JP4366386B2 - 露光装置およびデバイス製造方法 - Google Patents

露光装置およびデバイス製造方法 Download PDF

Info

Publication number
JP4366386B2
JP4366386B2 JP2006243390A JP2006243390A JP4366386B2 JP 4366386 B2 JP4366386 B2 JP 4366386B2 JP 2006243390 A JP2006243390 A JP 2006243390A JP 2006243390 A JP2006243390 A JP 2006243390A JP 4366386 B2 JP4366386 B2 JP 4366386B2
Authority
JP
Japan
Prior art keywords
exposure
exposure period
period
calculation unit
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006243390A
Other languages
English (en)
Other versions
JP2008066540A (ja
Inventor
好則 内田
芳幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006243390A priority Critical patent/JP4366386B2/ja
Priority to US11/849,698 priority patent/US7804581B2/en
Publication of JP2008066540A publication Critical patent/JP2008066540A/ja
Application granted granted Critical
Publication of JP4366386B2 publication Critical patent/JP4366386B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/52Details
    • G03B27/68Introducing or correcting distortion, e.g. in connection with oblique projection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、露光装置およびデバイス製造方法に関するものである。
近年のICやLSI等の半導体集積回路のパターンが微細化するのに伴い、投影露光装置には、解像度、重ね合わせ精度、スループットの更なる向上が求められている。露光光の結像特性の観点から投影光学系のレンズが露光光を吸収することによりそのレンズの熱変形屈折率変化生じ、投影光学系の光学特性誤差である収差が発生する問題が従来から存在する。
投影光学系のレンズは、基板のショット領域ごとに、投影倍率が変化して、収差が発生することがある。これに対して、特許文献1に示された技術では、ショット領域ごとに、投影倍率データから投影倍率の変化量に対応するレンズ駆動量を算出し、投影光学系のレンズを光軸方向に駆動する。これにより、投影倍率を調整または補正することができる。
また、投影光学系のレンズは、非露光時においても露光時に吸収した熱の影響で変形して、露光時に収差が発生することがあるこれに対して、次の露光が開始される時に、投影光学系のレンズを光軸方向に駆動すれば、その熱変形による収差を調整または補正することができる
さらに、露光光の結像特性の観点から僅かな気圧の変化によっても収差が発生し、その収差を許容することが難しくなってきている。露光装置が設置されている環境下において、人的要因等により僅かではあるが急激な気圧変化が起こるため、収差が発生することがある。それに対して、特許文献1に示された技術では、クリーンルームにおけるドアの開閉により0.5hPa/sec前後の気圧変動が発生する場合について示されている。この場合、応答性の良いレーザー干渉計を用いた気圧計により気圧変化を検出し、その気圧変化に応じ、投影光学系のレンズを光軸方向に駆動したり、露光光源から光の波長を変えたりする。これにより、気圧変化による収差を調整または補正することができる。
一般に、気圧変化によって発生する収差は、投影倍率とフォーカスとに関して非常に大きく、それらを調整または低減する必要性が高い。一方、歪曲、球面、コマ、非点、像面湾曲等の収差は比較的小さいため露光特性上問題にならないことが多い。
また、スルーザレンズ(TTL)方式アライメント計測系を用いてレチクルとウエハとの間のアライメントのための計測(以下、アライメント計測と呼ぶ)を行う際、アライメント計測が開始される直前に投影光学系中のレンズを光軸方向に駆動することにより、アライメント計測中に発生する収差を低減することができる
特開平10−199782号公報 特開2001−085292号公報
特許文献1及び特許文献2に示された技術においては、ショット露光の間、またはショット露光中、または露光が開始される時、またはアライメント計測が開始される時に、収差の補正が行われる。
しかし、特許文献1及び特許文献2には、ウエハ交換期間、レチクル交換期間、または定期メンテナンス期間等の露光終了から次の露光が開始されるまでの期間(非露光期間)に対しては、収差を補正する方法が示されていない。例えば、非露光期間が長時間にわたる場合、露光が開始される直前の露光期間のデータと非露光期間のデータとを基に、収差を補正するための投影光学系のレンズ駆動量が算出されることがある。そして、そのように算出されたレンズ駆動量の情報に基づいて、投影光学系のレンズが駆動される傾向にあるため、露光期間における投影光学系のレンズ駆動量が大きくなりやすい。これにより、投影光学系のレンズ駆動後の整定時間が長くなりやすいので、結果的に露光装置による処理のスループットを低下させてしまうことがある。
また、ウエハ交換期間、レチクル交換期間、または定期メンテナンス期間等の非露光期間において、大きな気圧変化が発生することがある。この場合でも、露光が開始される直前の気圧データに基づいて、収差を補正するための投影光学系のレンズ駆動量が算出されることがある。そして、そのように算出されたレンズ駆動量の情報に基づいて、投影光学系のレンズが駆動される傾向にあるため、露光期間における投影光学系のレンズ駆動量が大きくなりやすい。これにより、投影光学系のレンズ駆動後の整定時間が長くなりやすいので、結果的に露光装置による処理のスループットを低下させてしまうことがある。
一方、露光装置による処理のスループットの低下を抑制するために収差を補正しない場合、露光の精度が低下するおそれがある。
さらに、アライメント計測を行う期間(アライメント計測期間)において、アライメント計測が開始される時だけに収差を補正することがある。しかし、アライメント計測が開始された後でも、重ね合わせ精度向上のためにアライメント計測期間が長くなる場合や、アライメント計測中に大きな気圧変化が発生した場合、収差が発生することがある。この場合、収差の発生によりアライメント計測誤差が発生することがある。この場合も、露光の精度が低下するおそれがある。
これらの点に鑑み、本発明の例示的目的は、露光装置により実行される、収差調整を含む処理のスループットを改善することにある。
本発明の第1側面に係る露光装置は、露光期間に基板を露光する露光装置であって、原版のパターンを前記基板に投影するための投影光学系であって、前記投影光学系の収差を調整するために駆動される少なくとも1つの光学素子を含む投影光学系と、非露光期間における前記露光期間から前記非露光期間に変わる時刻からの経過時間に応じた前記投影光学系における前記露光の熱影響による収差の変化の特性である熱影響の時間的特性と、前記露光期間から前記非露光期間に変わる時刻示す露光期間データとに基づいて、補償データを演算する第1の演算部と、前記第1の演算部により演算された前記補償データと、前記露光期間データを基に前記露光期間から前記非露光期間に変わったことに応じて徐々に短くなる間隔で生成される複数のタイミング信号のそれぞれとに基づいて、前記少なくとも1つの光学素子の複数回の駆動量のそれぞれを演算する第2の演算部と、前記非露光期間において、前記第2の演算部により演算された前記複数回の駆動量のそれぞれに基づいて、前記少なくとも1つの光学素子を複数回駆動する駆動部とを備えたことを特徴とする。
本発明の第2側面に係るデバイスの製造方法は、本発明の第1側面に係る露光装置を用いて基板を露光する露光工程と、前記露光工程において露光された基板を現像する現像工程を備えたことを特徴とする。
本発明によれば、例えば、露光装置により実行される、収差調整を含む処理のスループットを改善できる。
本発明の好適な第1実施形態に係る露光装置について、図1〜図4を参照して説明する。
まず、露光装置の構成を、図1を用いて説明する。図1は、本発明の第1実施形態に係る露光装置の構成図である。
露光装置1は、ステージ駆動部150、主制御部50、収差補正演算部10、レンズ駆動制御部60、レーザー駆動制御部70、露光光源80、照明光学系90及び装置本体100を備える。
露光光源80は、照明光学系90の付近において、照明光学系90に接続されている。
照明光学系90は、装置本体100の上方に設置されている。
装置本体100は、照明光学系90から照射された光の光軸PAを中心に設置されている。装置本体100は、レチクルステージ142、レンズ群(102、104、106、108、110)、ウエハステージ130、レンズ支持部材105及びレンズ駆動機構(レンズ駆動部)101を含む。レチクルステージ142、レンズ群(102、104、106、108、110)、ウエハステージ130は、光軸PA上に並んでいる。レチクルステージ142には、光軸PAを中心にして、レチクル(原版)LTが設置される。ウエハステージ130には、光軸PAを中心にして、ウエハ(基板)WFが配置される。また、レンズ支持部材105は、レンズ群(102、104、106、108、110)の各レンズを端部から挟むように支持している。レンズ駆動機構101は、レンズ群(102、104、106、108、110)のいずれかのレンズ(例えば、レンズ104)を、光軸PAに沿って駆動可能に挟持している。
露光光源80から出射された露光光は、照明光学系90により、光軸PAへ導かれる。光軸PAに導かれた光は、レチクルステージ142に設置されたレチクルLTに照射される。レチクルLTを透過した光は、投影光学系におけるレンズ群(102、104、106、108、110)をさらに透過して、ウエハステージ130に設置されたウエハWFに到達する。これにより、レチクルLT上に描かれた微細なパターンはウエハWF上の各チップ(各ショット領域)に焼き付けられる。
ステージ駆動部150は、レチクルステージ142及びウエハステージ130に電気的に接続されている。レンズ駆動制御部60は、レンズ駆動機構101に電気的に接続されている。主制御部50は、収差補正演算部10及びレーザー駆動制御部70に電気的に接続されている。収差補正演算部10は、主制御部50、ステージ駆動部150、レンズ駆動制御部60及びレーザー駆動制御部70に電気的に接続されている。レーザー駆動制御部70は、主制御部50、収差補正演算部10及び露光光源80に電気的に接続されている。
レーザー駆動制御部70は、レンズ駆動量の情報を収差補正演算部10から受け取る。レーザー駆動制御部70は、レンズ駆動量の情報に基づき、後述の駆動機構88(図2参照)を駆動させて露光光源80のレーザー光の波長を変える。
レンズ駆動制御部60は、レンズ駆動量の情報を収差補正演算部10から受け取る。レンズ駆動制御部60は、レンズ駆動量の情報に基づき、レンズ駆動機構101を駆動させて、レンズ104を光軸PA方向に変位させる。
露光装置1全体は、主制御部50により制御される。また、主制御部50は、露光開始の情報(例えば、レーザー光発生の命令)をレーザー駆動制御部70から受け取る。あるいは、主制御部50は、露光開始の情報(例えば、ステージ駆動開始の命令)をステージ駆動部150から受け取る。これにより、主制御部50は、露光期間および非露光期間を露光期間データとして生成するとともに管理している。主制御部50は、露光期間データを、収差補正演算部10に供給する。ここで、非露光期間は、例えばウエハ交換期間(基板交換期間)、レチクル交換期間(原版交換期間)、または定期メンテナンス期間等である。
ステージ駆動部150は、レンズ駆動量の情報を収差補正演算部10から受け取る。ステージ駆動部150は、ウエハステージ130とレチクルステージ142とを、ステップアンドリピート駆動、またはステップアンドスキャン駆動する。
次に、露光光源80及び照明光学系90の詳細な構成及び動作を、図2を用いて説明する。図2は、露光光源と照明光学系との構成図である。露光光源80にはKrFやArFのレーザー光源が用いられることが多く、露光光源80および照明光学系90は、簡略化すると図2に示すような構成で表される。
露光光源80は、レーザー共振器82、透過ミラー84、波長選択素子86及び駆動機構88を含む。照明光学系90は、コンデンサレンズ92及びミラー94を含む。レーザー共振器82、透過ミラー84、波長選択素子86、駆動機構88、コンデンサレンズ92及びミラー94は、光軸PB上に並んでいる。光軸PBは、ミラー94の反射面において、光軸PAと垂直につながっている。
波長選択素子86は、プリズム、グレーティング、エタロン等を使用することにより波長帯域の狭帯域化を可能とする。レーザー駆動制御部70により制御された駆動機構88は、波長選択素子86の光軸PBに対する角度を変えるように波長選択素子86を駆動することにより、レーザー光の波長を変えることができる。駆動機構88はステップモーターや圧電素子等によって構成されてもよい。
露光光源80から出射されたレーザー光は、光軸PB上に沿って進み、照明光学系90のコンデンサレンズ92を透過する。そして、ミラー94によりレチクルを照射するよう光軸PAへと導かれる。
次に、収差補正演算部10の構成および動作を、図3および図4を参照して説明する。
図3は、収差補正演算部の構成図である。
収差補正演算部10は、判断部20、モデル演算部30及び補正演算部36を備える。
判断部20は、主制御部50及び補正演算部36に接続されている。モデル演算部30は、主制御部50及び補正演算部36に接続されている。補正演算部36は、判断部20、モデル演算部30、レンズ駆動制御部60、レーザー駆動制御部70及びステージ駆動部150に接続されている。
モデル演算部30は、主制御部50により供給された露光期間データと、投影光学系のレンズ群(102、104、106、108、110)の露光による熱影響の特性とに基づき、露光期間データを補償する。一般に、投影光学系レンズの露光による熱影響は、露光期間データに対し、n次の遅れ特性で表され、最も簡易的に1次遅れで近似される。この遅れ特性は、例えば、露光と非露光とを時間的に管理して得られる収差特性を実測して求められたものである。すなわち、得られた遅れ特性(熱影響の特性)の情報は、図示しないメモリに予め記憶されている。モデル演算部30は、露光期間データを受け取った際に、メモリを参照して、遅れ特性(熱影響の特性)の情報を取得する。モデル演算部30は、遅れ特性(熱影響の特性)と露光期間データとに基づいて、露光期間データを補償して出力する。
判断部20は、ウエハ交換中、またはレチクル交換中、または定期メンテナンス中等の情報(露光期間データ)を主制御部50から受け取る。判断部20は、露光期間データに基づき、レンズ駆動すべきか否かの判断を行う。判断部20は、その判断結果に基づき、レンズ駆動実行タイミング信号(図4(b)参照)を生成する。
モデル演算部30は、ウエハ交換中、またはレチクル交換中、または定期メンテナンス中等の情報(露光期間データ)を主制御部50から受け取る。モデル演算部30は、露光期間データを補償して、露光期間補償データ(図4(c)参照)を演算する。
補正演算部36は、レンズ駆動実行タイミング信号を判断部20から受け取る。補正演算部36は、露光期間補償データをモデル演算部30から受け取る。補正演算部36は、レンズ駆動実行タイミング信号と、露光期間補償データとに基づき、収差の補正量(収差補正量)に対応するレンズ駆動量を算出する(図4(d)参照)。補正演算部36は、レンズ駆動量の情報を、レンズ駆動制御部60、レーザー駆動制御部70及びステージ駆動部150へ出力する。
レンズ駆動実行タイミング信号(図4(b)参照)は、露光終了後から次の露光が開始されるまでの間、例えばウエハ交換やレチクル交換(数十秒)、定期メンテナンス(数十分)等の場合に、複数回出力されることが好ましい。
図3に示す収差補正演算部10は、図示しないタイマをさらに含んでおり、図4に示す制御に応じて適宜タイマを参照する。また、収差補正演算部10は、図示しないメモリをさらに含んでおり、図4に示した制御を記憶している。すなわち、収差補正演算部10のメモリには、例えば、露光期間から非露光期間に変わったことに応じて、非露光期間の(全体の)長さを気にせずに、予めスケジュールされた間隔でレンズ駆動が行われるような制御が記憶されている。すなわち、収差補正演算部10は、非露光期間の経過時間に基づいて、収差補正量を演算する。
図4は、収差補正演算部の動作を表したタイミングチャートである。図4(a)は、露光装置1の状態(露光期間データ)を示している。図4(b)は、判断部20から出力されるレンズ駆動実行タイミング信号を表している。図4(c)は、モデル演算部30からの出力される情報、すなわち、露光期間補償データを表している。図4(d)は補正演算部36からの出力であるレンズ駆動量の情報を表す。
図4(a)では、露光装置1の状態の一例として、露光終了時付近の露光期間、ウエハ交換期間(ウエハ交換中、すなわち非露光期間)及び次の露光開始時付近の露光期間までが表されている。図4(c)に示されるように、ウエハ交換期間(非露光期間)中、投影光学系のレンズにおける収差は、露光終了直後から露光していたときの熱影響で、時間と共に変化している。それに対して、補正演算部36は、ウエハ交換期間(図4(a)参照)において、判断部20から出力されるレンズ駆動実行タイミング(図4(b)参照)で、モデル演算部30から出力された露光期間補償データ(図4(c)参照)を基に、レンズ駆動量(図4(d)参照)を算出している。
ここで、露光終了直後から次の露光が開始される直前まで(非露光期間)に変化した収差が大きい場合、変化した収差に対する補正をウエハ交換中(非露光期間)において露光期間直前にしか行わないとする。このとき、露光期間直前におけるレンズ駆動量が大きくなってしまうおそれがある。露光期間におけるレンズ駆動量が大きくなるとそれに伴うレンズの整定時間が長くなり、スループットを低下させる原因となることがある。
それに対して、本発明では、図4(d)のようにレンズ駆動量を算出し、ウエハ交換期間(非露光期間)の露光期間直前より前のタイミングであっても、レンズ駆動を行う。すなわち、レンズ駆動制御部60は、非露光期間が開始したことを示す情報(露光期間データ)に応じて、レンズ駆動機構101を制御する。
しかも、レンズ駆動制御部60は、1回のレンズ駆動でなく、複数回のレンズ駆動を行う。すなわち、レンズ駆動制御部60は、予め定められたスケジュール(例えば、図4に示すように、非露光期間の開始から所定時間tごと)に基づいて、複数回のレンズ駆動を行う。
これにより、1回あたりのレンズ駆動量を抑えることが可能となる。
投影光学系のレンズ群は、その光学設計により、光軸方向に変位させることによって、収差を変化させることができる。通常、1つのレンズをレンズ駆動機構により光軸方向に変位させることにより、1つの収差を大きく変化させるように設計することが多い。例えば、図1のレンズ駆動機構101によりレンズ104を光軸方向に変位させることにより投影倍率を変化させるように光学設計を行う。但し、投影倍率が変化する際に、僅かではあるが、その他の収差、例えば歪曲、球面、コマ、非点、像面湾曲等が変化する場合がある。これらが精度上問題なければよいが、問題となる場合は、他のレンズ(例えば、レンズ102,106,108)をレンズ駆動機構により光軸方向に変位させ、収差を低減する必要がある。従って、一般的には、n群のレンズを光軸方向に変位させることにより、n個の収差を補正することができるように光学設計を行う。一方、露光光の波長を変えると各収差が変化する。波長変化に対する収差の感度は、大きく変化することがある。この場合、n群のレンズを光軸方向に変位させ、かつ露光光の波長を変えて収差の補正を行うことにより、n+1個の収差を補正することができる。
補正演算部36によって算出されたレンズ駆動量の情報は、レンズ駆動制御部60に出力される。レンズ駆動制御部60は、このレンズ駆動量の情報に従ってレンズ駆動機構101を駆動させ、レンズ104を光軸PA方向に変位させる。
なお、補正演算部36は、収差を補正するための波長変更量をさらに演算しても良い。このとき、補正演算部36によって算出された露光光の波長変更量の情報はレーザー駆動制御部70に入力される。レーザー駆動制御部70は、入力された波長変更量の情報に従って、露光光源80の波長選択素子を駆動するための駆動機構88により露光光の波長を変更する。従って、n群のレンズ駆動と波長変更によってn+1個の収差を補正することができる。
あるいは、補正演算部36は、収差を補正するためのステージ駆動量をさらに演算しても良い。このとき、補正演算部36によって算出されたステージ駆動量の情報はステージ駆動部150に入力される。ステージ駆動部150は、入力されたステージ駆動量の情報に従って、ウエハステージ130、またはレチクルステージ142を駆動する。従って、n群のレンズ駆動とステージ駆動とによってn+1個の収差を補正することができる。
また、補正演算部36は、フォーカスずれを補正するためのステージ駆動量をさらに演算しても良い。このとき、フォーカスずれに対する補正は、ウエハステージ130、またはレチクルステージ142を光軸PA方向に駆動することによっても補正することが可能である。具体的には、ウエハステージ130、またはレチクルステージ142による補正は次のように行われる。上記レンズ駆動や波長駆動によってフォーカスずれが発生する場合にはそのフォーカスずれ補正するためのステージ駆動量を補正演算部36において算出する。算出されたフォーカスずれを補正するためのステージ駆動量は、ステージ駆動部150に出力される。ステージ駆動部150は、入力されたステージ駆動量の情報(補正情報)に従って、ウエハステージ130、またはレチクルステージ142を光軸PA方向に変位させてフォーカスずれを補正する。これによりn+2個の収差を補正することが可能となる。
以上のように、本発明によれば、露光終了後から次の露光が開始されるまでの間(非露光期間)でも、露光期間データからレンズ駆動実行タイミング信号に基づき算出されたレンズ駆動量の情報により、複数回のレンズ駆動が行われる。これにより、露光により投影光学系の収差が発生しても、複数回収差が補正されるので、露光期間におけるレンズ駆動量が大きくなることを低減できる。これにより、レンズ駆動後の整定時間を低減することができるので、スループットの低下を抑制でき、露光の精度を向上できる。
なお、図1においては、レンズ駆動機構は1系統のみ示されているが、複数のレンズ駆動機構を有するよう構成されてもよい。
図1においては、説明の便宜上、レンズ群(102、104、106、108、110)として5枚のレンズが示されている。通常の露光装置においては、20枚〜30枚前後のレンズが装備されている。
レンズ駆動機構101は、空気圧を利用したアクチュエータや、圧電素子等により構成されてもよい。
モデル演算部30が露光期間データを補償するために用いる遅れ特性は、投影光学系レンズの露光光に対する吸収特性とレンズ材質の熱容量等とから熱時定数として計算的に求められたものでもよい。
図3に示す収差補正演算部10の図示しないメモリは、露光期間と非露光期間と次の露光期間とが把握された上で、非露光期間の長さを考慮しつつ、予めスケジュールされたタイミングでレンズ駆動が行われるような制御を記憶していても良い。また、判断部20は、露光期間から非露光期間に変わったことに応じて、だんだん短くなる時間間隔などの異なる時間間隔でレンズ駆動が行われるようなレンズ駆動実行タイミング信号を生成してもよい。レンズ駆動実行タイミング信号は、少なくとも数回のレンズ駆動が行われて露光期間におけるレンズ駆動量が大きくなるのを抑制するような信号であることが望ましい。補正演算部36は、必要であれば、露光光の波長変更量も算出する。この場合、レーザー駆動制御部70は、波長変更量の情報を補正演算部36から受け取る。レーザー駆動制御部70は、波長変更量の情報に基づいて、駆動機構88(図2参照)を駆動させて露光光源80のレーザー光の波長を変える。
補正する収差は、フォーカスずれ、投影倍率ずれ、歪曲、球面、コマ、非点、像面湾曲などの一つまたは複数であってもよい。
非露光期間は、例えばウエハ交換期間、レチクル交換期間、及び定期メンテナンス期間の少なくとも1つを含んでも良い。
次に、本発明の好適な第2実施形態について、図5から図7を参照して説明する。図5は、本発明の第2実施形態に係る露光装置の構成図である。図6は、収差補正演算部の構成図である。図7は収差補正演算部の動作を表したタイミングチャートである。なお、以下では、上記の第1実施形態と異なる部分を中心に説明し、同様の部分については説明を省略する。
露光装置1aは、基本的な構成は第1実施形態と同様であるが、収差補正演算部10の代わりに収差補正演算部10aを備え、気圧検出部120aをさらに備える点で、第1実施形態と異なる。気圧検出部120aは、例えば気圧計を含む。
第1実施形態では、主制御部50が露光期間と非露光期間との情報を基に露光期間データを生成し、収差補正演算部10が露光期間データに基づいて収差補正のためのレンズ駆動量等を算出している。
これに対して、第2実施形態では、気圧検出部120aが気圧を測定するとともに気圧データを生成し、収差補正演算部10aが露光期間データと気圧データと基づいて収差補正のためのレンズ駆動量等を算出する。これにより、レンズ駆動制御部60は、気圧の変化に応じたデータ(気圧データ)に応じて、レンズ駆動機構101を駆動することになる。このため、気圧変化によって収差が発生した場合でも、収差を補正することができる。
ここで、気圧検出部120aは、投影光学系90の付近の気圧を測定する。気圧検出部120aは、装置本体100内の何れかの場所、または露光光源80や照明光学系90の付近、または露光光源80や照明光学系90内部に設置されてもよい。気圧検出部120aの出力信号(気圧データ)は、収差補正演算部10aに入力される。気圧データは、気圧の変化を示すデータである。
次に収差補正演算部10aの構成及び動作について、図6および図7を参照して説明する。図6は、収差補正演算部の構成図である。
収差補正演算部10aは、判断部20の代わりに判断部20aを備え、補正演算部36の代わりに補正演算部36aを備える。収差補正演算部10aは、モデル演算部40a、基準値記憶部44a、補正演算部46a、加算器43a、加算器47a、加算器48a及び加算器49aをさらに備える。
判断部20aは、主制御部50、補正演算部36a及び補正演算部46aに接続されている。補正演算部36aは、判断部20a、モデル演算部30、加算器47a、加算器48a及び加算器49aに接続されている。モデル演算部40aは、気圧検出部120及び加算器43aに接続されている。基準値記憶部44aは、加算器43aに接続されている。補正演算部46aは、判断部20a、加算器43a、加算器47a、加算器48a及び加算器49aに接続されている。加算器43aは、モデル演算部40a、基準値記憶部44a及び補正演算部46aに接続されている。加算器47aは、補正演算部36a、補正演算部46a及びレンズ駆動制御部60に接続されている。加算器48aは、補正演算部36a、補正演算部46a及びレーザー駆動制御部70に接続されている。加算器49aは、補正演算部36a、補正演算部46a及びステージ駆動部150に接続されている。
モデル演算部40aは、気圧検出部120aで測定された気圧データと、投影光学系のレンズ群(102、104、106、108、110)の雰囲気圧力の特性とに基づき、気圧データを補償する。一般に投影光学系レンズの雰囲気圧力は、露光装置内の気圧変化に対し、n次の遅れ特性で表され、最も簡易的に1次遅れで近似される。
例えば、気圧検出部120aが投影光学系の外部に設置されている場合を考える。この場合、この遅れ特性は、予め気圧検出部120aにおける圧力特性とレンズ群の雰囲気圧力特性とが測定されて、1次遅れの時定数として求めてられたものであるすなわち、得られた遅れ特性(圧力影響の特性)の情報は、図示しないメモリに予め記憶されている。モデル演算部40aは、気圧データを受け取った際に、メモリを参照して、遅れ特性(圧力影響の特性)の情報を取得する。モデル演算部40aは、遅れ特性(圧力影響の特性)と気圧データとに基づいて、気圧データを補償して出力する。
モデル演算部40aは、測定された気圧の大きさを示す情報(気圧データ)を気圧検出部120aから受け取る。モデル演算部40aは、気圧データを補償して、気圧補償データ(図7のe参照)を演算する。
加算器43aは、モデル演算部40aから供給された気圧補償データと、基準値記憶部44aから供給された気圧基準値とを比較して、その差を気圧補償変化データとして演算して補正演算部46aに供給する。
補正演算部46aは、レンズ駆動実行タイミング信号を判断部20aから受け取る。補正演算部46aは、レンズ駆動実行タイミング信号(図7(b)参照)と気圧補償変化データ(図7(e)に示す気圧補償データと基準値との比較に基づくデータ)とに基づき、収差の補正量に対応するレンズ駆動量(図7(f)参照)を算出する。
補正演算部36aと補正演算部46aとは、それぞれ、レンズ駆動量の情報を、加算器47a、加算器48a及び加算器49aに供給する。加算器47aは、補正演算部36aから入力されたレンズ駆動量(図7(d)参照)と、補正演算部46aから入力されたレンズ駆動量(図7(f)参照)とを加算して、最終的なレンズ駆動量の情報としてレンズ駆動制御部60へ出力する。加算器48aは、補正演算部36aから入力されたレンズ駆動量と、補正演算部46aから入力されたレンズ駆動量とを加算して、最終的なレンズ駆動量の情報としてレーザー駆動制御部70へ出力する。加算器49aは、補正演算部36aから入力されたレンズ駆動量と、補正演算部46aから入力されたレンズ駆動量とを加算して、最終的なレンズ駆動量の情報としてステージ駆動部150へ出力する。
図7は、収差補正演算部の動作を表したタイミングチャートである。図7(a)〜(d)は、第1実施形態の図4(a)〜(d)と同様であるので、説明を省略する。図7(e)、(f)を中心に説明を行う。図7(e)は、モデル演算部40aから出力される情報、すなわち気圧補償データを表している。図7(f)は、補正演算部46aからの出力であるレンズ駆動量の情報を表している。このレンズ駆動量は、図7(b)の判断部20aから出力されるレンズ駆動実行タイミングで、モデル演算部40aからの出力と基準値記憶部44aとの差を基に、補正演算部46aにより算出が行われたものである。
ここで、露光終了直後から次の露光が開始されるまで(非露光期間)に大きな気圧変化により変化した収差が大きいときに、変化した収差に対する補正をウエハ交換中(非露光期間)における露光期間直前しか行わない場合を考える。この場合、露光期間直前におけるレンズ駆動量が大きくなってしまうおそれがある。そして、露光期間直前におけるレンズ駆動量が大きくなるとそれに伴うレンズの整定時間が長くなり、スループットを低下させる原因となることがある。
それに対して、第2実施形態では、図7(f)のようにレンズ駆動量を算出し、ウエハ交換期間(非露光期間)であっても、レンズ駆動を行う。しかも、1回のレンズ駆動でなく、複数回のレンズ駆動を行う。これにより、1回あたりのレンズ駆動量を抑えることが可能となる。
以上のように、本発明によれば、露光終了後から次の露光が開始されるまでの間(非露光期間)でも、露光期間データと気圧データとからレンズ駆動実行タイミング信号に基づき算出されたレンズ駆動量の情報により、複数回のレンズ駆動が行われる。これにより、露光による投影光学系の収差と気圧変化による収差とが発生しても、複数回収差が補正されるので、露光期間直前におけるレンズ駆動量が大きくなることを低減できる。これにより、レンズ駆動後の整定時間を低減することができるので、スループットの低下を抑制でき、露光の精度を向上できる。
なお、気圧検出部120aを投影光学系内部に設置した場合、遅れ特性となる時定数が小さいため、モデル演算部40a自体を省略することが可能である。
補正演算部36aと補正演算部46aとは、それぞれ、(収差補正のための)波長変更量をさらに演算しても良い。加算器48aは、補正演算部36aから入力された波長変更量と、補正演算部46aから入力された波長変更量とを加算する。そして、加算器48aは、その加算結果を、最終的なレンズ駆動量の情報の代わりに、最終的な波長変更量の情報としてレーザー駆動制御部70へ出力してもよい。
補正演算部36aと補正演算部46aとは、それぞれ、(収差補正のための)ステージ駆動量をさらに演算しても良い。加算器49aは、補正演算部36aから入力されたステージ駆動量と、補正演算部46aから入力されたステージ駆動量とを加算する。そして、加算器49aは、その加算結果を、最終的なレンズ駆動量の情報の代わりに、最終的なステージ駆動量の情報としてステージ駆動部150へ出力してもよい。
補正演算部36aと補正演算部46aとは、それぞれ、フォーカスずれ補正のためのステージ駆動量をさらに算出してもよい。図6に示す収差補正演算部10aは、図示しないタイマをさらに含んでおり、図7に示す制御に応じて適宜タイマを参照する。
非露光期間は、例えばウエハ交換期間、またはレチクル交換期間、及び定期メンテナンス期間の少なくとも1つを含んでも良い。
次に、本発明の好適な第3実施形態について、図8から図10を参照して説明する。図8は、本発明の第3実施形態に係る露光装置の構成図である。図9は、収差補正演算部の構成図である。図10は収差補正演算部の動作を表したタイミングチャートである。なお、以下では、上記の第1実施形態及び第2実施形態と異なる部分を中心に説明し、同様の部分については説明を省略する。
露光装置1bは、基本的な構成は第1実施形態及び第2実施形態と同様であるが、収差補正演算部10の代わりに収差補正演算部10bを備える点で、第1実施形態及び第2実施形態と異なる。
図9に示す収差補正演算部10bは、判断部20の代わりに判断部20bを備え、補正演算部36の代わりに補正演算部36bを備える。収差補正演算部10bは、補正演算部46bをさらに備える。収差補正演算部10bは、アライメント計測期間においてもレンズ駆動量を算出する。すなわち、第3実施形態では、非露光期間にアライメント計測期間がさらに含まれる。
図10は、第3実施形態における収差補正演算部10bの動作を表したタイミングチャートである。図10(a)は、露光装置1bの状態(露光期間データ)を示している。図10(b)は、判断部20bから出力されるレンズ駆動実行タイミング信号を表している。図10(d)は補正演算部36bからの出力であるレンズ駆動量の情報を表す。図10(f)は、補正演算部46aからの出力であるレンズ駆動量の情報を表している。
図10(a)では、露光装置1bの状態の一例として、露光終了時付近の露光期間、アライメント計測期間(アライメント計測中)及び次の露光開始時付近の露光期間までが表されている。図10(b)〜(f)は、図7(b)〜(f)と同部分の出力を表している。図10(b)に示すように、判断部20bは、アライメント計測期間においても、主制御部50から入力されたアライメント計測実行中の情報(露光期間データ)に基づいて、そのレンズ駆動実行タイミングを生成する。図10(d)、(f)に示すように、補正演算部36bと補正演算部46bとは、それぞれ、レンズ駆動量を算出する。この算出されたレンズ駆動量の情報に従って、レンズ駆動制御部60がレンズ駆動機構101を制御して、レンズが光軸方向に変位するため、アライメント計測中に収差を補正し続けることが可能となる。
以上のように、本発明によれば、アライメント計測期間(アライメント計測中)でも、露光期間データと気圧データとからレンズ駆動実行タイミング信号に基づき算出されたレンズ駆動量の情報により、複数回のレンズ駆動が行われる。これにより、露光熱の放出による投影光学系の収差変化と気圧変化による収差変化とが発生しても、複数回収差が補正されるので、露光期間直前におけるレンズ駆動量が大きくなることを低減できる。これにより、重ね合わせ精度向上のためにアライメント計測期間が長くなる場合やアライメント計測中に大きな気圧変化が発生した場合でも、レンズ駆動後の整定時間を低減することができるので、スループットの低下を抑制でき、露光の精度を向上できる。
また、収差が補正されるので、アライメント計測誤差の発生を低減でき、この点からも露光の精度を向上できる。
なお、アライメント計測に伴い、アライメント計測用の光量が無視できない場合は、図8に示す収差補正演算部10bにおけるモデル演算部30が、露光期間データと同様にアライメント計測の光量を考慮して、露光期間補償データを演算してもよい。
また、補正演算部36bと補正演算部46bとは、それぞれ、波長変更量をさらに演算しても良い。加算器48aは、補正演算部36bから入力された波長変更量と、補正演算部46bから入力された波長変更量とを加算する。そして、加算器48aは、その加算結果を、最終的なレンズ駆動量の情報の代わりに、最終的な波長変更量としてレーザー駆動制御部70へ出力してもよい。
また、補正演算部36bと補正演算部46bとは、それぞれ、ステージ駆動量をさらに演算しても良い。加算器49aは、補正演算部36bから入力されたステージ駆動量と、補正演算部46bから入力されたステージ駆動量とを加算する。そして、加算器49aは、その加算結果を、最終的なレンズ駆動量の情報の代わりに、最終的なステージ駆動量としてステージ駆動部150へ出力してもよい。
次に、本発明のウエハステージ装置が適用される例示的な露光装置を利用したデバイスの製造プロセス(製造方法)を、図11を用いて説明する。図11は、デバイスの一例としての半導体デバイスの全体的な製造プロセスを示すフローチャートである。
ステップS1(回路設計)では半導体デバイスの回路設計を行う。
ステップS2(マスク作)では設計した回路パターンに基づいてマスク(原版又はレチクルともいう)を作する。
一方、ステップS3(ウエハ製造)ではシリコン等の材料を用いてウエハ(基板ともいう)を製造する。
ステップS4(ウエハプロセス)は前半工程と呼ばれ、上記のマスクとウエハを用いて、上述の露光装置によりリソグラフィー技術を利用してウエハ上に実際の回路を形成する。
次のステップS5(組み立て)は後半工程と呼ばれ、ステップS4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。
ステップS6(検査)ではステップS5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、ステップS7でこれを出荷する。
上記ステップS4のウエハプロセスは以下のステップを有する。すなわち、ウエハの表面を酸化させる酸化ステップ、ウエハ表面に絶縁膜を成膜するCVDステップ、ウエハ上に電極を蒸着によって形成する電極形成ステップ、ウエハにイオンを打ち込むイオン打ち込みステップを有する。また、ウエハに感光剤を塗布するレジスト処理ステップを有する。上記の露光装置を用いて、レジスト処理ステップ後のウエハを、マスクのパターンを介して露光し、レジストに潜像パターンを形成する露光ステップ(露光工程)を有する。露光ステップで露光したウエハを現像する現像ステップ(現像工程)を有する。さらに、現像ステップで現像した潜像パターン以外の部分を削り取るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト剥離ステップを有する。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。
本発明の第1実施形態に係る露光装置の構成図である。 本発明の実施形態における照明光学系および露光光源の一例を示す図である。 本発明の第1実施形態に係る収差補正演算部の一例を示す図である。 本発明の第1実施形態に係るタイミングチャートの一例を示す図である。 本発明の第2実施形態に係る露光装置の構成図である。 本発明の第2実施形態に係る収差補正演算部の一例を示す図である。 本発明の第2実施形態に係るタイミングチャートの一例を示す図である。 本発明の第2実施形態に係る露光装置の構成図である。 本発明の第2実施形態に係る収差補正演算部の一例を示す図である。 本発明の第2実施形態に係るタイミングチャートの一例を示す図である。 半導体デバイスの全体的な製造プロセスを示すフローチャート。
符号の説明
1,1a,1b 露光装置
60 レンズ駆動制御部
101 レンズ駆動機構
104 レンズ
PA 光軸

Claims (5)

  1. 露光期間に基板を露光する露光装置であって、
    原版のパターンを前記基板に投影するための投影光学系であって、前記投影光学系の収差を調整するために駆動される少なくとも1つの光学素子を含む投影光学系と、
    非露光期間における前記露光期間から前記非露光期間に変わる時刻からの経過時間に応じた前記投影光学系における前記露光の熱影響による収差の変化の特性である熱影響の時間的特性と、前記露光期間から前記非露光期間に変わる時刻示す露光期間データとに基づいて、補償データを演算する第1の演算部と、
    前記第1の演算部により演算された前記補償データと、前記露光期間データを基に前記露光期間から前記非露光期間に変わったことに応じて徐々に短くなる間隔で生成される複数のタイミング信号のそれぞれとに基づいて、前記少なくとも1つの光学素子の複数回の駆動量のそれぞれを演算する第2の演算部と、
    前記非露光期間において、前記第2の演算部により演算された前記複数回の駆動量のそれぞれに基づいて、前記少なくとも1つの光学素子を複数回駆動する駆動部と、
    を備えたことを特徴とする露光装置。
  2. 前記熱影響の時間的特性は、前記少なくとも1つの光学素子の露光光に対する吸収特性と前記少なくとも1つの光学素子の材質の熱容量とから、熱時定数として求められたものであ
    ことを特徴とする請求項1に記載の露光装置。
  3. 前記投影光学系の外部の気圧を検出し、気圧データを出力する気圧検出部と、
    前記投影光学系の雰囲気圧力の時間的特性と、前記気圧検出部により出力された前記気圧データとに基づいて、気圧補償データを演算する第3の演算部と、
    前記第3の演算部により演算された前記気圧補償データと気圧基準値との差と、前記タイミング信号とに基づいて、前記少なくとも1つの光学素子の第2の駆動量を演算する第4の演算部と、
    をさらに備え、
    前記駆動部は、前記非露光期間において、前記第2の演算部により演算された前記駆動量と、前記第4の演算部により演算された前記第2の駆動量とに基づいて、前記少なくとも1つの光学素子を複数回駆動する
    ことを特徴とする請求項1又は2に記載の露光装置。
  4. 前記非露光期間は、基板交換期間、原版交換期間、メンテナンス期間及びアライメント期間のうち少なくとも1つを含む
    ことを特徴とする請求項1から3のいずれか1項に記載の露光装置。
  5. 請求項1から4のいずれか1項に記載の露光装置を用いて基板を露光する露光工程と、
    前記露光工程において露光された基板を現像する現像工程と、
    を備えたことを特徴とするデバイスの製造方法。
JP2006243390A 2006-09-07 2006-09-07 露光装置およびデバイス製造方法 Expired - Fee Related JP4366386B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006243390A JP4366386B2 (ja) 2006-09-07 2006-09-07 露光装置およびデバイス製造方法
US11/849,698 US7804581B2 (en) 2006-09-07 2007-09-04 Exposure apparatus and method of manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243390A JP4366386B2 (ja) 2006-09-07 2006-09-07 露光装置およびデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2008066540A JP2008066540A (ja) 2008-03-21
JP4366386B2 true JP4366386B2 (ja) 2009-11-18

Family

ID=39169256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243390A Expired - Fee Related JP4366386B2 (ja) 2006-09-07 2006-09-07 露光装置およびデバイス製造方法

Country Status (2)

Country Link
US (1) US7804581B2 (ja)
JP (1) JP4366386B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094163A (ja) * 2007-10-04 2009-04-30 Canon Inc 温度制御装置、露光装置およびデバイス製造方法
JP5006762B2 (ja) * 2007-11-05 2012-08-22 キヤノン株式会社 露光装置及びデバイス製造方法
US7839734B2 (en) * 2008-05-12 2010-11-23 Mediatek Inc. Method and apparatus for controlling spherical aberration correction for an optical disk drive
NL2003818A (en) * 2008-12-18 2010-06-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
KR101529807B1 (ko) * 2011-01-20 2015-06-17 칼 짜이스 에스엠티 게엠베하 투영 노광 도구를 조작하는 방법
DE102012211256A1 (de) * 2012-06-29 2014-01-02 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage für die Projektionslithographie
WO2018115384A1 (en) * 2016-12-22 2018-06-28 Carl Zeiss Smt Gmbh Trajectory fitting
JP7033997B2 (ja) * 2018-04-13 2022-03-11 キヤノン株式会社 露光装置、および物品の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424552A (en) * 1991-07-09 1995-06-13 Nikon Corporation Projection exposing apparatus
JPH10199782A (ja) 1997-01-14 1998-07-31 Canon Inc 投影露光装置
JP3387861B2 (ja) 1999-09-09 2003-03-17 キヤノン株式会社 露光装置、およびデバイス製造方法
DE10259291B4 (de) * 2002-12-18 2006-02-23 Rudolf Gmbh & Co. Kg Chemische Fabrik Hochkonzentrierte, selbstemulgierende Zubereitungen, enthaltend Organopolysiloxane und Alkylammoniumverbindungen und deren Verwendung in wässrigen Systemen
JP2004281697A (ja) 2003-03-14 2004-10-07 Canon Inc 露光装置及び収差補正方法
JP2005051147A (ja) 2003-07-31 2005-02-24 Nikon Corp 露光方法及び露光装置
US7262831B2 (en) * 2004-12-01 2007-08-28 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method using such lithographic projection apparatus
JP2007027331A (ja) 2005-07-14 2007-02-01 Canon Inc 駆動装置及びこれを用いた露光装置並びにデバイス製造方法

Also Published As

Publication number Publication date
US7804581B2 (en) 2010-09-28
US20080062391A1 (en) 2008-03-13
JP2008066540A (ja) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4366386B2 (ja) 露光装置およびデバイス製造方法
US7760326B2 (en) Exposure apparatus and aberration correction method
US7630059B2 (en) Lithographic apparatus and device manufacturing method
JP5264116B2 (ja) 結像特性変動予測方法、露光装置、並びにデバイス製造方法
US9348235B2 (en) Exposure apparatus and method of manufacturing device
JPH08305034A (ja) 投影露光装置及びそれを用いたデバイスの製造方法
US9766548B2 (en) Exposure apparatus, exposure method, and method of manufacturing article
JP2009164296A (ja) 露光装置およびデバイス製造方法
JP2009004632A (ja) 露光装置及びデバイス製造方法
US9513564B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP4568340B2 (ja) 半導体装置の製造方法
WO1999031716A1 (fr) Aligneur, methode d'exposition et procede de fabrication de ce dispositif
CN108931890B (zh) 决定方法、曝光方法、信息处理装置、介质以及制造方法
JP2010123790A (ja) 投影露光装置、変位計測手段の計測基準の校正方法およびデバイス製造方法
US10401743B2 (en) Control system, positioning system, lithographic apparatus and device manufacturing method
JP2897345B2 (ja) 投影露光装置
US8659740B2 (en) Drive error compensation for projection optics
JP7213757B2 (ja) 露光装置、および物品製造方法
JP7022531B2 (ja) 露光方法、露光装置、および物品の製造方法
WO2018016293A1 (ja) 光学装置、リソグラフィ装置及び物品の製造方法
KR102608013B1 (ko) 리소그래피 방법
JP7340609B2 (ja) 投影システム及び投影システムを備えるリソグラフィ装置
KR20210000667A (ko) 노광 장치, 노광 방법 및 물품 제조방법
JP2009004509A (ja) 露光装置およびデバイス製造方法
JP2005228922A (ja) 露光装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees