JP4372527B2 - Frequency up converter - Google Patents

Frequency up converter Download PDF

Info

Publication number
JP4372527B2
JP4372527B2 JP2003413039A JP2003413039A JP4372527B2 JP 4372527 B2 JP4372527 B2 JP 4372527B2 JP 2003413039 A JP2003413039 A JP 2003413039A JP 2003413039 A JP2003413039 A JP 2003413039A JP 4372527 B2 JP4372527 B2 JP 4372527B2
Authority
JP
Japan
Prior art keywords
frequency
signal
optical
light
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003413039A
Other languages
Japanese (ja)
Other versions
JP2005173199A (en
Inventor
直文 清水
雅生 遊部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003413039A priority Critical patent/JP4372527B2/en
Publication of JP2005173199A publication Critical patent/JP2005173199A/en
Application granted granted Critical
Publication of JP4372527B2 publication Critical patent/JP4372527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は周波数アップ変換器に関し、特に、光無線リンクシステムにおいて、データ信号の周波数を無線周波数にアップ変換する周波数アップ変換器に関するものである。   The present invention relates to a frequency up-converter, and more particularly to a frequency up-converter that up-converts the frequency of a data signal to a radio frequency in an optical wireless link system.

ブロードバンドのアクセス網を実現する手段の一つとして光無線リンクシステムが提案されている。その構成には、例えば、非特許文献1に記載されているように、図11に模式図で示すものがある。図中の 1101 は局所発振信号発生器(LO信号発生器)、1102 は伝送すべきデータを発生させるデータ信号発生器、1103 はLO信号とデータ信号をミキシングさせるための周波数ミキサ、1104 は光変調器駆動用のドライバアンプ、1105 は光源、1106 は光変調器、1107 は光増幅器、1108 は光受信機、1109 は光伝送路である。   An optical wireless link system has been proposed as one of means for realizing a broadband access network. For example, as shown in Non-Patent Document 1, there is a configuration shown in a schematic diagram of FIG. In the figure, 1101 is a local oscillation signal generator (LO signal generator), 1102 is a data signal generator that generates data to be transmitted, 1103 is a frequency mixer for mixing the LO signal and the data signal, and 1104 is optical modulation. 1105 is a light source, 1106 is an optical modulator, 1107 is an optical amplifier, 1108 is an optical receiver, and 1109 is an optical transmission line.

図11に示した構成において、データ信号がどのように変換されるかを以下に説明する。   How the data signal is converted in the configuration shown in FIG. 11 will be described below.

図12はLO信号発生器 1101 で発生する周波数ωの電気信号 1201のスペクトルを表す。また、図13は、データ信号発生器 1102 で発生するデータ信号 1301 のスペクトルを表す。図12と図13で表される信号が周波数ミキサ 1103 に入力された時に発生するミキシング信号のスペクトルは図14のようになる。ここで、1401 はLO信号発生器 1101 で発生された周波数ωの信号であり、1402 は周波数ωの信号にまとわりつくデータ信号である。ここで分かるように、データ信号 1402 が周波数ωに周波数アップ変換されている。 FIG. 12 shows the spectrum of the electric signal 1201 having the frequency ω f generated by the LO signal generator 1101. FIG. 13 shows the spectrum of the data signal 1301 generated by the data signal generator 1102. The spectrum of the mixing signal generated when the signals shown in FIGS. 12 and 13 are input to the frequency mixer 1103 is as shown in FIG. Here, 1401 is a signal of frequency ω f generated by the LO signal generator 1101, and 1402 is a data signal clinging to a signal of frequency ω f . As can be seen, the data signal 1402 has been frequency up-converted to frequency ω f .

このようなスペクトルで表される電気信号で、周波数ωoptの光を変調した場合に得られる光信号のスペクトルは、図15で表される。ここで、1501 は周波数ωoptの光キャリアを表し、1502 はωoptから周波数ωだけ低い周波数に現れる下側波帯、1503 はωoptから周波数ωだけ高い周波数に現れる上側波帯を表す。 The spectrum of the optical signal obtained when the light of the frequency ω opt is modulated with the electrical signal represented by such a spectrum is represented in FIG. Here, 1501 represents an optical carrier having a frequency ω opt , 1502 represents a lower side band appearing at a frequency lower than ω opt by a frequency ω f , and 1503 represents an upper side band appearing at a frequency higher than ω opt by a frequency ω f .

この光信号を光伝送路 1109 を通して光受信機 1108 に送った際に光電変換して得られる電気信号のスペクトルは図14に示したものと同じである。この信号は、データ信号が周波数ωに周波数アップ変換されたものである。 The spectrum of the electrical signal obtained by photoelectric conversion when this optical signal is sent to the optical receiver 1108 through the optical transmission line 1109 is the same as that shown in FIG. This signal is a data signal is frequency up-converted into a frequency omega f.

本構成においては、電気の基準信号発生器(LO信号発生器 1101 )から発生する信号(周波数ω)を元に周波数アップ変換させているため、基準信号との同期は確立している。 In this configuration, since the frequency is up-converted based on the signal (frequency ω f ) generated from the electrical reference signal generator (LO signal generator 1101), synchronization with the reference signal is established.

論文「T. Kuri, K. Kitayama, A. Stoehr, and Y. Ogawa、“Fiber−Optic Millimeter−Wave DownLink System Using 60 GHz−Band External Modulation,” IEEE J. Lightwave Technol., 17, 799−806,(1999).」The paper “T. Kuri, K. Kitayama, A. Stoehhr, and Y. Ogawa,“ Fiber-Optic Millimeter-Wave DownLinkEmert. 60. (1999). "

ところで、近年のパーソナルコンピュータをはじめとする情報機器の情報処理速度の向上とインターネットをはじめとするネットワーク技術の向上により、ネットワーク上でやり取りされる単位時間当たりの情報量は増大しており、現在実用化されている光ファイバを用いたシステムでは、そのデータレートは最高10Gb/sにまで達している。このような大容量のデータを光無線リンクシステムで伝送しようとする場合、その無線搬送波の周波数ωは、100GHzを超える値とする必要がある。 By the way, with the recent improvement in information processing speed of information devices such as personal computers and the improvement of network technology such as the Internet, the amount of information exchanged over the network has increased, and is now in practical use. In a system using an optical fiber, the data rate has reached a maximum of 10 Gb / s. When such a large amount of data is to be transmitted by the optical wireless link system, the frequency ω f of the wireless carrier wave needs to be a value exceeding 100 GHz.

この場合、LO信号発生器 1101、LO信号とデータ信号をミキシングさせるための周波数ミキサ 1103、光変調器駆動用のドライバアンプ 1104、光変調器 1106が、100GHz以上の周波数で動作することが必要となるが、現在までのところ、そのような高い周波数で動作する、光変調器及びドライバアンプは存在しない。   In this case, the LO signal generator 1101, the frequency mixer 1103 for mixing the LO signal and the data signal, the driver amplifier 1104 for driving the optical modulator, and the optical modulator 1106 need to operate at a frequency of 100 GHz or more. However, to date, there are no optical modulators and driver amplifiers that operate at such high frequencies.

上記で示したように、従来方法は、基準信号が電気であるため、基準信号との同期は確立しているが、光変調器及び駆動回路の動作帯域に上限があるため、100GHzを超えるLO信号の周波数を用いることは困難であった。   As shown above, the conventional method establishes synchronization with the reference signal because the reference signal is electric, but has an upper limit on the operating band of the optical modulator and the drive circuit, so that the LO exceeding 100 GHz is exceeded. It was difficult to use the frequency of the signal.

本発明の主たる目的は、上述の間題点を解決して、入力される光信号を、電気の基準信号発振器と同期した100GHzかそれ以上の高純度の周波数信号に周波数アップ変換する周波数アップ変換器を提供することにある。   The main object of the present invention is to solve the above-mentioned problems and to frequency up-convert an input optical signal to a high-purity frequency signal of 100 GHz or higher synchronized with an electric reference signal oscillator. Is to provide a vessel.

本発明においては、請求項1に記載のように、
周波数ωの基準電気信号を発生する基準信号発生器と、周波数ωLOの光を放射する光源と、前記周波数ωLOの光を前記基準電気信号で変調する光変調器と、前記光変調器の出力光を増幅する第一の光増幅器と、データ信号で変調された周波数ωdataの入力光を増幅する第二の光増幅器と、前記第一の光増幅器の出力光と前記第二の光増幅器の出力光とを合波する合波器と、前記合波器の出力を入力とする、nを正の整数としたときの、周波数ωdataと周波数ωLO−nωと周波数ωLO+nωとに透過率の極大を有する第一の波長選択器と、前記第一の波長選択器の出力光を入力とする擬似位相整合非線形光学材料導波路素子と、前記擬似位相整合非線形光学材料導波路素子の出力を入力とする、周波数2ωLO−ωdata−2nωと周波数2ωLO−ωdata+2nωとに透過率の極大を有する第二の波長選択器と、前記第二の波長選択器の出力光を入力とし4nωに周波数アップ変換された電気信号を出力する光検出器とを構成要素とする周波数アップ変換器を構成する。
In the present invention, as described in claim 1,
A reference signal generator for generating a reference electrical signal of the frequency omega f, a light source for emitting light of a frequency omega LO, and the optical modulator for modulating light of said frequency omega LO at the reference electric signal, said optical modulator A first optical amplifier that amplifies the output light of the first optical amplifier, a second optical amplifier that amplifies the input light of the frequency ω data modulated by the data signal, the output light of the first optical amplifier, and the second light A multiplexer that multiplexes the output light of the amplifier, a frequency ω data , a frequency ω LO −nω f, and a frequency ω LO + nω when n is a positive integer and the output of the multiplexer is an input. a first wavelength selector having a transmissivity maximum at f , a quasi-phase matched nonlinear optical material waveguide element that receives the output light of the first wavelength selector, and the quasi-phase matched nonlinear optical material waveguide It receives the output of the waveguide element, the frequency 2 [omega LO - [omega] d a second wavelength selector having a maximum transmittance in the ta -2nω f and frequency 2ω LOdata + 2nω f, is the frequency up-converted to the second inputs the output light of the wavelength selector 4Enuomega f A frequency up converter including a photodetector that outputs an electrical signal as a constituent element is configured.

また、本発明においては、請求項2に記載のように、
周波数ωの基準電気信号を発生する基準信号発生器と、前記周波数ωの基準電気信号を増幅するドライバアンプと、周波数ωLOの光を放射する光源と、前記周波数ωLOの光を前記ドライバアンプの出力で変調する光変調器と、前記光変調器の出力光を増幅する第一の光増幅器と、データ信号で変調された周波数ωdataの光を入力するための入力ポートと、前記入力ポートから入力された周波数ωdataの光を増幅する第二の光増幅器と、前記第一の光増幅器の出力光と前記第二の光増幅器の出力光とを合波する合波器と、前記合波器の出力を入力とする、nを正の整数としたときの、周波数ωdataと周波数ωLO−nωと周波数ωLO+nωとに透過率の極大を有する第一の波長選択器と、前記第一の波長選択器の出力光を入力とし周波数ωLO±nωの波とその2倍波(第二高調波)が擬似位相整合条件を満たし、かつ周波数2ωLO±2nωの波と周波数ωdataの波、周波数2ωLO±2nω−ωdataの波が擬似位相整合条件を満たす擬似位相整合ニオブ酸リチウム導波路素子と、前記擬似位相整合ニオブ酸リチウム導波路素子の出力光を入力とする、周波数2ωLO−ωdata−2nωと周波数2ωLO−ωdata+2nωとに透過率の極大を有する第二の波長選択器と、前記第二の波長選択器の出力光を入力とし4nωに周波数アップ変換された電気信号を出力する光検出器とを構成要素とする周波数アップ変換器を構成する。
In the present invention, as described in claim 2,
Wherein a reference signal generator for generating a reference electrical signal of the frequency omega f, a driver amplifier for amplifying the reference electrical signal of the frequency omega f, a light source for emitting light of a frequency omega LO, the light of the frequency omega LO An optical modulator that modulates the output of the driver amplifier; a first optical amplifier that amplifies the output light of the optical modulator; an input port for inputting light of frequency ω data modulated by a data signal; A second optical amplifier that amplifies light having a frequency ω data input from an input port; a multiplexer that combines the output light of the first optical amplifier and the output light of the second optical amplifier; First wavelength selection having maximum transmittance at frequency ω data , frequency ω LO -nω f and frequency ω LO + nω f when n is a positive integer with the output of the multiplexer as an input Of the first wavelength selector Waves and its second harmonic of an input power optical frequency ω LO ± nω f (second harmonic) satisfies the quasi-phase matching condition, and the waves of the wave and the frequency omega data of the frequency 2ω LO ± 2nω f, the frequency 2 [omega LO ± 2nω f −ω data wave having a quasi phase matching lithium niobate waveguide element satisfying a quasi phase matching condition and an output light of the quasi phase matching lithium niobate waveguide element having a frequency of 2ω LO −ω a second wavelength selector having a maximum of transmittance at data −2nω f and a frequency 2ω LO −ω data + 2nω f, and an output light of the second wavelength selector as an input, and frequency up-converted to 4nω f A frequency up converter including a photodetector that outputs an electrical signal as a constituent element is configured.

本発明の実施によって、入力される光信号を、電気の基準信号発振器と同期した100GHzかそれ以上の高純度の周波数信号に周波数アップ変換する周波数アップ変換器を提供することが可能となる。   By implementing the present invention, it is possible to provide a frequency up-converter that up-converts an input optical signal into a high-purity frequency signal of 100 GHz or higher synchronized with an electrical reference signal oscillator.

電気の基準信号発生器で発生する周波数ωの信号で光変調器を駆動することで、発振周波数ωLOで、周波数ωの高調波成分が含まれる光LO信号が発生する。この信号と周波数アップ変換させたい光信号ωdataを合波させる。次に初段の波長選択手段により、光LO信号のうちで変調周波数の特定の高調波の上側波と下側波成分と周波数ωdataの光だけを、擬似位相整合非線形光学材料導波路素子、たとえば、擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)に導入する。 By driving the optical modulator with a signal of frequency ω f generated by an electrical reference signal generator, an optical LO signal including a harmonic component of frequency ω f is generated at the oscillation frequency ω LO . This signal and the optical signal ω data to be frequency up-converted are combined. Next, by the first-stage wavelength selection means, only the light of the upper harmonic wave and the lower wave component of the specific harmonic of the modulation frequency in the optical LO signal and the light of the frequency ω data are converted into the quasi phase matching nonlinear optical material waveguide element, for example, And introduced into a quasi-phase matched lithium niobate waveguide element (QPM-LN).

QPM−LNは、光LO信号の当該の高調波の上側波および下側波と、光LO信号の当該の高調波の上側波および下側波の2倍波(第二高調波)光の間で擬似位相整合条件を満たしており、かつ光LO信号の当該の高調波の上側波及び下側波の2倍波光と入力データ信号光(周波数ωdata)と、光LO信号の当該の高調波の上側波と下側波の2倍波光と入力データ信号光(周波数ωdata)の差周波の光信号が擬似位相整合条件を満たしているので、QPM−LNにて光LO信号の当該高調波の上側波の2倍波信号光と入力データ信号光(周波数ωdata)の差周波の光信号と、光LO信号の当該高調波の下側波の2倍波信号光と入力データ信号光(周波数ωdata)の差周波の光信号が発生する。 QPM-LN is between the upper and lower side waves of the relevant harmonic of the optical LO signal and the second harmonic (second harmonic) light of the upper and lower side of the relevant harmonic of the optical LO signal. Satisfying the quasi-phase matching condition, and the upper harmonic wave and the lower harmonic wave of the relevant harmonic of the optical LO signal, the input data signal light (frequency ω data ), and the relevant harmonic of the optical LO signal Since the optical signal of the difference frequency between the second harmonic wave of the upper side wave and the lower side wave and the input data signal light (frequency ω data ) satisfies the quasi-phase matching condition, the corresponding harmonic of the optical LO signal in QPM-LN The optical signal of the difference frequency between the second harmonic signal light of the upper side wave and the input data signal light (frequency ω data ), the second harmonic signal light of the lower side harmonic of the optical LO signal, and the input data signal light ( An optical signal having a difference frequency of frequency ω data ) is generated.

QPM−LN後段の波長選択手段により、光LO信号の当該高調波の上側波の2倍波信号光と入力データ信号光ω(周波数data)の差周波の光信号と、光LO信号の当該高調波の下側波の2倍波信号光と入力データ信号光(周波数ωdata)の差周波の光信号だけを取り出し、光検出器で光電変換する。すると得られる電気信号は、周波数ωの信号の当該高調波の2倍の周波数にデータ信号が重畳された信号、つまり周波数アップ変換された信号となる。得られた周波数アップ変換された信号は、元信号が電気の基準信号発生器であるため、電気回路との同期が確立されている。差周波発生は、QPM−LNを形成するニオブ酸リチウム結晶の光学的非線形性に起因するコヒーレントな波の合成によって発生するもので、信号ビットレートや信号フォーマットに依存せず発生する。 By the wavelength selection means at the latter stage of the QPM-LN, an optical signal having a difference frequency between the second harmonic wave of the higher harmonic wave of the optical LO signal and the input data signal light ω (frequency data ), and the higher harmonic wave of the optical LO signal. Only the optical signal having the difference frequency between the second harmonic wave of the lower side wave of the wave and the input data signal light (frequency ω data ) is taken out and photoelectrically converted by the photodetector. Then an electric signal obtained is a frequency omega 2 times the signal which the data signal is superimposed on the frequency of the harmonics of signal f, i.e. the frequency up-converted signal. The obtained frequency up-converted signal is synchronized with the electric circuit because the original signal is an electric reference signal generator. The difference frequency generation is generated by synthesizing coherent waves due to optical nonlinearity of the lithium niobate crystal forming the QPM-LN, and is generated regardless of the signal bit rate or the signal format.

また、初段の波長選択手段により選ぶ変調周波数の高調波次数をnとすれば、QPM−LNで発生する光LO信号の高調波の上側波の2倍波信号光と入力データ信号光(周波数ωdata)の差周波の光信号と、光LO信号の当該高調波の下側波の2倍波信号光と入力データ信号光(周波数ωdata)の差周波の光信号の周波数差は4nωとなり周波数アップ変換により得られる信号のキャリア周波数は元の電気の基準信号の4n倍となる。具体的には、高調波次数nを2とし、電気により容易に発生することができる12.5〜60GHzの基準電気信号を元にすると、4n=8となるので、100〜480GHzのキャリア周波数の電気信号を発生させることができる。したがって、このような構成を採ることで、入力される光信号を、電気の基準信号発振器と同期した100GHzかそれ以上の高純度の周波数信号に周波数アップ変換することが可能となる。 Further, if the harmonic order of the modulation frequency selected by the wavelength selection means in the first stage is n, the second harmonic signal light of the higher harmonic wave of the optical LO signal generated by the QPM-LN and the input data signal light (frequency ω and the difference frequency light signal in the data), the frequency difference between the optical signal of the difference frequency of the optical LO signal of the harmonics of the lower wave second harmonic signal light and the input data signal light (frequency omega data) is 4Enuomega f becomes The carrier frequency of the signal obtained by frequency up-conversion is 4n times the original electrical reference signal. Specifically, when the harmonic order n is 2, and based on a reference electrical signal of 12.5 to 60 GHz that can be easily generated by electricity, 4n = 8, so that the carrier frequency of 100 to 480 GHz An electrical signal can be generated. Therefore, by adopting such a configuration, it is possible to up-convert an input optical signal into a high-purity frequency signal of 100 GHz or higher synchronized with an electric reference signal oscillator.

以下に本発明の実施例を挙げ、図面に基いて更に詳細に説明する。   Hereinafter, examples of the present invention will be described and described in detail with reference to the drawings.

図1は本発明の実施例である周波数アップ変換器を示す模式図である。図中 101 は周波数ωの基準電気信号を発生する基準信号発生器、102 は基準信号発生器 101 が発生する周波数ωの基準電気信号を増幅する光変調器駆動用ドライバアンプ、103 はニオブ酸リチウム分岐干渉型光変調器 106 にバイアスを印加するための直流電源、104 はバイアスT、105 は周波数ωLOの光を放射する光源、106 はニオブ酸リチウム分岐干渉型光変調器、107 はニオブ酸リチウム分岐干渉型光変調器 106 の出力光を増幅する第一の光増幅器、108 は第一の光増幅器 107 で発生する光ノイズを抑圧するための光バンドパスフィルタ、109 は周波数アップ変換の対象となるデータ信号で変調された周波数ωdataの入力光を入力するためのデータ信号入力ポート、110 は光入力ポート 109 から入力した光を増幅するための第二の光増幅器、111 は第二の光増幅器 110 で発生する光ノイズを抑圧するための光バンドパスフィルタ、112 は、光バンドパスフィルタ 108 で光ノイズを抑圧された第一の光増幅器 107 の出力光と光バンドパスフィルタ 111 で光ノイズを抑圧された第二の光増幅器 110 の出力光とを入力とし、周波数ωdataと周波数ωLO−2ωと周波数ωLO+2ωとに透過率の極大を有する第一の波長選択器であるアレー導波路型回折格子である。アレー導波路型回折格子 112 は、第一の光増幅器 107 の出力光と第二の光増幅器 110 の出力光とを合波する合波器でもある。 FIG. 1 is a schematic diagram showing a frequency up converter according to an embodiment of the present invention. In the figure, 101 is a reference signal generator that generates a reference electrical signal having a frequency ω f , 102 is a driver amplifier for driving an optical modulator that amplifies the reference electrical signal having a frequency ω f that is generated by the reference signal generator 101, and 103 is niobium. DC power supply for applying a bias to the lithium acid branching interferometric optical modulator 106, 104 a bias T, 105 a light source that emits light of frequency ω LO , 106 a lithium niobate branching interferometric optical modulator, 107 A first optical amplifier that amplifies the output light of the lithium niobate branching interferometric optical modulator 106, 108 is an optical bandpass filter for suppressing optical noise generated by the first optical amplifier 107, and 109 is a frequency up-conversion A data signal input port for inputting the input light of the frequency ω data modulated by the data signal to be subjected to, 110 is a second optical amplifier for amplifying the light inputted from the optical input port 109, 111 Is an optical bandpass filter for suppressing the optical noise generated by the second optical amplifier 110, and 112 is the output light and the optical bandpass of the first optical amplifier 107 whose optical noise is suppressed by the optical bandpass filter 108 The output light of the second optical amplifier 110 in which the optical noise is suppressed by the filter 111 is input, and the first having the maximum transmittance at the frequency ω data , the frequency ω LO -2ω f, and the frequency ω LO + 2ω f . It is an array waveguide type diffraction grating which is a wavelength selector. The arrayed waveguide grating 112 is also a multiplexer that multiplexes the output light of the first optical amplifier 107 and the output light of the second optical amplifier 110.

113 はアレー導波路型回折格子 112 の出力光を入力とする前記擬似位相整合非線形光学材料導波路素子の一例である擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)である。擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)113 において、光LO信号光(周波数ωLO)と光LO信号の2倍波信号光(周波数2ωLO)が擬似位相整合条件を満たし、かつ光LO信号の2倍波信号光(周波数2ωLO)と入力データ信号光(中心周波数ωdata)、光LO信号の2倍波信号光(周波数2ωLO)と入力データ信号光(中心周波数ωdata)の差周波の光信号(キャリア周波数=2ωLO−ωdata)が擬似位相整合条件を満たしている。 Reference numeral 113 denotes a quasi-phase matching lithium niobate waveguide element (QPM-LN) which is an example of the quasi-phase matching nonlinear optical material waveguide element that receives the output light of the arrayed waveguide grating 112. In the quasi phase matching lithium niobate waveguide element (QPM-LN) 113, the optical LO signal light (frequency ω LO ) and the second harmonic wave signal light (frequency 2ω LO ) of the optical LO signal satisfy the quasi phase matching condition, and Optical LO signal double wave signal light (frequency 2ω LO ) and input data signal light (center frequency ω data ), optical LO signal double wave signal light (frequency 2ω LO ) and input data signal light (center frequency ω data). ) Difference frequency optical signal (carrier frequency = 2ω LO −ω data ) satisfies the quasi phase matching condition.

擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)113 が満たす擬似位相整合条件とは、導波路中で光LO信号光の伝播定数の2倍が光LO信号光の2倍波信号光の伝播定数に擬似的に一致し、かつ光データ信号光の伝播定数と、光LO信号光の2倍波信号と光データ信号光の差周波光の伝播定数の和が光LO信号光の2倍波信号光の伝播定数に擬似的に一致するよう、光導波路の進行方向に周期的に分極反転させてある状態を意味する。この条件が満たされることによって、擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)113 からは、所望の、たとえば図7に示すような、スペクトルを持つ出力光が効率よく出射するようになる。   The quasi phase matching condition satisfied by the quasi phase matching lithium niobate waveguide element (QPM-LN) 113 is that the propagation constant of the optical LO signal light is twice that of the optical LO signal light in the waveguide. The sum of the propagation constant of the optical data signal light and the propagation constant of the difference frequency light of the second harmonic wave signal of the optical LO signal light and the optical data signal light is twice that of the optical LO signal light. It means a state in which the polarization is periodically reversed in the traveling direction of the optical waveguide so as to coincide with the propagation constant of the wave signal light. When this condition is satisfied, desired output light having a spectrum, for example, as shown in FIG. 7, is efficiently emitted from the quasi-phase matching lithium niobate waveguide element (QPM-LN) 113. .

114 は周波数2ωLO−ωdataを中心として±4ωだけ離れたところの周波数、すなわち、2ωLO−ωdata−4ωと2ωLO−ωdata+4ωとに透過率の極大を有する第二の波長選択器であるアレー導波路型回折格子であり、115 はアレー導波路型回折格子 114 の出力光を増幅する光増幅器、116 は光増幅器 115 で増幅されたアレー導波路型回折格子 114 の出力光を検知する光検出器である。 114 is a frequency at a distance of ± 4ω f centered on the frequency 2ω LO −ω data , that is, a second maximum having a transmittance maximum at 2ω LO −ω data −4ω f and 2ω LO −ω data + 4ω f . It is an array waveguide type diffraction grating that is a wavelength selector, 115 is an optical amplifier that amplifies the output light of the array waveguide type diffraction grating 114, and 116 is an output of the array waveguide type diffraction grating 114 that is amplified by the optical amplifier 115. It is a photodetector that detects light.

本実施例の周波数アップ変換器においてデータ信号がどのように変換されるかを以下に説明する。   How the data signal is converted in the frequency up-converter of this embodiment will be described below.

図2は、光源 105 で得られる光のスペクトルを横軸を光の周波数にして模式的に表した図である。このようなスペクトルを有する光をニオブ酸リチウム分岐干渉型光変調器 106 で変調した時に得られる光信号のスペクトルは図3のようになる。ここで 301 はもとの周波数ωLOの信号を表し、302 は変調された光の下側波、303 は変調された光の上側波、304 と 305 は2倍変調波成分を表し、304 はその下側波、305 は上側波を表す。 FIG. 2 is a diagram schematically showing the spectrum of light obtained from the light source 105 with the horizontal axis as the frequency of light. The spectrum of an optical signal obtained when light having such a spectrum is modulated by the lithium niobate branching interference optical modulator 106 is as shown in FIG. Where 301 represents the signal at the original frequency ω LO , 302 represents the lower side wave of the modulated light, 303 represents the upper side wave of the modulated light, 304 and 305 represent the double modulated wave component, and 304 represents The lower side wave, 305, represents the upper side wave.

図4はデータ信号入力ポート 109 から入力した光データ信号の光スペクトルを、横軸を光の周波数にして、模式的に表した図である。401 は光キャリア強度を表し、402 はデータ信号のスペクトルを表す。アレー導波路型回折格子 112 の周波数−透過特性は図5のようになっているので、アレー導波路型回折格子 112 から擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)113 へ入射する光のスペクトルは図6に示すような形状を示す。   FIG. 4 is a diagram schematically showing the optical spectrum of the optical data signal input from the data signal input port 109 with the horizontal axis representing the optical frequency. 401 represents the optical carrier intensity, and 402 represents the spectrum of the data signal. Since the frequency-transmission characteristics of the arrayed waveguide grating 112 are as shown in FIG. 5, light incident on the quasi-phase matched lithium niobate waveguide element (QPM-LN) 113 from the arrayed waveguide grating 112 is used. The spectrum shows a shape as shown in FIG.

図6のスペクトルで示される光信号は、光LO信号光(周波数ωLO)と光LO信号の2倍波信号光(周波数2ωLO)が擬似位相整合条件を満たし、かつ光LO信号の2倍波信号光(周波数2ωLO)と入力データ信号光(中心周波数ωdata)、光LO信号の2倍波信号光(周波数2ωLO)と入力データ信号光(中心周波数ωdata)の差周波の光信号が擬似位相整合条件を満たしているので、図6のスペクトルで示される光信号が擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)113 へ入射した際に、上記信号の差周波信号として、擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)113 において、図7に示したスペクトルを持つ光が新たに発生する。 The optical signal shown in the spectrum of FIG. 6 includes the optical LO signal light (frequency ω LO ) and the double wave signal light (frequency 2ω LO ) of the optical LO signal satisfying the quasi-phase matching condition and twice the optical LO signal. Wave signal light (frequency 2ω LO ) and input data signal light (center frequency ω data ), light of difference frequency between optical LO signal double wave signal light (frequency 2ω LO ) and input data signal light (center frequency ω data ) Since the signal satisfies the quasi-phase matching condition, when the optical signal shown in the spectrum of FIG. 6 enters the quasi-phase-matched lithium niobate waveguide element (QPM-LN) 113, the difference frequency signal of the above signal is obtained. In the quasi phase matching lithium niobate waveguide element (QPM-LN) 113, light having the spectrum shown in FIG. 7 is newly generated.

図7において、701 は光LO信号の2倍の高調波成分の下側波である下側2倍変調波
304 と上側2倍変調波 305 のミキシング信号(周波数2ωLO)とデータ信号(中心周波数ωdata)の差周波信号光、702 は光LO信号の2倍の高調波成分の下側波である下側2倍変調波 304 の2倍波信号光(周波数2ωLO−4ω)とデータ信号(中心周波数ωdata)の差周波信号光、703 は光LO信号の2倍の高調波成分の上側波である上側2倍変調波
305 の2倍波信号光(周波数2ωLO+4ω)とデータ信号(中心周波数ωdata)の差周波信号光である。
In FIG. 7, reference numeral 701 denotes a lower side double modulated wave which is a lower side wave of a harmonic component twice the optical LO signal.
The difference frequency signal light between the mixing signal (frequency 2ω LO ) of 304 and the upper double modulated wave 305 and the data signal (center frequency ω data ), 702 is the lower side wave of the harmonic component that is twice the optical LO signal. The difference frequency signal light between the second harmonic signal light (frequency 2ω LO -4ω f ) of the side double modulated wave 304 and the data signal (center frequency ω data ), and 703 is the upper wave of the harmonic component that is twice the optical LO signal. Upper doubled modulated wave
This is a difference frequency signal light of the second harmonic signal light of 305 (frequency 2ω LO + 4ω f ) and the data signal (center frequency ω data ).

図7に示すようなスペクトルを持つ、擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)113 からの出力光を、周波数2ωLO−ωdataを中心として±4ωだけ離れたところの周波数に透過率の極大を有するアレー導波路型回折格子 114 に通すと、得られる光のスペクトルは図8のようになる。この光を光増幅器 115 で増幅後、光検出器 116 で電気信号に変換すると、その電気信号のスペクトルは図9のようになる。ここで 901 は周波数8ωに現れる信号光 702 と 703 のうなり信号、902 は周波数8ωの信号にまとわりつくデータ信号である。ここで分かるように、データ信号が周波数8ωに周波数アップ変換されている。図10は、本実施例の効果を説明する図である。 The output light from the quasi-phase-matched lithium niobate waveguide element (QPM-LN) 113 having a spectrum as shown in FIG. 7 has a frequency separated by ± 4ω f around the frequency 2ω LO −ω data. When the light is passed through an arrayed waveguide grating 114 having a maximum transmittance, the spectrum of the light obtained is as shown in FIG. When this light is amplified by the optical amplifier 115 and then converted into an electric signal by the photodetector 116, the spectrum of the electric signal is as shown in FIG. Here 901 beat signal of the signal light 702 and 703 appearing in the frequency 8ω f, 902 is a data signal clinging to the signal of the frequency 8ω f. As seen, the data signals are frequency up-converted into a frequency 8ω f. FIG. 10 is a diagram for explaining the effect of this embodiment.

上記の実施例では、合波器と第一の波長選択器とを合体した形のアレー導波路型回折格子 112 を用いたが、波長選択手段はこれに限定されるものではなく、多層膜波長フィルタ、ファイバーグレーティング型フィルタを用いてもよく、また、合波手段としては従来から用いられている合波器を用いても、本発明の周波数アップ変換器が実現可能なことは自明である。   In the above embodiment, the arrayed waveguide type diffraction grating 112 in which the multiplexer and the first wavelength selector are combined is used. However, the wavelength selection means is not limited to this, and the wavelength of the multilayer film is not limited thereto. It is obvious that a filter or a fiber grating type filter may be used, and the frequency up converter of the present invention can be realized by using a conventionally used multiplexer as the multiplexing means.

また、擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)に代えて、ニオブ酸リチウム以外の非線形光学材料を用いた擬似位相整合非線形光学材料導波路素子を用いても、本発明の周波数アップ変換器が実現可能なことは自明である。   Further, in place of the quasi-phase matching lithium niobate waveguide element (QPM-LN), the frequency of the present invention can be increased by using a quasi-phase matching nonlinear optical material waveguide element using a nonlinear optical material other than lithium niobate. Obviously, a converter is feasible.

上記の実施例では、光LO信号として2次の高調波(高調波次数nが2である場合)を用いたが、本実施例に提案された方式に限定されるものでなく、次数nを上下させても、たとえば次数nを1または3としても、本周波数アップ変換が可能であることは明らかである。周波数は、n=1の場合には4ωに、n=3の場合には12ωに、それぞれアップ変換される。 In the above embodiment, the second harmonic (when the harmonic order n is 2) is used as the optical LO signal. However, the present invention is not limited to the method proposed in this embodiment. It is clear that this frequency up-conversion is possible even if the frequency is raised or lowered, for example, when the order n is 1 or 3. Frequency, the 4Omega f when n = 1, the in the case of n = 3 in 12Omega f, is up-converted, respectively.

また、ニオブ酸リチウム分岐干渉型光変調器(QPM−LN)の擬似位相整合条件を工夫し、QPM−LN自体に光フィルタ機能を持たせることによっても本周波数アップ変換器が実現可能なことは自明である。   In addition, the frequency up converter can be realized by devising the quasi-phase matching condition of the lithium niobate branching interferometric optical modulator (QPM-LN) and providing the QPM-LN itself with an optical filter function. It is self-explanatory.

以上説明したとおり、本発明の周波数アップ変換器によれば、入力される光信号を、電気の基準信号発振器と同期した100GHzかそれ以上の高純度の周波数信号に周波数アップ変換することが可能となる。   As described above, according to the frequency up-converter of the present invention, it is possible to up-convert an input optical signal into a high-purity frequency signal of 100 GHz or higher synchronized with an electrical reference signal oscillator. Become.

本発明の実施例を示す周波数アップ変換器を示す模式図である。It is a schematic diagram which shows the frequency up converter which shows the Example of this invention. 本発明の実施例において、光源で発生する光の周波数ωの光信号のスペクトルを、横軸を光の周波数にして、模式的に表した説明図である。In the Example of this invention, it is explanatory drawing which represented typically the spectrum of the optical signal of the frequency ωf of the light which generate | occur | produces with a light source by making a horizontal axis into the frequency of light. 本発明の実施例において、周波数ωで変調された光LO信号の光スペクトルを、横軸を光の周波数にして、模式的に表した説明図である。In the Example of this invention, it is explanatory drawing which represented typically the optical spectrum of the optical LO signal modulated by the frequency (omega) f by making a horizontal axis into the frequency of light. 本発明の実施例において、光データ信号の光スペクトルを、横軸を光の周波数にして、模式的に表した説明図である。In the Example of this invention, it is explanatory drawing which represented typically the optical spectrum of an optical data signal by making a horizontal axis into the frequency of light. 本発明の実施例において、QPM−LN前におかれる光フィルタの透過特性を模式的に表した説明図である。In the Example of this invention, it is explanatory drawing which represented typically the permeation | transmission characteristic of the optical filter put before QPM-LN. 本発明の実施例において、図5で表した透過特性を有する光フィルタを透過した後の合波された光信号のスペクトルを模式的に表す説明図である。In the Example of this invention, it is explanatory drawing which represents typically the spectrum of the optical signal combined after transmitting the optical filter which has the transmission characteristic represented in FIG. 本発明の実施例において、図6で示された光スペクトルを有する信号がQPM−LNに入射したときに生じる差周波信号のスペクトルを模式的に説明する説明図である。In the Example of this invention, it is explanatory drawing which illustrates typically the spectrum of the difference frequency signal produced when the signal which has the optical spectrum shown by FIG. 6 injects into QPM-LN. QPM−LNの後段に置かれる光フィルタを通過した後の光信号のスペクトルを模式的に表した説明図である。It is explanatory drawing which represented typically the spectrum of the optical signal after passing the optical filter placed in the back | latter stage of QPM-LN. 図8で示される光スペクトルを有する光信号を光検出器で検出した際に得られる電気信号のスペクトルを模式的に表した説明図である。It is explanatory drawing which represented typically the spectrum of the electric signal obtained when the optical signal which has the optical spectrum shown by FIG. 8 was detected with the photodetector. 本発明の実施例の効果を説明する図である。It is a figure explaining the effect of the Example of this invention. 従来の周波数アップ変換器の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the conventional frequency up converter. 従来の周波数アップ変換器のLO信号発生器で発生する周波数ωの電気信号のスペクトルを表す説明図である。It is explanatory drawing showing the spectrum of the electric signal of the frequency (omega) f generated with the LO signal generator of the conventional frequency up converter. 従来の周波数アップ変換器のデータ信号発生器で発生するデータ信号のスペクトルを表す説明図である。It is explanatory drawing showing the spectrum of the data signal which generate | occur | produces with the data signal generator of the conventional frequency up converter. 従来の周波数アップ変換器の周波数ミキサで発生するミキシング信号のスペクトルを表す説明図である。It is explanatory drawing showing the spectrum of the mixing signal which generate | occur | produces with the frequency mixer of the conventional frequency up converter. 従来の周波数アップ変換器で発生する光LO信号の光スペクトルを表す説明図である。It is explanatory drawing showing the optical spectrum of the optical LO signal generate | occur | produced with the conventional frequency up converter.

符号の説明Explanation of symbols

101…基準信号発生器、102…光変調器駆動用ドライバアンプ、103…直流電源、104…バイアスT、105…光源、106…ニオブ酸リチウム分岐干渉型光変調器、107…光増幅器、108…光バンドパスフィルタ、109…データ信号入力ポート、110…第二の光増幅器、111…光バンドパスフィルタ、112…アレー導波路型回折格子、113…擬似位相整合ニオブ酸リチウム導波路素子(QPM−LN)、114…アレー導波路型回折格子、115…光増幅器、116…光検出器、301…周波数ωLOの信号、302…下側変調波、303…上側変調波、304…下側2倍変調波、305…上側2倍変調波、401…光キャリア強度、402…データ信号のスペクトル、701…中心周波数2ωLO−ωdataの信号、702…中心周波数2ωLO−4ω−ωdataの信号、703…中心周波数2ωLO+4ω−ωdataの信号、901…信号 702 と信号 703のうなり信号、902…周波数8ωの信号にまつわりつくデータ信号、1101…局所発振信号発生器、1102…データ信号発生器、1103…周波数ミキサ、1104…ドライバアンプ、1105…光源、1106…光変調器、1107…光増幅器、1108…光受信機、1109…光伝送路、1201…LO信号発生器で発生する電気信号、1301…データ信号、1401…周波数ωの信号、1402…データ信号、1501…光キャリア、1502下側波帯…、1503…上側波帯。 DESCRIPTION OF SYMBOLS 101 ... Reference signal generator, 102 ... Driver amplifier for driving optical modulator, 103 ... DC power supply, 104 ... Bias T, 105 ... Light source, 106 ... Lithium niobate branching interferometric optical modulator, 107 ... Optical amplifier, 108 ... Optical band pass filter, 109 ... Data signal input port, 110 ... Second optical amplifier, 111 ... Optical band pass filter, 112 ... Array waveguide type diffraction grating, 113 ... Quasi-phase matched lithium niobate waveguide element (QPM- LN), 114 ... array waveguide type diffraction grating, 115 ... optical amplifier, 116 ... photodetector, 301 ... signal of frequency ω LO , 302 ... lower modulation wave, 303 ... upper modulation wave, 304 ... lower double Modulated wave, 305: Upper double modulated wave, 401: Optical carrier intensity, 402: Spectrum of data signal, 701: Signal of center frequency 2ω LOdata , 702: Signal of center frequency 2ω LO -4ω fdata , 703 ... center frequency 2ω LO + 4ω fd ta signal, 901 ... beat signal of signal 702 and signal 703, 902 ... data signal Matsuwaritsuku into a signal in the frequency 8ω f, 1101 ... local oscillator signal generator, 1102 ... data signal generator, 1103 ... frequency mixer, 1104 ... driver Amplifier, 1105 ... Light source, 1106 ... Optical modulator, 1107 ... Optical amplifier, 1108 ... Optical receiver, 1109 ... Optical transmission line, 1201 ... Electrical signal generated by LO signal generator, 1301 ... Data signal, 1401 ... Frequency ω f signal, 1402... data signal, 1501... optical carrier, 1502 lower sideband, 1503.

Claims (2)

周波数ωの基準電気信号を発生する基準信号発生器と、周波数ωLOの光を放射する光源と、前記周波数ωLOの光を前記基準電気信号で変調する光変調器と、前記光変調器の出力光を増幅する第一の光増幅器と、データ信号で変調された周波数ωdataの入力光を増幅する第二の光増幅器と、前記第一の光増幅器の出力光と前記第二の光増幅器の出力光とを合波する合波器と、前記合波器の出力を入力とする、nを正の整数としたときの、周波数ωdataと周波数ωLO−nωと周波数ωLO+nωとに透過率の極大を有する第一の波長選択器と、前記第一の波長選択器の出力光を入力とする擬似位相整合非線形光学材料導波路素子と、前記擬似位相整合非線形光学材料導波路素子の出力を入力とする、周波数2ωLO−ωdata−2nωと周波数2ωLO−ωdata+2nωとに透過率の極大を有する第二の波長選択器と、前記第二の波長選択器の出力光を入力とし4nωに周波数アップ変換された電気信号を出力する光検出器とを構成要素とする周波数アップ変換器。 A reference signal generator for generating a reference electrical signal of the frequency omega f, a light source for emitting light of a frequency omega LO, and the optical modulator for modulating light of said frequency omega LO at the reference electric signal, said optical modulator A first optical amplifier that amplifies the output light of the first optical amplifier, a second optical amplifier that amplifies the input light of the frequency ω data modulated by the data signal, the output light of the first optical amplifier, and the second light A multiplexer that multiplexes the output light of the amplifier, a frequency ω data , a frequency ω LO −nω f, and a frequency ω LO + nω when n is a positive integer and the output of the multiplexer is an input. a first wavelength selector having a transmissivity maximum at f , a quasi-phase matched nonlinear optical material waveguide element that receives the output light of the first wavelength selector, and the quasi-phase matched nonlinear optical material waveguide It receives the output of the waveguide element, the frequency 2 [omega LO - [omega] d a second wavelength selector having a maximum transmittance in the ta -2nω f and frequency 2ω LOdata + 2nω f, is the frequency up-converted to the second inputs the output light of the wavelength selector 4Enuomega f A frequency up converter including a photodetector that outputs an electrical signal as a component. 周波数ωの基準電気信号を発生する基準信号発生器と、前記周波数ωの基準電気信号を増幅するドライバアンプと、周波数ωLOの光を放射する光源と、前記周波数ωLOの光を前記ドライバアンプの出力で変調する光変調器と、前記光変調器の出力光を増幅する第一の光増幅器と、データ信号で変調された周波数ωdataの光を入力するための入力ポートと、前記入力ポートから入力された周波数ωdataの光を増幅する第二の光増幅器と、前記第一の光増幅器の出力光と前記第二の光増幅器の出力光とを合波する合波器と、前記合波器の出力を入力とする、nを正の整数としたときの、周波数ωdataと周波数ωLO−nωと周波数ωLO+nωとに透過率の極大を有する第一の波長選択器と、前記第一の波長選択器の出力光を入力とし周波数ωLO±nωの波とその2倍波(第二高調波)が擬似位相整合条件を満たし、かつ周波数2ωLO±2nωの波と周波数ωdataの波、周波数2ωLO±2nω−ωdataの波が擬似位相整合条件を満たす擬似位相整合ニオブ酸リチウム導波路素子と、前記擬似位相整合ニオブ酸リチウム導波路素子の出力光を入力とする、周波数2ωLO−ωdata−2nωと周波数2ωLO−ωdata+2nωとに透過率の極大を有する第二の波長選択器と、前記第二の波長選択器の出力光を入力とし4nωに周波数アップ変換された電気信号を出力する光検出器とを構成要素とする周波数アップ変換器。 Wherein a reference signal generator for generating a reference electrical signal of the frequency omega f, a driver amplifier for amplifying the reference electrical signal of the frequency omega f, a light source for emitting light of a frequency omega LO, the light of the frequency omega LO An optical modulator that modulates the output of the driver amplifier; a first optical amplifier that amplifies the output light of the optical modulator; an input port for inputting light of frequency ω data modulated by a data signal; A second optical amplifier that amplifies light having a frequency ω data input from an input port; a multiplexer that combines the output light of the first optical amplifier and the output light of the second optical amplifier; First wavelength selection having maximum transmittance at frequency ω data , frequency ω LO -nω f and frequency ω LO + nω f when n is a positive integer with the output of the multiplexer as an input Of the first wavelength selector Waves and its second harmonic of an input power optical frequency ω LO ± nω f (second harmonic) satisfies the quasi-phase matching condition, and the waves of the wave and the frequency omega data of the frequency 2ω LO ± 2nω f, the frequency 2 [omega LO ± 2nω f −ω data wave having a quasi-phase matching lithium niobate waveguide element satisfying a quasi-phase matching condition and an output light from the quasi-phase matching lithium niobate waveguide element having a frequency of 2ω LO −ω a second wavelength selector having a maximum of transmittance at data −2nω f and a frequency 2ω LO −ω data + 2nω f, and an output light of the second wavelength selector as an input, and frequency up-converted to 4nω f A frequency up converter including a photodetector that outputs an electrical signal as a component.
JP2003413039A 2003-12-11 2003-12-11 Frequency up converter Expired - Fee Related JP4372527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413039A JP4372527B2 (en) 2003-12-11 2003-12-11 Frequency up converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413039A JP4372527B2 (en) 2003-12-11 2003-12-11 Frequency up converter

Publications (2)

Publication Number Publication Date
JP2005173199A JP2005173199A (en) 2005-06-30
JP4372527B2 true JP4372527B2 (en) 2009-11-25

Family

ID=34733285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413039A Expired - Fee Related JP4372527B2 (en) 2003-12-11 2003-12-11 Frequency up converter

Country Status (1)

Country Link
JP (1) JP4372527B2 (en)

Also Published As

Publication number Publication date
JP2005173199A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US8135288B2 (en) System and method for a photonic system
JP3515116B2 (en) Generation of an optical frequency having an RF component
WO2011154501A1 (en) Acousto-optical system, microscope and method of use of the acousto-optical system
JP6774382B2 (en) Optical amplifier and optical transmission system using it
JP2006178357A (en) Optical modulator
JP2003167281A (en) Phase locked loop circuit for optical clock
JP4889661B2 (en) Optical multicarrier generator and optical multicarrier transmitter using the same
US20070104492A1 (en) System for and method of single slideband modulation for analog optical link
JP2017203869A (en) Phase sensitive optical amplifier
JP4372527B2 (en) Frequency up converter
US6600588B2 (en) Reciprocating optical modulation system
US20080002984A1 (en) Optical Transmission System Using Ossb-Modulation and Signal Trasmission Method Thereof
KR100713408B1 (en) Single side band modulator module and single side band modulator device using the same
JP3851949B2 (en) Low noise optical frequency converter
JP6533171B2 (en) Optical comb generator
JP4102272B2 (en) Optical transmitter for optical-wireless communication system
JP4002048B2 (en) Signal generating apparatus and up-conversion system for optical fiber transmission, and optical fiber transmission system for high-frequency signal
JP3786901B2 (en) Optical transmitter and optical transmission system
US20020080454A1 (en) Method, system and apparatus for optically transferring information
CN106877940B (en) Optical signal transmitting end and millimeter wave optical carrier wireless communication system
JP4230888B2 (en) Frequency converter, frequency conversion method, and optical wireless device using the same
JP4674361B2 (en) Optoelectric oscillator
CN113037389B (en) High frequency multiplication millimeter wave signal generating device based on DPMZM and FWM effects
US20220200229A1 (en) Optical Amplifier
JP2011135497A (en) Optical transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees