JP4378008B2 - Anti-shake zoom lens - Google Patents

Anti-shake zoom lens Download PDF

Info

Publication number
JP4378008B2
JP4378008B2 JP36530899A JP36530899A JP4378008B2 JP 4378008 B2 JP4378008 B2 JP 4378008B2 JP 36530899 A JP36530899 A JP 36530899A JP 36530899 A JP36530899 A JP 36530899A JP 4378008 B2 JP4378008 B2 JP 4378008B2
Authority
JP
Japan
Prior art keywords
lens
lens group
group
object side
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36530899A
Other languages
Japanese (ja)
Other versions
JP2001183585A (en
JP2001183585A5 (en
Inventor
誠 三坂
佐藤  茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP36530899A priority Critical patent/JP4378008B2/en
Publication of JP2001183585A publication Critical patent/JP2001183585A/en
Publication of JP2001183585A5 publication Critical patent/JP2001183585A5/ja
Application granted granted Critical
Publication of JP4378008B2 publication Critical patent/JP4378008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、ズームレンズに関し、特に、振動による撮影画像のぶれを補正する機能を有するズームレンズに関する。
【0002】
【従来の技術】
従来、一眼レフカメラ用のズームレンズとして、物体側から順に負・正・負・正の屈折力配置を有する光学系が知られている。このタイプのズームレンズは、負群先行、所謂ネガティブリードであることから広角端を広画角にするのに適している一方で、望遠端では第1レンズ群と第2レンズ群が全体として正のグループ、第3レンズ群と第4レンズ群が全体として負のグループを構成し、光学系全体として所謂テレフォトタイプとできることから望遠端も長焦点化し易いというメリットを有している。このネガティブリードタイプのズームレンズは、たとえば、特開平4−163415号公報、特開平5−241073号公報、特開昭58−95315号公報、特開昭58−95315号公報、特開平5−19170号公報、特開平6−82698号公報、特開平7−287168号公報に開示されている。又、ネガティブリードタイプのズームレンズにおいて、撮影画像の変位を補正する機能を有する光学系が、たとえば、特開平7−152002号公報、特開平10−39210号公報に開示されている。
【0003】
図19に示すように、たとえば、特開平10−39210号公報に開示されたズームレンズにおいては、第3レンズ群G3は、前群G3Fと後群G3Rとから成る。特に、前群G3Fは、その一つの面r17を非球面とする貼り合わせレンズである。そして、前群G3Fを光軸を横切る方向に移動可能に配置して防振補正を行わせている。
【0004】
【発明が解決しようとする課題】
一般に、撮影画像の変位を補正する機能を有する光学系を構成する際、まず変位補正時の画質の劣化を十分に少なくするように構成することが必要とされる。
【0005】
又、装置全体をコンパクトかつローコストにするためには、駆動装置の簡素化のために駆動量を十分に少なくすることや、画像変位補正光学系の小型化、軽量化が必要である。
【0006】
しかし、従来の画像変位補正光学系は、複雑且つ大型であるため、装置全体のコンパクト化やローコスト化には不適当であった。
【0007】
そこで、本発明は、物体側から順に負・正・負・正の屈折力配置光学系において、撮影画像の変位を補正する機能をもたせ、且つ装置全体をコンパクトにすることを課題としている。
【0008】
【課題を解決するための手段】
上記の課題を解決するための本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群と、負の屈折力の第3レンズ群と、正の屈折力の第4レンズ群より構成され、広角から望遠への変倍の際、前記第1レンズ群は像側へ凸の軌跡で移動し、前記第2レンズ群は前記第1レンズ群との間隔を小とするように物体側へ移動し、前記第3レンズ群は前記第2レンズ群との間隔を大とするように物体側へ移動し、前記第4レンズ群は前記第3レンズ群との間隔を小とするように物体側へ移動し、前記第3レンズ群を光軸方向と垂直な成分を持つように移動させることによって結像位置を変位させるズームレンズであって、前記第3レンズ群は単レンズで構成されており、第iレンズ群の焦点距離をfi、広角端におけるレンズ全系の焦点距離をfwとしたとき、
1.5<|f3/fw|<5.0
2.0<|f3/f2|<5.0
3.5<|f4/fw|<15.0
なる条件式を満足することを特徴としている
【0009】
【発明の実施の形態】
本発明においては、物体側から順に負・正・負・正の屈折力配置としているので、第2レンズ群により収斂された光束が第3レンズ群に入射する。第3レンズ群は小型化が比較的容易であり、画像変位補正群として好適である。本発明では前記第3レンズ群を単レンズとすることで、画像変位補正群を軽量化している。
【0010】
又、第3レンズ群に非球面を配置することで、基準状態すなわち画像変位補正していない状態の望遠端における球面収差の補正を行っている。従って、変位補正時の収差特性の劣化も少なくなる。第3レンズ群は、レンズ周辺にむかって負の屈折力が弱くなるような非球面形状にするとよい。
【0011】
又、第3レンズ群をプラスティックレンズとすることで、画像変位補正群の軽量化がさらに容易となる。望ましくは、前記プラスティックの材料をアクリルやポリオレフィン系等の樹脂にすれば、ポリカーボネート等の樹脂に比べて低分散であることから、軸上色収差の補正が容易となる。
【0012】
又、第iレンズ群の焦点距離をfi,広角端におけるレンズ全系の焦点距離をfwとしたとき、以下の式(1)を満足させるとよい。
【0013】
1.5<|f3/fw|<5.0 (1)
撮影画像の変位を補正する機能を有するズームレンズの場合、画像変位補正群は変位補正時の画質の劣化を十分に少なくすると同時に、ズームレンズの変倍群としての機能を有する必要がある。特に本発明においては、画像変位補正群である第3レンズ群が単レンズであるので、屈折力配置には特別の注意をはらう必要がある。
【0014】
式(1)の上限をこえると、望遠端で第3レンズ群と第4レンズ群の合成屈折力を十分な負の屈折力にすることが困難となり、テレフォトタイプの屈折力配置をとりずらくなることから、望遠端で明るいFナンバーを確保することが困難となる。一方、式(1)の下限を越えると、焦点距離全域にわたって特にコマ収差と歪曲収差の補正が困難となる。
【0015】
更に望ましくは、以下の式(2)を満足させるとよい。
【0016】
2.0<|f3/fw|<4.0 (2)
更に、第2レンズ群、第3レンズ群、第4レンズ群の焦点距離を以下の式(3)及び式(4)によって定めるとよい。
【0017】
2.0<|f3/f2|<5.0 (3)
3.5<|f4/fw|<15.0 (4)
式(3)は第2レンズ群と第3レンズ群の屈折力の割合を設定したものであり、上限をこえると広角側で第2レンズ群と第3レンズ群の合成屈折力が、レトロフォーカスタイプの後群として適切な正の屈折力とすることが困難となり、その結果広角端における像面湾曲及びコマ収差の補正が困難となる。下限をこえると必要な変倍比を確保するのが困難となったり、望遠端でテレフォトタイプの屈折力配置をとりずらくなることから、望遠端で明るいFナンバーを確保することが困難となる。
【0018】
式(4)は第4レンズ群の焦点距離を適切に設定したものであり、上限を外れると広角側でバックフォーカスの確保が困難となり、下限を外れると、特に望遠端で画像変位補正のための第3レンズ群の駆動量を小さくすることが困難となる。
【0019】
さらに望ましくは、第2レンズ群、第3レンズ群、第4レンズ群の焦点距離を以下の式(5)及び式(6)によって定めるとよい。
【0020】
2.0<|f3/f2|<3.5 (5)
3.5<|f4/fw|<14.0 (6)
【0021】
【実施例】
図1は、数値実施例1から数値実施例までのつの実施例を示す表である。いずれの実施例も式(1)から式(6)までの6つの式をすべて満足させている。
【0022】
図2は、数値実施例1から数値実施例4までの4つの実施例のズームレンズの変倍動作を説明するための図である。図20、図21、図22、図23は数値実施例1から数値実施例4のズームレンズの広角端におけるレンズ断面図である。LIは負の第1レンズ群、LIIは正の第2レンズ群、LIIIは負の第3レンズ群、LIVは正の第4レンズ群、SPは絞り、FCはフレアーカッター、IPは像面である。物体側から順に、LIは物体側に凸の負メニスカスレンズ、両凹レンズ、物体側に凸の正メニスカスレンズ、LIIは両凸レンズ、物体側に凸の負メニスカスレンズと物体側に凸の正メニスカスレンズの接合レンズ、SPはLIIIの物体側に配置され、LIIIは両凹レンズ、LIVは像側に凸の負メニスカスレンズ、像側に凸の正メニスカスレンズで構成されており、LIVの負メニスカスレンズはポリカーボネートの非球面レンズである。
【0023】
広角から望遠への変倍の際、LIは像側に凸の軌跡で移動、LII、LIII、LIVは物体側へ移動しており、SPはLIIIと一体で移動している。
【0024】
近距離へのフォーカシングは第1レンズ群LIを物体側へ移動させて行う。
【0025】
又、画像変位補正時には、LIIIを光軸と略垂直方向に、言い換えると、垂直な成分を持つように移動させる。
【0026】
図3は、数値実施例5のズームレンズの広角端におけるレンズ断面図である。
【0027】
LIは、物体側より順に、物体側に凸の負メニスカスレンズ、物体側に凸の負メニスカスレンズ、物体側に凸の正メニスカスレンズである。
【0028】
LII、LIII、LIVの構成、各レンズ群の移動および相対位置関係は各数値実施例1、2、3、4と同様である。
【0029】
表1から表5には、それぞれ数値実施例1から数値実施例5における各面の曲率半径R、面間距離、屈折率n、アッベ数νを示す。各表において、Ri、Diは、それぞれ物体側より順に第i番目の面の曲率半径、面間距離であり、Niとνiは各々物体側より順に第i番目のレンズのガラスの屈折率とアッベ数である。又、ωは光軸に対する入射角、2ωは全画角(度)、ωは半画角である。fはズームレンズの焦点距離、FnoはズームレンズのFナンバーである。
【0030】
各表の非球面係数中に、たとえば、「C=3.71639e−08」とあるのは、「C=3.71639×10-8」の意味である。
【0031】
非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、Rを近軸曲率半径、A,B,C,D,Eを各々非球面係数としたとき、以下の式で表される。
【0032】
【数1】

Figure 0004378008
【0033】
【表1】
Figure 0004378008
【0034】
【表2】
Figure 0004378008
【0035】
【表3】
Figure 0004378008
【0036】
【表4】
Figure 0004378008
【0037】
【表5】
Figure 0004378008
図4乃至図18は、数値実施例1乃至数値実施例5の収差図である。これらの各図においては、第3レンズLIIIが基準位置すなわち光軸上にある時の縦収差(球面収差sph、非点収差as 歪曲収差dist、倍率色収差chro)が示されている。
【0038】
球面収差sph曲線の内、実線はd線に、2点鎖線はg線に、点線は正弦条件に、それぞれ対応する。
【0039】
非点収差as曲線の内、実線はサジタル像面Sに、点線はメリジオナル像面に、それぞれ対応する。
【0040】
又、これらの各図においては、LIIIが基準位置にある場合の横収差(倍率色収差chro)、及び、結像位置を補正するために第3レンズLIIIを移動した後の横収差も示されている。具体的には、第3レンズ群を光軸と略垂直に、言換えると垂直な成分を持つように移動させ、無限距離物体を0.5°の画角に相当する画像変位を行ったときの横収差図であり、像高が0.00,±10.00、±15.00、±18.00、±21.64の場合についての横収差図である。
【0041】
横収差曲線の内、実線はメリジオナル像面でのd線に、2点鎖線はメリジオナル像面でのg線に、点線はサジタル像面での線に、それぞれ対応する。
【0042】
【発明の効果】
以上説明した本発明によれば、光学系の一部のレンズ群を光軸と略垂直に、言換えると、垂直な成分を持つように移動させることにより、撮影画像の変位を補正する機能をもたせ、且つ装置全体のコンパクト化、ローコスト化を可能としたズームレンズを提供できる。
【図面の簡単な説明】
【図1】 本発明のズームレンズの数値実施例をまとめた表
【図2】 本発明のズームレンズの変倍動作を説明するためのレンズ群の配置図
【図3】 数値実施例5のズームレンズの広角端におけるレンズ断面図
【図4】 数値実施例1の広角端での収差曲線
【図5】 数値実施例1の中間焦点距離での収差曲線
【図6】 数値実施例1の望遠端での収差曲線
【図7】 数値実施例2の広角端での収差曲線
【図8】 数値実施例2の中間焦点距離での収差曲線
【図9】 数値実施例2の望遠端での収差曲線
【図10】 数値実施例3の広角端での収差曲線
【図11】 数値実施例3の中間焦点距離での収差曲線
【図12】 数値実施例3の望遠端での収差曲線
【図13】 数値実施例4の広角端での収差曲線
【図14】 数値実施例4の中間焦点距離での収差曲線
【図15】 数値実施例4の望遠端での収差曲線
【図16】 数値実施例5の広角端での収差曲線
【図17】 数値実施例5の中間焦点距離での収差曲線
【図18】 数値実施例5の望遠端での収差曲線
【図19】 従来のネガティブリードの防振ズームレンズのレンズ構成図
【図20】 数値実施例1のズームレンズの広角端におけるレンズ断面図
【図21】 数値実施例2のズームレンズの広角端におけるレンズ断面図
【図22】 数値実施例3のズームレンズの広角端におけるレンズ断面図
【図23】 数値実施例4のズームレンズの広角端におけるレンズ断面図
【符号の説明】
LI,LII,LIII,LIV それぞれ第1,2,3,4レンズ群
SP 絞り
FC フレアーカッター
IP 像面[0001]
[Technical field to which the invention belongs]
The present invention relates to a zoom lens, and more particularly to a zoom lens having a function of correcting blurring of a captured image due to vibration.
[0002]
[Prior art]
Conventionally, as a zoom lens for a single-lens reflex camera, an optical system having negative, positive, negative, and positive refractive power arrangements in order from the object side is known. This type of zoom lens is suitable for a wide angle of view at the wide-angle end because it is a negative group leading, so-called negative lead, while the first lens group and the second lens group as a whole are positive at the telephoto end. This group, the third lens group and the fourth lens group form a negative group as a whole, and the entire optical system can be of a so-called telephoto type. This negative lead type zoom lens is disclosed in, for example, JP-A-4-163415, JP-A-5-241073, JP-A-58-95315, JP-A-58-95315, JP-A-5-19170. No. 6-82698 and JP-A-7-287168. In addition, in a negative lead type zoom lens, an optical system having a function of correcting displacement of a captured image is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 7-152002 and 10-39210.
[0003]
As shown in FIG. 19, for example, in the zoom lens disclosed in Japanese Patent Application Laid-Open No. 10-39210, the third lens group G3 includes a front group G3F and a rear group G3R. In particular, the front group G3F is a bonded lens whose one surface r17 is an aspherical surface. Then, the front group G3F is arranged so as to be movable in a direction crossing the optical axis to perform the image stabilization correction.
[0004]
[Problems to be solved by the invention]
In general, when configuring an optical system having a function of correcting the displacement of a captured image, it is first necessary to configure so as to sufficiently reduce the deterioration of image quality when the displacement is corrected.
[0005]
Further, in order to make the entire apparatus compact and low cost, it is necessary to sufficiently reduce the driving amount in order to simplify the driving device, and to reduce the size and weight of the image displacement correction optical system.
[0006]
However, since the conventional image displacement correction optical system is complicated and large, it is not suitable for downsizing and cost reduction of the entire apparatus.
[0007]
Therefore, the present invention has an object to provide a function of correcting displacement of a photographed image and to make the entire apparatus compact in an optical system having negative, positive, negative, and positive refractive power arrangement in order from the object side.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power. The second lens group includes a third lens group and a fourth lens group having a positive refractive power, and the first lens group moves along a locus convex toward the image side during zooming from wide angle to telephoto. Moves to the object side so as to make the distance from the first lens group small, and the third lens group moves to the object side so as to make the distance from the second lens group large. The lens group is moved to the object side so that the distance from the third lens group is small, and the imaging position is displaced by moving the third lens group so as to have a component perpendicular to the optical axis direction. In the zoom lens, the third lens group is a single lens, and the focal length of the i-th lens group is i, when the focal length of the entire lens system at the wide angle end is set to fw,
1.5 <| f3 / fw | <5.0
2.0 <| f3 / f2 | <5.0
3.5 <| f4 / fw | <15.0
It satisfies the following conditional expression .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, since the negative, positive, negative, and positive refractive power arrangements are made in order from the object side, the light beam converged by the second lens group enters the third lens group. The third lens group is relatively easy to downsize and is suitable as an image displacement correction group. In the present invention, the third lens group is a single lens, thereby reducing the weight of the image displacement correction group.
[0010]
Further, by arranging an aspherical surface in the third lens group, the spherical aberration at the telephoto end in the reference state, that is, the state where the image displacement is not corrected is corrected. Therefore, the deterioration of the aberration characteristics at the time of displacement correction is reduced. The third lens group may be aspherical so that the negative refractive power decreases toward the periphery of the lens.
[0011]
Further, by making the third lens group a plastic lens, the weight reduction of the image displacement correction group is further facilitated. Desirably, if the plastic material is an acrylic or polyolefin resin, the dispersion is lower than that of a resin such as polycarbonate, so that it is easy to correct longitudinal chromatic aberration.
[0012]
Further, when the focal length of the i-th lens group is fi and the focal length of the entire lens system at the wide-angle end is fw, the following expression (1) should be satisfied.
[0013]
1.5 <| f3 / fw | <5.0 (1)
In the case of a zoom lens having a function of correcting the displacement of a photographed image, the image displacement correction group needs to have a function as a zoom lens zooming group at the same time as sufficiently reducing deterioration in image quality during displacement correction. Particularly in the present invention, since the third lens group is an image displacement correction group is a single lens, it is necessary to pay special attention to the refractive power arrangement.
[0014]
If the upper limit of the expression (1) is exceeded, it becomes difficult to make the combined refractive power of the third lens group and the fourth lens group at the telephoto end sufficiently negative, and the telephoto type refractive power arrangement is not taken. Therefore, it becomes difficult to secure a bright F number at the telephoto end. On the other hand, if the lower limit of equation (1) is exceeded, it will be difficult to correct coma and distortion, especially over the entire focal length.
[0015]
More preferably, the following expression (2) should be satisfied.
[0016]
2.0 <| f3 / fw | <4.0 (2)
Further, the focal lengths of the second lens group, the third lens group, and the fourth lens group may be determined by the following expressions (3) and (4).
[0017]
2.0 <| f3 / f2 | <5.0 (3)
3.5 <| f4 / fw | <15.0 (4)
Expression (3) sets the ratio of the refractive powers of the second lens group and the third lens group. If the upper limit is exceeded, the combined refractive power of the second lens group and the third lens group at the wide-angle side becomes the retrofocus. It becomes difficult to obtain an appropriate positive refractive power as a rear group of the type, and as a result, it becomes difficult to correct curvature of field and coma at the wide angle end. Exceeding the lower limit makes it difficult to secure the required zoom ratio, and telephoto type refractive power arrangement becomes difficult at the telephoto end, making it difficult to secure a bright F number at the telephoto end. Become.
[0018]
Expression (4) is an appropriate setting of the focal length of the fourth lens group. If the upper limit is deviated, it becomes difficult to ensure the back focus on the wide-angle side, and if the lower limit is deviated, the image displacement is corrected particularly at the telephoto end. It is difficult to reduce the driving amount of the third lens group.
[0019]
More preferably, the focal lengths of the second lens group, the third lens group, and the fourth lens group may be determined by the following equations (5) and (6).
[0020]
2.0 <| f3 / f2 | <3.5 (5)
3.5 <| f4 / fw | <14.0 (6)
[0021]
【Example】
FIG. 1 is a table showing five examples from Numerical Example 1 to Numerical Example 5 . All the examples satisfy all the six expressions from Expression (1) to Expression (6).
[0022]
FIG. 2 is a diagram for explaining the zooming operation of the zoom lenses of the four examples from Numerical Example 1 to Numerical Example 4. FIG. 20, 21, 22, and 23 are lens cross-sectional views at the wide-angle end of the zoom lenses according to Numerical Example 1 to Numerical Example 4. FIG. LI is a negative first lens group, LII is a positive second lens group, LIII is a negative third lens group, LIV is a positive fourth lens group, SP is an aperture, FC is a flare cutter, and IP is an image plane is there. In order from the object side, LI is a negative meniscus lens convex to the object side, a biconcave lens, a positive meniscus lens convex to the object side, LII is a biconvex lens, a negative meniscus lens convex to the object side, and a positive meniscus lens convex to the object side. SP is arranged on the object side of LIII, LIII is a biconcave lens, LIV is composed of a negative meniscus lens convex on the image side, and a positive meniscus lens convex on the image side, and the negative meniscus lens of LIV is Polycarbonate aspherical lens.
[0023]
During zooming from wide angle to telephoto, LI moves along a locus convex toward the image side, LII, LIII, and LIV move toward the object side, and SP moves together with LIII.
[0024]
Focusing to a short distance is performed by moving the first lens unit LI to the object side.
[0025]
At the time of image displacement correction, LIII is moved in a direction substantially perpendicular to the optical axis, in other words, having a vertical component.
[0026]
FIG. 3 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Numerical Example 5.
[0027]
LI is a negative meniscus lens convex toward the object side, a negative meniscus lens convex toward the object side, and a positive meniscus lens convex toward the object side in order from the object side.
[0028]
The configurations of LII, LIII, and LIV, the movement of each lens group, and the relative positional relationship are the same as those in Numerical Examples 1, 2, 3, and 4.
[0029]
Tables 1 to 5 show the curvature radius R, inter-surface distance D 1 , refractive index n, and Abbe number ν of each surface in Numerical Example 1 to Numerical Example 5, respectively. In each table, Ri and Di are the radius of curvature and inter-surface distance of the i-th surface in order from the object side , and Ni and νi are the refractive index and Abbe of the glass of the i-th lens in sequence from the object side. Is a number. Further, ω is an incident angle with respect to the optical axis, 2ω is a full angle of view (degree), and ω is a half angle of view. f is the focal length of the zoom lens, and Fno is the F number of the zoom lens.
[0030]
In the aspheric coefficient of each table, for example, “C = 3.761639e−08” means “C = 3.761639 × 10 −8 ”.
[0031]
The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, and A, B, C, D and E are the aspheric coefficients. Is expressed by the following formula.
[0032]
[Expression 1]
Figure 0004378008
[0033]
[Table 1]
Figure 0004378008
[0034]
[Table 2]
Figure 0004378008
[0035]
[Table 3]
Figure 0004378008
[0036]
[Table 4]
Figure 0004378008
[0037]
[Table 5]
Figure 0004378008
4 to 18 are aberration diagrams of Numerical Example 1 to Numerical Example 5. FIG. In each of these drawings, longitudinal aberrations (spherical aberration sph, astigmatism as distortion aberration dist, lateral chromatic aberration cho) when the third lens LIII is on the reference position, that is, on the optical axis, are shown.
[0038]
In the spherical aberration sph curve, the solid line corresponds to the d line, the two-dot chain line corresponds to the g line, and the dotted line corresponds to the sine condition.
[0039]
Of the astigmatism as curve, the solid line corresponds to the sagittal image plane S, and the dotted line corresponds to the meridional image plane.
[0040]
Also, in each of these drawings, the lateral aberration when the LIII is at the reference position (the lateral chromatic aberration chrom) and the lateral aberration after the third lens LIII is moved to correct the imaging position are also shown. Yes. Specifically, when the third lens unit is moved to be substantially perpendicular to the optical axis, in other words, to have a vertical component, and an infinite distance object is subjected to image displacement corresponding to an angle of view of 0.5 °. FIG. 4 is a lateral aberration diagram for the cases where the image height is 0.00, ± 10.00, ± 15.00, ± 18.00, and ± 21.64.
[0041]
In the transverse aberration curve, the solid line corresponds to the d line on the meridional image plane, the two-dot chain line corresponds to the g line on the meridional image plane, and the dotted line corresponds to the d line on the sagittal image plane.
[0042]
【The invention's effect】
According to the present invention described above, the function of correcting the displacement of the captured image by moving a part of the lens group of the optical system substantially perpendicular to the optical axis, in other words, having a vertical component. Therefore, it is possible to provide a zoom lens which can be made compact and low-cost as a whole.
[Brief description of the drawings]
FIG. 1 is a table summarizing numerical examples of the zoom lens of the present invention. FIG. 2 is an arrangement diagram of lens groups for explaining the zooming operation of the zoom lens of the present invention. Lens cross-sectional view at the wide-angle end of the lens [Fig. 4] Aberration curve at the wide-angle end of Numerical Example 1 [Fig. 5] An aberration curve at the intermediate focal length of Numerical Example 1 [Fig. 6] Telephoto end of Numerical Example 1 Aberration curve at the wide-angle end of Numerical Example 2 FIG. 8 Aberration curve at the intermediate focal length of Numerical Example 2 FIG. 9 Aberration curve at the telephoto end of Numerical Example 2 10 is an aberration curve at the wide angle end of Numerical Example 3. FIG. 11 is an aberration curve at an intermediate focal length of Numerical Example 3. FIG. 12 is an aberration curve at the telephoto end of Numerical Example 3. Aberration curve at wide angle end in Numerical Example 4 FIG. 14 shows aberration curves at the intermediate focal length in Numerical Example 4. 15 is an aberration curve at the telephoto end of Numerical Example 4. FIG. 16 is an aberration curve at the wide-angle end of Numerical Example 5. FIG. 17 is an aberration curve at the intermediate focal length of Numerical Example 5. FIG. Aberration curve at telephoto end in Numerical Example 5 FIG. 19 is a lens configuration diagram of a conventional negative lead anti-vibration zoom lens
20 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Numerical Example 1. FIG.
FIG. 21 is a lens cross-sectional view at the wide-angle end of a zoom lens according to Numerical Example 2.
22 is a lens cross-sectional view at the wide-angle end of a zoom lens according to Numerical Example 3. FIG.
23 is a lens cross-sectional view at the wide-angle end of a zoom lens according to Numerical Example 4. DESCRIPTION OF SYMBOLS
LI, LII, LIII, LIV 1st, 2nd, 3rd and 4th lens groups SP Aperture FC Flare cutter IP Image surface

Claims (3)

物体側より像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群と、負の屈折力の第3レンズ群と、正の屈折力の第4レンズ群より構成され、広角から望遠への変倍の際、前記第1レンズ群は像側へ凸の軌跡で移動し、前記第2レンズ群は前記第1レンズ群との間隔を小とするように物体側へ移動し、前記第3レンズ群は前記第2レンズとの間隔を大とするように物体側へ移動し、前記第4レンズ群は前記第3レンズ群との間隔を小とするように物体側へ移動し、前記第3レンズ群を光軸方向と垂直な成分を持つよう移動させることによって結像位置を変位させるズームレンズであって、前記第3レンズ群は単レンズで構成されており、第iレンズ群の焦点距離をfi、広角端におけるレンズ全系の焦点距離をfwとしたとき、
1.5<|f3/fw|<5.0
2.0<|f3/f2|<5.0
3.5<|f4/fw|<15.0
なる条件式を満足することを特徴とするズームレンズ。
In order from the object side to the image side , a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power. is more configuration, during zooming from the wide angle to the telephoto, such that the first lens unit moves with locus of a convex to the image side, the second lens group and a small distance between the first lens group Moving to the object side, the third lens group moves to the object side so as to increase the distance from the second lens group, and the fourth lens group decreases the distance from the third lens group. The zoom lens moves to the object side and displaces the imaging position by moving the third lens group so as to have a component perpendicular to the optical axis direction, and the third lens group is a single lens . The focal length of the i-th lens unit is fi, and the focal length of the entire lens system at the wide-angle end is fw. When,
1.5 <| f3 / fw | <5.0
2.0 <| f3 / f2 | <5.0
3.5 <| f4 / fw | <15.0
A zoom lens satisfying the following conditional expression:
前記第3レンズ群の単レンズは非球面を有することを特徴とする請求項1記載のズームレンズ。The zoom lens according to claim 1, wherein the single lens of the third lens group has an aspherical surface. 前記第3レンズ群の単レンズはプラスティックレンズであることを特徴とする請求項1記載のズームレンズ。The zoom lens according to claim 1, wherein the single lens of the third lens group is a plastic lens.
JP36530899A 1999-12-22 1999-12-22 Anti-shake zoom lens Expired - Fee Related JP4378008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36530899A JP4378008B2 (en) 1999-12-22 1999-12-22 Anti-shake zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36530899A JP4378008B2 (en) 1999-12-22 1999-12-22 Anti-shake zoom lens

Publications (3)

Publication Number Publication Date
JP2001183585A JP2001183585A (en) 2001-07-06
JP2001183585A5 JP2001183585A5 (en) 2007-02-01
JP4378008B2 true JP4378008B2 (en) 2009-12-02

Family

ID=18483948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36530899A Expired - Fee Related JP4378008B2 (en) 1999-12-22 1999-12-22 Anti-shake zoom lens

Country Status (1)

Country Link
JP (1) JP4378008B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672827B2 (en) * 2000-01-28 2011-04-20 株式会社栃木ニコン Zoom lens and projection display device including the zoom lens
JP4792779B2 (en) * 2005-03-29 2011-10-12 株式会社ニコン Zoom lens
JP4778736B2 (en) * 2005-06-29 2011-09-21 Hoya株式会社 Wide-angle zoom lens system
JP5130806B2 (en) * 2006-07-21 2013-01-30 株式会社ニコン Magnification optical system, image pickup device, and magnifying optical system magnifying method
EP2045639A4 (en) 2006-07-21 2012-06-13 Nikon Corp Variable power optical system, imaging device, method of varying magnification of variable power optical system
JP5082431B2 (en) * 2006-12-25 2012-11-28 株式会社ニコン Magnification optical system having image stabilization function, imaging device, and magnifying method
JP4885756B2 (en) 2007-02-08 2012-02-29 株式会社リコー Zoom lens, camera device, and portable information terminal device
US7974012B2 (en) 2008-03-31 2011-07-05 Nikon Corporation Zoom lens system, optical device with the zoom lens system, and method of manufacturing the zoom lens system
US8259400B2 (en) 2009-01-26 2012-09-04 Nikon Corporation Zoom lens system, imaging apparatus, and method for manufacturing zoom lens system
JP5251996B2 (en) * 2011-01-21 2013-07-31 株式会社ニコン Zoom lens
JP6260074B2 (en) * 2012-08-30 2018-01-17 株式会社ニコン Variable magnification optical system and optical apparatus having the variable magnification optical system
EP2741117B1 (en) * 2012-12-04 2020-05-13 Samsung Electronics Co., Ltd Zoom lens and electronic device including the same
CN109188663B (en) * 2013-06-28 2021-10-15 株式会社尼康 Variable power optical system, optical apparatus, and method of manufacturing variable power optical system
JP2017021060A (en) * 2013-11-26 2017-01-26 株式会社ニコン Zoom lens system, optical device and zoom lens system manufacturing method
JP6372593B2 (en) * 2017-05-31 2018-08-15 リコーイメージング株式会社 Zoom lens system and electronic imaging apparatus including the same

Also Published As

Publication number Publication date
JP2001183585A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
US7639430B2 (en) Zoom lens and image pickup apparatus having the same
JP3570253B2 (en) Zoom lens
JP3606548B2 (en) 3 group zoom lens
JP4902191B2 (en) Zoom lens and imaging apparatus having the same
JP3147167B2 (en) Zoom lens
JP4773807B2 (en) Zoom lens and imaging apparatus having the same
JP5414205B2 (en) Zoom lens and imaging apparatus having the same
JP2628633B2 (en) Compact zoom lens
JP5836654B2 (en) Zoom lens and imaging apparatus having the same
US20080002263A1 (en) Zoom lens system, imaging apparatus and method for varying focal length
JPH05173071A (en) Wide angle zoom lens
JP4356040B2 (en) Long zoom lens with anti-vibration function
JP4378008B2 (en) Anti-shake zoom lens
JP2013003240A5 (en)
JP4829629B2 (en) Zoom lens and imaging apparatus having the same
US10101568B2 (en) Zoom lens, optical device, and method for manufacturing the zoom lens
US8248703B2 (en) Zoom lens and optical apparatus having the zoom lens
JP3619117B2 (en) Zoom lens and optical apparatus using the same
JP2002287031A (en) Zoom lens and optical equipment using the same
JP4687937B2 (en) Zoom lens
JP5448351B2 (en) Zoom lens and imaging apparatus having the same
JPH1164733A (en) Zoom lens long in back focus
JP2862272B2 (en) Wide-angle zoom lens
US7920341B2 (en) Optical system, imaging apparatus, and method for forming image by the optical system
JP3029148B2 (en) Rear focus zoom lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees