JP4368167B2 - Colored substrate for organic EL and organic EL display device - Google Patents

Colored substrate for organic EL and organic EL display device Download PDF

Info

Publication number
JP4368167B2
JP4368167B2 JP2003305744A JP2003305744A JP4368167B2 JP 4368167 B2 JP4368167 B2 JP 4368167B2 JP 2003305744 A JP2003305744 A JP 2003305744A JP 2003305744 A JP2003305744 A JP 2003305744A JP 4368167 B2 JP4368167 B2 JP 4368167B2
Authority
JP
Japan
Prior art keywords
layer
organic
transparent
substrate
pinhole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003305744A
Other languages
Japanese (ja)
Other versions
JP2005078869A (en
Inventor
雅朗 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003305744A priority Critical patent/JP4368167B2/en
Publication of JP2005078869A publication Critical patent/JP2005078869A/en
Application granted granted Critical
Publication of JP4368167B2 publication Critical patent/JP4368167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、有機EL用カラー化基板及び有機EL表示装置に関する。   The present invention relates to a colored substrate for organic EL and an organic EL display device.

有機EL素子は、自己発色により視認性が高いこと、液晶ディスプレーと異なり全固体ディスプレーであること、温度変化の影響をあまり受けないこと、視野角が大きいこと等の利点をもっており、近年、画像表示装置の画素等としての実用化が進んでいる。   Organic EL elements have advantages such as high visibility due to self-coloring, being an all-solid-state display unlike liquid crystal displays, being less susceptible to temperature changes, and having a large viewing angle. Practical use as a pixel of an apparatus is progressing.

有機EL素子を用いた画像表示装置としては、(1)三原色の有機EL素子層を各発光色毎に所定のパターンで形成したもの、(2)白色発光の有機EL素子層を使用し、三原色のカラーフィルタを介して表示するもの、(3)青色発光の有機EL素子層を使用し、蛍光色素を利用した色変換蛍光体層を設置して、青色光を緑色蛍光や赤色蛍光に変換して三原色表示をするもの等が提案されている。
しかし、上記の(1)の有機EL表示装置では、異なる色の光を発光させて多色化させるには、各色の発光材料を開発する必要があり、材料自体が有機化合物であるため、フォトリソグラフィー法による多色化パターニングにおける耐性が乏しいという問題がある。また、フォトリソグラフィー法以外のドライプロセスでの多色化パターニングは工程が複雑であり、量産化の点で問題がある。
As an image display device using an organic EL element, (1) an organic EL element layer of three primary colors is formed in a predetermined pattern for each emission color, and (2) an organic EL element layer of white light emission is used, and three primary colors are used. (3) Using a blue light-emitting organic EL element layer and installing a color conversion phosphor layer using a fluorescent dye to convert blue light into green fluorescence or red fluorescence The one that displays three primary colors has been proposed.
However, in the organic EL display device of the above (1), it is necessary to develop light-emitting materials of each color in order to emit light of different colors and make it multi-colored, and since the materials themselves are organic compounds, There is a problem that resistance to multi-color patterning by lithography is poor. In addition, multi-color patterning in a dry process other than the photolithography method is complicated and has a problem in mass production.

そこで、上記(1)以外の(2)及び(3)の有機EL表示装置として、透明基板上に順次少なくとも、カラーフィルター層、透明保護層、透明バリア層及び透明電極層を設けた有機EL用カラー化基板並びに該有機EL用カラー化基板の透明電極層側にさらに有機EL素子層及び背面電極層を設けた有機EL表示装置の活用が考えられる。   Therefore, as an organic EL display device of (2) and (3) other than (1) above, for organic EL in which at least a color filter layer, a transparent protective layer, a transparent barrier layer, and a transparent electrode layer are sequentially provided on a transparent substrate. The use of an organic EL display device in which an organic EL element layer and a back electrode layer are further provided on the transparent electrode layer side of the colored substrate and the colored substrate for organic EL is conceivable.

近年、有機EL素子が盛んに研究されている。   In recent years, organic EL elements have been actively studied.

これは、ホール注入電極上にTPD等のホール輸送材料を薄膜状に蒸着し、さらにMg等の仕事関数の小さい金属電極(電子注入電極)を形成した基本構成を有する素子で、10V前後の電圧で数百から数万cd/m2と極めて高い輝度が得られることで注目されている。 This is an element having a basic configuration in which a hole transport material such as TPD is vapor-deposited on a hole injection electrode in a thin film, and a metal electrode (electron injection electrode) having a small work function such as Mg is formed. Attention has been paid to the fact that extremely high luminance of several hundred to several tens of thousands of cd / m 2 is obtained.

ところで、有機EL素子のカラー化方式であるカラーフィルター方式や色変換方式による有機EL表示装置において、使用される材料系から脱離するガス成分により有機EL素子が劣化するのを防止するためにバリア膜を設けることが行われている(例えば、特許文献1〜5参照。)。   By the way, in an organic EL display device using a color filter method or a color conversion method, which is a colorization method of an organic EL element, a barrier is used to prevent the organic EL element from deteriorating due to a gas component desorbed from a used material system. A film is provided (for example, refer to Patent Documents 1 to 5).

特開2002−100469号公報JP 2002-1000046 A 特開2002−117976号公報JP 2002-117976 A 特開2002−134268号公報JP 2002-134268 A 特開2002−175880号公報JP 2002-175880 A 特開2002−184578号公報JP 2002-184578 A

しかし、ピンホールレスのバリア膜を得ることは技術的に困難であるところ、ピンホールがあるとそこに脱離ガス成分が集中し、その部分に該当する有機EL素子が劣化し、発光しなくなる。   However, it is technically difficult to obtain a pinhole-less barrier film. However, if there is a pinhole, the desorbed gas component concentrates there, and the organic EL element corresponding to that portion deteriorates and stops emitting light. .

本発明の課題は、バリア膜のピンホールに脱離ガス成分が集中し、その部分に該当する有機EL素子が劣化し、発光しなくなる問題点を解決することである。   An object of the present invention is to solve the problem that desorbed gas components are concentrated in the pinhole of the barrier film, the organic EL element corresponding to the portion is deteriorated, and light is not emitted.

本発明者等は、前記の課題を解決するために種々検討を重ねた結果、透明バリア層の表示画面部の非表示領域にピンホールを存在させることにより、所望の有機EL表示装置が得られることを見出し、本発明を完成するに至った。   As a result of various investigations to solve the above-mentioned problems, the present inventors can obtain a desired organic EL display device by causing a pinhole to exist in the non-display area of the display screen portion of the transparent barrier layer. As a result, the present invention has been completed.

すなわち本発明は、透明基板上に順次少なくとも、カラーフィルター層、透明保護層、透明バリア層及び透明電極層を設けた有機EL用カラー化基板において、前記透明バリア層にピンホールを存在させたことを特徴とする有機EL用カラー化基板、並びに、該有機EL用カラー化基板の透明電極層側にさらに有機EL素子層及び背面電極層を設けた有機EL表示装置において、前記透明バリア層の特定した領域にピンホールを存在させたことを特徴とする有機EL表示装置からなるものである。   That is, the present invention provides a colored substrate for organic EL in which at least a color filter layer, a transparent protective layer, a transparent barrier layer, and a transparent electrode layer are sequentially provided on the transparent substrate, and pinholes are present in the transparent barrier layer. In the organic EL display device in which an organic EL element layer and a back electrode layer are further provided on the transparent electrode layer side of the organic EL colorization substrate and the organic EL colorization substrate The organic EL display device is characterized in that pinholes exist in the region.

本発明によれば、バリア膜にピンホールを設けることで、バリア膜のピンホールに脱離ガス成分が集中し、その部分に該当する有機EL素子が劣化し、発光しなくなるようなことがなくなり、高品質の有機EL用カラー化基板及び高品質の画像表示が可能な有機EL表示装置が得られる。   According to the present invention, by providing pinholes in the barrier film, desorbed gas components are concentrated in the pinholes of the barrier film, so that the organic EL element corresponding to the portion is not deteriorated to stop emitting light. A high-quality organic EL color substrate and an organic EL display device capable of displaying a high-quality image can be obtained.

本発明においては、透明バリア層の表示画面部において表示領域以外の部分に故意にピンホールを存在させる。そうすると、表示領域に技術的に不可避の微小ピンホールがあっても、故意に存在させたピンホールに脱離ガス成分が優先的に流れ、表示領域において透明バリア層の微小ピンホールから流出する脱離ガス成分の量が減り、EL素子の劣化防止、有機EL表示装置の表示性能向上に結びつく。   In the present invention, a pinhole is intentionally present in a portion other than the display area in the display screen portion of the transparent barrier layer. As a result, even if there are technically inevitable minute pinholes in the display area, the desorbed gas components preferentially flow into the pinholes that were intentionally present, and the desorption gas that flows out of the minute pinholes in the transparent barrier layer in the display area The amount of the out-gas component decreases, leading to prevention of deterioration of the EL element and improvement of the display performance of the organic EL display device.

図1は、カラーフィルター層を設けた有機EL表示装置の正面断面図を示す。
透明バリア層に故意に存在させるピンホールの形状は、ライン状、□型や○型の破線状(パーフォレーション状)等、形状を問わない。
図2〜4は、バリア膜の平面図で、存在させるピンホールの形状を例示したものである。図2は、○型の破線状ピンホールを存在させたものを示し、図3は、ライン状ピンホールを存在させたものを示し、図4は、○型の破線状ピンホールとライン状ピンホールとを組み合わせて存在させたものを示す。
FIG. 1 is a front sectional view of an organic EL display device provided with a color filter layer.
The shape of the pinhole intentionally present in the transparent barrier layer may be any shape, such as a line shape, a □ -type or a ◯ -shaped broken line (perforation).
2 to 4 are plan views of the barrier film and illustrate the shape of the pinhole to be present. FIG. 2 shows a circle having a ◯ -shaped broken pinhole, FIG. 3 shows a circle having a line-shaped pinhole, and FIG. 4 shows a circle-shaped broken pinhole and a line-shaped pin. Shows what is combined with a hole.

ピンホールのサイズは、脱離ガスを通過可能で、画面表示に影響がない限り大きさを問わない。   The size of the pinhole is not limited as long as it can pass through the desorbed gas and does not affect the screen display.

ピンホールの面積は、表示画面部全体の0.001〜10%であり、表示画面部非表示領域の1〜90%である。表示画面部全体のピンホールの面積が0.001%未満では効果が十分でなく、10%を越えると点灯しない領域が多くなり、情報、画像の伝達に支障を来たす。表示画面部非表示領域のピンホールの面積が1%未満では効果が十分でなく、90%を越えると非表示領域にたまった水分が表示領域に拡散して非点灯を招く。   The area of the pinhole is 0.001 to 10% of the entire display screen part and 1 to 90% of the display screen part non-display area. If the area of the pinhole of the entire display screen is less than 0.001%, the effect is not sufficient, and if it exceeds 10%, there are many areas that do not light up, which hinders the transmission of information and images. If the area of the pinhole in the non-display area of the display screen is less than 1%, the effect is not sufficient, and if it exceeds 90%, moisture accumulated in the non-display area diffuses into the display area and causes non-lighting.

そして、透明バリア層の表示画面部において表示領域以外の部分(非表示領域)に故意にピンホールを存在させることが効果的である。
すなわち、透明バリア層に故意に存在させるピンホールの位置は、表示領域以外のブラックマトリクス(以下、「BM」ということがある。)部や表示画面部の外周部であるのが好ましいが、それらを組み合わせてもよい。さらに、透明バリア層の特定した領域にピンホールを存在させてもよい。
And it is effective to intentionally make a pinhole exist in a part other than the display area (non-display area) in the display screen portion of the transparent barrier layer.
That is, the position of the pinhole intentionally present in the transparent barrier layer is preferably a black matrix (hereinafter sometimes referred to as “BM”) portion other than the display region or an outer peripheral portion of the display screen portion. May be combined. Further, a pinhole may be present in a specified region of the transparent barrier layer.

ピンホール形成手段としては、バリア膜形成後、レジストパターニング、ドライエッチングを順次施すとよい。また、レジストパターニングしたものの上にバリア膜を形成して、該レジストをリフトオフ法で除去してもよい。   As the pinhole forming means, resist patterning and dry etching may be sequentially performed after the barrier film is formed. Alternatively, a barrier film may be formed on the resist pattern and the resist may be removed by a lift-off method.

さらには、透明バリア層に故意に存在させるピンホールの形状や位置にとらわれることなく、基板上にパーティクルが付着する環境でバリア膜を形成し、次いで該パーティクルを部分的に洗浄、除去してもよい。   Furthermore, the barrier film is formed in an environment where particles adhere to the substrate without being restricted by the shape and position of the pinholes intentionally existing in the transparent barrier layer, and then the particles are partially washed and removed. Good.

次に本発明の実施例を示すが、本発明はこれらの実施例によって限定して解釈されるべきではない。   Examples of the present invention are shown below, but the present invention should not be construed as being limited by these examples.

ブラックマトリクスの形成
透明基材として、150mm×150mm、厚み0.7mmのソーダガラス(セントラル硝子社製Sn面研磨品)を準備した。この透明基材を定法にしたがって洗浄した後、透明基材の片側全面にスパッタリング法により酸化窒化複合クロムの薄膜(厚み0.2μm)を形成し、この複合クロム薄膜上に感光性レジストを塗布し、マスク露光、現像、複合クロム薄膜のエッチングを行って、84μm×284μmの長方形状の開口部を100μmピッチでマトリクス状に備えたブラックマトリクスを形成した。
Formation of a black matrix As a transparent base material, 150 mm × 150 mm, 0.7 mm thick soda glass (a Sn surface polished product manufactured by Central Glass Co., Ltd.) was prepared. After cleaning this transparent substrate according to a conventional method, a thin film (thickness 0.2 μm) of oxynitride composite chromium is formed on the entire surface of one side of the transparent substrate by sputtering, and a photosensitive resist is applied onto the composite chromium thin film. Then, mask exposure, development, and etching of the composite chromium thin film were performed to form a black matrix having rectangular openings of 84 μm × 284 μm in a matrix at a pitch of 100 μm.

カラーフィルター層の形成
赤色、緑色、青色の3種の着色層用感光性塗料を調製した。すなわち、赤色着色層用感光性塗料は、ペリレン系顔料、レーキ顔料、アゾ系顔料、キナクリドン系顔料、アントラキノン系顔料、アントラセン系顔料、イソインドリン系顔料等の単品、あるいは、2種以上の混合物からなる着色材をバインダー樹脂に分散させたものとした。バインダー樹脂としては、透明(可視光透過率50%以上)な樹脂が好ましく、例えば、ポリメチルメタクリレート、ポリアクリレート、ポリカーボネート、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロース、カルボキシメチルセルロース等の透明樹脂が挙げられる。また、着色材の含有量は、形成された着色層中に5〜50重量%含有されるように設定した。
Formation of Color Filter Layer Three types of photosensitive paints for colored layers of red, green and blue were prepared. That is, the photosensitive paint for the red colored layer is a perylene pigment, a lake pigment, an azo pigment, a quinacridone pigment, an anthraquinone pigment, an anthracene pigment, an isoindoline pigment or the like, or a mixture of two or more. The resulting colorant was dispersed in a binder resin. The binder resin is preferably a transparent (visible light transmittance of 50% or more) resin, and examples thereof include transparent resins such as polymethyl methacrylate, polyacrylate, polycarbonate, polyvinyl alcohol, polyvinyl pyrrolidone, hydroxyethyl cellulose, and carboxymethyl cellulose. Moreover, content of the coloring material was set so that 5 to 50 weight% might be contained in the formed colored layer.

緑色着色層用感光性塗料は、ハロゲン多置換フタロシアニン系顔料、ハロゲン多置換銅フタロシアニン系顔料、トリフェニルメタン系塩基性染料、イソインドリン系顔料、イソインドリノン系顔料等の単品、あるいは、2種以上の混合物からなる着色材をバインダー樹脂に分散させたものとした。バインダー樹脂としては、上記の透明樹脂が挙げられ、着色材の含有量は、形成された着色層中に5〜50重量%含有されるように設定した。
青色着色層用感光性塗料は、銅フタロシアニン系顔料、インダンスレン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料等の単品、あるいは、2種以上の混合物からなる着色材をバインダー樹脂に分散させたものとした。バインダー樹脂としては、上記の透明樹脂が挙げられ、着色材の含有量は、形成された着色層中に5〜50重量%含有されるように設定した。
The photosensitive coating for the green colored layer is a single product such as a halogen multi-substituted phthalocyanine pigment, a halogen multi-substituted copper phthalocyanine pigment, a triphenylmethane basic dye, an isoindoline pigment, an isoindolinone pigment, or two types. The coloring material comprising the above mixture was dispersed in a binder resin. Examples of the binder resin include the above-described transparent resin, and the content of the coloring material was set to be contained in the formed colored layer in an amount of 5 to 50% by weight.
The photosensitive coating for the blue colored layer is composed of a single material such as a copper phthalocyanine pigment, an indanthrene pigment, an indophenol pigment, a cyanine pigment, a dioxazine pigment, or a colorant composed of a mixture of two or more binder resins. It was assumed that they were dispersed. Examples of the binder resin include the above-described transparent resin, and the content of the coloring material was set to be contained in the formed colored layer in an amount of 5 to 50% by weight.

次に、上記の3種の着色層用感光性塗料を用いて各色の着色層を形成した。すなわち、ブラックマトリクスが形成された上記の透明基材全面に、緑色着色層用の感光性塗料をスピンコート法により塗布し、プリベーク(80℃、30分間)を行った。その後、所定の着色層用フォトマスクを用いて露光した。次いで、現像液(0.05%KOH水溶液)にて現像を行い、次いで、ポストベーク(100℃、30分間)を行って、ブラックマトリクスパターンに対して所定の位置に帯状(幅90μm)の緑色着色層(厚み1.5μm)を形成した。
同様に、赤色着色層の感光性塗料を用いて、ブラックマトリクスパターンに対して所定の位置に帯状(幅90μm)の赤色着色層(厚み1.5μm)を形成した。さらに、青色着色層の感光性塗料を用いて、ブラックマトリクスパターンに対して所定の位置に帯状(幅90μm)の青色着色層(厚み1.5μm)を形成した。
Next, a colored layer of each color was formed using the above-described three types of photosensitive paints for colored layers. That is, a photosensitive paint for a green colored layer was applied to the entire surface of the transparent substrate on which the black matrix was formed by spin coating, and prebaked (80 ° C., 30 minutes). Then, it exposed using the predetermined photomask for colored layers. Next, development is performed with a developer (0.05% KOH aqueous solution), followed by post-baking (100 ° C., 30 minutes), and a strip-shaped (90 μm wide) green color at a predetermined position with respect to the black matrix pattern. A colored layer (thickness 1.5 μm) was formed.
Similarly, a strip-like (width: 90 μm) red colored layer (thickness: 1.5 μm) was formed at a predetermined position with respect to the black matrix pattern using a photosensitive paint for the red colored layer. Further, a strip-like (90 μm wide) blue colored layer (thickness: 1.5 μm) was formed at a predetermined position with respect to the black matrix pattern using a photosensitive paint for the blue colored layer.

透明保護層の形成
平均分子量が約100000であるノルボルネン系樹脂(JSR社製ARTON)をトルエンで希釈した透明保護層用塗布液を使用し、スピンコート法により透明基材上に塗布した後、ベーク(100℃、30分間)を行った。これにより、上記の色変換蛍光体層を覆うように透明保護層(厚み7μm)を形成した。形成した透明保護層は、透明かつ均一な膜であった。
Using a coating solution for transparent protective layer obtained by diluting norbornene-based resin (ARTON manufactured by JSR Co., Ltd.) having a formation average molecular weight of about 100,000 with toluene, using a spin coating method on a transparent substrate, baking is performed. (100 ° C., 30 minutes). This formed the transparent protective layer (thickness 7 micrometers) so that said color conversion fluorescent substance layer might be covered. The formed transparent protective layer was a transparent and uniform film.

透明保護層の表面平坦化処理
上述のように形成した透明保護層に対し、#800程度の研磨テープを用いて純水を噴霧しながらラッピング研磨を行った。次いで、透明保護層に対し、回転研磨機(Speed Fam社製)を使用してアルミナの微粒子研磨剤を噴霧しながら鏡面研磨(ポリッシング)を行った。
Surface flattening treatment of transparent protective layer The transparent protective layer formed as described above was lapped and polished while spraying pure water using a polishing tape of about # 800. Next, mirror polishing (polishing) was performed on the transparent protective layer while spraying an alumina fine particle abrasive using a rotary polishing machine (manufactured by Speed Fam).

透明バリア層の形成
次に、上記の透明保護層上にスパッタリング法により下記の条件で酸化窒化珪素膜(厚み0.3μm)を成膜して透明バリア層(SiON膜;O/(O+N)=0.6))を形成した。
(酸化珪素膜の成膜条件)
・Si34ターゲット : 3N(密度1.80g/cm3
・酸素ガス導入量 : 3sccm
・アルゴンガス導入量 : 40sccm
・RFパワー : 500W
・基板温度 : 100℃
Formation of Transparent Barrier Layer Next, a silicon oxynitride film (thickness 0.3 μm) is formed on the transparent protective layer by sputtering under the following conditions to form a transparent barrier layer (SiON film; O / (O + N) = 0.6)) was formed.
(Silicon oxide film formation conditions)
Si 3 N 4 target: 3N (density 1.80 g / cm 3 )
・ Oxygen gas introduction amount: 3 sccm
-Argon gas introduction amount: 40 sccm
・ RF power: 500W
-Substrate temperature: 100 ° C

この透明バリア層の表面の尖度をデジタルインストロメント社製SPM:D−3000により測定した結果、3(観察範囲5μm平方)であった。また、透明バリア層の最大表面粗さ(Rmax)をデジタルインストロメント社製SPM:D−3000により測定した結果、7μm(観察範囲5μm平方)であった。   As a result of measuring the kurtosis of the surface of this transparent barrier layer by SPM: D-3000 manufactured by Digital Instruments Inc., it was 3 (observation range: 5 μm square). Moreover, as a result of measuring the maximum surface roughness (Rmax) of a transparent barrier layer by SPM: D-3000 by Digital Instruments, it was 7 micrometers (observation range 5 micrometers square).

次いで、上記の透明バリア層上に、感光レジストを塗布し、所望のパターンを有するフォトマスクを使用して露光、現像した後に、CF4ガスあるいはSF6ガス及び酸素の混合ガスによる反応性エッチングにより、該レジスト形成されていない部分の透明バリア膜を反応性エッチングする。後に該レジストパターンを除去することで、所望のピンホールを有するバリア膜を形成した。 Next, a photosensitive resist is applied onto the transparent barrier layer, exposed and developed using a photomask having a desired pattern, and then subjected to reactive etching using CF 4 gas or a mixed gas of SF 6 gas and oxygen. Then, the portion of the transparent barrier film where the resist is not formed is reactively etched. The resist pattern was removed later to form a barrier film having a desired pinhole.

透明電極層の形成
次いで、上記の透明バリア層上にイオンプレーティング法により膜厚150nmの酸化インジウムスズ(ITO)電極膜を形成し、このITO電極膜上に感光性レジストを塗布し、マスク露光、現像、ITO電極膜のエッチングを行って、透明電極層を形成した。
Formation of transparent electrode layer Next, an indium tin oxide (ITO) electrode film having a film thickness of 150 nm is formed on the transparent barrier layer by the ion plating method, a photosensitive resist is applied on the ITO electrode film, and mask exposure is performed. Then, development and etching of the ITO electrode film were performed to form a transparent electrode layer.

補助電極の形成
次に、上記の透明電極層を覆うように透明バリア層上の全面にスパッタリング法によりクロム薄膜(厚み0.2μm)を形成し、このクロム薄膜上に感光性レジストを塗布し、マスク露光、現像、クロム薄膜のエッチングを行って、補助電極を形成した。この補助電極は、透明基材上から色変換蛍光体層上に乗り上げるように透明電極層上に形成されたストライプ状のパターンであった。
Formation of auxiliary electrode Next, a chromium thin film (thickness 0.2 μm) is formed by sputtering on the entire surface of the transparent barrier layer so as to cover the transparent electrode layer, and a photosensitive resist is applied on the chromium thin film, Masking exposure, development, and etching of the chromium thin film were performed to form auxiliary electrodes. The auxiliary electrode was a striped pattern formed on the transparent electrode layer so as to run on the color conversion phosphor layer from the transparent substrate.

絶縁層と隔壁部の形成
平均分子量が約100000であるノルボルネン系樹脂(JSR社製ARTON)をトルエンで希釈した透明保護層用塗布液を使用し、スピンコート法により透明電極層を覆うように透明バリア層上に塗布した後、ベーク(100℃、30分間)を行って絶縁膜(厚み1μm)を形成した。次に、この絶縁膜上に感光性レジストを塗布し、マスク露光、現像、絶縁膜のエッチングを行って絶縁層を形成した。この絶縁層は、透明電極層と直角に交差するストライプ状(幅20μm)のパターンであり、ブラックマトリクスの遮光部上に位置するものとした。
Transparent coating is applied to cover the transparent electrode layer by spin coating using a coating solution for transparent protective layer in which norbornene-based resin (ARTON manufactured by JSR) having an average molecular weight of about 100,000 is formed between the insulating layer and the partition wall is diluted with toluene. After coating on the barrier layer, baking (100 ° C., 30 minutes) was performed to form an insulating film (thickness 1 μm). Next, a photosensitive resist was applied on the insulating film, mask exposure, development, and etching of the insulating film were performed to form an insulating layer. This insulating layer is a stripe-like pattern (width 20 μm) that intersects the transparent electrode layer at a right angle, and is located on the light shielding portion of the black matrix.

次に、隔壁部用塗料(日本ゼオン社製フォトレジスト ZPN1100)をスピンコート法により絶縁層を覆うように全面に塗布し、プリベーク(70℃、30分間)を行った。その後、所定の隔壁部用フォトマスクを用いて露光し、現像液(日本ゼオン社製ZTMA−100)にて現像を行い、次いで、ポストベーク(100℃、30分間)を行った。これにより、絶縁層上に隔壁部を形成した。この隔壁部は、高さ10μm、下部(絶縁層側)の幅15μm、上部の幅26μmである形状を有するものであった。   Next, a partition wall coating (photoresist ZPN1100 manufactured by Nippon Zeon Co., Ltd.) was applied over the entire surface by spin coating so as to cover the insulating layer, and prebaked (70 ° C., 30 minutes). Then, it exposed using the photomask for predetermined partition parts, developed with the developing solution (ZTMA-100 by Nippon Zeon Co., Ltd.), and then post-baked (100 degreeC, 30 minutes). Thereby, the partition part was formed on the insulating layer. The partition wall had a shape with a height of 10 μm, a lower portion (insulating layer side) width of 15 μm, and an upper portion width of 26 μm.

青色有機EL素子層の形成
次いで、上記の隔壁部をマスクとして、真空蒸着法により正孔注入層、発光層、電子注入層からなる青色有機EL素子層を形成した。すなわち、まず、4,4′,4″−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミンを、画像表示領域に相当する開口部を備えたフォトマスクを介して200nm厚まで蒸着して成膜し、その後、4,4′−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルを20nm厚まで蒸着して成膜することによって、隔壁部がマスクパターンとなり、各隔壁部間のみを正孔注入層材料が通過して透明電極層上に正孔注入層が形成された。同様にして、4,4′−ビス(2,2−ジフェニルビニル)ビフェニルを50nmまで蒸着して成膜することにより発光層とした。その後、トリス(8−キノリノール)アルミニウムを20nm厚まで蒸着して成膜することにより電子注入層とした。このようにして形成された青色有機EL素子層は、幅280μmの帯状パターンとして各隔壁部間に存在するものであり、隔壁部の上部表面にも同様の層構成でダミーの青色有機EL素子層が形成された。
Formation of Blue Organic EL Element Layer Next, a blue organic EL element layer composed of a hole injection layer, a light emitting layer, and an electron injection layer was formed by vacuum vapor deposition using the partition wall as a mask. That is, first, 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine is 200 nm through a photomask having an opening corresponding to the image display region. A film is formed by vapor deposition to a thickness, and then a partition wall is formed into a mask pattern by vapor deposition of 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl to a thickness of 20 nm. As a result, the hole injection layer material was passed only between the partition walls to form a hole injection layer on the transparent electrode layer, and 4,4′-bis (2,2-diphenylvinyl) biphenyl was formed in the same manner. A light emitting layer was formed by vapor deposition up to 50 nm, and then an electron injection layer was formed by vapor deposition of tris (8-quinolinol) aluminum to a thickness of 20 nm. The formed blue organic EL element layer is present between the partition walls as a band-shaped pattern having a width of 280 μm, and a dummy blue organic EL element layer is formed on the upper surface of the partition wall with the same layer structure. .

背面電極層の形成
次に、画像表示領域よりも広い所定の開口部を備えたフォトマスクを介して上記の隔壁部が形成されている領域に真空蒸着法によりマグネシウムと銀を同時に蒸着(マグネシウムの蒸着速度=1.3〜1.4nm/秒、銀の蒸着速度=0.1nm/秒)して成膜した。
これにより、隔壁部がマスクとなって、マグネシウム/銀混合物からなる背面電極層(厚み200nm)が青色有機EL素子層上に形成された。この背面電極層は、幅280μmの帯状パターンとして青色有機EL素子層上に存在するものであり、隔壁部の上部表面にもダミーの背面電極層が形成された。
Formation of Back Electrode Layer Next, magnesium and silver are simultaneously deposited by vacuum deposition (magnesium of magnesium) on the region where the partition wall is formed through a photomask having a predetermined opening wider than the image display region. (Vapor deposition rate = 1.3 to 1.4 nm / second, Silver deposition rate = 0.1 nm / second).
Thereby, the partition part was used as a mask, and a back electrode layer (thickness 200 nm) made of a magnesium / silver mixture was formed on the blue organic EL element layer. This back electrode layer exists on the blue organic EL element layer as a band-like pattern having a width of 280 μm, and a dummy back electrode layer was also formed on the upper surface of the partition wall.

以上により、有機EL表示装置を得た。この有機EL表示装置の透明電極層と背面電極層に直流8.5Vの電圧を10mA/cm2の一定電流密度で印加して連続駆動させることにより、透明電極層と背面電極層とが交差する所望の部位の青色有機EL素子層を発光させた。そして、カラーフィルター層で色補正された後、透明基材の反対面側で観測される各色の発光について、ダークエリアによる不良発生率を測定した結果、0.5%であり、高品質の三原色画像表示が可能なものであった。 Thus, an organic EL display device was obtained. The transparent electrode layer and the back electrode layer intersect each other by applying a voltage of DC 8.5 V to the transparent electrode layer and the back electrode layer of the organic EL display device at a constant current density of 10 mA / cm 2 and driving them continuously. The blue organic EL element layer at a desired site was caused to emit light. After the color correction with the color filter layer, the defect occurrence rate due to the dark area was measured for the emission of each color observed on the opposite side of the transparent base material. As a result, it was 0.5%, and the high-quality three primary colors Image display was possible.

下記以外は、実施例1と同様に行った。
つまり、透明バリア層の形成の前に、透明保護層上に、感光レジストを塗布し、所望のパターンを有するフォトマスクを使用して露光、現像し所望のレジストパターンを形成する。次いで、実施例1と同様に透明バリア層の形成を行う。
そして、透明バリア層の形成の後に、所望の形状でパターニングされたレジストを除去することで、レジスト上のバリア層ごと除去し、所望のピンホールを有するバリア膜を形成した。以後はまた、実施例1と同様に行った。
The same operation as in Example 1 was performed except the following.
That is, before forming the transparent barrier layer , a photosensitive resist is applied on the transparent protective layer, and is exposed and developed using a photomask having a desired pattern to form a desired resist pattern. Next, a transparent barrier layer is formed in the same manner as in Example 1.
Then, after the formation of the transparent barrier layer, the resist patterned in a desired shape is removed, thereby removing the entire barrier layer on the resist to form a barrier film having a desired pinhole. Thereafter, the same procedure as in Example 1 was performed.

カラーフィルター層中BM位置に相当する、透明バリア層の位置のみにピンホールを存在させるようにした以外は、実施例1と同様に行った。   The same operation as in Example 1 was conducted except that pinholes were present only at the position of the transparent barrier layer corresponding to the BM position in the color filter layer.

カラーフィルター層の形成の後、透明保護層の形成の前に、色変換蛍光体層の形成を下記のように行った以外は、実施例1と同様に行った。
つまり、青色変換ダミー層用塗布液(富士ハントエレクトロニクステクノロジー社製カラーモザイクCB−7001)をスピンコート法により着色層上に塗布し、プリベーク(80℃、30分間)を行った。次いで、フォトリソグラフィー法によりパターニングを行い、ポストベーク(100℃、30分間)を行った。これにより、青色着色層上に帯状(幅90μm)の青色変換ダミー層(厚み10μm)を形成した。
After the formation of the color filter layer and before the formation of the transparent protective layer , the same procedure as in Example 1 was performed, except that the color conversion phosphor layer was formed as follows.
That is, a blue conversion dummy layer coating solution (Color Mosaic CB-7001 manufactured by Fuji Hunt Electronics Technology Co., Ltd.) was applied onto the colored layer by spin coating, and prebaked (80 ° C., 30 minutes). Next, patterning was performed by photolithography, and post-baking (100 ° C., 30 minutes) was performed. As a result, a band-shaped (width 90 μm) blue conversion dummy layer (thickness 10 μm) was formed on the blue colored layer.

次いで、緑色変換蛍光体(アルドリッチ社製クマリン6)を分散させたアルカリ可溶性ネガ型レジストを緑色変換蛍光体層用塗布液とし、これをスピンコート法により着色層上に塗布し、プリベーク(80℃、30分間)を行った。次いで、フォトリソグラフィー法によりパターニングを行い、ポストベーク(100℃、30分間)を行った。これにより、緑色着色層上に帯状(幅90μm)の緑色変換蛍光体層(厚み10μm)を形成した。   Next, an alkali-soluble negative resist in which a green conversion phosphor (Aldrich Coumarin 6) is dispersed is used as a green conversion phosphor layer coating solution, which is applied onto the colored layer by a spin coating method and pre-baked (80 ° C. , 30 minutes). Next, patterning was performed by photolithography, and post-baking (100 ° C., 30 minutes) was performed. As a result, a band-like (90 μm wide) green conversion phosphor layer (thickness 10 μm) was formed on the green colored layer.

さらに、赤色変換蛍光体(アルドリッチ社製ローダミン6G)を分散させたアルカリ可溶性ネガ型レジストを赤色変換蛍光体層用塗布液とし、これをスピンコート法により着色層上に塗布し、プリベーク(80℃、30分間)を行った。次いで、フォトリソグラフィー法によりパターニングを行い、ポストベーク(100℃、30分間)を行った。これにより、赤色着色層上に帯状(幅90μm)の赤色変換蛍光体層(厚み10μm)を形成した。   Further, an alkali-soluble negative resist in which a red conversion phosphor (Rhodamine 6G manufactured by Aldrich) is dispersed is used as a red conversion phosphor layer coating solution, which is applied onto the colored layer by a spin coating method and prebaked (80 ° C. , 30 minutes). Next, patterning was performed by photolithography, and post-baking (100 ° C., 30 minutes) was performed. Thereby, a strip-like (width: 90 μm) red-converted phosphor layer (thickness: 10 μm) was formed on the red colored layer.

実施例2〜4によるといずれも、実施例1と同様に、有機EL素子の劣化が押さえられ、発光状態がよくて、得られた有機EL用カラー化基板は高品質で、有機EL表示装置は高品質の画像表示が可能であった。   In each of Examples 2 to 4, as in Example 1, the deterioration of the organic EL element was suppressed, the light emission state was good, and the obtained colored substrate for organic EL was of high quality, and the organic EL display device Can display high-quality images.

カラーフィルター層を設けた有機EL表示装置の正面断面図を示す。1 is a front sectional view of an organic EL display device provided with a color filter layer. バリア膜の平面図で、○型の破線状ピンホールを存在させたものを示す。The top view of a barrier film shows the presence of a ◯ -shaped broken pinhole. バリア膜の平面図で、ライン状ピンホールを存在させたものを示す。A plan view of the barrier film shows a line pinhole. バリア膜の平面図で、○型の破線状ピンホールとライン状ピンホールとを組み合わせて存在させたものを示す。A plan view of the barrier film shows a combination of a ◯ -shaped broken pinhole and a line pinhole.

符号の説明Explanation of symbols

1 透明基板
2 透明保護層
3 透明バリア層
4 透明電極層
5 有機EL層
6 背面電極層
7 ピンホール
8 カラーフィルター層
9 外周部
10 ブラックマトリクス
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Transparent protective layer 3 Transparent barrier layer 4 Transparent electrode layer 5 Organic EL layer 6 Back electrode layer 7 Pinhole 8 Color filter layer 9 Outer peripheral part 10 Black matrix

Claims (6)

透明基板上に順次少なくとも、カラーフィルター層、透明保護層、透明バリア層及び透明電極層を設けた有機EL用カラー化基板において、前記透明バリア層の表示画面部の非表示領域にピンホールを存在させたことを特徴とする有機EL用カラー化基板。 In a colored substrate for organic EL, in which at least a color filter layer, a transparent protective layer, a transparent barrier layer, and a transparent electrode layer are sequentially provided on the transparent substrate, a pinhole exists in the non-display area of the display screen portion of the transparent barrier layer A colored substrate for organic EL, characterized by having been made. 透明基板上に順次少なくとも、カラーフィルター層、色変換蛍光体層、透明保護層、透明バリア層及び透明電極層を設けた有機EL用カラー化基板において、前記透明バリア層の表示画面部の非表示領域にピンホールを存在させたことを特徴とする有機EL用カラー化基板。 Non-display of the display screen portion of the transparent barrier layer in a colored substrate for organic EL in which at least a color filter layer, a color conversion phosphor layer, a transparent protective layer, a transparent barrier layer, and a transparent electrode layer are sequentially provided on the transparent substrate. A colored substrate for organic EL , wherein a pinhole is present in the region . 前記非表示領域がカラーフィルター層のブラックマトリクス部の位置に相当することを特徴とする請求項1又は2に記載の有機EL用カラー化基板。 The organic EL color of substrate according to claim 1 or 2, wherein the non-display area corresponding to the position of the black matrix of the color filter layer. 前記ピンホールを前記表示画面部全体の0.001%以上10%未満の面積になるように存在させたことを特徴とする請求項1から3のいずれか1項に記載の有機EL用カラー化基板。 The organic EL colorization according to any one of claims 1 to 3, wherein the pinhole is present so as to have an area of 0.001% or more and less than 10% of the entire display screen portion . substrate. 前記ピンホールを前記表示画面部の非表示領域の1%以上90%未満の面積になるように存在させたことを特徴とする請求項1から4のいずれか1項に記載の有機EL用カラー化基板。 Color organic EL according to claim 1, any one of 4, characterized in that the pinhole was present so that hidden area of less than 1% to 90% of the area of the display screen unit Substrate. 前記有機EL用カラー化基板の透明電極層側にさらに有機EL素子層及び背面電極層を設けた請求項1から5のいずれか1項に記載の有機EL表示装置。 The organic EL display device according to claim 1, wherein an organic EL element layer and a back electrode layer are further provided on the transparent electrode layer side of the colored substrate for organic EL.
JP2003305744A 2003-08-29 2003-08-29 Colored substrate for organic EL and organic EL display device Expired - Fee Related JP4368167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003305744A JP4368167B2 (en) 2003-08-29 2003-08-29 Colored substrate for organic EL and organic EL display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305744A JP4368167B2 (en) 2003-08-29 2003-08-29 Colored substrate for organic EL and organic EL display device

Publications (2)

Publication Number Publication Date
JP2005078869A JP2005078869A (en) 2005-03-24
JP4368167B2 true JP4368167B2 (en) 2009-11-18

Family

ID=34409011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305744A Expired - Fee Related JP4368167B2 (en) 2003-08-29 2003-08-29 Colored substrate for organic EL and organic EL display device

Country Status (1)

Country Link
JP (1) JP4368167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466545B1 (en) 2007-02-21 2016-10-11 Amkor Technology, Inc. Semiconductor package in package

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578222B2 (en) * 2004-12-10 2010-11-10 大日本印刷株式会社 Color filter substrate for organic electroluminescent device
TW200720352A (en) * 2005-08-31 2007-06-01 Zeon Corp Method for producing material for forming protective film for organic electroluminescent device
JP5076994B2 (en) * 2007-03-30 2012-11-21 大日本印刷株式会社 Light-emitting organic EL display panel
JP2008277270A (en) * 2007-03-30 2008-11-13 Dainippon Printing Co Ltd Light-emitting organic el display panel
KR101739384B1 (en) * 2010-12-24 2017-05-25 엘지디스플레이 주식회사 White organic light emitting diode display device and method of fabricating the same
KR102084615B1 (en) 2013-06-14 2020-03-05 삼성디스플레이 주식회사 Display panel and method of manufacturing the same
KR102275519B1 (en) 2013-12-16 2021-07-12 삼성디스플레이 주식회사 Display substrate and method of manufacturing the same
KR102150033B1 (en) 2014-01-14 2020-10-15 삼성디스플레이 주식회사 Array substrate, display panel having the same and method of manufacturing the same
JP6602585B2 (en) * 2014-08-08 2019-11-06 株式会社半導体エネルギー研究所 Display device and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466545B1 (en) 2007-02-21 2016-10-11 Amkor Technology, Inc. Semiconductor package in package
US9768124B2 (en) 2007-02-21 2017-09-19 Amkor Technology, Inc. Semiconductor package in package

Also Published As

Publication number Publication date
JP2005078869A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
KR100529450B1 (en) Organic electroluminescent display device
TWI312081B (en)
US6967435B2 (en) Active matrix organic electroluminescent display and fabricating method thereof
JPH11329742A (en) Organic electroluminescent(el) element and light emitting device
JP2004286836A (en) Electrophoresis display device and method manufacturing the same
JP2007188708A (en) Substrate for display element
JP4368167B2 (en) Colored substrate for organic EL and organic EL display device
JP6439255B2 (en) Organic electroluminescence display device and manufacturing method thereof
JPH11329726A (en) Organic element
JP2007287697A (en) Organic electroluminescent element and light emitting device
JP2010097192A (en) Color filter for organic electroluminescence display device and organic electroluminescence display device
US7271536B2 (en) Organic EL panel
JP2004186001A (en) Organic el display and substrate thereof
JP2004227854A (en) Electroluminescent display device
JP2007033963A (en) Color filter
JP2000012217A (en) Manufacture of color conversion filter for electroluminescent display
JP2010191466A (en) Color filter substrate for organic electroluminescent element
JP6236793B2 (en) Color filter forming substrate, method for manufacturing color filter forming substrate, and organic EL display device
JP4549664B2 (en) Color filter substrate manufacturing method and display manufacturing method
JP2002151262A (en) Color conversion filter and manufacturing method
JP2006019179A (en) Organic el element
JP2007109575A (en) Substrate for electroluminescent element
JP2007220431A (en) Multi-color luminescent device and its manufacturing method
JP2004191817A (en) Color filter
JP2005331795A (en) Color filter and color display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090825

R150 Certificate of patent or registration of utility model

Ref document number: 4368167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees