.

【0031】このように、本実施の形態によれば、空気
調和機の制御装置は外気条件と店舗等の対象空間の空冷
負荷比率に応じて対象空間に配置された冷熱負荷、例え
ば店舗内オープンショーケース・冷凍機および空気調和
機の消費電力合計が最小になるような店舗内空調温度を
自動的に設定し、空気調和機は室温がこの設定温度に近
づくように運転されるので、従来のように、オペレータ
が温度設定する手間を省くとともに、店舗内冷凍冷蔵空
調のランニングコストを最小にすることができるという
効果がある。一般に空調負荷の計算は、照明Dw/m
3、ショーケースEw/ m3、人員F人/ m3*12
0w/人、外気量(換気量)Gm3/h/ m3、すき
ま風H回/h、OA機器Iw/ m3、というデータや
建物の場所、向き、壁材、窓の大きさやブラインドの有
無、他の情報を基にインテリアゾーン、ペリメータゾー
ンなどに分けて空調面積を割り出し、空調負荷を計算す
るが、実際の空調負荷は予測とは異なることが多く、ま
た後での模様替えによる装置の増設や減少、装置の能力
アップ夜食品変更によるショーケースの設定変更などに
より空調負荷の変化が起こる。このような場合でも、空
冷負荷比率の入力を変えるだけで、或いは事前に設定し
てある空調機の設定温度値を状況に応じて全体にあげた
り、下げたりするだけでよい。なおここでは設定温度を
一つの値として取り上げたが図4に示すように消費電力
の小さな温度範囲例えば5゜Cぐらいの範囲全体を目標
値とした設定値にすることにより一層省エネルギーにつ
ながることになる。またさらに上記説明では設備能力と
外気温度と空調設定温度を変更する考えを述べたが、例
えば夏の冷房ピーク負荷時に外気温度が37゜C以上に
なったら室内設定温度=外気温度−8゜Cなどの様に別
の条件を含める考えが当然考えられる。
As described above, according to the present embodiment, the control device of the air conditioner controls the cooling load placed in the target space, for example, opening in the store according to the outside air condition and the air cooling load ratio of the target space such as the store. The air conditioning temperature in the store is automatically set to minimize the total power consumption of the showcase, refrigerator and air conditioner, and the air conditioner is operated so that the room temperature approaches this set temperature. As described above, there is an effect that it is possible to save the operator the trouble of setting the temperature and to minimize the running cost of the in-store refrigerating and refrigerating air conditioning. Generally, the air conditioning load is calculated by lighting Dw / m.
3, showcase Ew / m3, personnel F people / m3 * 12
0w / person, outside air volume (ventilation volume) Gm3 / h / m3, draft H times / h, OA equipment Iw / m3, the location of the building, orientation, wall material, window size and presence / absence of blinds, and other The air-conditioning load is calculated by dividing the air-conditioning area into the interior zone and perimeter zone based on the information, but the actual air-conditioning load is often different from the expected one. Increased capacity of the equipment At night, air conditioning load changes due to changes in showcase settings due to food changes. Even in such a case, it is only necessary to change the input of the air cooling load ratio, or to raise or lower the preset temperature value of the air conditioner as a whole depending on the situation. Although the set temperature is taken as one value here, as shown in FIG. 4, further energy saving can be achieved by setting the set value as the target value in the temperature range with small power consumption, for example, about 5 ° C. Become. Further, in the above description, the idea of changing the facility capacity, the outside air temperature, and the air conditioning set temperature is described. For example, if the outside air temperature becomes 37 ° C or more during the peak load of cooling in the summer, the indoor set temperature = outside air temperature-8 ° C. Of course, it is conceivable to include another condition such as.

【0032】実施の形態2.つぎに、室外熱交換器が蒸
発器、室内熱交換器が凝縮器として動作する暖房を例
に、本実施の形態2の動作を図8において説明する。こ
の場合は、四方弁の流路は、第1口から第4口への流路
と、第2口から第3口への流路になるよう室内機制御装
置11の出力部18からの運転モード指令によって、室
外機制御装置10の出力部15が四方弁を切り換える。
圧縮機3から吐出された高温高圧の冷媒蒸気は冷媒配管
31、四方弁4の第1口から第4口、および冷媒配管3
8、37を経て、室内機に導かれ、室内熱交換器8に流
入し、ここで、室内ファン9によって導入された店舗内
空気と熱交換し、店舗内空気に放熱して暖房し、冷媒は
凝縮、液化する。この液化した冷媒は、冷媒配管36を
経て流量制御弁7で低圧低温の気液二相冷媒に絞られ
る。冷媒配管35、34を経て、室外機に導かれた二相
冷媒は、冷媒配管33を経て室外熱交換器5に流入し、
室外ファン6によって導入された外気と熱交換し、外気
の熱を奪って冷媒は蒸発、ガス化する。このガス化され
た冷媒蒸気は、冷媒配管32を経て、四方弁4の第2口
から第3口に抜け、冷媒配管40を通って圧縮機吸入側
に戻り、再び圧縮機に吸入され、高圧高温の蒸気となっ
て吐出されることによって、冷凍サイクルを構成してい
る。
Embodiment 2. Next, the operation of the second embodiment will be described with reference to FIG. 8 by taking as an example heating in which the outdoor heat exchanger operates as an evaporator and the indoor heat exchanger operates as a condenser. In this case, the flow path of the four-way valve is operated from the output unit 18 of the indoor unit control device 11 so that the flow path from the first opening to the fourth opening and the flow path from the second opening to the third opening are set. The output unit 15 of the outdoor unit controller 10 switches the four-way valve according to the mode command.
The high-temperature and high-pressure refrigerant vapor discharged from the compressor 3 is supplied to the refrigerant pipe 31, the first to fourth ports of the four-way valve 4, and the refrigerant pipe 3.
8 and 37, it is guided to the indoor unit and flows into the indoor heat exchanger 8, where it exchanges heat with the in-store air introduced by the indoor fan 9 and radiates heat to the in-store air to heat it, and the refrigerant. Is condensed and liquefied. The liquefied refrigerant is squeezed into a low-pressure low-temperature gas-liquid two-phase refrigerant by the flow control valve 7 via the refrigerant pipe 36. The two-phase refrigerant introduced to the outdoor unit via the refrigerant pipes 35 and 34 flows into the outdoor heat exchanger 5 via the refrigerant pipe 33,
The heat is exchanged with the outside air introduced by the outdoor fan 6, the heat of the outside air is taken, and the refrigerant is evaporated and gasified. The gasified refrigerant vapor passes through the refrigerant pipe 32 to the second port to the third port of the four-way valve 4, returns to the compressor suction side through the refrigerant pipe 40, is sucked into the compressor again, and has a high pressure. A refrigeration cycle is configured by being discharged as high-temperature steam.

【0033】以上のような、空気調和機の動作につい
て、その詳細を室内機から説明する。室内機制御装置1
1では、第4の温度センサ25によって検出された室内
熱交換器8液側の冷媒配管温度が凝縮器出口温度Tcoと
見なして、室内機制御装置11内の室内制御入力部16
に取り込まれる。また、室外機制御装置10の室外制御
出力部15から送られた凝縮温度Tcも、室内機制御装置
11の室内制御入力部16に取り込まれる。これらの信
号は、室内制御演算部17に送られ、ここで、SC=Tc-T
coとして室内熱交換器出口冷媒過冷却度SCを演算する。
この演算されたSCと暖房時に空調機が適正能力を発揮す
るために必要な冷媒流量を制御するために予め設定され
ている第1の目標過冷却度SCmlおよび第2の目標過冷却
度SCmhとを比較し、SC>SCmhであれば、流量制御弁7の
弁開度を大きくするような指令を室内制御出力部18に
送り、室内制御出力部18が流量制御弁7の弁開度を大
きくする。逆に、SC<SCmlであれば、流量制御弁7の弁
開度を小さくするような指令を室内制御出力部18に送
り、室内制御出力部18が流量制御弁7の弁開度を小さ
くする。ここで、SCml≦SCmhである。このようにして、
室内熱交換器を流れる冷媒の出口状態がある範囲内に収
まるように制御している。
The operation of the air conditioner as described above will be described in detail from the indoor unit. Indoor unit control device 1
1, the refrigerant pipe temperature on the liquid side of the indoor heat exchanger 8 detected by the fourth temperature sensor 25 is regarded as the condenser outlet temperature Tco, and the indoor control input unit 16 in the indoor unit control device 11 is considered.
Is taken into. The condensation temperature Tc sent from the outdoor control output unit 15 of the outdoor unit control device 10 is also taken into the indoor control input unit 16 of the indoor unit control device 11. These signals are sent to the indoor control calculation unit 17, where SC = Tc-T
The refrigerant supercooling degree SC at the outlet of the indoor heat exchanger is calculated as co.
The calculated SC and the first target subcooling degree SCml and the second target subcooling degree SCmh that are preset to control the refrigerant flow rate required for the air conditioner to exhibit proper capacity during heating. If SC> SCmh, a command to increase the valve opening of the flow control valve 7 is sent to the indoor control output unit 18, and the indoor control output unit 18 increases the valve opening of the flow control valve 7. To do. On the contrary, if SC <SCml, a command for reducing the valve opening of the flow control valve 7 is sent to the indoor control output unit 18, and the indoor control output unit 18 reduces the valve opening of the flow control valve 7. . Here, SCml ≦ SCmh. In this way
The outlet state of the refrigerant flowing through the indoor heat exchanger is controlled so that it falls within a certain range.

【0034】さらに、第3の温度センサ24で検出され
た室内空気温度Taiも、室内機制御装置11内の室内制
御入力部16に取り込まれ、この値と室外機から送られ
てくる空調設定温度である室内設定温度Tsetとが該演算
部17に送られ、ここで、これらの差ΔTa=Tset−Tai
を演算して、これに比例した室内ファン速指令値を室内
制御出力部18に送信し、室内制御出力部18が室内フ
ァンの回転数を制御する。比例係数は室内制御記憶部4
6に設定・記憶されている。
Further, the indoor air temperature Tai detected by the third temperature sensor 24 is also taken into the indoor control input section 16 in the indoor unit control device 11, and this value and the air conditioning set temperature sent from the outdoor unit. The indoor set temperature Tset, which is expressed as follows, is sent to the calculation unit 17, where the difference ΔTa = Tset−Tai.
Is calculated and the indoor fan speed command value proportional to this is transmitted to the indoor control output unit 18, and the indoor control output unit 18 controls the rotation speed of the indoor fan. The proportional coefficient is the indoor control storage unit 4
6 is set and stored.

【0035】つぎに、室外機について動作を詳細に説明
する。圧力センサ21で検出された高圧圧力Pdは、室外
機制御装置10内の室外制御入力部12に取り込まれ、
この値が室外制御演算部14で凝縮温度Tcとして換算さ
れる。この値と室外制御記憶部47に冷媒凝縮温度を制
御するように予め設定・記憶されている第1の凝縮温度
目標値Tcmlおよび第2の凝縮温度目標値Tcmhとを比較
し、Tc<Tcmlであれば、圧縮機3の運転周波数を大きく
するように、逆に、Tc>Tcmhであれば圧縮機3の運転周
波数を小さくするように制御指令が室外制御出力部15
に送信され、圧縮機3の運転周波数が制御される。な
お、圧縮機3の制御目標が高圧圧力そのものであれば、
圧力センサ21で検出された高圧圧力Pdをそのまま用い
て、これが第1の目標値Pd1より小さければ、圧縮機3
の運転周波数を大きくするように、逆に、これが第2の
目標値Pd2より大きければ、圧縮機3の運転周波数を小
さくするように制御指令が室外制御出力部15に送信さ
れ、圧縮機3の運転周波数が制御される。室外ファン
は、通常、最大値で一定の回転数で運転されている。
Next, the operation of the outdoor unit will be described in detail. The high pressure Pd detected by the pressure sensor 21 is taken into the outdoor control input unit 12 in the outdoor unit control device 10,
This value is converted into the condensation temperature Tc by the outdoor control calculation unit 14. This value is compared with the first condensing temperature target value Tcml and the second condensing temperature target value Tcmh which are preset and stored in the outdoor control storage unit 47 so as to control the refrigerant condensing temperature, and when Tc <Tcml If so, a control command is issued to increase the operating frequency of the compressor 3, and conversely, if Tc> Tcmh, decrease the operating frequency of the compressor 3.
And the operating frequency of the compressor 3 is controlled. If the control target of the compressor 3 is the high pressure itself,
The high pressure Pd detected by the pressure sensor 21 is used as it is, and if it is smaller than the first target value Pd1, the compressor 3
On the contrary, if it is larger than the second target value Pd2, a control command is sent to the outdoor control output unit 15 to decrease the operating frequency of the compressor 3 to increase the operating frequency of the compressor 3. The operating frequency is controlled. The outdoor fan is usually operated at a constant maximum rotation speed.

【0036】室外機制御装置10内では、該空気調和機
が設置された食品店舗等のオープンショーケースまたは
冷凍機の設備容量と該食品店舗等の空気調和機の設備容
量との比率が空冷負荷比率として、室外制御入力部12
を介して入力され、室外制御記憶部47に設定・記憶さ
れている。これと、第2の温度センサ23で検出され、
室外制御入力部12に取り込まれた外気温度とが空調設
定温度演算部13に送られ、外気温度が低いほど、ま
た、空冷負荷比率が小さいほど、低い値の空調設定温度
を算出し、これを室外制御出力部15に送る。室外制御
出力部15は、該空調設定温度を室内機制御装置11内
の室内制御入力部16に送信し、室内空気温度がこの温
度Tsetに近づくように室内ファン回転数を制御する。
In the outdoor unit controller 10, the ratio of the installed capacity of the open showcase or refrigerator of the food store or the like in which the air conditioner is installed to the installed capacity of the air conditioner of the food store or the like is the air cooling load. As a ratio, the outdoor control input unit 12
Is input via the, and is set / stored in the outdoor control storage unit 47. This is detected by the second temperature sensor 23,
The outside air temperature taken into the outdoor control input unit 12 is sent to the air conditioning set temperature calculation unit 13, and a lower value of the air conditioning set temperature is calculated as the outside air temperature is lower and the air cooling load ratio is smaller. It is sent to the outdoor control output unit 15. The outdoor control output unit 15 transmits the air conditioning set temperature to the indoor control input unit 16 in the indoor unit control device 11, and controls the indoor fan rotation speed so that the indoor air temperature approaches this temperature Tset.

【0037】このように、本実施の形態によれば、空気
調和機の制御装置は外気条件と店舗内空冷負荷比率に応
じて店舗内オープンショーケース・冷凍機および空気調
和機の消費電力合計が最小になるような店舗内空調温度
を自動的に設定し、空気調和機は室温がこの設定温度に
近づくように運転されるので、従来のように、オペレー
タが温度設定する手間を省くとともに、店舗内冷凍冷蔵
空調のランニングコストを最小にすることができるとい
う効果がある。
As described above, according to the present embodiment, the controller for the air conditioner determines that the total power consumption of the in-store open showcase / refrigerator and the air conditioner depends on the outside air condition and the in-store air cooling load ratio. The air conditioning temperature in the store that minimizes is automatically set, and the air conditioner is operated so that the room temperature approaches this set temperature, so the operator does not have to set the temperature as before, There is an effect that the running cost of the internal refrigerating and refrigerating air conditioning can be minimized.

【0038】実施の形態3.つぎに、空調設定温度に合
わせて、空気調和機の冷房/暖房運転モードを自動制御
する方法を図9において述べる。図9の空調設定温度演
算部で外気温度検出値と空冷負荷比率設定値とに応じて
算出される空調設定温度Tsetには、それぞれに上限値Ts
etmaxと下限値Tsetminを設け、店舗内空気温度が該空調
設定温度の上限値Tsetmaxを越えたら冷房、下限値Tsetm
inを下回ったら暖房となるように、室内機制御装置11
内の室内制御出力部18から室外機制御装置10の室外
制御入力部12に冷房/暖房の運転モードを送信する。
室外機制御装置10内では、この運転モード指令に応じ
て室外制御演算部14を経て、室外制御出力部15から
四方弁4の流路を切り換える。この上限値Tsetmaxおよ
び下限値Tsetminは、例えば、空調設定温度Tsetに対し
て下限値をTsetmin=Tset−γ、上限値をTsetmax=Tset
+γ(γ>0)のように決めておく。例えばγを2−4
゜cとする。センサーの誤差を±0.5。cとし、冷暖
それぞれの室温制御ディファレンシャルが1−2゜Cあ
るので冷暖切り替えをさらに幅を持たせて2−4゜Cと
することにより頻繁な切り替えを防ぐことが出来る。冷
房/暖房の切り換えは、冷凍サイクルの安定性、信頼性
の面からあまり頻繁には行いたくないので、ある程度長
い時間のサンプリング間隔(例えば、1時間)ごとに外
気温度を検知して判断する。このように、本実施の形態
によれば、空気調和機の制御装置は外気条件と店舗内空
冷負荷比率に応じて、店舗内オープンショーケース・冷
凍機および空気調和機の消費電力合計が最小になるよう
な店舗内空調温度および運転モード(冷房/暖房)を自
動的に設定し、空気調和機は室温が該設定温度に近づく
ように運転モードを自動的に該運転モードに切り換えて
運転されるので、従来のように、オペレータが運転モー
ドおよび室温を設定する手間を省くとともに、店舗内冷
凍冷蔵空調のランニングコストを最小にすることができ
るという効果がある。
Embodiment 3. Next, a method for automatically controlling the cooling / heating operation mode of the air conditioner in accordance with the air conditioning set temperature will be described with reference to FIG. The air-conditioning set temperature Tset calculated by the air-conditioning set temperature calculation unit in FIG. 9 according to the outside air temperature detection value and the air-cooling load ratio set value has an upper limit value Ts.
Etmax and lower limit value Tsetmin are provided, and when the air temperature in the store exceeds the upper limit value Tsetmax of the air-conditioning set temperature, cooling, lower limit value Tsetm
Indoor unit control device 11 so that when the temperature falls below in, heating is performed.
The operation mode of cooling / heating is transmitted from the indoor control output section 18 inside to the outdoor control input section 12 of the outdoor unit control device 10.
In the outdoor unit controller 10, the flow path of the four-way valve 4 is switched from the outdoor control output unit 15 via the outdoor control calculation unit 14 according to this operation mode command. The upper limit value Tsetmax and the lower limit value Tsetmin are, for example, the lower limit value Tsetmin = Tset−γ and the upper limit value Tsetmax = Tset with respect to the air conditioning set temperature Tset.
It is determined as + γ (γ> 0). For example, γ is 2-4
Let be c. The sensor error is ± 0.5. c and the room temperature control differential for each of the heating and cooling is 1-2 ° C, so that the switching between cooling and heating can be made wider to 2-4 ° C to prevent frequent switching. Since it is not desirable to switch between cooling and heating from the standpoint of stability and reliability of the refrigeration cycle, it is judged by detecting the outside air temperature at every relatively long sampling interval (for example, 1 hour). As described above, according to the present embodiment, the air conditioner control device minimizes the total power consumption of the in-store open showcase / refrigerator and the air conditioner in accordance with the outside air condition and the in-store air cooling load ratio. The air conditioning temperature in the store and the operation mode (cooling / heating) are automatically set, and the air conditioner is automatically switched to the operation mode so that the room temperature approaches the set temperature. Therefore, there is an effect that the operator does not have to set the operation mode and the room temperature as in the conventional case, and the running cost of the refrigerating and refrigerating air conditioner in the store can be minimized.

【0039】なお図1や図9に記載された温度の設定値
は、食品店舗のように外部との往来が激しくまた例えば
外部の気候に合わせた衣服を着ている来客の状態に近い
所定の温度範囲の中の温度が好ましいと考えられ、冬場
外気温度が10゜Cより低いときは10゜Cに設定する
など不快でない温度に設定することを考えている。もし
負荷を賄うに足る十分に大きな空調機が設定されてい
て、異常なく動作していけばこの設定温度に室内空気温
度は近づいていくことになる。従って、もし対象空間が
デパートの食品売場のように長い時間滞在したり、冷凍
に関係ない菓子などの他の食品とエリアを隣接するよう
な箇所の場合は違った温度設定が考えられる。閉鎖空間
における快適性は温度、湿度、気流、輻射、着衣量など
で決まるため、この設定温度とは不快でない温度を想定
している。室内温度の検出はエアコンでは室内機の吸い
込み空気温度を検出するが、他の場所でも良いことは当
然である。例えばショーケースの多い売場出足もとの温
度を検出すれば冷房時の省エネルギーつながる。
Note that the set temperature values shown in FIGS. 1 and 9 are set to a predetermined value close to the state of a visitor who wears clothes suited to the external climate, such as a food store, where traffic to and from the outside is intense. It is considered that the temperature within the temperature range is preferable, and when the outside air temperature in winter is lower than 10 ° C, it is considered to be set to a temperature that is not uncomfortable such as 10 ° C. If a sufficiently large air conditioner is set up to cover the load and operates normally, the indoor air temperature will approach this set temperature. Therefore, if the target space is a place where the user stays for a long time, such as a food store in a department store, or the area is adjacent to other food such as confectionery that is not related to freezing, different temperature settings can be considered. Comfort in an enclosed space is determined by temperature, humidity, air flow, radiation, amount of clothes, etc., so a temperature that is not uncomfortable with the set temperature is assumed. As for the detection of the indoor temperature, the air conditioner detects the temperature of the intake air of the indoor unit, but it goes without saying that it may be detected at another place. For example, detecting the temperature at the foot of the sales floor where there are many showcases leads to energy saving during cooling.

【0040】実施の形態4.実施の形態1〜3では、空
気調和機室外機制御装置10内部に空調設定温度演算部
13を設けていたが、図10に示すように、空気調和機
の外部に空調温度設定装置50を設けても良い。空冷負
荷比率はディプスイッチ、プログラム入力、キーボード
入力、音声入力や手書き文字入力等の手段により空調温
度設定装置50内の空調温度設定入力部51を通して予
め設定しておく。また、第2の温度センサ23で検出さ
れ室外制御入力部12に入力された外気温度検出値が、
時々刻々、自動的に空気調和機室外機制御装置10内の
室外制御出力部15から空調設定装置50の空調温度設
定入力部51に入力される。これら空冷負荷比率設定値
および外気温度検出値に対して、空調設定温度演算部5
2では、空調設定温度記憶部54に記憶されている空調
設定温度マトリクスから空調設定温度を選び出す。その
値は空調設定装置50内の空調温度設定出力部53から
空気調和機室外機制御装置10内の室外制御入力部12
に送られ、空気調和機は店舗内空気温度(室温)がこの
設定温度に近づくように運転する。
Fourth Embodiment In Embodiments 1 to 3, the air conditioning set temperature calculation unit 13 is provided inside the air conditioner outdoor unit control device 10, but as shown in FIG. 10, the air conditioning temperature setting device 50 is provided outside the air conditioner. May be. The air-cooling load ratio is preset by means of a DIP switch, program input, keyboard input, voice input, handwritten character input or the like through the air conditioning temperature setting input unit 51 in the air conditioning temperature setting device 50. Further, the outside air temperature detection value detected by the second temperature sensor 23 and input to the outdoor control input unit 12 is
It is automatically input from the outdoor control output unit 15 in the air conditioner outdoor unit control device 10 to the air conditioning temperature setting input unit 51 of the air conditioning setting device 50. The air-conditioning set temperature calculation unit 5 receives the air-cooled load ratio set value and the outside air temperature detected value.
In 2, the air conditioning set temperature is selected from the air conditioning set temperature matrix stored in the air conditioning set temperature storage unit 54. The value is from the air conditioning temperature setting output unit 53 in the air conditioning setting device 50 to the outdoor control input unit 12 in the air conditioner outdoor unit control device 10.
The air conditioner operates so that the in-store air temperature (room temperature) approaches the set temperature.

【0041】上記の空調設定装置50はリモコンとして
空調機とは別の位置に設けておくことで必要に応じ遠隔
操作にて設定変更が出来る。このように構成することに
より、空冷負荷比率等の入力設定が一個所でできるの
で、空調設定温度演算部を室外機制御装置内部に設ける
より入力設定の手間が省けるとともに、室外機制御装置
を安価にできるという効果がある。
By providing the air conditioning setting device 50 as a remote controller at a position different from that of the air conditioner, the setting can be changed by remote control as needed. With this configuration, the input settings such as the air-cooling load ratio can be made in one place, which saves the labor of input setting compared to the case where the air conditioning set temperature calculation unit is provided inside the outdoor unit control device, and the outdoor unit control device is inexpensive. There is an effect that can be.

【0042】実施の形態5.上記実施の形態4では、室
外機内に設置された第2の温度センサによる外気温度検
出値を利用したが、図11に示すように、室外に設置さ
れている空調温度設定装置50内に別途第6の温度セン
サ27を設けて外気温度を検出するようにしても良い。
Embodiment 5. In the fourth embodiment, the detected value of the outside air temperature by the second temperature sensor installed in the outdoor unit is used, but as shown in FIG. 11, it is separately provided in the air conditioning temperature setting device 50 installed outdoors. The temperature sensor 27 of No. 6 may be provided to detect the outside air temperature.

【0043】このように構成することにより、空冷負荷
比率等の入力設定が一個所でできるので、空調設定温度
演算部を室外機制御装置内部に設けるより入力設定の手
間が省けるとともに、室外機制御装置と空調温度設定装
置との間の通信を少なくできるので、システム全体のコ
ストを安価にできるという効果がある。
With this configuration, since the input setting such as the air-cooling load ratio can be made at one place, the labor of input setting can be saved and the outdoor unit control can be performed by providing the air conditioning set temperature calculation unit inside the outdoor unit control device. Since the communication between the device and the air conditioning temperature setting device can be reduced, the cost of the entire system can be reduced.

【0044】なお、上記実施の形態1〜5で設定される
空調設定温度は、該空気調和機が設置される店舗の顧客
の快適性を損なわない範囲内とすることは言うまでもな
い。例えば、10℃〜26℃の範囲で設定するとよい。
また、上記実施の形態1〜5では、空気調和機は、HC
FC系あるいはHFC系フロン冷媒やHC系自然冷媒に
よる蒸気圧縮式冷凍サイクルを用いたヒートポンプを想
定しているが、臭化リチウム−水系、アンモニア−水系
の吸収式冷温水機等、あるいは、冷房専用機とボイラ、
灯油等による暖房機との複合空調システム等、冷房、暖
房に供する空気調和機であればどのようなものでも良
い。
Needless to say, the air-conditioning set temperature set in the first to fifth embodiments is within a range that does not impair the comfort of the customer of the store where the air conditioner is installed. For example, it may be set in the range of 10 ° C to 26 ° C.
Moreover, in the said Embodiment 1-5, an air conditioner is HC.
A heat pump using a vapor compression refrigeration cycle using FC-based or HFC-based CFC refrigerants and HC-based natural refrigerants is assumed. Machine and boiler,
Any air conditioner for cooling and heating such as a combined air conditioning system with a heater such as kerosene may be used.

【0045】上記実施の形態1〜5では、空気調和機内
または空気調和機外部に設置された空調設定温度演算部
において、空気調和機の設定温度を自動的に演算するよ
うにしたが、計算尺のような算出手段を導入して設定温
度を算出し、この結果得られた温度を空気調和機に備え
付けのリモコン等によって操作員が空気調和機に入力、
指令して運転するようにしても良い。また、計算尺の代
わりに簡易計算式を作成して、これを計算機や手計算で
計算して設定温度を算出しても良い。
In the first to fifth embodiments described above, the set temperature of the air conditioner is automatically calculated by the air-conditioning set temperature calculation unit installed inside the air conditioner or outside the air conditioner. Such a calculating means is introduced to calculate the set temperature, and the temperature obtained as a result is input to the air conditioner by an operator by a remote controller or the like provided in the air conditioner,
You may make it drive according to a command. Also, a simple calculation formula may be created instead of the ruler, and this may be calculated by a calculator or manual calculation to calculate the set temperature.

【0046】また図12に示すように、複数の空気調和
器を設け、検出した室内温度により動作させる設備容量
を変える、すなわち運転する台数を変更してエネルギー
を最小にしようという方法である。例えば1台の温度目
標範囲を数度とし、台数の切り替えを少なくしたり、或
いは空調機器を複数設け設定温度の設定値の温度間隔を
もっと狭くして、温度差に応じてランクを設けランクに
応じて空調機の台数を設定し、快適性を提供すると共に
ランニングコストを最小にするということも可能であ
る。図12に示すように数分後の室温を予測しこれと目
標値との差によりエアコンを切り換える。この室温予測
は例えば現在の室温をy0、1分前y1、2分前y2と
し、1分後の室温を、Tin=y0+(y0−y1)/
[(y1−y2)*(y1−y2)]として予測するこ
とが出来る。
Further, as shown in FIG. 12, a plurality of air conditioners are provided, and the equipment capacity to be operated is changed according to the detected indoor temperature, that is, the number of operating machines is changed to minimize energy. For example, the temperature target range of one unit is set to several degrees, the number of units to be switched is reduced, or a plurality of air conditioners are provided and the temperature intervals of the set values of the set temperature are narrowed, and ranks are set according to the temperature difference. Depending on the number of air conditioners, it is possible to provide comfort and minimize running costs. As shown in FIG. 12, the room temperature after several minutes is predicted, and the air conditioner is switched depending on the difference between this and the target value. For example, assuming that the present room temperature is y0, y1 before 1 minute, and y2 before 2 minutes, the room temperature after 1 minute is Tin = y0 + (y0-y1) /
It can be predicted as [(y1-y2) * (y1-y2)].

【0047】以上述べたように、空気調和機の制御装置
は外気温度条件と店舗内空冷負荷比率とに応じて、店舗
内オープンショーケース・冷凍機および空気調和機の消
費電力合計が最小になるような店舗内空調温度および運
転モード(冷/暖)を自動的に設定し、空気調和機は室
温が該設定温度に近づくように運転モードを自動的に該
運転モードに切り換えて運転されるので、従来のよう
に、オペレータが運転モードおよび室温を設定する手間
を省くとともに、店舗内冷凍冷蔵空調のランニングコス
トを最小にすることができるという効果がある。
As described above, the control device of the air conditioner minimizes the total power consumption of the open showcase / refrigerator and the air conditioner in the store depending on the outside air temperature condition and the air cooling load ratio in the store. Such an in-store air conditioning temperature and operation mode (cool / warm) are automatically set, and the air conditioner is operated by automatically switching the operation mode to the operation mode so that the room temperature approaches the set temperature. As in the conventional case, there is an effect that the operator can save the labor of setting the operation mode and the room temperature and can minimize the running cost of the refrigerating and refrigerating air conditioning in the store.

【0048】実施の形態6.店舗における実際の各装置
の電力量を電力計により計測しこの計測された各装置の
消費電力と上記までに説明してきた演算された各装置の
消費電力とから補正係数を求めこの補正係数によりあら
かじめ記憶された温度設定値を補正することができる。
空調設定温度演算部13を含む室外機制御装置10また
は空調温度設定装置50では、店舗における実際の空気
調和機の消費電力、冷凍機用冷凍機の消費電力、冷蔵機
用冷凍機の消費電力を電力計を介し検出する。室外機制
御装置10または空調温度設定装置50に消費電力演算
部55を設け、ここに室内空気温度、外気温度、各装置
の消費電力量が入力される。図1で示される空調設定温
度演算部に設定された空冷負荷比率と検出された外気温
度に応じた設定温度を記憶しておくが、この記憶された
マトリックスデータを求める図4、5に記載された特性
値の基礎データを消費電力演算部55にあらかじめ記憶
しておくことにより室内空気温度、外気温度から各装置
の消費電力を計算することができ、この計算結果と検出
された消費電力の比率を求め、且つ、この比率である補
正係数を入力条件とともに消費電力演算部55に記憶し
ておく。
Sixth Embodiment The actual amount of electric power of each device in the store is measured by a wattmeter, and a correction coefficient is obtained from the measured power consumption of each device and the calculated power consumption of each device described above. The stored temperature set value can be corrected.
In the outdoor unit control device 10 or the air conditioning temperature setting device 50 including the air conditioning set temperature calculation unit 13, the actual power consumption of the air conditioner, the power consumption of the refrigerator / freezer, and the power consumption of the refrigerator / refrigerator in the store are displayed. Detected via a power meter. The outdoor unit control device 10 or the air conditioning temperature setting device 50 is provided with a power consumption calculation unit 55, and the indoor air temperature, the outdoor air temperature, and the power consumption of each device are input therein. The air-cooling load ratio set in the air-conditioning set temperature calculation unit shown in FIG. 1 and the set temperature according to the detected outside air temperature are stored, and the stored matrix data are shown in FIGS. By storing the basic data of the characteristic values in the power consumption calculation unit 55 in advance, the power consumption of each device can be calculated from the indoor air temperature and the outdoor air temperature, and the ratio of this calculation result to the detected power consumption. And the correction coefficient that is this ratio is stored in the power consumption calculation unit 55 together with the input condition.

【0049】空気調和機消費電力補正係数K1としては
検出された実際の空気調和機の消費電力を計算結果で割
ったものであり、冷凍用冷凍機の消費電力補正係数K2
としては検出された実際の冷凍用冷凍機の消費電力を計
算結果で割ったものであり、冷蔵用冷凍機の消費電力補
正係数K3としては検出された実際の冷蔵用冷凍機の消
費電力を計算結果で割ったものである。これらの補正係
数の算出は例えば1時間程度毎に行い毎回の計算結果を
10回分記憶して平均値を算出する事により各回毎のデ
ータの特殊性、例えば人が多い時間帯で突出した負荷が
発生したばあいや食品を入れ替えたばかり出負荷が大き
くなった場合等の影響を大きく受けることなく、平均的
な補正係数をえることができ、しかも、直近のデータか
ら補正係数を算出するので季節要因も学習することがで
きる。
The air conditioner power consumption correction coefficient K1 is the detected actual power consumption of the air conditioner divided by the calculation result, and the power consumption correction coefficient K2 of the refrigerating refrigerator.
Is the power consumption of the detected actual refrigeration refrigerator divided by the calculation result, and the power consumption correction coefficient K3 of the refrigeration refrigerator is calculated as the detected power consumption of the actual refrigeration refrigerator. It is divided by the result. These correction coefficients are calculated, for example, every hour or so, and the calculation results for each time are stored 10 times and the average value is calculated. The average correction coefficient can be obtained without being greatly affected by the occurrence of an outbreak or when the output load has increased just after the food has been replaced, and since the correction coefficient is calculated from the latest data, it is a seasonal factor. Can also learn.

【0050】上記のごとく室内空気温度の変化に応じた
補正係数により図4、5のデータの補正が可能となりこ
の補正されたデータからマトリックスで記憶される設定
温度の値を補正することができる。この補正において常
に最初に記憶されたデータをもとに補正する事により大
幅にデータが変化することを防ぐことが出きる。また室
内空気の補正した後の設定温度をある範囲内、例えば店
舗内の買い物客の快適性を損なわない範囲、夏場なら2
2−28度、冬場なら10−20度、中間期なら15−
25度の範囲で設定可能にしたり、現在値に数度の範囲
に限定することでもよい。これにより実際に計測された
状態に基づき補正されるので精度の良い温度設定が可能
となり消費電力をより確実に削減出きる。なおこの補正
はメインテナンスサービスするときに室内温度や外気湿
度を計測しながら行う事により一層精度を上げることが
できる。またこの補正はデータテーブルに対応して記憶
させておく事によりデータテーブルから選択された後行
ってもよいことは当然である。
As described above, the data shown in FIGS. 4 and 5 can be corrected by the correction coefficient corresponding to the change in the room air temperature, and the set temperature value stored in the matrix can be corrected from the corrected data. In this correction, it is possible to prevent a large change in data by always correcting based on the data stored first. In addition, the set temperature after the correction of the indoor air is within a certain range, for example, the range that does not impair the comfort of shoppers in the store, in the case of summer it is 2
2-28 degrees, 10-20 degrees in winter, 15- in the middle period
It may be set within a range of 25 degrees, or may be limited to a range of several degrees for the current value. As a result, since the temperature is corrected based on the actually measured state, the temperature can be set with high accuracy, and the power consumption can be reduced more reliably. It should be noted that this correction can be made even more accurate by measuring the indoor temperature and the outside air humidity when performing maintenance service. Further, it goes without saying that this correction may be performed after being selected from the data table by storing it in correspondence with the data table.

【0051】[0051]

【発明の効果】以上述べたように、本発明の空気調和装
置は設定温度の値を、前記空気調和機と前記冷熱負荷機
器の合計の消費電力量が小さくなるように、外気温度が
低いほど、また前記空気調和機の容量もしくは空調面積
と前記冷熱負荷機器の容量との比が小さいほど小さい値
とするので冷熱負荷機器および空気調和機の消費電力合
計が季節や昼夜を問わず少ない。
As described above, according to the air conditioner of the present invention, the value of the set temperature is set to the air conditioner and the cold heat loader.
The outside air temperature is adjusted so that the total power consumption of the
The lower, the capacity of the air conditioner or the air conditioning area
The smaller the ratio between the capacity of the heat load equipment and
As a result, the total power consumption of the cooling load equipment and the air conditioner is low regardless of the season or day and night.

【0052】本発明の空気調和装置は、食品店舗内の空
気調和を行う空気調和機の温度設定値を外気温度と空気
調和機/冷蔵冷凍オープンショーケースまたは冷凍機の
空冷負荷比率に応じて変化させるので、宿品店舗内の消
費電力を季節や昼夜時間を問わず少なくすることができ
る。
In the air conditioner of the present invention, the temperature setting value of the air conditioner for air conditioning in the food store is changed according to the outside air temperature and the air conditioner / refrigerating / freezing open showcase or the air cooling load ratio of the refrigerator. As a result, the power consumption in the inn store can be reduced regardless of the season or day / night time.

【0053】本発明の空気調和装置は、室内空調温度お
よび運転モード(冷/暖)を自動的に設定し、空気調和
機は室温が該設定温度に近づくように運転モードを自動
的に該運転モードに切り換えて運転されるので、従来の
ように、オペレータが運転モードおよび室温を設定する
手間を省くとともに、室内の例えば冷凍冷蔵の様な冷熱
負荷と空調のランニングコストを最小にすることができ
るという効果がある。
The air conditioner of the present invention automatically sets the indoor air conditioning temperature and the operation mode (cool / warm), and the air conditioner automatically operates the operation mode so that the room temperature approaches the set temperature. Since the operation is switched to the mode, it is possible to save the operator the trouble of setting the operation mode and the room temperature as in the conventional case, and to minimize the cooling load in the room such as freezing and refrigeration and the running cost of air conditioning. There is an effect.

【0054】本発明の空気調和装置は、空調設定温度を
空気調和機の外部で設定するので簡単な構成で最適な温
度設定が出来る。
In the air conditioner of the present invention, the air-conditioning set temperature is set outside the air conditioner, so that the optimum temperature can be set with a simple structure.

【0055】本発明の空気調和装置は、設定温度の値を
空気調和機及び冷熱負荷機器の消費電力が小さくなるよ
うに変化させるので、冷熱負荷機器の冷熱を有効に生か
した空調が可能となり、環境対策としての波及効果が大
きい。
In the air conditioner of the present invention, the value of the set temperature is changed so that the power consumption of the air conditioner and the cold load equipment is reduced, so that it is possible to perform air conditioning by effectively utilizing the cold heat of the cold load equipment. It has a great ripple effect as an environmental measure.

【0056】本発明の空気調和装置は、冷熱負荷機器と
空気調和機の電力を検出し検出された電力により設定温
度を補正するので状況の変化に追随出来る精度の良い装
置がえられる。
Since the air conditioner of the present invention detects the electric power of the cold load equipment and the air conditioner and corrects the set temperature by the detected electric power, a highly accurate device that can follow changes in the situation can be obtained.

【0057】本発明の空気調和装置の制御方法は、空気
調和機と冷熱負荷機器の容量の比を算出し、この比率と
外気温度から空調機の設定温度を空気調和機と冷熱負荷
機器の合計の消費電力量が少なくなるように変化させる
ので、空調と冷熱負荷の消費電力を常に良好に維持する
ことが出来、食品店舗のような営業や外来の多い室内の
空調を安価に、かつ効果的に行うことが出来る。
The control method of the air conditioner of the present invention calculates the ratio of the capacities of the air conditioner and the cold load equipment, and determines the set temperature of the air conditioner from this ratio and the outside air temperature to determine the set temperature of the air conditioner and the cold load.
Since the total power consumption of the equipment is changed so as to be small, it is possible to always maintain good power consumption of the air conditioning and cooling load, and to reduce the cost of air conditioning in a store such as a food store or in an office with many outpatients. And it can be done effectively.

【0058】本発明の空気調和装置の制御方法は、配置
された領域の空気調和を行う少なくとも1台の空気調和
機及びこの空気調和される領域に配置され空気調和が行
われる空気温度と異なる温度を発生させこの領域の空気
を冷却する又はこの領域の空気を加熱する少なくとも1
台の冷熱負荷機器の複数の各機器の消費電力を領域の空
気温度毎に演算するステップと、空気調和機の容量と冷
熱負荷機器の容量との比率を求めこの比率を変化させた
ときの領域の空気温度毎に演算された消費電力を演算す
るとともに比率毎の低い消費電力に対応する空気温度を
記憶させるステップと、領域の外部に配置され空気調和
機が空気調和する冷温熱を放熱または吸熱する外部の温
度を検出するステップと、検出された外部の温度に対
し、領域に配置された空気調和機と冷熱負荷機器の容量
の比率により記憶された空気温度を読みだして空気調和
機の設定温度として設定するステップと、を備えたもの
である。
The control method of the air conditioner of the present invention is such that at least one air conditioner for performing air conditioning of the arranged region and a temperature different from the temperature of the air arranged in the region where the air conditioning is performed are performed. To cool the air in this area or heat the air in this area at least 1
A step of calculating the power consumption of each equipment of the cooling and heating load equipment for each air temperature of the area, and the area when the ratio of the capacity of the air conditioner and the capacity of the cooling and heat loading equipment is obtained and this ratio is changed. Calculating the power consumption calculated for each air temperature and storing the air temperature corresponding to the low power consumption for each ratio, and radiating or absorbing the cold heat that is conditioned by the air conditioner outside the area The step of detecting the external temperature, and the stored air temperature is read according to the ratio of the capacity of the air conditioner placed in the area to the detected external temperature, and the air conditioner is set. And a step of setting the temperature.

【0059】冷熱機機の容量に対し空調面積が小さい場
合、空調の設定温度を低く設定するので、簡単に設定で
き、売場などの効果的なレイアウト設計や変更が容易で
冷熱負荷を含むシステムを簡単に構築できる。
When the air-conditioning area is smaller than the capacity of the cooling / heating machine, the set temperature of the air-conditioning is set low, so that it can be easily set, and an effective layout design such as a sales floor and a system including a cooling load can be easily designed and changed. Easy to build.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1を示すブロック図。FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】 本発明の実施の形態1の店舗モデル図。FIG. 2 is a store model diagram according to the first embodiment of the present invention.

【図3】 本発明の実施の形態1の食品店舗の冷凍冷蔵
空調熱負荷試算結果説明図。
FIG. 3 is an explanatory diagram of a heat load trial calculation result of freezing and refrigerating air conditioning of a food store according to the first embodiment of the present invention.

【図4】 本発明の実施の形態1の食品店舗の月積算冷
凍冷蔵空調消費電力試算結果説明図。
FIG. 4 is an explanatory diagram of a result of trial calculation of monthly accumulated freezing / refrigerating air conditioning power consumption of the food store according to the first embodiment of the present invention.

【図5】 本発明の実施の形態1の食品店舗の消費電力
を最小化する空調設定温度の計算結果説明図。
FIG. 5 is an explanatory diagram of a calculation result of an air conditioning set temperature that minimizes power consumption of the food store according to the first embodiment of the present invention.

【図6】 本発明の実施の形態1の食品店舗空調設定温
度最適化の効果試算結果説明図。
FIG. 6 is an explanatory diagram of an effect trial calculation result of food store air conditioning set temperature optimization according to the first embodiment of the present invention.

【図7】 本発明の実施の形態1の空気調和機の構成
図。
FIG. 7 is a configuration diagram of the air conditioner according to the first embodiment of the present invention.

【図8】 本発明の実施の形態2の空気調和機の構成
図。
FIG. 8 is a configuration diagram of an air conditioner according to a second embodiment of the present invention.

【図9】 本発明の実施の形態3のブロック図。FIG. 9 is a block diagram of a third embodiment of the present invention.

【図10】 本発明の実施の形態4の空気調和機の構成
図。
FIG. 10 is a configuration diagram of an air conditioner according to a fourth embodiment of the present invention.

【図11】 本発明の実施の形態5の空気調和機の構成
図。
FIG. 11 is a configuration diagram of an air conditioner according to a fifth embodiment of the present invention.

【図12】 本発明の別の実施の形態の空気調和機の動
作を示すブロック図。
FIG. 12 is a block diagram showing an operation of the air conditioner according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 室外機、 2 室内機、 3 圧縮機、 4 四方
弁、 5 室外熱交換器、 6 室外ファン、 7 流
量制御弁、 8 室内熱交換器、 9 室内ファン、
10 室外機制御装置、 11 室内機制御装置、 1
2 室外制御入力部、 13 空調設定温度演算部、
14 室外制御演算部、 15 室外制御出力部、 1
6 室内制御入力部、 17 室内制御演算部、 18
室内制御出力部、 21 圧力センサ、 22 第1
の温度センサ、 23 第2の温度センサ、 24 第
3の温度センサ、 25 第4の温度センサ、 26
第5の温度センサ、 27 第6の温度センサ、 31
〜40 冷媒配管、 42毛細管、 46 室内制御記
憶部、 47 室外制御記憶部、 50 空調温度設定
装置、 51 空調設定温度入力部、 52 空調設定
温度演算部、 53 空調設定温度出力部、 54 空
調設定温度記憶部。
1 outdoor unit, 2 indoor unit, 3 compressor, 4 4-way valve, 5 outdoor heat exchanger, 6 outdoor fan, 7 flow control valve, 8 indoor heat exchanger, 9 indoor fan,
10 outdoor unit control device, 11 indoor unit control device, 1
2 outdoor control input section, 13 air conditioning set temperature calculation section,
14 outdoor control calculation unit, 15 outdoor control output unit, 1
6 Indoor control input section, 17 Indoor control calculation section, 18
Indoor control output, 21 Pressure sensor, 22 1st
Temperature sensor, 23 second temperature sensor, 24 third temperature sensor, 25 fourth temperature sensor, 26
Fifth temperature sensor, 27 Sixth temperature sensor, 31
-40 Refrigerant pipe, 42 Capillary pipe, 46 Indoor control storage unit, 47 Outdoor control storage unit, 50 Air conditioning temperature setting device, 51 Air conditioning set temperature input unit, 52 Air conditioning set temperature calculation unit, 53 Air conditioning set temperature output unit, 54 Air conditioning setting unit Temperature storage unit.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 F25D 11/00 101 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) F24F 11/02 F25D 11/00 101

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 室内の空気調和を行う空気調和機と、こ
の空気調和された室内空気温度と異なる温度を発生させ
この室内空気を冷却する又はこの室内空気を加熱する冷
熱負荷機器と、 前記空気調和機が室内温度を上下させる目標とする設定
温度の値を、前記空気調和機と前記冷熱負荷機器の合計
の消費電力量が小さくなるように、外気温度が低いほ
ど、また前記空気調和機の容量もしくは空調面積と前記
冷熱負荷機器の容量との比が小さいほど小さい値とする
ことを特徴とする空気調和装置。
1. An air conditioner for performing indoor air conditioning, a cold heat load device for cooling the indoor air or heating the indoor air by generating a temperature different from the air-conditioned indoor air temperature, and the air. The value of the target set temperature that the air conditioner raises and lowers the indoor temperature is the sum of the air conditioner and the cold load equipment.
The outside air temperature is low so that
The capacity of the air conditioner or the air conditioning area
An air conditioner characterized in that the smaller the ratio to the capacity of the cold load equipment, the smaller the value .
【請求項2】 食品店舗内の空気調和を行う空気調和機
と、食品店舗内のオープンショーケースの負荷となる店
舗空気を上下させる前記空気調和機の温度設定値を、外
気温度と空気調和機/冷蔵冷凍オープンショーケースま
たは冷凍機の空冷負荷比率とに応じて変化させることを
特徴とする空気調和装置。
2. An air conditioner for air conditioning in a food store, and a temperature set value of the air conditioner for raising and lowering store air as a load of an open showcase in the food store, the outside air temperature and the air conditioner. / An air conditioner characterized by being changed according to an air-cooling load ratio of a refrigerating / freezing open showcase or a refrigerator.
【請求項3】 空気調和機の冷房と暖房の運転モード切
り換えを、空調設定温度からの室温の偏差によって自動
的に切りかえることを特徴とする請求項1又は2記載の
空気調和装置。
3. The air conditioner according to claim 1, wherein the switching between the cooling mode and the heating mode of the air conditioner is automatically switched according to the deviation of the room temperature from the air conditioning set temperature.
【請求項4】 検出された外気温度を基に、空調設定温
度を空気調和機の外部で設定しその設定温度を空気調和
機に入力することにより行うことを特徴とする請求項1
又は2記載の空気調和装置。
4. The air conditioning set temperature is set outside the air conditioner based on the detected outside air temperature, and the set temperature is input to the air conditioner.
Or the air conditioning apparatus according to 2.
【請求項5】 設定温度の値を、外気温度及び前記空気
調和機の容量と前記冷熱負荷機器の容量との比に応じ
て、空気調和機及び冷熱負荷機器の消費電力が小さくな
るように変化させることを特徴とする請求項2記載の空
気調和装置。
5. The set temperature value is changed according to the outside air temperature and the ratio of the capacity of the air conditioner to the capacity of the cold heat load equipment so that the power consumption of the air conditioner and the cold heat load equipment is reduced. air conditioning apparatus according to claim 2 Symbol mounting, characterized in that to.
【請求項6】 冷熱負荷機器と空気調和機の電力を検出
し検出された電力により設定温度を補正することを特徴
とする請求項1又は2記載の空気調和装置。
6. The air conditioner according to claim 1, wherein electric power of the cold load equipment and the air conditioner is detected, and the set temperature is corrected by the detected electric power.
【請求項7】 室内の空気調和を行う空気調和機の容量
と、この空気調和された室内空気温度と異なる温度を発
生させこの室内空気を冷却する又はこの室内空気を加熱
する冷熱負荷機器の容量との比を算出するステップと、
外気温度を検出するステップと、前記外気温度及び前記
容量の比から空気調和機が室内温度を上下させる目標と
する設定温度の値を、前記空気調和機と前記冷熱負荷機
器の合計の消費電力量が少なくなるように、あらかじめ
設定された値に設定するステップと、を備えたことを特
徴とする空気調和装置の制御方法。
7. A capacity of an air conditioner for performing air conditioning in a room, and a capacity of a cooling load device for cooling the room air or heating the room air by generating a temperature different from the temperature of the air-conditioned room air. Calculating the ratio of
The step of detecting the outside air temperature, and the value of the target set temperature for the air conditioner to raise or lower the indoor temperature from the ratio of the outside air temperature and the capacity, the air conditioner and the cold heat load machine
A method for controlling an air conditioner, comprising the step of setting a preset value so as to reduce the total power consumption of the device.
【請求項8】 配置された領域の空気調和を行う少なく
とも1台の空気調和機及びこの空気調和される領域に配
置され空気調和が行われる空気温度と異なる温度を発生
させこの領域の空気を冷却する又はこの領域の空気を加
熱する少なくとも1台の冷熱負荷機器の複数の各機器の
消費電力を前記領域の空気温度毎に演算するステップ
と、前記空気調和機の容量と前記冷熱負荷機器の容量と
の比率を求めこの比率を変化させたときの前記領域の空
気温度毎に演算された消費電力を演算するとともにそれ
ぞれの比率毎に演算された中で低い消費電力に対応する
空気温度を記憶させるステップと、前記領域の外部に配
置され前記空気調和機が空気調和する冷温熱を放熱また
は吸熱する外部の温度を検出するステップと、前記検出
された外部の温度に対し、前記領域に配置された空気調
和機と冷熱負荷機器の容量の比率により低い消費電力に
対応するとして記憶された空気温度を読みだして前記空
気調和機の設定温度として設定するステップと、を備え
たことを特徴とする空気調和装置の制御方法。
8. At least one air conditioner for performing air conditioning of the arranged area and a temperature different from the temperature of the air arranged in the air-conditioned area to generate air and cool the air in this area. Or calculating the power consumption of each of a plurality of devices of at least one cold load device that heats the air in this region for each air temperature of the region, the capacity of the air conditioner and the capacity of the cold load device And the power consumption calculated for each air temperature in the region when this ratio is changed, and the air temperature corresponding to the low power consumption calculated for each ratio is stored. A step of detecting an external temperature that is arranged outside the area and that radiates or absorbs cold / heat heat that is air-conditioned by the air conditioner; Then, the step of reading out the air temperature stored as corresponding to the lower power consumption due to the capacity ratio of the air conditioner and the cooling load equipment arranged in the region and setting it as the set temperature of the air conditioner, A method for controlling an air conditioner, comprising:
【請求項9】 室内の空気調和を行う空気調和機の容量
として空調面積を使用し、冷熱負荷機器の容量に対し空
調面積が小さい場合は設定温度を低めに設定することを
特徴とする請求項7または8記載の空気調和装置。
9. The air-conditioning area is used as a capacity of an air conditioner for performing air conditioning in a room, and the set temperature is set low when the air-conditioning area is smaller than the capacity of the cooling load equipment. 7. The air conditioner according to 7 or 8.
JP31280798A 1997-11-11 1998-11-04 Air conditioner and control method thereof Expired - Fee Related JP3528633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31280798A JP3528633B2 (en) 1997-11-11 1998-11-04 Air conditioner and control method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30844797 1997-11-11
JP9-308447 1997-11-11
JP31280798A JP3528633B2 (en) 1997-11-11 1998-11-04 Air conditioner and control method thereof

Publications (2)

Publication Number Publication Date
JPH11201523A JPH11201523A (en) 1999-07-30
JP3528633B2 true JP3528633B2 (en) 2004-05-17

Family

ID=26565551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31280798A Expired - Fee Related JP3528633B2 (en) 1997-11-11 1998-11-04 Air conditioner and control method thereof

Country Status (1)

Country Link
JP (1) JP3528633B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038764A (en) * 1999-11-18 2011-02-24 Mayekawa Mfg Co Ltd Snow melting or cooling system using underground heat/air heat
JP5759092B2 (en) * 2009-02-24 2015-08-05 パナソニック株式会社 Air conditioning system
JP2011257072A (en) * 2010-06-09 2011-12-22 Panasonic Electric Works Co Ltd Energy management apparatus
JP5627523B2 (en) * 2011-03-25 2014-11-19 三菱電機株式会社 Air conditioner
JP5891376B2 (en) * 2011-10-28 2016-03-23 パナソニックIpマネジメント株式会社 Cooperation control system
JP5938724B2 (en) * 2011-12-22 2016-06-22 パナソニックIpマネジメント株式会社 Refrigerated refrigeration air conditioner
EP3040633A4 (en) * 2013-08-29 2017-06-14 Mitsubishi Electric Corporation Air conditioning system
JP6271260B2 (en) * 2014-01-14 2018-01-31 京セラ株式会社 Energy management apparatus and energy management method
JP6233283B2 (en) * 2014-11-26 2017-11-22 富士電機株式会社 Air conditioning system, air conditioner control device, and air conditioner control method
JP2016205736A (en) * 2015-04-24 2016-12-08 京セラ株式会社 Power control device control method, power control device and power control system
CN107120789B (en) * 2017-04-25 2018-02-13 南京福致通电气自动化有限公司 A kind of air-conditioner set power adaptive method of adjustment
JP6979606B2 (en) * 2019-09-24 2021-12-15 パナソニックIpマネジメント株式会社 Air conditioner control device, air conditioner control method, and program
CN113375322A (en) * 2021-06-29 2021-09-10 日立楼宇技术(广州)有限公司 Air conditioner constant temperature control method, system, equipment and medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152165A (en) * 1995-11-30 1997-06-10 Toshiba Corp Air conditioner
JPH09170799A (en) * 1995-12-19 1997-06-30 Rinnai Corp Control device for air conditioner system
JPH09170798A (en) * 1995-12-20 1997-06-30 Fujitsu General Ltd Method for controlling air conditioner
JPH09196432A (en) * 1996-01-10 1997-07-31 Tokyo Electric Power Co Inc:The Air conditioner and method for controlling air conditioner

Also Published As

Publication number Publication date
JPH11201523A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US10558229B2 (en) Method and apparatus for monitoring refrigeration-cycle systems
JP5362537B2 (en) Air conditioning control device, cooling system, and air conditioning control program
JP3528633B2 (en) Air conditioner and control method thereof
US20060201168A1 (en) Method and apparatus for monitoring a calibrated condenser unit in a refrigerant-cycle system
JP5758663B2 (en) Air conditioner
Li et al. Simulation of recombined household multi-split variable refrigerant flow system with split-type air conditioners
US20210255649A1 (en) Economizer temperature extrapolation systems and methods
JP2000266368A (en) Air-conditioner system
JPH09196432A (en) Air conditioner and method for controlling air conditioner
JP5627522B2 (en) Air conditioner
Tosato et al. Field data of CO2 integrated refrigeration, heating and cooling systems for supermarkets
CN203163122U (en) Integrated water-cooling central air-conditioner
JP5627523B2 (en) Air conditioner
JP3326999B2 (en) Multi-room air conditioner
CN216769637U (en) Novel dedicated dehumidification heat pump set of swimming pool
Cox Heating, ventilating and air conditioning systems
KR20060025626A (en) Method and apparatus for controlling (a) pipe air leakage of (a) multi type air conditioner
KR101064372B1 (en) Apparatus for controlling a refrigerant of multi air conditioner
Li et al. Study on the Performance of Gravity Dual-Loop Heat Pipe Air Conditioning System for Data Centers
CN115614870A (en) Novel air conditioner
Westphalen et al. Energy Efficient Rooftop Air-Conditioner
KR20050089423A (en) Method and apparatus for controlling heating of (an) air conditioner
KR20050078535A (en) (a) multi type air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees