JP4365839B2 - SiC bonding material - Google Patents

SiC bonding material Download PDF

Info

Publication number
JP4365839B2
JP4365839B2 JP2006191497A JP2006191497A JP4365839B2 JP 4365839 B2 JP4365839 B2 JP 4365839B2 JP 2006191497 A JP2006191497 A JP 2006191497A JP 2006191497 A JP2006191497 A JP 2006191497A JP 4365839 B2 JP4365839 B2 JP 4365839B2
Authority
JP
Japan
Prior art keywords
sic
bonding material
mass
particles
dpf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006191497A
Other languages
Japanese (ja)
Other versions
JP2008019119A (en
Inventor
昇央 萬代
孝治 常吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2006191497A priority Critical patent/JP4365839B2/en
Publication of JP2008019119A publication Critical patent/JP2008019119A/en
Application granted granted Critical
Publication of JP4365839B2 publication Critical patent/JP4365839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、SiC粉末を含むSiC系接合材に関し、詳しくは、DPF等のセラミックス製のハニカム構造体の製造に用いることができるSiC系接合材に関する。   The present invention relates to a SiC-based bonding material containing SiC powder, and more particularly, to a SiC-based bonding material that can be used for manufacturing a honeycomb structure made of ceramics such as DPF.

内燃機関、ボイラー、化学反応機器、燃料電池用改質器等の触媒作用を利用する触媒用担体、排ガス中の微粒子(特にディーゼルエンジンからの排気ガス中の微粒子物質(PM))の捕集フィルタ(以下、DPFという)等には、セラミックス製のハニカム体が用いられている。   Catalytic carrier utilizing catalytic action of internal combustion engine, boiler, chemical reaction device, fuel cell reformer, etc., filter for collecting particulate matter in exhaust gas (particularly particulate matter (PM) in exhaust gas from diesel engine) A ceramic honeycomb body is used for (hereinafter referred to as DPF).

セラミックス製のハニカム体は、一般に、多孔質体よりなり、隔壁によって区画された流体の流路となる複数のセルを有している。そして、端面が市松模様状をなすように、隣接するセルが互いに反対側となる端部で封止された構造を有している。   A ceramic honeycomb body is generally made of a porous body and has a plurality of cells serving as fluid flow paths partitioned by partition walls. And it has the structure where the adjacent cell was sealed by the edge part which becomes an other side so that an end surface may make a checkered pattern shape.

このような構造のハニカム体は、被処理流体が流入孔側端面が封止されていないセル、即ち流出孔側端面で端部が封止されているセルに流入し、多孔質の隔壁を通って隣のセル、即ち、流入孔側端面で端部が封止され、流出孔側端面が封止されていないセルから排出される。この際、隔壁がフィルタとなり、例えば、DPFとして使用した場合には、ディーゼルエンジンから排出される微粒子物質(PM)等が隔壁に捕捉され隔壁上に堆積していた。   In the honeycomb body having such a structure, the fluid to be treated flows into a cell whose end face on the inflow hole side is not sealed, that is, a cell whose end is sealed on the end face on the outflow hole side, and passes through the porous partition wall. The end portion is sealed at the adjacent cell, that is, the end surface on the inflow hole side, and discharged from the cell whose end surface on the outflow hole side is not sealed. At this time, the partition wall became a filter. For example, when used as a DPF, particulate matter (PM) discharged from a diesel engine was captured by the partition wall and deposited on the partition wall.

このようにDPFに使用されるハニカム体は、排気ガスの急激な温度変化や局所的な発熱によってハニカム体の温度分布が不均一となり、ハニカム体にクラックを生ずる等の問題があった。特に、DPFとして使用する場合には、堆積したPMを燃焼させて除去し再生することが必要であり、この燃焼時に局所的な高温化がおこり、再生温度の不均一化による再生効率の低下及び大きな熱応力によるクラックが発生し易いという問題があった。   As described above, the honeycomb body used for the DPF has a problem that the honeycomb body has a non-uniform temperature distribution due to a rapid temperature change of the exhaust gas or local heat generation, and cracks are generated in the honeycomb body. In particular, when it is used as a DPF, it is necessary to burn and remove the accumulated PM to regenerate, and a local high temperature is generated during the combustion. There was a problem that cracks due to large thermal stress were likely to occur.

このため、ハニカム体を複数に分割した分体を接合材により接合する方法が提案されている。このような方法としては、例えば、特許文献1に開示されている。特許文献1には、多数のハニカム体の分体をコロイダルシリカ及び/又はコロイダルアルミナを含む接合材で接合したハニカム構造体が開示されている。   For this reason, a method has been proposed in which a split body obtained by dividing a honeycomb body into a plurality of parts is joined with a joining material. Such a method is disclosed in Patent Document 1, for example. Patent Document 1 discloses a honeycomb structure in which a large number of honeycomb bodies are bonded with a bonding material containing colloidal silica and / or colloidal alumina.

しかしながら、このハニカム構造体、特にDPFに用いられるハニカム構造体においては高熱に曝されることから、高い耐熱性や熱衝撃性が求められている。これらの要求は、ハニカム構造体の分体を接合する接合材にも求められている。特に、従来のハニカム構造体の製造に用いられる接合材は、分体への塗布性が低いという問題があった。接合材の塗布性が低いと、分体とのなじみが十分でなくなり、DPFを形成したときに亀裂等の接着不良の原因となる。そして、この接着不良がDPFの耐熱衝撃性を低下する。   However, since this honeycomb structure, particularly a honeycomb structure used for a DPF, is exposed to high heat, high heat resistance and thermal shock resistance are required. These requirements are also demanded for a bonding material for bonding the divided bodies of the honeycomb structure. In particular, a bonding material used for manufacturing a conventional honeycomb structure has a problem that applicability to a split body is low. When the applicability of the bonding material is low, the compatibility with the splitting is not sufficient, and when the DPF is formed, it causes a bonding failure such as a crack. And this adhesion failure reduces the thermal shock resistance of DPF.

また、接合材の塗布性が低いと、接合材の塗布の工程が増加し、DPFの製造に要するコストも上昇するという問題があった。
特開2005−154202号公報
Moreover, when the applicability of the bonding material is low, there is a problem that the number of steps of applying the bonding material increases and the cost required for manufacturing the DPF also increases.
JP 2005-154202 A

本発明は上記実状に鑑みてなされたものであり、塗布時の作業性にすぐれた接合材を提供することを課題とする。   This invention is made | formed in view of the said actual condition, and makes it a subject to provide the joining material excellent in workability | operativity at the time of application | coating.

上記課題を解決するために本発明者は接合材について検討を重ねた結果、本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventor has studied the bonding material, and as a result, has reached the present invention.

本発明のSiC系接合材は、溶媒と、溶媒に分散したSiC粒子と、シリカ、アルミナの少なくとも一種よりなり、溶媒に分散したSiC粒子の粒径より小さな粒径をもつ微細粒子と、溶媒に分散した粘度調整材と、を有するSiC系接合材であって、微細粒子は、SiC系接合材全体の質量を100mass%としたときに、30mass%以下で含まれることを特徴とする。   The SiC-based bonding material of the present invention comprises a solvent, SiC particles dispersed in the solvent, fine particles having a particle size smaller than the particle size of the SiC particles dispersed in the solvent, and at least one of silica and alumina, An SiC-based bonding material having a dispersed viscosity adjusting material, wherein the fine particles are included in an amount of 30 mass% or less when the mass of the entire SiC-based bonding material is 100 mass%.

本発明のSiC系接合材は、SiC粒子と微細粒子とをもつため、接合材の塗布時に微細粒子がSiC粒子の流動性を上昇させる。この結果、本発明のSiC系接合材は、塗布時の作業性にすぐれた接合剤となった。   Since the SiC-based bonding material of the present invention has SiC particles and fine particles, the fine particles increase the fluidity of the SiC particles when the bonding material is applied. As a result, the SiC bonding material of the present invention became a bonding agent with excellent workability during coating.

本発明のSiC系接合材は、SiC粒子、微細粒子および粘度調整材が溶媒に分散している。   In the SiC bonding material of the present invention, SiC particles, fine particles, and a viscosity adjusting material are dispersed in a solvent.

本発明のSiC系接合材において、SiC粒子は、被接合物の接合に寄与する。SiCは耐熱性にすぐれたセラミックスとして知られており、SiC系接合材がSiC粒子をもつことで特に高温となる使用環境で用いられるセラミックスの接合に効果を発揮する。   In the SiC-based bonding material of the present invention, SiC particles contribute to the bonding of objects to be bonded. SiC is known as a ceramic having excellent heat resistance, and the SiC-based bonding material has SiC particles, so that it is effective for bonding ceramics that are used particularly in high-temperature environments.

さらに、SiCがセラミックスであり、SiC粒子は、被接合物を構成するセラミックスと近似した熱膨張率をもつ。接合材で複数の被接合物を接合してなる構造体をコールド状態から高温まで加熱した時に、構造体の熱膨張がほぼ均一となる。つまり、接合剤を用いた構造体を高温下で使用しても、熱膨張率の差による局部的な応力がかからない。つまり、構造物の耐熱衝撃性が向上する。被接合物と接合材の熱膨張率に大きな差が存在すると、構造物を高温まで加熱した時に、熱膨張率の差により接合材による接合部に応力が集中し、剥離を生じる。すなわち、本発明のSiC系接合材は、セラミックスの接合に用いることが好ましい。さらに、DPF用ハニカム構造体の分体の接合に用いることが好ましい。DPF用ハニカム構造体を形成するセラミックスの材質についても特に限定されるものではないが、コーディエライト、炭化ケイ素、窒化ケイ素、チタン酸アルミニウム等のセラミックスであることが好ましい。   Further, SiC is a ceramic, and the SiC particles have a thermal expansion coefficient similar to that of the ceramic constituting the article to be joined. When a structure formed by bonding a plurality of objects to be bonded with a bonding material is heated from a cold state to a high temperature, the thermal expansion of the structure becomes substantially uniform. That is, even when a structure using a bonding agent is used at a high temperature, local stress due to a difference in thermal expansion coefficient is not applied. That is, the thermal shock resistance of the structure is improved. If there is a large difference in the coefficient of thermal expansion between the object to be bonded and the bonding material, when the structure is heated to a high temperature, stress is concentrated at the bonded portion by the bonding material due to the difference in the coefficient of thermal expansion, and peeling occurs. That is, the SiC-based bonding material of the present invention is preferably used for bonding ceramics. Furthermore, it is preferably used for joining of the DPF honeycomb structures. The material of the ceramic forming the honeycomb structure for DPF is not particularly limited, but is preferably a ceramic such as cordierite, silicon carbide, silicon nitride, or aluminum titanate.

本発明のSiC系接合材に用いられるSiC粒子は、接合材により接合される被接合物の材質や接合材の塗布厚さなどの条件により異なるため一概に決定できるものではなく、従来のSiC系接合材において用いられているSiC粒子を用いることができる。好ましいSiC粒子の平均粒径(メジアン径)は5〜100μmであり、より好ましいSiC粒子の平均粒径は10〜40μmであり、さらに好ましくは、15〜40μmである。また、これらのSiC粒子(粗大SiC粒子)に平均粒径(メジアン径)が0.1〜5μmのSiC粒子(微細SiC粒子)を添加してもよい。微細SiC粒子の添加割合は、粗大SiC粒子の質量を100mass%としたときに、50〜200mass%の割合で含有させることができる。   The SiC particles used in the SiC-based bonding material of the present invention cannot be determined unconditionally because it differs depending on conditions such as the material of the object to be bonded and the coating thickness of the bonding material, and the conventional SiC-based bonding material. SiC particles used in the bonding material can be used. The preferable average particle diameter (median diameter) of the SiC particles is 5 to 100 μm, the more preferable average particle diameter of the SiC particles is 10 to 40 μm, and further preferably 15 to 40 μm. Further, SiC particles (fine SiC particles) having an average particle diameter (median diameter) of 0.1 to 5 μm may be added to these SiC particles (coarse SiC particles). The addition ratio of the fine SiC particles can be contained at a ratio of 50 to 200 mass% when the mass of the coarse SiC particles is 100 mass%.

微細粒子は、溶媒にSiC粒子とともに分散される粒子であり、シリカ、アルミナの少なくとも一種よりなり、SiC粒子よりも小さな粒径をもつ粒子である。本発明のSiC系接合材は、SiC粒子とともに微細粒子をもつことで、接合材を被接合物に塗布するときの塗布性が向上する。具体的には、本発明のSiC系接合材は、粗大なSiC粒子と微細粒子とが混在している。そして、この接合材を被接合物に塗布したときには、微細粒子がSiC粒子同士およびSiC粒子と被接合物のすき間に侵入して両者の間でコロとして機能し、SiC粒子の移動を促進する。この作用により、本発明の接合材は塗布性にすぐれた接合材となる。   The fine particles are particles dispersed in the solvent together with the SiC particles, and are particles made of at least one of silica and alumina and having a particle size smaller than that of the SiC particles. Since the SiC-based bonding material of the present invention has fine particles together with SiC particles, applicability when the bonding material is applied to an object to be bonded is improved. Specifically, in the SiC bonding material of the present invention, coarse SiC particles and fine particles are mixed. When this bonding material is applied to the object to be bonded, the fine particles enter between the SiC particles and the gap between the SiC particle and the object to be bonded and function as a roller between them to promote the movement of the SiC particles. By this action, the bonding material of the present invention becomes a bonding material with excellent coating properties.

微細粒子は、球状粒子であることが好ましい。微細粒子が球状粒子となることで、SiC粒子同士およびSiC粒子と被接合物のすき間に侵入して両者の間でコロとして機能し、SiC粒子の移動が阻害されなくなる。つまり、接合材の塗布性が大きく向上する。ここで、球状粒子とは、その表面がなめらかに形成された粒子を示す。球状粒子は、その形状が球形状に近似した形状ほど好ましい。つまり、球状粒子は、その最大直径と最小直径との差を平均直径(平均粒径)で除した値の真球度が50%以下であることが好ましく、20%以下であることがより好ましい。   The fine particles are preferably spherical particles. By forming the fine particles into spherical particles, the SiC particles enter between the SiC particles and the gap between the SiC particles and the object to be bonded and function as a roller between them, and the movement of the SiC particles is not hindered. That is, the applicability of the bonding material is greatly improved. Here, the spherical particles refer to particles having a smooth surface. The spherical particle is more preferable as its shape approximates a spherical shape. That is, the spherical particles preferably have a sphericity of 50% or less, more preferably 20% or less, as a value obtained by dividing the difference between the maximum diameter and the minimum diameter by the average diameter (average particle diameter). .

また、微細粒子は、SiC系接合材の熱膨張率の調節にも寄与する。本発明の接合材を用いて接合される被接合物とSiC粒子との熱膨張率の差は小さいが、微細粒子を添加することで、SiC系接合材と被接合物の熱膨張率の差がより小さくなる。つまり、微細粒子をSiC系接合材に添加することで、熱膨張率が調節でき、これにより被接合物を接合した構造体の耐熱衝撃性が向上する。本発明のSiC系接合材と被接合物の熱膨張率の差は、小さければ小さいほど好ましく、熱膨張係数の差が6ppm以下であることがより好ましい。特に被接合物を接合した構造体の使用温度における熱膨張係数の差が1ppm以下であることが好ましい。具体的には、構造体がDPF用ハニカム体であるときに、1000℃での熱膨張係数の差が6ppm以下であることが好ましい。   Further, the fine particles contribute to the adjustment of the thermal expansion coefficient of the SiC-based bonding material. The difference in thermal expansion coefficient between the object to be bonded and the SiC particles to be bonded using the bonding material of the present invention is small, but by adding fine particles, the difference in the thermal expansion coefficient between the SiC-based bonding material and the object to be bonded. Becomes smaller. That is, by adding fine particles to the SiC-based bonding material, the coefficient of thermal expansion can be adjusted, thereby improving the thermal shock resistance of the structure to which the objects to be bonded are bonded. The difference in the coefficient of thermal expansion between the SiC-based bonding material of the present invention and the object to be bonded is preferably as small as possible, and the difference in coefficient of thermal expansion is more preferably 6 ppm or less. In particular, it is preferable that the difference in coefficient of thermal expansion at the use temperature of the structure to which the objects to be joined are joined is 1 ppm or less. Specifically, when the structure is a DPF honeycomb body, the difference in thermal expansion coefficient at 1000 ° C. is preferably 6 ppm or less.

そして、微細粒子がシリカ、アルミナの少なくとも一種よりなることで、上記の塗布性の向上および熱膨張率の調整の効果が得られる。   And the effect of the improvement of said applicability | paintability and adjustment of a thermal expansion coefficient is acquired because a microparticle consists of at least 1 type of a silica and an alumina.

微細粒子は、その平均粒径(メジアン径)がSiC粒子の平均粒径(メジアン径)よりも小さな粒径をもつ粒子である。微細粒子の平均粒径は、SiC粒子の平均粒径の70%以下であることが好ましく、0.1〜50%であることがより好ましい。つまり、微細粒子の平均粒径が大きい(微細粒子とSiC粒子との粒径の差が小さすぎる)と、微細粒子によるSiC粒子の移動が促進されなくなるだけでなく、相対的なSiC粒子の含有量が低下して接合材の接合性が低下する。   The fine particles are particles having an average particle diameter (median diameter) smaller than the average particle diameter (median diameter) of the SiC particles. The average particle size of the fine particles is preferably 70% or less, more preferably 0.1 to 50% of the average particle size of the SiC particles. That is, if the average particle size of the fine particles is large (the difference in particle size between the fine particles and the SiC particles is too small), not only the movement of the SiC particles by the fine particles is not promoted but also the relative inclusion of the SiC particles. The amount decreases and the bondability of the bonding material decreases.

微細粒子は、SiC系接合材全体の質量を100mass%としたときに、30mass%以下で含まれることが好ましい。微細粒子の割合が30mass%を超えると、SiC粒子の含有量が低下して接合材の接合性が低下する。より好ましい微細粒子の含有量は、20mass%以下である。   The fine particles are preferably contained at 30 mass% or less when the mass of the entire SiC-based bonding material is 100 mass%. If the proportion of fine particles exceeds 30 mass%, the content of SiC particles is reduced, and the bondability of the bonding material is lowered. A more preferable content of fine particles is 20 mass% or less.

本発明のSiC系接合材において、粘度調整材は、接合材の粘度を調整し、接合材の取り扱いや塗布を容易とする。粘度調整材は、従来のSiC系接合材において用いられている粘度調整材を用いることができる。粘度調整材としては、たとえば、コロイダルシリカと、カルボキシルメチルセルロース(CMC)などをあげることができる。また、これらの粘度調整材の含有量についても、特に限定されるものではない。   In the SiC bonding material of the present invention, the viscosity adjusting material adjusts the viscosity of the bonding material to facilitate the handling and application of the bonding material. As the viscosity adjusting material, a viscosity adjusting material used in a conventional SiC bonding material can be used. Examples of the viscosity adjusting material include colloidal silica and carboxymethyl cellulose (CMC). Further, the content of these viscosity modifiers is not particularly limited.

本発明のSiC系接合材は、従来公知のSiC系接合材において用いられている添加剤を添加することができる。添加剤としては、例えば、でんぷん等の造孔剤、金属Si、無機ファイバー、有機ファイバーなどをあげることができる。また、これらの添加剤の添加割合についても従来公知の接合材と同様とすることができる。たとえば、本発明のSiC系接合材において、全固形分に占めるSiC粉末の割合についても従来公知の接合材と同様とすることができる。   The additive used in the conventionally known SiC-based bonding material can be added to the SiC-based bonding material of the present invention. Examples of the additive include a pore forming agent such as starch, metal Si, inorganic fiber, and organic fiber. Further, the addition ratio of these additives can be the same as that of conventionally known bonding materials. For example, in the SiC bonding material of the present invention, the proportion of SiC powder in the total solid content can be the same as that of conventionally known bonding materials.

本発明のSiC系接合材において、溶媒は、SiC粒子、微細粒子および粘度調整材を分散する。溶媒は、これらの粒子を分散させることができる溶液であれば特に限定されるものではなく、従来公知のSiC系接合材において用いられている溶媒を添加することができる。この溶媒としては、例えば、水系の溶媒を用いることができる。   In the SiC-based bonding material of the present invention, the solvent disperses SiC particles, fine particles, and a viscosity adjusting material. A solvent will not be specifically limited if it is a solution which can disperse | distribute these particle | grains, The solvent currently used in the conventionally well-known SiC type | system | group joining material can be added. As this solvent, for example, an aqueous solvent can be used.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

本発明の実施例としてSiC系接合材を製造した。   An SiC-based bonding material was manufactured as an example of the present invention.

(実施例1)
平均粒径が25μmのSiC粉末(信濃電気精錬株式会社製、商品名:GP−#400)35質量部、平均粒径が2.5μmのSiC粉末(信濃電気精錬株式会社製、商品名:SD−10)35質量部、シリカゾル(旭電化製、商品名:アデライト)10質量部、CMC(ダイセル化学工業製、商品名:CMC−1190)0.2質量部、を秤量し、19.8質量部の水に均一に分散させて粘調な溶液を調整した。
(Example 1)
SiC powder with an average particle size of 25 μm (trade name: GP- # 400, manufactured by Shinano Denki Co., Ltd.), SiC powder with an average particle size of 2.5 μm (manufactured by Shinano Denki Co., Ltd., product name: SD) -10) 35 parts by mass, 10 parts by mass of silica sol (manufactured by Asahi Denka, trade name: Adelite), 0.2 parts by mass of CMC (manufactured by Daicel Chemical Industries, trade name: CMC-1190) are weighed to obtain 19.8 masses. A viscous solution was prepared by uniformly dispersing in a portion of water.

その後、外重量で5%(粘調な溶液の質量を100mass%としたときに5mass%)となるように、平均粒径が0.5μmの球状シリカ粉末(信越化学製、商品名325H)をこの溶液に添加・混合して本実施例の接合材を調製した。本実施例のSiC系接合材は、球状シリカ粉末を4.8mass%で含む。   Thereafter, spherical silica powder having an average particle size of 0.5 μm (trade name: 325H, manufactured by Shin-Etsu Chemical Co., Ltd.) is used so that the outer weight is 5% (5 mass% when the mass of the viscous solution is 100 mass%). The bonding material of this example was prepared by adding and mixing to this solution. The SiC-based bonding material of the present example includes spherical silica powder at 4.8 mass%.

(実施例2)
平均粒径が25μmのSiC粉末(実施例1の時と同じ製品)35質量部、平均粒径が2.5μmのSiC粉末(実施例1の時と同じ製品)35質量部、シリカゾル(実施例1の時と同じ製品)10質量部、CMC(実施例1の時と同じ製品)0.2質量部、を秤量し、19.8質量部の水に均一に分散させて粘調な溶液を調整した。
(Example 2)
35 parts by mass of SiC powder having the average particle diameter of 25 μm (the same product as in Example 1), 35 parts by mass of SiC powder having the average particle diameter of 2.5 μm (the same product as in Example 1), silica sol (Example) Weigh 10 parts by mass (the same product as in 1) and 0.2 parts by mass of CMC (the same product as in Example 1), and uniformly disperse in 19.8 parts by mass of water to obtain a viscous solution. It was adjusted.

その後、外重量で15%(粘調な溶液の質量を100mass%としたときに15mass%)となるように、平均粒径が0.5μmの球状シリカ粉末(実施例1の時と同じ製品)をこの溶液に添加・混合して本実施例の接合材を調製した。本実施例のSiC系接合材は、球状シリカ粉末を13mass%で含む。   Thereafter, spherical silica powder having an average particle size of 0.5 μm (the same product as in Example 1) so that the external weight is 15% (15 mass% when the mass of the viscous solution is 100 mass%). Was added to and mixed with this solution to prepare the bonding material of this example. The SiC-based bonding material of this example includes spherical silica powder at 13 mass%.

(比較例1)
平均粒径が25μmのSiC粉末(実施例1の時と同じ製品)35質量部、平均粒径が2.5μmのSiC粉末(実施例1の時と同じ製品)35質量部、シリカゾル(実施例1の時と同じ製品)10質量部、CMC(実施例1の時と同じ製品)0.2質量部、を秤量し、19.8質量部の水に均一に分散させて粘調な溶液を調整し、本比較例の接合材とした。
(Comparative Example 1)
35 parts by mass of SiC powder having the average particle diameter of 25 μm (the same product as in Example 1), 35 parts by mass of SiC powder having the average particle diameter of 2.5 μm (the same product as in Example 1), silica sol (Example) Weigh 10 parts by mass (the same product as in 1) and 0.2 parts by mass of CMC (the same product as in Example 1), and uniformly disperse in 19.8 parts by mass of water to obtain a viscous solution. It adjusted and it was set as the joining material of this comparative example.

(比較例2)
平均粒径が25μmのSiC粉末(実施例1の時と同じ製品)35質量部、平均粒径が2.5μmのSiC粉末(実施例1の時と同じ製品)35質量部、シリカゾル(実施例1の時と同じ製品)10質量部、CMC(実施例1の時と同じ製品)0.2質量部、を秤量し、19.8質量部の水に均一に分散させて粘調な溶液を調整した。
(Comparative Example 2)
35 parts by mass of SiC powder having the average particle diameter of 25 μm (the same product as in Example 1), 35 parts by mass of SiC powder having the average particle diameter of 2.5 μm (the same product as in Example 1), silica sol (Example) Weigh 10 parts by mass (the same product as in 1) and 0.2 parts by mass of CMC (the same product as in Example 1), and uniformly disperse in 19.8 parts by mass of water to obtain a viscous solution. It was adjusted.

その後、外重量で50%(粘調な溶液の質量を100mass%としたときに50mass%)となるように、平均粒径が0.5μmの球状シリカ粉末(実施例1の時と同じ製品)をこの溶液に添加・混合して本比較例の接合材を調製した。本比較例のSiC系接合材は、球状シリカ粉末を33.3mass%で含む。   Thereafter, spherical silica powder having an average particle size of 0.5 μm (the same product as in Example 1) so that the external weight is 50% (50 mass% when the mass of the viscous solution is 100 mass%). Was added to and mixed with this solution to prepare a bonding material of this comparative example. The SiC-based bonding material of this comparative example contains spherical silica powder at 33.3 mass%.

(評価)
各実施例および比較例の接合材の塗布性の評価を行った。塗布性の評価は、以下に示したように、DPF用ハニカム体の分体にそれぞれの接合材を塗布し、塗布のしやすさから評価を行った。
(Evaluation)
The applicability of the bonding material of each example and comparative example was evaluated. As shown below, the applicability was evaluated by applying each bonding material to the DPF honeycomb body and evaluating the ease of application.

まず、SiCよりなるDPF用ハニカム体の分体を準備する。そして、その分体の壁面(外周面)に100gの接合材を滴下し、厚さが1.5mm程度までヘラでのばした。このヘラでの作業時の作業性により評価を行った。評価結果を表1に示した。なお、表1中の作業性の◎は塗布時に接合材のタレがなくかつ伸びが15cm以上ある場合を、○は塗布時の接合材の伸びが15cm以上あるが若干のタレがある場合または塗布時にタレはないが伸びが5cm以上である場合を、△は塗布時に接合材の伸びが15cm以上あるがタレが大きい場合または塗布時に若干のタレがあるが伸びが5cm以上ある場合を、×は塗布時に接合材の伸びが5cm未満である場合またはタレが大きく接着が困難な場合を示す。   First, a DPF honeycomb body made of SiC is prepared. Then, 100 g of a bonding material was dropped on the wall surface (outer peripheral surface) of the split body, and the thickness was extended with a spatula to about 1.5 mm. Evaluation was performed based on workability during the work with the spatula. The evaluation results are shown in Table 1. In Table 1, the workability ◎ indicates that there is no sagging of the bonding material at the time of application and the elongation is 15 cm or more, and ○ indicates that the elongation of the bonding material at the time of application is 15 cm or more but there is a slight sagging When there is no sagging but the elongation is 5 cm or more, Δ is when the bonding material has an elongation of 15 cm or more at the time of application, but when the sagging is large or when there is a slight sagging at the time of application, The case where the elongation of the bonding material is less than 5 cm at the time of application or the case where the sagging is large and adhesion is difficult is shown.

Figure 0004365839
Figure 0004365839

表1に示したように、球状シリカ粉末粒子を含有する各実施例の接合材は、比較例の接合材より作業性にすぐれている。そして、球状シリカ粉末粒子の含有量が4.8mass%の実施例1の接合材は、特に塗布時の作業性にすぐれていることがわかる。上記したように、各実施例の接合材を用いることで、塗布性の低下による接着性の低下が抑えられたDPFを得られる。   As shown in Table 1, the bonding material of each example containing spherical silica powder particles is more workable than the bonding material of the comparative example. And it turns out that the joining material of Example 1 whose content of spherical silica powder particles is 4.8 mass% is particularly excellent in workability during application. As described above, by using the bonding material of each example, a DPF in which a decrease in adhesiveness due to a decrease in applicability is suppressed can be obtained.

また、実施例1〜2および比較例の接合材の1000℃での熱膨張係数を測定し、測定結果を表2に示した。熱膨張係数の測定は、JIS R−1618「ファインセラミックスの熱機械分析による熱膨張の測定方法」に記載された測定方法で行われた。また、熱膨張係数の基準として、DPF用ハニカム体を構成するセラミックスの熱膨張係数も測定し、表2にあわせて示した。   Moreover, the thermal expansion coefficient in 1000 degreeC of the joining material of Examples 1-2 and a comparative example was measured, and the measurement result was shown in Table 2. The coefficient of thermal expansion was measured by the measurement method described in JIS R-1618 “Method for measuring thermal expansion by thermomechanical analysis of fine ceramics”. Further, as a reference for the thermal expansion coefficient, the thermal expansion coefficient of the ceramics constituting the DPF honeycomb body was also measured and shown in Table 2.

Figure 0004365839
Figure 0004365839

表2に示したように、アルミナ球状粒子を含有する各実施例の接合材は、各比較例の接合材より0〜1000℃までの熱膨張係数がハニカム体に近接している。特に、球状シリカ粉末粒子の含有量が13mass%の実施例2の接合材は、ハニカム体の分体の熱膨張係数とほぼ一致する(0.03ppmとほんのわずかな相違)している。つまり、各実施例の接合材は、比較例の接合材より耐熱衝撃性にすぐれた接合材となっている。   As shown in Table 2, the bonding material of each example containing alumina spherical particles has a thermal expansion coefficient close to the honeycomb body of 0 to 1000 ° C. than the bonding material of each comparative example. In particular, the bonding material of Example 2 in which the content of spherical silica powder particles is 13 mass% substantially matches the thermal expansion coefficient of the honeycomb body segmentation (only a slight difference of 0.03 ppm). That is, the bonding material of each example is a bonding material that has better thermal shock resistance than the bonding material of the comparative example.

上記したように、各実施例の接合材は、作業性と耐熱衝撃性にすぐれた接合材である。そして、各実施例の接合材は、特に、DPF用ハニカム体の接合に用いるときにその効果を発揮する。DPF用ハニカム体は、たとえば、以下に示した方法で製造することができる。   As described above, the bonding material of each example is a bonding material excellent in workability and thermal shock resistance. And the joining material of each Example exhibits the effect, especially when it uses for joining of the honeycomb body for DPF. The DPF honeycomb body can be manufactured, for example, by the method shown below.

まず、10×10×30mmの柱状のDPF用ハニカムパーツを製造し、厚さが1.5〜2.0mmとなるように接合材を塗布した。その後、別のDPF用ハニカムパーツをすりあわせて接合した。この接合物をもう一組作成し、接合物同士を同様にして接合材で接合した。これにより、4つのDPF用ハニカムパーツが接合してなる角柱状のハニカム基材が製造された。   First, a 10 × 10 × 30 mm columnar DPF honeycomb part was manufactured, and a bonding material was applied so as to have a thickness of 1.5 to 2.0 mm. Then, another DPF honeycomb part was rubbed and joined. Another set of this bonded material was prepared, and the bonded materials were bonded together with a bonding material in the same manner. As a result, a prismatic honeycomb substrate formed by joining four DPF honeycomb parts was manufactured.

その後、80℃で乾燥した後に750℃で加熱して接合材を固化させた。そして、外周を切削して円柱形状に整形した後に、再び接合材を外周面に塗布した。   Then, after drying at 80 degreeC, it heated at 750 degreeC and the joining material was solidified. And after cutting the outer periphery and shaping it into a cylindrical shape, the bonding material was again applied to the outer peripheral surface.

これにより、DPF用ハニカム体が製造できた。   Thereby, the honeycomb body for DPF was manufactured.

Claims (1)

セラミックス同士を接合するためのSiC系接合材であって、該接合材は、
溶媒と、
該溶媒に分散したSiC粒子と、
シリカ、アルミナの少なくとも一種よりなり、該溶媒に分散した該SiC粒子の粒径より小さな粒径をもつ球状の微細粒子と、
該溶媒に分散した粘度調整材と、
有し
該微細粒子は、該SiC系接合材全体の質量を100mass%としたときに、30mass%以下で含まれることを特徴とするSiC系接合材。
SiC-based bonding material for bonding ceramics, the bonding material,
A solvent,
SiC particles dispersed in the solvent;
Spherical fine particles having a particle size smaller than the particle size of the SiC particles dispersed in the solvent, comprising at least one of silica and alumina,
A viscosity modifier dispersed in the solvent;
Have
The SiC-based bonding material, wherein the fine particles are contained at 30 mass% or less when the mass of the entire SiC-based bonding material is 100 mass%.
JP2006191497A 2006-07-12 2006-07-12 SiC bonding material Active JP4365839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191497A JP4365839B2 (en) 2006-07-12 2006-07-12 SiC bonding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006191497A JP4365839B2 (en) 2006-07-12 2006-07-12 SiC bonding material

Publications (2)

Publication Number Publication Date
JP2008019119A JP2008019119A (en) 2008-01-31
JP4365839B2 true JP4365839B2 (en) 2009-11-18

Family

ID=39075381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191497A Active JP4365839B2 (en) 2006-07-12 2006-07-12 SiC bonding material

Country Status (1)

Country Link
JP (1) JP4365839B2 (en)

Also Published As

Publication number Publication date
JP2008019119A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
CN1906141B (en) Honeycomb structural body and sealing material layer
US7540898B2 (en) Honeycomb structured body
KR100595769B1 (en) Honeycomb structure
US20070130897A1 (en) Honeycomb structured body, method for manufacturing honeycomb structured body, and exhaust gas purifying device
US7947231B2 (en) Honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purifying apparatus
US20050180898A1 (en) Honeycomb filter for clarification of exhaust gas
US20080241009A1 (en) Honeycomb filter, exhaust gas purifying apparatus, and method for manufacturing honeycomb filter
JPWO2009014200A1 (en) Coating material for honeycomb structure
JPWO2005026074A1 (en) Ceramic sintered body and ceramic filter
JP5469337B2 (en) Honeycomb structure
JP5073209B2 (en) SiC bonding material
JP6320798B2 (en) Honeycomb structure
CN102471173B (en) Process for producing cemented and skinned acicular mullite honeycomb structures
JP2009292709A (en) Silicon carbide porous body
JP5190878B2 (en) Honeycomb structure
JP5060743B2 (en) SiC bonding material
JP4365839B2 (en) SiC bonding material
WO2009101691A1 (en) Honeycomb structure
JP4402732B1 (en) Honeycomb structure
JP6389045B2 (en) Honeycomb structure
JP2008100408A (en) Ceramic honeycomb structure
EP2174698A1 (en) Honeycomb Structure
JP4571989B2 (en) Manufacturing method of ceramic honeycomb structure and coating material used therefor
EP1787702B1 (en) Honeycomb structured body
JP2009196104A (en) Honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090406

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4365839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250