JP4365124B2 - Zinc concentrate leaching process - Google Patents

Zinc concentrate leaching process Download PDF

Info

Publication number
JP4365124B2
JP4365124B2 JP2003087855A JP2003087855A JP4365124B2 JP 4365124 B2 JP4365124 B2 JP 4365124B2 JP 2003087855 A JP2003087855 A JP 2003087855A JP 2003087855 A JP2003087855 A JP 2003087855A JP 4365124 B2 JP4365124 B2 JP 4365124B2
Authority
JP
Japan
Prior art keywords
leaching
zinc concentrate
reaction
zinc
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003087855A
Other languages
Japanese (ja)
Other versions
JP2004292901A (en
Inventor
薫 猿田
学 管野
明 鳴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2003087855A priority Critical patent/JP4365124B2/en
Publication of JP2004292901A publication Critical patent/JP2004292901A/en
Application granted granted Critical
Publication of JP4365124B2 publication Critical patent/JP4365124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、亜鉛製錬の処理対象物である亜鉛硫化物原料(亜鉛精鉱という。)から亜鉛、さらには金、銀、銅、カドミウムおよび鉛等の有価金属元素ならびに副生する単体硫黄を分離、回収する湿式亜鉛製錬における亜鉛精鉱の浸出処理法に関するものである。
【0002】
【従来の技術】
亜鉛精鉱の浸出等に関する従来の技術としては、特公平6−43619号公報(特許文献1という。)および特許第2856933号公報(特許文献2という。)に記載された方法がある。
【0003】
まず、特許文献1に記載の亜鉛精鉱の浸出方法は、亜鉛精鉱を少なくとも2段階以上にわたって浸出する方法であり、鉱石を粉砕して微粒化した後、第1段階浸出では、温度125〜160℃、最終遊離硫酸濃度20〜60g/L、第二鉄濃度1〜5g/Lとなるように酸素圧をかけた状態で加圧浸出を行い、亜鉛を不完全溶解する。その後の第2段階浸出では、大気圧下において、電解処理工程で発生する戻り酸を過剰に用い、遊離硫酸濃度60〜160g/L、第二鉄濃度2〜3g/Lとなるように酸素を供給した状態で浸出を行い、硫酸亜鉛溶液と浸出残渣を形成させる。この際に形成される浸出残渣には残留亜鉛ならびに銅、鉄、大部分の鉛および貴金属が含まれているので、浮選によりこれらの分離、回収を実施するものである。
【0004】
一方、特許文献2に記載の亜鉛精鉱の処理方法は、亜鉛精鉱の浸出が2段階で行われるものであって、亜鉛精鉱を焙焼して亜鉛カ焼物を生成後、中性浸出を行い、浸出液は電解処理工程に供給し、中性浸出残渣については、電解処理工程において得られた戻し酸を用いて強酸浸出を行い、未浸出亜鉛精鉱および焙焼により生成した難溶性のジンクフェライトを分解する。この亜鉛の浸出に必要な三価の鉄イオンはジンクフェライト分解によって生じる鉄量だけでは不十分のため、浸出後液中の二価の鉄イオンを酸化することで再利用するという方法により浸出を行っている。この結果、90〜95℃において6〜10時間かけて99%の亜鉛回収率が達成されたとしている。また、浸出時に生成する残渣は、溶鉱炉を用いて乾式冶金処理して有価金属を回収するか、または浮選により有価金属を濃縮し回収するものである。
【0005】
【特許文献1】
特公平6−43619号公報
【特許文献2】
特許第2856933号公報
【0006】
【発明が解決しようとする課題】
上記の従来方法は、既存の焙焼−浸出−電解工程への組み込みが可能であり、かつ既存設備の増強が少なくてよいという利点があり、また、装入する亜鉛精鉱についての亜鉛の回収率も高く、さらに銅、鉛、および貴金属の回収も同時に行うことが可能であるという優れた点がある。しかし、特許文献1に開示された方法ではその浸出温度条件から鉄、銅が沈殿してしまい、浸出後の残渣中に残るという点、特許文献2に開示された方法では亜鉛を溶液中へ完全に溶解するのに要する時間が長く設備費が高いという点に問題があった。
したがって、亜鉛精鉱から亜鉛を得るために亜鉛の溶け残りが少ない浸出、すなわち浸出率の向上が望まれていた。
また、浸出残渣から硫黄の分離を図るため浮選分離工程を備えているが、選鉱分離コストが高い等の問題もあった。
【0007】
以上のような従来技術の問題点に鑑み、本発明は、亜鉛精鉱から有価金属及び硫黄を回収する浸出方法において、既存の亜鉛製錬操業への組み込みが容易で、亜鉛精鉱の浸出に長時間を必要とせず浸出率が高く、銅および鉄の分離効率がよく、硫黄の回収が容易で、設備費および操業コストも節減できる亜鉛精鉱浸出処理法の提供を目的とするものである。
【0008】
【課題を解決するための手段】
前記の目的を達成するため、本発明者らは種々の検討を重ねた結果、亜鉛精鉱の浸出において、浸出液に酸素ガスまたは酸素含有ガスを吹き込み、さらに強制的にこの酸素ガスまたは酸素含有ガスを循環させることにより亜鉛精鉱の浸出速度および浸出率が飛躍的に向上することを見出した。
また、90℃以上〜硫黄の融点(すなわち120℃。)未満の温度範囲で反応圧力容器であるオートクレーブを使用し、酸素加圧下で強制的に酸素ガスまたは酸素含有ガスを循環させることにより、Fe(II)をFe(III)とする酸化反応速度を向上させ、かつ、浸出残渣を繰り返し浸出させ、浸出反応時間を長くできることで浸出率も向上し、反応容器の規模を縮小することに成功した。なお、上記温度範囲では、鉄、銅の再沈殿が起こることはなく、これらの金属回収率が向上する。
さらに、浸出反応で発生した残渣や微細な硫黄を浸出工程に繰り返して浸出することにより、硫黄結晶が成長して工業的にサイクロンで分級することができ、高純度の硫黄を回収することができる。浸出の完了した残渣は微細な金、銀、鉛等の不溶解金属からなるものであって、分別回収される。
このように、浸出残渣の分級に構造、製作共に簡単で、運転も容易なサイクロンを採用することで浸出残渣の分級処理が効率よく行なわれ、設備費および操業コストが節減できることを見出した。
【0009】
すなわち本発明は、第1に、亜鉛精鉱、硫酸および鉄イオンを含有する反応容器内の浸出液に酸化剤を供給して浸出反応させると共に、前記浸出反応に用いた酸化剤の一部を繰り返し前記反応容器内の浸出液に供給することを特徴とする亜鉛精鉱の浸出処理法;第2に、前記酸化剤が酸素ガスまたは酸素含有ガスである第1記載の亜鉛精鉱の浸出処理法;第3に、亜鉛精鉱、硫酸および鉄イオンを含有する反応容器内の浸出液に酸素ガスまたは酸素含有ガスを供給して酸素加圧雰囲気中で浸出反応させると共に、前記浸出反応に用いた酸素ガスまたは酸素含有ガスの一部を繰り返し前記反応容器内の浸出液に供給することを特徴とする亜鉛精鉱の浸出処理法;第4に、亜鉛精鉱、硫酸および鉄イオンを含有する反応容器内の浸出液に酸化剤を供給して浸出反応させ、次いで得られたスラリーを粒径サイズによって反応生成物と繰り返し物とに分別し、該繰り返し物を前記反応容器内の浸出液に供給することを特徴とする亜鉛精鉱の浸出処理法;第5に、前記処理法によって得られたスラリーを粒径サイズによって反応生成物と繰り返し物とに分別し、該繰り返し物を前記反応容器内の浸出液に供給する第1〜3のいずれかに記載の亜鉛精鉱の浸出処理法;第6に、前記分別がサイクロンによる分級である第4または5に記載の亜鉛精鉱の浸出処理法;第7に、前記浸出反応が90℃以上〜硫黄の融点未満の温度で行われる第1〜6のいずれかに記載の亜鉛精鉱の浸出処理法;第8に、亜鉛精鉱の浸出処理に用いる密閉圧力容器であって、該容器内において、液を撹拌する撹拌部を備え、さらに該容器内の該液の上方に形成した気相部にガスを導入する導入口を、該撹拌部の下方に排出口をそれぞれ配置したガス導入管を備えたことを特徴とする密閉圧力容器を提供するものである。
【0010】
【発明の実施の形態】
本発明を、本発明法の工程図を示す図1を参照して説明する。
亜鉛精鉱を遊離硫酸濃度が150〜200g/Lの電解工程の戻り酸(硫酸溶液)と鉄を除去した後に発生する后液(三価の鉄塩溶液)と混合してスラリー化し、密閉式圧力容器(オートクレーブ)からなる浸出反応槽に添加して撹拌し、90℃以上〜硫黄の融点(120℃)未満の液温範囲で反応終了時の遊離硫酸濃度が10〜50g/Lになるように浸出反応を行なわせると同時に、浸出反応槽を酸素分圧0.8〜1.0MPaの加圧雰囲気に保持しながら、浸出液中に酸素ガスまたは酸素含有ガス等の酸化剤を強制的に循環させることにより、亜鉛精鉱を浸出して硫酸亜鉛液と二価の硫酸鉄と単体硫黄を生成させると共に、反応生成物中の二価の硫酸鉄を三価の硫酸鉄に酸化させ、前記の浸出反応を継続させることができる。
【0011】
さらに、前記浸出反応槽からの浸出後スラリーを、まず第1段のサイクロン分級により、結晶成長した純度の高い単体硫黄からなる硫黄残渣を分別し、残部を第2段のサイクロン分級により、未浸出鉱及び未成長硫黄と、金、銀、鉛等の有価金属からなる浸出残渣とに分別することができる。未浸出鉱と未成長硫黄を含むスラリーは前記の浸出工程に繰り返し加圧浸出工程に戻すことにより、亜鉛の浸出率を高め、単体硫黄を成長させることができる。その後濾過工程により、金、銀、鉛等の有価金属からなる浸出残渣を含む浸出液スラリーから金、銀、鉛等の有価金属からなる固形分(鉛/銀残渣)を分離することができる。
【0012】
加圧浸出工程からの硫酸亜鉛液は、電気亜鉛を得るべく、脱銅処理と脱鉄処理を含む浄液工程を経由して電解工程に供する。また、第1段のサイクロン分級からの硫黄残渣はさらに溶融、濾過して精製硫黄とし、濾過分離された鉛/銀残渣は、有価金属回収工程に供給して成分金属の分離回収を行なう。
本発明の亜鉛精鉱の浸出処理法は、亜鉛精鉱を焙焼して得られた亜鉛焼鉱を出発原料とする既存の亜鉛製錬系統にも好適に組み合わせることができ、その場合、前記の浸出反応槽からの浸出液(硫酸亜鉛液)を主系統の中性浸出槽に供給し、前記の浸出反応槽への硫酸として主系統の電解工程からの亜鉛電解尾液を利用でき、また第2鉄イオン液として主系統の脱鉄処理工程からの脱鉄液を利用することができる。
【0013】
以下、本発明をさらに具体的に説明する。
亜鉛精鉱を亜鉛電解尾液である遊離硫酸濃度150〜200g/Lの硫酸溶液と浸出残渣処理の脱鉄工程からの硫酸第2鉄を含有する脱鉄液に混合した原料スラリーを90℃〜硫黄の融点(120℃)未満の温度範囲まで昇温させて亜鉛の浸出反応を行なわせる。この浸出反応は以下の通りである。
ZnS+Fe(SO→ ZnSO+2FeSO+S … A式
すなわち、このA式の反応を促進するために三価の鉄イオンが必要であって、その鉄イオンとしては処理する亜鉛精鉱中の鉄が利用されるが、浸出時の三価の鉄イオン濃度は5〜60g/Lの範囲、好ましくは5〜15g/Lに設定する。
【0014】
この浸出反応により浸出残渣が発生するが、浸出条件によっては、反応時に鉛ジャロサイトが生成する。この鉛ジャロサイトが存在すると、生成する浸出残渣量が増大するために、残渣処理にかかるコストの増大に繋がる。従って、浸出反応時にはジャロサイト生成を抑制するために浸出終了時点の遊離硫酸濃度を10〜50g/Lにする必要があり、好ましくは40〜50g/Lとする。
【0015】
次に、前記A式の反応を見れば明らかなように、亜鉛精鉱の浸出反応が進行するに伴い、浸出に必要な三価の鉄イオンが消費され減少してくる。三価の鉄イオンがなくなればA式の浸出反応は進行せず、浸出反応が停止する。これを防ぐための方法として、亜鉛精鉱中の亜鉛量に相当する量の三価の鉄を繰り返すか、反応により発生した二価の鉄を酸化することで三価の鉄を再生させ、再利用する方法がある。この酸化反応はB式に示す通りである。
2FeSO+1/2O+HSO→ Fe(SO+HO … B式
この鉄の酸化反応は、大気圧下で行なうと非常に速度が遅い。そのため、オートクレーブなどの圧力容器を使用して酸素分圧を上昇させて加圧状態とし、酸化反応速度を速めるのが望ましい。酸化剤としては過マンガン酸塩、過酸化水素水などでもよいが、好ましくは酸素ガスまたは酸素含有ガスを使用し、さらに好ましくは酸素濃度が99.5%以上のものを使用する。酸化剤の未反応残剤または未溶解の酸素ガスまたは酸素含有ガスを繰り返し浸出液に投入することにより高い浸出率を得ることができる。なお、酸化剤として酸素ガスまたは酸素含有ガスを用いることにより、より安価に、簡易に高い浸出率を得ることができる。
【0016】
酸素の供給量は酸素分圧が0.8〜1.0MPaの一定圧力の加圧雰囲気となるよう圧力計によって制御し、また、この酸素供給量を調整することにより浸出速度を制御することもできる。すなわち、雰囲気の酸素分圧を上昇させることで浸出液中の酸素溶解度を上げ浸出反応を促進すると、酸素ガスまたは酸素含有ガスがさらに浸出液中に供給しやすくなる。すなわち酸素ガスまたは酸素含有ガスを強制的に循環して亜鉛精鉱中の亜鉛の浸出速度を上昇することができる。酸素分圧が0.8MPa未満では必要とする酸化速度が得られず、1.0MPaを超える場合はオートクレーブの耐圧性を上げる必要があり、設備費が上昇する。
【0017】
本発明を実施するための好適な装置の例を図2の浸出反応槽Aで示す。この浸出反応槽Aは圧力容器(オートクレーブ)であって、酸素による劣化を防ぎ耐酸性を持たせる必要があり、内壁等の接触面をチタンでライニングしたものや耐酸レンガを張ったものを使用する。浸出反応槽Aは仕切り板1により複数の反応部屋に区分し、反応の進捗に応じてポンプ手段等により、液が流動するようにするのが望ましい。チタン製の撹拌機2は、仕切られた反応部屋毎に取り付ける。
【0018】
酸素ガスの供給はガス供給配管3による各反応部屋の上部への供給によって行なわれ酸素ガス雰囲気を生成する。浸出液中への酸素ガス導入は各部屋に配置するガス導入管4を用いて行なわれる。ガス導入管4のガス供給口は液面から上方に突出させ、ガス排出口は撹拌羽2aの下方に配置する。撹拌羽2aの下方にガス排出口を配置することにより、撹拌羽2aにより発生する液流によりガス排出口近傍に負圧が発生し、ガス導入管4を通じて浸出液上部の雰囲気酸素ガスを浸出液中に導入する。このガス導入管4は、パイプなどを適宜曲げ加工を行うなどで製作できる。ガス導入管4の径は、供給量に応じるが気泡が細かくなるようにガス供給口が細い方が好ましい。撹拌機2の撹拌羽2aはタービン式のものが好ましい。タービン式の方がガス供給口から送られる酸素ガスが、液中で気泡となりその気泡をタービンの半径方向に拡散されるため酸素ガスのガス溜まりを生ぜず、浸出液の2価鉄との反応性が向上する。また固液誘導のために浸出反応槽Aの壁面に邪魔板を設置してもよい。
【0019】
装入原料スラリーは原料供給管5により仕切られた一端の反応部屋に供給される。各反応部屋において、図示しないポンプ手段等により、浸出液を最初に導入する部屋からの次の部屋に液を移送する際は、最初に導入された部屋の下方から該液を抜き出し、次の部屋に移送するのが好ましい。最初に浸出を行った液は、浸出が完全でない部分の液は、未反応の亜鉛精鉱を含むため比重が高く下方から抜き出す方がより次の浸出部屋で浸出が効率的に行われる。また、酸素ガス導入により液面に泡が多数あるため液面から抜き出すのは効率的ではない。浸出済みの浸出液は他端の反応部屋から、液排出管6により排出される。
【0020】
ガス導入管4により浸出液中に供給された酸素ガスは、浸出液に溶解する。溶解できなかった酸素ガスは、浸出液の液面より上方に流出する。この流出した酸素ガスは、ガス排出管7を経由して再供給缶8に吸引され、その供給口からガス供給配管3を経由して新たな酸素ガスと混合した状態で浸出反応槽Aに導入され、繰り返し浸出液中に供給される。溶解されなかった酸素ガスは圧力調整弁などを介して反応槽外に放出されることもある。
【0021】
前記のように浸出反応槽A内にガス導入管4を配設することにより、浸出速度が向上する。本発明者等が行なった酸化試験、すなわち密閉反応容器に30Lの亜硫酸ソーダを添加し、大気圧、常温下800rpmの撹拌条件で、酸化速度を計測した試験では、液相の酸化速度は時間に対して線形、すなわち正の相関関係を有するものであり、ガス導入管4を使用する場合は、使用しない場合に比べ、その酸化速度は7.7倍であった。このガス導入管4の設置効果は、撹拌羽2aが回転することより下部に負圧が生じ、密閉反応容器内で液相部の上方に形成した気相部中のガスが液中に巻き込まれ、その後ガスが撹拌羽2aによって細かく分散されて気泡となるので、気泡の比表面積の向上と分散性の向上とにより溶解速度が向上するためと思われる。また、明らかではないが、気相部におけるガスは、一度反応に使用されたガスがあるため、酸素以外にも液の成分が蒸発してなるものも含まれ雑多な組成を形成してなり、液への溶解性を向上させている可能性もある。
浸出速度向上の度合いは、酸素分圧、温度、撹拌速度、羽根形状、バッフルの有無など様々な要因により変化し、また、浸出反応においては酸化速度だけでなく、亜鉛精鉱粒子の表面性状によっても全体の反応速度が影響を受けるが、各要件を一定とした場合のガス導入管の設置効果は大きい。
【0022】
以上に述べたように、本方法では90℃〜硫黄の融点(120℃)未満の温度範囲で圧力容器(オートクレーブ)を使用し、酸素加圧下で前記浸出反応と酸化反応を同時に行なうものである。すなわち、酸素加圧下で強制的に酸素ガスまたは酸素含有ガスを循環させ、浸出反応を行なうことで二価の鉄から三価の鉄への酸化反応の速度を向上させ、かつ、一度浸出作用を加えた亜鉛精鉱に繰り返し浸出作用を加え、亜鉛精鉱自体の反応時間を長くすることができるので、浸出率も向上し、このため、圧力容器の規模も縮小することができる。
また、90℃〜硫黄の融点(120℃)未満の温度範囲内ではFe、Cuの再沈殿が起こることはなく、これらの金属回収率は向上する。
以上のような浸出、鉄の酸化を連係的に実施することにより約90分で亜鉛精鉱中の亜鉛分の約95%を浸出させることが可能となり、従来の方法での反応時間を大幅に短縮することが可能となった。
【0023】
浸出残渣は、未浸出鉱と単体硫黄微粒子等からなるが、未浸出鉱には、亜鉛、鉄、銅、カドミウム、鉛、珪素、金、銀などの成分が含まれている。未浸出鉱は、酸に溶解しきれなかったものであるため、浸出初期では粒径が大きい。この未浸出残渣を繰返し浸出工程に戻すことにより、徐々に浸出液に溶解されその粒径は小さくなっていく。したがって、徐々に粒径が小さくなることを利用して、浸出後のスラリーについて粒径の分級を行なえば、硫黄分や他の金属元素を除去できるほか、高純度の硫黄が回収できる。例えば、粒径を100μm以上で分級すれば、100μmより大きい粒径側に硫黄が含まれ、単体硫黄の分離回収が可能になる。その後に分級基準を50μmとして分級すれば50μmより大きい粒径側に未浸出鉱が含まれ、亜鉛などが分離でき、さらにその後に5μmで分級すれば5μmより大きい側に鉛/銀残渣が含まれ、鉛、金、銀が分離回収できる。この粒径の差異は、それぞれの成分の酸に対する溶解性や液中、液外での凝集性が異なるためと思われる。
【0024】
本発明では、特に浸出後のスラリーの分級処理を液体サイクロンによって連係的に行うものであり、運転も容易で工業的に有利に行なえるものである。
前記したように、浸出残渣は、サイクロンにより粒度別で大きく分けて、最も粗大(500μm)な純度の高い硫黄、中間粒度の未浸出亜鉛精鉱と成長過程の硫黄、および微細な金、銀、鉛の混合した鉛または銀残渣に分級される。なお、硫黄の粒子は、浸出直後では微粒子であり1μmに満たないものが殆どであるが、浸出の進行に伴い初期生成の硫黄結晶を核とした成長粒子すなわち造粒粒子として硫黄を成長させることができ、造粒粒子であれば、分級がさらに精度よく行なわれるようになる。
【0025】
粗大硫黄粒は、第1段の液体サイクロンから抜き出されて硫黄回収工程に行き、融点以上の温度で単体硫黄として溶融、濾過されて回収される。第2段の液体サイクロンから抜き出される中粒度の硫黄粒は未浸出鉱と共に浸出工程に繰り返し再度浸出させて粒子を成長させて粗粒硫黄として回収できるようにし、微細径の金、銀、鉛の不溶解金属などを含むものは浸出液(硫酸亜鉛)から濾過分離し、有価金属回収工程において処理される。
【0026】
上記の工程によって固液分離された浸出液(硫酸亜鉛液)は、脱銅処理と脱鉄処理を含む浄液工程を経て電解処理工程へと送液されて液中から亜鉛が電気亜鉛として回収される。亜鉛焼鉱を出発原料とする亜鉛製錬系統と組み合わせている場合は、浸出液はその主系統の中性浸出工程に供給される。
【0027】
【実施例】
以下に本発明をさらに具体的に示した実施例を記載するが、本発明はこれに限定されないことはいうまでもない。
【0028】
〔実施例1〕 亜鉛精鉱の浸出試験を行った。
浸出液として、亜鉛濃度を60g/L、二価の鉄イオン濃度を8g/L、遊離硫酸濃度を100g/Lに調整した水溶液を用意した。
亜鉛精鉱は、表1の組成を有する亜鉛精鉱を使用した。Zn、Fe、Cu、Cd、Pb等の金属元素は、硫化物の形で亜鉛精鉱中に含有されている。亜鉛精鉱の粒度は、メジアン径が20μm、90%粒子径が70μmであった。
【0029】
【表1】

Figure 0004365124
【0030】
浸出液1Lに、上記の亜鉛精鉱60gと共に分散剤としてリグニンスルホン酸カルシウムを亜鉛精鉱1kg当り2.5gの割合で添加して原料スラリーとした。反応容積90Lのオートクレーブに装填し、115℃まで昇温した。昇温後、気相部へ直接酸素ガスを導入して原料スラリーを60L/Hrで供給しながら連続で反応させた。連続的にオートクレーブから抜き出されるスラリーを濾過し、ケーキ(残渣)を十分水洗した後、残渣品位を測定した。その測定結果の残渣品位を表2に示した。浸出時間は90分である。
また、表2において亜鉛精鉱中のPbを基準とし各々の浸出率を表3に示した。二価の鉄イオン濃度が8g/Lであっても高浸出率が得られた。
【0031】
【表2】
Figure 0004365124
【0032】
【表3】
Figure 0004365124
【0033】
〔実施例2〕 次いで分級による残渣処理を行なった。
浸出液として、亜鉛濃度を60g/L、二価の鉄イオン濃度を8g/L、遊離硫酸濃度を100g/Lに調整した水溶液を用意した。
亜鉛精鉱には、Zn、Fe、Cu、Cd、Pbが硫化物形態で含有されている。この亜鉛精鉱を浸出し、生成した細かい硫黄と未浸出亜鉛精鉱を繰り返し浸出することによって、硫黄は徐々に結晶成長し粗粒となった。
また、亜鉛精鉱中のZn、Cu、Cd、Feの可溶性金属は溶出して液中にイオンの形態で存在し、浸出残渣には不溶性金属が微細な結晶として残留した。この浸出後のスラリーをサイクロン分級し、結晶成長した硫黄と不溶性金属の微細な結晶の2種の粒度のものを抜き取り、残りの中間粒度帯に分布する残渣を浸出工程に戻し再度浸出させた。この浸出に供給する亜鉛精鉱と繰り返し浸出する浸出残渣の品位を表4に示した。
【0034】
【表4】
Figure 0004365124
【0035】
この亜鉛精鉱60g、浸出残渣70gを浸出液1Lにてリパルプした。得られたパルプに分散剤としてリグニンスルホン酸カルシウムを亜鉛精鉱1kg当り2.5gの割合で添加し原料スラリーとし、この原料スラリーを反応容積90Lのオートクレーブに装填し115℃まで昇温した。昇温後、気相部へ直接酸素ガスを導入し、原料スラリーを30L/Hrで供給しながら連続で浸出反応を行なった。連続的にオートクレーブから抜き出されるスラリーを濾過し、ケーキ(残渣)を十分水洗した後、残渣品位を測定した。その測定結果の残渣品位を表5に示した。
また、亜鉛精鉱中のPbをベースとした各々金属の浸出率を表6に示した。
【0036】
【表5】
Figure 0004365124
【0037】
【表6】
Figure 0004365124
【0038】
〔実施例3〕 実施例2の表4に示した繰り返し浸出による浸出残渣は、一度浸出された細かい硫黄と未浸出亜鉛精鉱が繰り返し浸出されることで硫黄は、徐々に結晶成長して粗粒となり、可溶性金属は液中に移行し、不溶性金属は微細な結晶で存在する混合残渣である。
この浸出残渣をサイクロサイザーで粒度別にサイクロン分級を行なった。この分級した残渣を光透過式粒度分布計にて測定した結果を図3に示した。試料のサイクロン−1は第1段のサイクロン分級で得られた粒度のものを意味し、以下同様である。また、サイクロン−ofは最終段階におけるオーバーフロー残渣である。なお、サイクロン−1は、粒度が粗く300μm〜700μmになっているため粒度分布では測定できないので図3においては削除してある。また、分級した残渣品位を分析しその品位を表7に示した。
【0039】
【表7】
Figure 0004365124
【0040】
実施例2の表4に示した繰り返し浸出による浸出残渣を湿式サイクロンで分級した場合のサイクロンUF残渣の硫黄品位の推移を図4に示した。また、微細な不溶解性金属からなる残渣をサイクロンで回収した結果の残渣品位を表8に示した。Pbが濃縮されているのがわかる。
【0041】
【表8】
Figure 0004365124
【0042】
以上の結果からサイクロン−1に相当する粒度のものは、極端にS品位が高くなっているので、サイクロンで硫黄を分級回収できることを示している。逆に最も細かい粒度のサイクロン−ofは、Pb品位が高く、未浸出のZn、Fe、Cu、Cdが低くなっている。これは、浸出反応が終了していることを示し、浸出終了残渣はサイクロン−ofとして回収できることを示している。
また、以上のことから、サイクロンの分級度は安定しており、サイクロンで分級し最も粗いものに分布する残渣を抜き出して硫黄回収原料とし、次に、最も細かいものに分布する残渣をサイクロンから抜き出してPb等の有価金属の回収工程原料とすることができる。この硫黄とPb等の有価金属の粒度分布との間に分布する粒度のものは、まだ完全に浸出されていないので浸出工程に戻し繰り返しさらに浸出する。
【0043】
【発明の効果】
本発明では、酸素加圧下における酸素ガスの強制循環により亜鉛精鉱の浸出反応で発生する二価の鉄イオンを三価の鉄イオンとして随時補給し、亜鉛精鉱の浸出が継続して行えるようにしたので、従来法に比べて浸出反応時間を大幅に短縮することができた。さらに、浸出残渣中の未浸出亜鉛精鉱をサイクロン分級により分別し再度浸出するようにしたので、浸出時間、浸出率が改善され、設備費、操業コストの大幅な削減が可能となった。またさらに、浸出残渣をサイクロンのみで硫黄と未浸出亜鉛精鉱と不溶解性有価金属を分級により分別するようにしたので、従来の浮選法による分別法に比べても、設備コスト、操業コストの大幅な削減が可能になった。
また、本発明の方法は、既存の設備への組み込みが可能であり、小規模の建設によって亜鉛生産量の増産を行なうことが可能になるという等の効果を奏するものである。
【図面の簡単な説明】
【図1】本発明方法の工程説明図である。
【図2】本発明方法で使用される浸出反応槽の側断面図である。
【図3】実施例3におけるサイクロン分級の粒径制御による回収浸出残渣の粒度推移を示すグラフである。
【図4】実施例3における繰り返し浸出回数に対応する硫黄品位を示すグラフである。
【符号の説明】
A 浸出反応槽
1 仕切り板
2 撹拌機
2a 撹拌羽
3 ガス供給配管
4 ガス導入管
5 原料供給管
6 液排出管
7 ガス排出管
8 再供給缶[0001]
BACKGROUND OF THE INVENTION
In the present invention, zinc, a valuable metal element such as gold, silver, copper, cadmium and lead, and simple sulfur produced as a by-product from zinc sulfide raw material (referred to as zinc concentrate), which is a treatment object of zinc smelting, are obtained. The present invention relates to a method for leaching zinc concentrate in wet zinc smelting and separating.
[0002]
[Prior art]
Conventional techniques relating to leaching of zinc concentrate include methods described in Japanese Patent Publication No. 6-43619 (referred to as Patent Document 1) and Japanese Patent No. 2856933 (referred to as Patent Document 2).
[0003]
First, the zinc concentrate leaching method described in Patent Document 1 is a method in which zinc concentrate is leached in at least two stages or more. After the ore is pulverized and atomized, in the first stage leaching, a temperature of 125 to Pressure leaching is performed under an oxygen pressure so that the final free sulfuric acid concentration is 20 to 60 g / L and the ferric iron concentration is 1 to 5 g / L at 160 ° C., and zinc is incompletely dissolved. In the subsequent second-stage leaching, oxygen is used so that the free sulfuric acid concentration is 60 to 160 g / L and the ferric iron concentration is 2 to 3 g / L using excess return acid generated in the electrolytic treatment process at atmospheric pressure. Leaching is performed in the supplied state to form a zinc sulfate solution and a leaching residue. Since the leaching residue formed at this time contains residual zinc and copper, iron, most of lead and noble metals, these are separated and recovered by flotation.
[0004]
On the other hand, the zinc concentrate processing method described in Patent Document 2 is a method in which leaching of zinc concentrate is performed in two stages, and after zinc concentrate is roasted to produce zinc calcination, neutral leaching is performed. The leaching solution is supplied to the electrolytic treatment step, and the neutral leaching residue is subjected to strong acid leaching using the return acid obtained in the electrolytic treatment step, and the insoluble leaching zinc concentrate and the sparingly soluble Decomposes zinc ferrite. The trivalent iron ions required for zinc leaching are not sufficient by the amount of iron produced by zinc ferrite decomposition, so leaching is performed by reusing the divalent iron ions in the solution after leaching by oxidation. Is going. As a result, 99% zinc recovery was achieved at 90 to 95 ° C. over 6 to 10 hours. Moreover, the residue produced at the time of leaching is obtained by dry metallurgy treatment using a blast furnace and recovering valuable metals or concentrating and recovering valuable metals by flotation.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 6-43619
[Patent Document 2]
Japanese Patent No. 2856933
[0006]
[Problems to be solved by the invention]
The above-mentioned conventional method has an advantage that it can be incorporated into an existing roasting-leaching-electrolysis process, and there is little increase in existing facilities, and the recovery of zinc from the zinc concentrate to be charged is possible. The rate is high, and further, copper, lead and noble metals can be recovered at the same time. However, in the method disclosed in Patent Document 1, iron and copper are precipitated from the leaching temperature condition, and remain in the residue after leaching. In the method disclosed in Patent Document 2, zinc is completely contained in the solution. There is a problem in that it takes a long time to dissolve in the solution and the equipment cost is high.
Therefore, in order to obtain zinc from zinc concentrate, leaching with little undissolved zinc, that is, improvement of the leaching rate has been desired.
In addition, a flotation separation process is provided to separate sulfur from the leaching residue, but there are also problems such as high separation cost.
[0007]
In view of the problems of the prior art as described above, the present invention is a leaching method for recovering valuable metals and sulfur from zinc concentrate, which can be easily incorporated into existing zinc smelting operations, and leaches zinc concentrate. The purpose is to provide a zinc concentrate leaching treatment method that does not require a long time, has a high leaching rate, has good copper and iron separation efficiency, can easily recover sulfur, and can reduce equipment and operating costs. .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted various studies. As a result, in leaching zinc concentrate, oxygen gas or oxygen-containing gas was blown into the leachate, and the oxygen gas or oxygen-containing gas was forcibly forced. It was found that the leaching rate and the leaching rate of zinc concentrate were drastically improved by circulating the.
In addition, by using an autoclave that is a reaction pressure vessel in a temperature range of 90 ° C. or higher and lower than the melting point of sulfur (that is, 120 ° C.), oxygen gas or oxygen-containing gas is circulated forcibly under oxygen pressure, whereby Fe (II) Fe (III) oxidation reaction rate was improved, and leaching residue was repeatedly leached, and the leaching reaction time was increased, so that the leaching rate was improved and the scale of the reaction vessel was successfully reduced. . In addition, in the said temperature range, reprecipitation of iron and copper does not occur, but these metal recovery rates improve.
Furthermore, the residue and fine sulfur generated in the leaching reaction are repeatedly leached in the leaching process, so that sulfur crystals grow and can be classified industrially by a cyclone, and high-purity sulfur can be recovered. . The leached residue is made of insoluble metal such as fine gold, silver, lead, etc., and is collected separately.
As described above, it was found that by using a cyclone that is simple in structure and production and easy to operate for classification of leachable residue, the leachable residue can be classified efficiently and equipment costs and operation costs can be reduced.
[0009]
That is, according to the present invention, first, an oxidant is supplied to a leaching solution in a reaction vessel containing zinc concentrate, sulfuric acid and iron ions to cause a leaching reaction, and part of the oxidant used in the leaching reaction is repeated. A zinc concentrate leaching treatment method, characterized by being supplied to a leachate in the reaction vessel; and secondly, the zinc concentrate leaching treatment method according to the first aspect, wherein the oxidizing agent is an oxygen gas or an oxygen-containing gas; Third, oxygen gas or an oxygen-containing gas is supplied to a leachate in a reaction vessel containing zinc concentrate, sulfuric acid and iron ions to cause a leaching reaction in an oxygen pressurized atmosphere, and the oxygen gas used in the leaching reaction. Or a method of leaching zinc concentrate characterized in that a part of the oxygen-containing gas is repeatedly supplied to the leachate in the reaction vessel; fourth, in the reaction vessel containing zinc concentrate, sulfuric acid and iron ions Add oxidant to leachate The zinc concentrate is characterized in that it is leached by feeding, and then the obtained slurry is separated into reaction products and repeats according to particle size, and the repeats are supplied to the leachate in the reaction vessel. Leaching treatment method; fifth, the slurry obtained by the treatment method is separated into a reaction product and a repetitive product according to particle size, and the repetitive product is supplied to a leachate in the reaction vessel. The zinc concentrate leaching treatment method according to any one of the above; sixth, the zinc concentrate leaching treatment method according to 4 or 5 wherein the fractionation is classified by cyclone; and seventh, the leaching reaction is performed at 90 ° C. The zinc concentrate leaching treatment method according to any one of 1 to 6 performed at a temperature lower than the melting point of sulfur; and eighth, a sealed pressure vessel used for leaching treatment of zinc concentrate, A stirrer is provided to stir the liquid inside. Further, a sealing pressure characterized by comprising a gas introduction pipe in which an introduction port for introducing gas into a gas phase portion formed above the liquid in the container and a discharge port arranged respectively below the stirring portion are provided. A container is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described with reference to FIG.
Zinc concentrate is slurried by mixing with return acid (sulfuric acid solution) of electrolytic process with free sulfuric acid concentration of 150-200 g / L and after-solution (trivalent iron salt solution) generated after removing iron. Add to a leaching reaction tank consisting of a pressure vessel (autoclave) and stir, so that the free sulfuric acid concentration at the end of the reaction is 10-50 g / L in the liquid temperature range of 90 ° C. or higher and lower than the melting point of sulfur (120 ° C.). At the same time, the leaching reaction vessel is forced to circulate an oxidant such as oxygen gas or oxygen-containing gas in the leachate while maintaining the leaching reaction tank in a pressurized atmosphere with an oxygen partial pressure of 0.8 to 1.0 MPa. By leaching the zinc concentrate, a zinc sulfate solution, divalent iron sulfate and elemental sulfur are generated, and the divalent iron sulfate in the reaction product is oxidized to trivalent iron sulfate. The leaching reaction can be continued.
[0011]
Further, after the leaching slurry from the leaching reaction tank, firstly, a sulfur residue consisting of single unit sulfur having a high crystal purity is separated by first-stage cyclone classification, and the remainder is not leached by second-stage cyclone classification. It can be separated into ore and ungrown sulfur and leaching residues consisting of valuable metals such as gold, silver and lead. The slurry containing unleached ore and ungrown sulfur is returned to the pressure leaching step repeatedly in the above leaching step, so that the leaching rate of zinc can be increased and single sulfur can be grown. Thereafter, the solid content (lead / silver residue) made of valuable metals such as gold, silver, lead and the like can be separated from the leachate slurry containing the leaching residues made of valuable metals such as gold, silver and lead by a filtration step.
[0012]
The zinc sulfate solution from the pressure leaching step is subjected to an electrolysis step through a cleaning step including a copper removal treatment and a iron removal treatment in order to obtain electrozinc. Further, the sulfur residue from the first-stage cyclone classification is further melted and filtered to obtain purified sulfur, and the lead / silver residue filtered and separated is supplied to the valuable metal recovery step to separate and recover the component metals.
The zinc concentrate leaching treatment method of the present invention can be suitably combined with an existing zinc smelting system starting from zinc sinter obtained by roasting zinc concentrate. The leaching solution (zinc sulfate solution) from the leaching reaction tank of the main system is supplied to the neutral leaching tank of the main system, and the zinc electrolytic tail solution from the electrolysis process of the main system can be used as sulfuric acid to the leaching reaction tank. The iron removal liquid from the main system iron removal treatment process can be used as the diiron ion liquid.
[0013]
Hereinafter, the present invention will be described more specifically.
A raw material slurry obtained by mixing zinc concentrate with a sulfuric acid solution having a free sulfuric acid concentration of 150 to 200 g / L, which is a zinc electrolytic tail solution, and a deironing solution containing ferric sulfate from the deironing step of the leach residue treatment is prepared at 90 ° C. The temperature is raised to a temperature range below the melting point of sulfur (120 ° C.) to cause zinc leaching reaction. This leaching reaction is as follows.
ZnS + Fe 2 (SO 4 ) 3 → ZnSO 4 + 2FeSO 4 + S ... A type
That is, trivalent iron ions are required to promote the reaction of the formula A, and iron in the zinc concentrate to be treated is used as the iron ions. The concentration is set in the range of 5-60 g / L, preferably 5-15 g / L.
[0014]
Although a leaching residue is generated by this leaching reaction, lead jarosite is generated during the reaction depending on the leaching conditions. If this lead jarosite exists, the amount of leaching residue to be generated increases, which leads to an increase in the cost for residue processing. Therefore, in order to suppress the formation of jarosite during the leaching reaction, the concentration of free sulfuric acid at the end of leaching needs to be 10 to 50 g / L, preferably 40 to 50 g / L.
[0015]
Next, as apparent from the reaction of the formula A, trivalent iron ions necessary for leaching are consumed and reduced as the leaching reaction of zinc concentrate proceeds. If the trivalent iron ions disappear, the leaching reaction of the formula A does not proceed and the leaching reaction stops. To prevent this, trivalent iron corresponding to the amount of zinc in the zinc concentrate is repeated, or trivalent iron is regenerated by oxidizing the divalent iron generated by the reaction. There are ways to use it. This oxidation reaction is as shown in Formula B.
2FeSO 4 + 1 / 2O 2 + H 2 SO 4 → Fe 2 (SO 4 ) 3 + H 2 O ... B type
This iron oxidation reaction is very slow when carried out at atmospheric pressure. Therefore, it is desirable to increase the partial pressure of oxygen using a pressure vessel such as an autoclave so as to increase the oxidation reaction rate. The oxidant may be permanganate, aqueous hydrogen peroxide or the like, but preferably oxygen gas or oxygen-containing gas is used, and more preferably an oxygen concentration of 99.5% or more is used. A high leaching rate can be obtained by repeatedly introducing unreacted residual agent of oxidant, undissolved oxygen gas or oxygen-containing gas into the leaching solution. Note that by using oxygen gas or oxygen-containing gas as the oxidant, a high leaching rate can be easily obtained at a lower cost.
[0016]
The oxygen supply amount is controlled by a pressure gauge so that the oxygen partial pressure is a constant pressure atmosphere of 0.8 to 1.0 MPa, and the leaching rate can be controlled by adjusting the oxygen supply amount. it can. That is, when the oxygen solubility in the leachate is increased by increasing the oxygen partial pressure of the atmosphere and the leaching reaction is promoted, oxygen gas or oxygen-containing gas is further easily supplied into the leachate. That is, the oxygen leaching rate can be increased by forcibly circulating oxygen gas or oxygen-containing gas. If the oxygen partial pressure is less than 0.8 MPa, the required oxidation rate cannot be obtained, and if it exceeds 1.0 MPa, it is necessary to increase the pressure resistance of the autoclave, which increases the equipment cost.
[0017]
An example of a suitable apparatus for carrying out the present invention is shown as leaching reaction tank A in FIG. This leaching reaction tank A is a pressure vessel (autoclave), and it is necessary to prevent deterioration due to oxygen and to have acid resistance, and uses a contact surface such as an inner wall lined with titanium or a material covered with acid-resistant bricks. . Desirably, the leaching reaction tank A is divided into a plurality of reaction chambers by the partition plate 1, and the liquid flows by pump means or the like according to the progress of the reaction. The titanium stirrer 2 is attached to each partitioned reaction chamber.
[0018]
Oxygen gas is supplied to the upper part of each reaction chamber by the gas supply pipe 3 to generate an oxygen gas atmosphere. Oxygen gas is introduced into the leachate using a gas introduction pipe 4 disposed in each room. The gas supply port of the gas introduction pipe 4 protrudes upward from the liquid level, and the gas discharge port is disposed below the stirring blade 2a. By disposing the gas discharge port below the stirring blade 2a, a negative pressure is generated in the vicinity of the gas discharge port due to the liquid flow generated by the stirring blade 2a, and the atmospheric oxygen gas above the leachate is introduced into the leachate through the gas introduction pipe 4. Introduce. The gas introduction pipe 4 can be manufactured by appropriately bending a pipe or the like. Although the diameter of the gas introduction pipe 4 depends on the supply amount, it is preferable that the gas supply port is narrow so that the bubbles become fine. The stirring blade 2a of the stirrer 2 is preferably a turbine type. In the turbine type, oxygen gas sent from the gas supply port becomes bubbles in the liquid, and the bubbles are diffused in the radial direction of the turbine, so there is no gas accumulation of oxygen gas and the reactivity with the divalent iron in the leachate Will improve. Moreover, you may install a baffle plate in the wall surface of the leaching reaction tank A for solid-liquid induction.
[0019]
The charged raw material slurry is supplied to the reaction chamber at one end partitioned by the raw material supply pipe 5. In each reaction room, when the liquid is transferred from the room where the leachate is first introduced to the next room by a pump means (not shown), the liquid is drawn out from below the first room where the liquid is first introduced. It is preferable to transfer. The first leached liquid has a higher specific gravity because the portion of the liquid that is not completely leached contains unreacted zinc concentrate, so that the leaching can be performed more efficiently in the next leaching chamber than withdrawing from the lower side. Moreover, since there are many bubbles on the liquid surface due to the introduction of oxygen gas, it is not efficient to draw out from the liquid surface. The brewed leachate is discharged from the reaction chamber at the other end by the liquid discharge pipe 6.
[0020]
The oxygen gas supplied into the leachate by the gas introduction pipe 4 is dissolved in the leachate. The oxygen gas that could not be dissolved flows out above the level of the leachate. This outflowing oxygen gas is sucked into the re-supply can 8 through the gas discharge pipe 7 and introduced into the leaching reaction tank A in a state of being mixed with new oxygen gas through the gas supply pipe 3 from the supply port. And repeatedly fed into the leachate. Oxygen gas that has not been dissolved may be released out of the reaction vessel via a pressure control valve or the like.
[0021]
By disposing the gas introduction pipe 4 in the leaching reaction tank A as described above, the leaching speed is improved. In the oxidation test conducted by the present inventors, that is, a test in which 30 L of sodium sulfite was added to a closed reaction vessel and the oxidation rate was measured at 800 rpm under atmospheric pressure and room temperature, the oxidation rate of the liquid phase was time-dependent. On the other hand, it was linear, that is, had a positive correlation, and when the gas introduction pipe 4 was used, its oxidation rate was 7.7 times that when it was not used. The effect of installing the gas introduction pipe 4 is that a negative pressure is generated in the lower part due to the rotation of the stirring blade 2a, and the gas in the gas phase part formed above the liquid phase part in the sealed reaction vessel is entrained in the liquid. Then, since the gas is finely dispersed by the stirring blade 2a to form bubbles, it seems that the dissolution rate is improved by improving the specific surface area of the bubbles and improving the dispersibility. In addition, although not clear, the gas in the gas phase part is a gas once used in the reaction, so that it contains a miscellaneous composition including the liquid component other than oxygen, There is also a possibility of improving the solubility in the liquid.
The degree of improvement in the leaching rate varies depending on various factors such as oxygen partial pressure, temperature, stirring speed, blade shape, presence or absence of baffles, and the leaching reaction depends not only on the oxidation rate but also on the surface properties of the zinc concentrate particles. However, the overall reaction rate is affected, but the effect of installing the gas introduction pipe is large when each requirement is constant.
[0022]
As described above, in this method, a pressure vessel (autoclave) is used in a temperature range of 90 ° C. to less than the melting point of sulfur (120 ° C.), and the leaching reaction and the oxidation reaction are simultaneously performed under oxygen pressure. . In other words, the oxygen gas or oxygen-containing gas is circulated forcibly under oxygen pressure, and the leaching reaction is performed to improve the speed of the oxidation reaction from divalent iron to trivalent iron, and once the leaching action is performed. Since the leaching action can be repeatedly applied to the added zinc concentrate and the reaction time of the zinc concentrate itself can be lengthened, the leaching rate is improved, and therefore the scale of the pressure vessel can be reduced.
Further, within the temperature range of 90 ° C. to less than the melting point of sulfur (120 ° C.), reprecipitation of Fe and Cu does not occur, and the metal recovery rate is improved.
By conducting the above leaching and iron oxidation in a coordinated manner, it is possible to leach about 95% of the zinc content in the zinc concentrate in about 90 minutes, greatly increasing the reaction time in the conventional method. It became possible to shorten.
[0023]
The leaching residue is composed of unleached ore and simple sulfur fine particles, and the unleached ore contains components such as zinc, iron, copper, cadmium, lead, silicon, gold, and silver. Since the unleached ore cannot be completely dissolved in the acid, the particle size is large at the beginning of leaching. By returning this unleached residue to the leaching process repeatedly, it is gradually dissolved in the leaching solution and its particle size becomes smaller. Therefore, if the particle size is classified with respect to the slurry after leaching by utilizing the fact that the particle size is gradually reduced, sulfur content and other metal elements can be removed, and high-purity sulfur can be recovered. For example, if the particle size is classified at 100 μm or more, sulfur is contained on the particle size side larger than 100 μm, and single sulfur can be separated and recovered. Subsequent classification with a classification standard of 50 μm will contain unleached ore on the particle size side larger than 50 μm, and zinc etc. can be separated, and further classification at 5 μm will contain lead / silver residues on the side larger than 5 μm. , Lead, gold and silver can be separated and recovered. This difference in particle size seems to be because the solubility of each component in acid and the cohesiveness in liquid and liquid are different.
[0024]
In the present invention, in particular, the classification of the slurry after leaching is performed in a linked manner using a hydrocyclone, and the operation is easy and industrially advantageous.
As described above, the leaching residue is roughly divided by cyclone according to the particle size, and the most coarse (500 μm) pure sulfur, intermediate-sized unleached zinc concentrate and sulfur during growth, and fine gold, silver, Classified into lead or silver residue mixed with lead. Sulfur particles are fine particles immediately after leaching and are less than 1 μm, but as the leaching progresses, sulfur is grown as a growth particle having an initially formed sulfur crystal as a nucleus, ie, a granulated particle. In the case of granulated particles, classification can be performed with higher accuracy.
[0025]
Coarse sulfur particles are extracted from the first-stage liquid cyclone and go to a sulfur recovery step, where they are melted and filtered as single sulfur at a temperature equal to or higher than the melting point and recovered. Medium-sized sulfur particles extracted from the second-stage hydrocyclone are repeatedly leached together with the unleached ore in the leaching process so that the particles can be grown and recovered as coarse sulfur, and fine gold, silver, and lead Those containing insoluble metals are filtered and separated from the leachate (zinc sulfate) and processed in a valuable metal recovery step.
[0026]
The leachate (zinc sulfate solution) separated into solid and liquid by the above process is sent to the electrolytic treatment process through the cleaning process including the copper removal treatment and the iron removal treatment, and zinc is recovered as electrozinc from the solution. The When combined with a zinc smelting system that uses zinc sinter as a starting material, the leachate is supplied to the neutral leaching process of the main system.
[0027]
【Example】
EXAMPLES Examples illustrating the present invention more specifically will be described below, but it goes without saying that the present invention is not limited thereto.
[0028]
[Example 1] A leaching test of zinc concentrate was conducted.
As a leachate, an aqueous solution was prepared in which the zinc concentration was adjusted to 60 g / L, the divalent iron ion concentration was adjusted to 8 g / L, and the free sulfuric acid concentration was adjusted to 100 g / L.
As the zinc concentrate, a zinc concentrate having the composition shown in Table 1 was used. Metal elements such as Zn, Fe, Cu, Cd, and Pb are contained in the zinc concentrate in the form of sulfides. As for the particle size of the zinc concentrate, the median diameter was 20 μm, and the 90% particle diameter was 70 μm.
[0029]
[Table 1]
Figure 0004365124
[0030]
To 1 L of the leachate, calcium lignin sulfonate as a dispersant was added together with 60 g of the above zinc concentrate at a rate of 2.5 g per kg of zinc concentrate to obtain a raw material slurry. The reactor was charged in an autoclave with a reaction volume of 90 L and heated to 115 ° C. After raising the temperature, oxygen gas was directly introduced into the gas phase part, and the raw material slurry was fed at 60 L / Hr and reacted continuously. The slurry continuously extracted from the autoclave was filtered, and the cake (residue) was sufficiently washed with water, and then the quality of the residue was measured. The residue quality of the measurement results is shown in Table 2. The leaching time is 90 minutes.
Further, in Table 2, Table 3 shows the leaching rate for each of the zinc concentrates based on Pb. Even when the divalent iron ion concentration was 8 g / L, a high leaching rate was obtained.
[0031]
[Table 2]
Figure 0004365124
[0032]
[Table 3]
Figure 0004365124
[0033]
[Example 2] Residue treatment by classification was then performed.
As a leachate, an aqueous solution was prepared in which the zinc concentration was adjusted to 60 g / L, the divalent iron ion concentration was adjusted to 8 g / L, and the free sulfuric acid concentration was adjusted to 100 g / L.
Zinc concentrate contains Zn, Fe, Cu, Cd, and Pb in the form of sulfide. By leaching this zinc concentrate and repeatedly leaching the generated fine sulfur and unleached zinc concentrate, the sulfur gradually crystallized into coarse grains.
In addition, soluble metals such as Zn, Cu, Cd, and Fe in the zinc concentrate were eluted and existed in the form of ions in the liquid, and insoluble metal remained as fine crystals in the leaching residue. The slurry after leaching was classified into cyclones, two kinds of particles of sulfur grown as crystals and fine crystals of insoluble metal were extracted, and the residue distributed in the remaining intermediate particle size zone was returned to the leaching step and leached again. Table 4 shows the grades of zinc concentrate supplied to the leaching and the leaching residue repeatedly leached.
[0034]
[Table 4]
Figure 0004365124
[0035]
60 g of this zinc concentrate and 70 g of leach residue were repulped with 1 L of leachate. Calcium lignin sulfonate as a dispersant was added to the obtained pulp at a rate of 2.5 g per 1 kg of zinc concentrate to obtain a raw material slurry, and this raw material slurry was charged into an autoclave having a reaction volume of 90 L and heated to 115 ° C. After raising the temperature, oxygen gas was directly introduced into the gas phase portion, and leaching reaction was continuously performed while supplying the raw slurry at 30 L / Hr. The slurry continuously extracted from the autoclave was filtered, and the cake (residue) was sufficiently washed with water, and then the quality of the residue was measured. The residue quality of the measurement results is shown in Table 5.
Table 6 shows the leaching rate of each metal based on Pb in the zinc concentrate.
[0036]
[Table 5]
Figure 0004365124
[0037]
[Table 6]
Figure 0004365124
[0038]
[Example 3] The leaching residue by repeated leaching shown in Table 4 of Example 2 is that the fine sulfur once leached and the unleached zinc concentrate are leached repeatedly, so that the sulfur gradually grows and grows coarsely. It becomes a grain, the soluble metal is transferred into the liquid, and the insoluble metal is a mixed residue present in fine crystals.
The leaching residue was classified by cyclone according to particle size using a cyclosizer. The results of measuring the classified residues with a light transmission type particle size distribution meter are shown in FIG. The sample cyclone-1 means the particle size obtained by the first-stage cyclone classification, and so on. Cyclone-of is an overflow residue in the final stage. Since cyclone-1 has a coarse particle size of 300 μm to 700 μm and cannot be measured by the particle size distribution, it is omitted in FIG. 3. Further, the quality of the classified residue was analyzed, and the quality is shown in Table 7.
[0039]
[Table 7]
Figure 0004365124
[0040]
FIG. 4 shows the transition of the sulfur quality of the cyclone UF residue when the leaching residue obtained by repeated leaching shown in Table 4 of Example 2 is classified with a wet cyclone. Table 8 shows the residue quality as a result of recovering the residue made of fine insoluble metal with a cyclone. It can be seen that Pb is concentrated.
[0041]
[Table 8]
Figure 0004365124
[0042]
From the above results, those having a particle size corresponding to Cyclone-1 have an extremely high S grade, indicating that sulfur can be classified and recovered by the cyclone. Conversely, cyclone-of with the finest particle size has high Pb quality and low unleached Zn, Fe, Cu, and Cd. This indicates that the leaching reaction has been completed, and that the leaching completed residue can be recovered as cyclone-of.
In addition, from the above, the cyclone classification is stable, and the cyclone is classified as a raw material for sulfur recovery by extracting the residue distributed in the coarsest, and then the residue distributed in the finest is extracted from the cyclone. Thus, it can be used as a raw material for recovering valuable metals such as Pb. The particles having a particle size distributed between the sulfur and the particle size distribution of the valuable metal such as Pb have not been completely leached yet, so they are returned to the leaching process and repeatedly leached.
[0043]
【The invention's effect】
In the present invention, divalent iron ions generated in the zinc concentrate leaching reaction are supplemented as trivalent iron ions at any time by forced circulation of oxygen gas under oxygen pressure so that zinc concentrate can be leached continuously. As a result, the leaching reaction time was significantly shortened compared to the conventional method. Furthermore, since the unleached zinc concentrate in the leaching residue was classified by cyclone classification and leached again, the leaching time and leaching rate were improved, and the equipment cost and operating cost could be greatly reduced. Furthermore, since the leaching residue is separated only by a cyclone, sulfur, unleached zinc concentrate and insoluble valuable metals are separated by classification, so that the equipment cost and operation cost are compared with the conventional flotation method. It became possible to greatly reduce.
In addition, the method of the present invention can be incorporated into existing facilities, and has the effect that the production of zinc can be increased by small-scale construction.
[Brief description of the drawings]
FIG. 1 is a process explanatory diagram of a method of the present invention.
FIG. 2 is a side sectional view of a leaching reaction tank used in the method of the present invention.
3 is a graph showing changes in the particle size of the recovered leach residue by controlling the particle size of cyclone classification in Example 3. FIG.
4 is a graph showing sulfur quality corresponding to the number of repeated leachings in Example 3. FIG.
[Explanation of symbols]
A leaching reaction tank
1 Partition plate
2 Stirrer
2a Stir feather
3 Gas supply piping
4 Gas introduction pipe
5 Raw material supply pipe
6 Liquid discharge pipe
7 Gas exhaust pipe
8 Re-supply can

Claims (5)

亜鉛精鉱、硫酸および鉄イオンを含有する反応容器内のスラリーに酸化剤を供給して浸出反応させると共に、前記浸出反応に用いた酸化剤の一部を繰り返し前記反応容器内のスラリーに供給し、次いで浸出後のスラリーを第1段の分級を行って結晶成長した粗大硫黄を分別回収し、該分級後の残部スラリーを第2段の分級を行って微細浸出残渣を分別回収し、未浸出亜鉛精鉱と未成長硫黄とを含む該第2段分級後の残部スラリーを前記浸出反応のスラリーに供給することを特徴とする亜鉛精鉱の浸出処理法。An oxidant is supplied to the slurry in the reaction vessel containing zinc concentrate, sulfuric acid and iron ions to cause the leaching reaction, and a part of the oxidant used in the leaching reaction is repeatedly supplied to the slurry in the reaction vessel. Then, the leached slurry is classified in the first stage to collect and collect coarse sulfur which has grown, and the remaining slurry after the classification is classified in the second stage to separate and recover the fine leaching residue. A zinc concentrate leaching treatment method comprising supplying the remaining slurry after the second stage classification containing zinc concentrate and ungrown sulfur to the slurry of the leaching reaction . 前記酸化剤が酸素ガスまたは酸素含有ガスである請求項1記載の亜鉛精鉱の浸出処理法。  The zinc concentrate leaching treatment method according to claim 1, wherein the oxidizing agent is oxygen gas or oxygen-containing gas. 前記反応容器内が酸素加圧雰囲気である、請求項2記載の亜鉛精鉱の浸出処理法。 The zinc concentrate leaching treatment method according to claim 2, wherein the inside of the reaction vessel is an oxygen-pressurized atmosphere. 前記分級がサイクロンによる分級である請求項1〜3のいずれかに記載の亜鉛精鉱の浸出処理法。The method for leaching zinc concentrate according to any one of claims 1 to 3, wherein the classification is classification by a cyclone. 前記浸出反応が90℃以上〜硫黄の融点未満の温度で行われる請求項1〜4のいずれかに記載の亜鉛精鉱の浸出処理法。The leaching treatment method for zinc concentrate according to any one of claims 1 to 4, wherein the leaching reaction is performed at a temperature of 90 ° C or higher and lower than a melting point of sulfur.
JP2003087855A 2003-03-27 2003-03-27 Zinc concentrate leaching process Expired - Fee Related JP4365124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087855A JP4365124B2 (en) 2003-03-27 2003-03-27 Zinc concentrate leaching process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087855A JP4365124B2 (en) 2003-03-27 2003-03-27 Zinc concentrate leaching process

Publications (2)

Publication Number Publication Date
JP2004292901A JP2004292901A (en) 2004-10-21
JP4365124B2 true JP4365124B2 (en) 2009-11-18

Family

ID=33402144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087855A Expired - Fee Related JP4365124B2 (en) 2003-03-27 2003-03-27 Zinc concentrate leaching process

Country Status (1)

Country Link
JP (1) JP4365124B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323177C (en) * 2005-08-25 2007-06-27 株洲冶炼集团有限责任公司 High Iron zinc calcine process method
CN103352116B (en) * 2013-04-07 2015-11-18 昆明理工大学 The method of zinc in microwave-ultrasonic combined recovery high ferro, high plumbous leached mud
CN104263924B (en) * 2014-10-14 2016-06-08 中国瑞林工程技术有限公司 A kind of method and device thereof increasing series connection and flowing leaching tanks material leaching rate
JP6409843B2 (en) * 2016-09-29 2018-10-24 住友金属鉱山株式会社 Reaction vessel and method for leaching metal raw material using the reaction vessel
JP6402761B2 (en) * 2016-09-29 2018-10-10 住友金属鉱山株式会社 Oxygen blowing pipe and method for leaching metal material
JP7180085B2 (en) * 2017-03-22 2022-11-30 住友金属鉱山株式会社 Pressurized reactor and method for leaching valuable metals using the same
CN109279581A (en) * 2018-10-30 2019-01-29 金川集团股份有限公司 A method of recycling sulphur from Copper Residue Leached by Chlorine
CN110152583B (en) * 2019-06-21 2024-05-03 中国恩菲工程技术有限公司 Reduction kettle, control method and device and reduction leaching reaction system
CN110964902A (en) * 2019-12-31 2020-04-07 温州大学 Continuous uniform acid leaching device for oxidized ore
CN111638244B (en) * 2020-06-05 2021-05-11 中南大学 Safety analysis method for zinc concentrate oxygen pressure acid leaching high-sulfur slag
CN113462898B (en) * 2021-06-19 2022-09-06 西部矿业股份有限公司 Oxygen pressure leaching zinc smelting purification impurity removal process
CN115505735A (en) * 2022-10-28 2022-12-23 昆明冶金研究院有限公司 Method for separating silver and zinc from high-zinc silver concentrate
KR102519487B1 (en) * 2022-11-24 2023-04-10 고려아연 주식회사 Method for processing by-product of hydrometallurgical process of zinc with reduced carbon-emission
CN116812874B (en) * 2023-08-30 2023-11-17 昆明理工大学 Method for efficiently recycling sulfur and zinc and silver from zinc hydrometallurgy high-sulfur residues

Also Published As

Publication number Publication date
JP2004292901A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US8052774B2 (en) Method for concentration of gold in copper sulfide minerals
AU700850B2 (en) Atmospheric mineral leaching process
US3949051A (en) Hydrometallurgical process for extracting copper from chalcopyrite or bornite concentrates
US4266972A (en) Process for non-ferrous metals production from complex sulphide ores containing copper, lead, zinc, silver and/or gold
US4004991A (en) Two-stage pressure leaching process for zinc and iron bearing mineral sulphides
RU2117057C1 (en) Method for recovery of zinc and iron from zinc- and iron-containing materials (versions)
US6835230B2 (en) Method for leaching zinc concentrate
JP4365124B2 (en) Zinc concentrate leaching process
US20080173132A1 (en) Integrated hydrometallurgical and pyrometallurgical processing of base-metal sulphides
JPS6247933B2 (en)
WO2007039664A1 (en) Sodium chloride processing of nickel sulphide ore or concentrates
JPH10512926A (en) Hydrometallurgical treatment of smoke
CZ282553B6 (en) Process of continuous hydrometallurgical conversion of copper and/or zinc sulfides from complex ores
JP3087758B1 (en) Method for recovering valuable metals from copper electrolytic slime
US4389248A (en) Method of recovering gold from anode slimes
JP2008266774A (en) Zinc recovery method
CN106629706A (en) Diamond tool bit recovery processing method
JPH11506808A (en) Copper matte electrowinning method
EP3507387B1 (en) Integrated hydrometallurgical and pyrometallurgical method for processing ore
JP2010180450A (en) Method for concentrating gold from copper-sulfide ore
JPH04238816A (en) Preparation of copper arsenate
JPH086153B2 (en) How to recover zinc
US4149945A (en) Hydrometallurgical brass dust reclamation
JPH02197533A (en) Separation of valuable metal
US3687828A (en) Recovery of metal values

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees