JP4365071B2 - Nanocomposite compound of oxide and carbon, and battery using the same - Google Patents

Nanocomposite compound of oxide and carbon, and battery using the same Download PDF

Info

Publication number
JP4365071B2
JP4365071B2 JP2002216926A JP2002216926A JP4365071B2 JP 4365071 B2 JP4365071 B2 JP 4365071B2 JP 2002216926 A JP2002216926 A JP 2002216926A JP 2002216926 A JP2002216926 A JP 2002216926A JP 4365071 B2 JP4365071 B2 JP 4365071B2
Authority
JP
Japan
Prior art keywords
compound
carbon
metal
oxide
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002216926A
Other languages
Japanese (ja)
Other versions
JP2004063141A (en
Inventor
衛平 湯
暁晶 楊
健太 大井
Original Assignee
財団法人かがわ産業支援財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人かがわ産業支援財団 filed Critical 財団法人かがわ産業支援財団
Priority to JP2002216926A priority Critical patent/JP4365071B2/en
Publication of JP2004063141A publication Critical patent/JP2004063141A/en
Application granted granted Critical
Publication of JP4365071B2 publication Critical patent/JP4365071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【0001】
【産業の属する技術分野】
本発明は、電池工学上有用な材料として利用できる金属酸化物と炭素との複合化合物の製造法とそれを用いた電池に関するものである。
【0002】
【従来の技術】
小形携帯電子機器、電気自動車の電源等には、高エネルギー密度化かつ高出力密度化が望まれる。現在、金属酸化物を電極材料として用いた電気化学キャパシタと呼ばれる新しいタイプのエネルギーデバイスが注目されている。金属酸化物系材料には一連の貴金属・弁金属・遷移金属・リチウム遷移金属の酸化物がエネルギー貯蔵材料として用いられている。これらのうちで弁金属は電解キャパシタ材料として使用され、その他の金属は電気化学キャパシタや種々の電池の電極材料として使用されている。
【0003】
金属酸化物を電池に用いた場合には、電極の導電性を保つためには、通常炭素と均一に混ぜて製膜する必要がある。現在の技術としては、通常機械的な混合方法が使われている。この場合、炭素材や金属酸化物の凝集により、特に微細粒子に対して均一な混合は難しいのである。本発明者らは、水溶液とマンガン化合物とを共沈することによって均一化合物を生成する方法を報告している(特開2001−316200、発明の名称「マンガン酸化物単結晶粒子およびその製造法」)。
【0004】
【発明が解決しようとする課題】
本発明は、炭素と混合した金属化合物の熱分解反応を利用して、金属酸化物と炭素との均一ナノサイズ複合化合物の調製法、また製造した複合化合物を電池などのデバイスに用いる技術の提供を目的としている。
【0005】
【課題を解決するための手段】
本発明は、金属化合物、その水和物、またはその溶液と炭素とを混合し加熱することによって生成する酸化物と炭素のナノ複合化合物を要旨としている。
【0006】
二種類以上の金属化合物、その水和物、またはその溶液を用いたものであり、その場合、本発明は、二種類以上の金属化合物、その水和物、またはその溶液と炭素とを混合し加熱することによって生成する酸化物と炭素のナノ複合化合物である。
【0007】
目的の化合物によって加熱する際の雰囲気を制御しており、その場合、本発明は、金属化合物、必要に応じ二種類以上の金属化合物、その水和物、またはその溶液と炭素とを混合し、目的の化合物によって加熱する際の雰囲気を制御して加熱することによって生成する酸化物と炭素のナノ複合化合物である。
【0008】
比表面積の異なった炭素材を用いることによって組成、形状および/または粒子サイズが制御されており、その場合、本発明は、金属化合物、必要に応じ二種類以上の金属化合物、その水和物、またはその溶液と炭素とを混合し加熱する、好ましくは目的の化合物によって加熱する際の雰囲気を制御して加熱することによって、比表面積の異なった炭素材を用いることによって組成、形状および/または粒子サイズが制御されることによって生成する酸化物と炭素のナノ複合化合物である。
【0009】
また、本発明は、上記のいずれかのナノ複合化合物を用いたリチウム二次電池やキャパシタなどのデバイスを要旨としている。
【0010】
【発明の実施の形態】
本発明は、ナノサイズの金属酸化物と炭素との複合化合物、およびこの複合化合物を用いる電池やキャパシタに関するものである。
また、本発明は、炭素材と金属化合物とを混合し、炭素材分解しない温度下で金属化合物を分解させて生成する金属酸化物と炭素材の製造法、及びこの複合化合物を用いた電極を使用する電池の製造技術である。
【0011】
低温で分解する金属塩が硝酸塩や炭酸塩、水酸化物、又はこれらの混合塩であり、その場合、本発明は、これらの化合物を炭素材と混合し、炭素材を分解せず、用いた金属硝酸塩や炭酸塩、水酸化物またはその混合物を分解し金属酸化物に相変化することによって、金属酸化物と炭素材との複合化合物の製造法である。
さらに、この複合化合物を製膜することによって作成する電池の製造法である。
【0012】
炭素化合物を分解せず金属化合物を分解するには、炭素材の種類にもよるが一般に600℃以下の温度を制御することができるが、真空や不活性ガス雰囲気の制御下で進行することができる。その場合、本発明は、低温で分解する金属塩、より具体的には硝酸マンガン、硝酸コバルトや硝酸ニッケル、硝酸クロムなどと炭素材たとえばアセチレンブラックと混合した後空気中あるいは雰囲気制御した環境化でこれらの金属塩の分解反応を進行させる製造法である。
【0013】
二種類以上の塩を使用する場合には、予め金属硝酸塩や炭酸塩、水酸化物やその水和物、あるいは溶液を混合し作成した混合物と炭素材とを混合し、又は金属硝酸塩や炭酸塩、水酸化物やその水和物、あるいは溶液と炭素材とを所定量で混合し、反応場に導入することによって金属酸化物と炭素との複合化合物を生成させており、その場合、本発明は、二種類以上の分解性金属塩と炭素材とを、450℃以下、又は雰囲気制御した反応場に導入して分解反応を進行させて複合化合物を生成させる金属酸化物と炭素材との複合化合物製造法である。
【0014】
〔原料化合物〕
原料化合物としての金属化合物は、いずれも公知のものが使用できるが、低温や不活性ガス環境で分解する塩でなければならない。例えば、リチウム、マンガン、コバルトなどの硝酸塩や炭酸塩、水酸化物などが挙げられる。
【0015】
〔生成物の組成や形態制御〕
生成物の組成は原料化合物の種類を選択することによって制御できる他、加熱温度や雰囲気などのコントロールで制御できるたとえば、Mn(NOを用いてMnOと炭素との複合化合物を調製する場合には、450℃以下の比較的に低温が好ましいことに対して、同様な系で真空下で分解反応を進行させるとより低温化で進行することができる。反応場または炭素の選択によって微細のナノサイズ粒子からミクロオーダサイズの結晶までの調製が可能になる。
【0016】
〔加熱温度〕
複合化合物を得るためには、金属塩あるいは十分に混合したそれらの混合物を加熱すればよい。加熱温度は用いる金属塩の分解温度以上と炭素材を分解する温度以下の間にすればよいが、マンガン、鉄などの遷移金属酸化物の場合には、金属の原子価が温度に大きく影響されるために温度の設定が重要である。
【0017】
〔雰囲気〕
複合化合物を得るためには、空気中における反応も可能であるが、特定の酸化物を得るためには酵素分圧を制御するのが重要である。雰囲気を制御するには、酸素ガス、窒素ガス、あるいはその混合ガスなどの導入で制御できるが、反応場に酸化−還元性の試薬を添加することによって制御することも可能になる。
【0018】
【作用】
金属硝酸塩や炭酸塩、水酸化物やその水和物、あるいは溶液を加熱すると、これらの化合物は分解し、酸化物になることが分かっているが、ほとんどの場合には、数十ミクロン以上のサイズの粒子や塊を生成する。
本発明は、金属硝酸塩や炭酸塩、水酸化物やその水和物、あるいは溶液と炭素材とを混合し、これらの化合物を炭素材表面に付着する。その後、加熱分解することによって金属酸化物・炭素材ナノ複合体が得られる。
したがって、使用される炭素材の表面積は重要である。より小さいナノ粒子を得るためには、高い表面積の炭素材を用いることが適当である。
【0019】
マンガンやコバルト、クロムの硝酸塩は300℃以下の低温で分解することが知られている。この温度では炭素材の分解がおこらない。したがって、両者の混合物を適当な温度や雰囲気で加熱すると、金属酸化物と炭素材との複合化合物が生成できる。
例えば、マンガンの硝酸塩は200℃以上加熱すると分解し、二酸化マンガンが生成する。他方の炭素材のアセチレンブラックは460℃以上分解するので、200−460℃の間で加熱すると、二酸化マンガン・アセチレンブラックの複合体が得られる。反応場の酸素圧力によっては硝酸マンガンはMn、Mnに分解することができるため、この場合にはMn、Mnとアセチレンブラックの複合体がえられる。
【0020】
本発明のリチウム二次電池において上記複合化合物を正極活物質として使用する。正極の作成は、従来法と同様であるが、本複合化合物には炭素材が含んでいるため、導電材の添加は不要である。
一方、負極は活物質としては、リチウムイオンを吸蔵、放出しうる物質であれば特に制限されず、例えば、金属リチウム、リチウム−アルミニウム、リチウム−水銀、リチウム−鉛、リチウム−錫、ウッド合金などのリチウム合金、ポリアセチレン、グラファイトなどの炭素化合物とリチウムの複合体などが上げることができる。
さらに、電解質としては、従来リチウム電池に使用されるものであれば特に制限はない。
【0021】
【実施例】
本願発明の詳細を実施例で説明する。本願発明はこれら実施例によって何ら限定されるものではない。
【0022】
実施例1
Mn(NO・6HO(液体状、11.5g)と1gのアセチレンブラックとをよく混合し、320℃で8時間加熱した。加熱終了後、複合化合物が得られる。
得られる複合化合物は、100nm程度以下のの粒子である(図1)。炭素材とマンガン酸化物粒子の区別がつかない。TEM観察から、アセチレンブラックとマンガン酸化物との結合は確認できる。
【0023】
実施例2
実施例1で得られた複合化合物とテフロン(登録商標)繊維との混合した後、成型し正極を作成した。リチウム金属を負極にし、電解質として1M LiPF/EC+DEC(1:1)を用いてコイン型電池を作成した。電池の充放電は4.9−1.2Vで行った。
一回目の放電は320mAh/gの高い容量を得た(図2)。また20までは安定なサイクル特性を示した。
【0024】
比較例1
Mn(NO・6HOを320℃で8時間加熱した。得られた生成物はβ−MnOであり、SEM写真から5マイクロメーター以上の粒子であることが分かる(図3)。
【0025】
【発明の効果】
電池工学上有用な材料として利用できるマンガン酸化物・アセチレンブラックナノ複合化合物を提供することができる。
【図面の簡単な説明】
【図1】MnO・アセチレンブラック複合化合物
【図2】一回目の放電曲線と20回目までの充放電曲線
【図3】Mn(NO・6HOの熱分解で得られた二酸化マンガン
[0001]
[Technical field to which industry belongs]
The present invention relates to a method for producing a composite compound of metal oxide and carbon that can be used as a material useful in battery engineering, and a battery using the same.
[0002]
[Prior art]
High energy density and high output density are desired for power sources of small portable electronic devices and electric vehicles. Currently, a new type of energy device called an electrochemical capacitor using a metal oxide as an electrode material has attracted attention. A series of noble metal, valve metal, transition metal, and lithium transition metal oxides are used as energy storage materials for metal oxide materials. Among these, valve metals are used as electrolytic capacitor materials, and other metals are used as electrode materials for electrochemical capacitors and various batteries.
[0003]
When a metal oxide is used in a battery, it is usually necessary to form a film that is uniformly mixed with carbon in order to maintain the conductivity of the electrode. As the current technology, a mechanical mixing method is usually used. In this case, due to the aggregation of the carbon material and the metal oxide, it is particularly difficult to uniformly mix the fine particles. The present inventors have reported a method for producing a homogeneous compound by coprecipitation of an aqueous solution and a manganese compound (Japanese Patent Laid-Open No. 2001-316200, title of invention “Manganese oxide single crystal particles and method for producing the same”). ).
[0004]
[Problems to be solved by the invention]
The present invention provides a method for preparing a uniform nano-sized composite compound of metal oxide and carbon using a thermal decomposition reaction of a metal compound mixed with carbon, and a technique for using the manufactured composite compound in a device such as a battery. It is an object.
[0005]
[Means for Solving the Problems]
The gist of the present invention is an oxide-carbon nanocomposite compound produced by mixing and heating a metal compound, a hydrate thereof, or a solution thereof and carbon.
[0006]
Two or more types of metal compounds, hydrates thereof, or solutions thereof are used, and in this case, the present invention mixes two or more types of metal compounds, hydrates thereof, or solutions thereof with carbon. It is a nanocomposite compound of oxide and carbon produced by heating.
[0007]
The atmosphere at the time of heating is controlled by the target compound, and in this case, the present invention mixes a metal compound, if necessary, two or more kinds of metal compounds, hydrates thereof, or a solution thereof and carbon, It is an oxide and carbon nanocomposite compound produced by controlling the atmosphere when heated by the target compound.
[0008]
The composition, shape, and / or particle size are controlled by using carbon materials having different specific surface areas. In this case, the present invention provides a metal compound, two or more kinds of metal compounds as necessary, hydrates thereof, Alternatively, by mixing and heating the solution and carbon, preferably by controlling the atmosphere when heating with the target compound, the composition, shape and / or particles are obtained by using carbon materials having different specific surface areas. It is an oxide and carbon nanocomposite compound produced by controlling the size.
[0009]
In addition, the gist of the present invention is a device such as a lithium secondary battery or a capacitor using any one of the above nanocomposite compounds.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a composite compound of nano-sized metal oxide and carbon, and a battery and a capacitor using the composite compound.
In addition, the present invention provides a method for producing a metal oxide and a carbon material produced by mixing a carbon material and a metal compound and decomposing the metal compound at a temperature at which the carbon material is not decomposed, and an electrode using the composite compound. This is the manufacturing technology of the battery used.
[0011]
The metal salt that decomposes at a low temperature is nitrate, carbonate, hydroxide, or a mixed salt thereof. In this case, the present invention was used without mixing the carbon material and decomposing the carbon material. This is a method for producing a composite compound of a metal oxide and a carbon material by decomposing a metal nitrate, carbonate, hydroxide or a mixture thereof and changing the phase into a metal oxide.
Furthermore, it is a manufacturing method of the battery produced by forming this complex compound into a film.
[0012]
In order to decompose the metal compound without decomposing the carbon compound, although it can be controlled generally at a temperature of 600 ° C. or less depending on the type of the carbon material, it may proceed under the control of a vacuum or an inert gas atmosphere. it can. In that case, the present invention is a metal salt that decomposes at a low temperature, more specifically, in an environment controlled in air or atmosphere after mixing with manganese nitrate, cobalt nitrate, nickel nitrate, chromium nitrate, etc. and a carbon material such as acetylene black. This is a production method in which the decomposition reaction of these metal salts proceeds.
[0013]
When two or more kinds of salts are used, a metal nitrate or carbonate, a hydroxide or a hydrate thereof, or a mixture prepared by mixing a solution and a carbon material are mixed, or a metal nitrate or carbonate is mixed. In addition, a composite compound of a metal oxide and carbon is produced by mixing a predetermined amount of a hydroxide or a hydrate thereof, or a solution and a carbon material, and introducing the mixture into a reaction field. Is a composite of a metal oxide and a carbon material, in which two or more kinds of decomposable metal salts and a carbon material are introduced into a reaction field of 450 ° C. or lower, or an atmosphere is controlled, and a decomposition reaction proceeds to generate a composite compound. It is a compound manufacturing method.
[0014]
[Raw compound]
Any known metal compound can be used as the raw material compound, but it must be a salt that decomposes at a low temperature or in an inert gas environment. For example, nitrates, carbonates, hydroxides, etc. of lithium, manganese, cobalt, etc. are mentioned.
[0015]
[Product composition and morphology control]
The composition of the product can be controlled by selecting the type of raw material compound, and can be controlled by controlling the heating temperature, atmosphere, etc. For example, a composite compound of MnO 2 and carbon is prepared using Mn (NO 3 ) 2 In some cases, a relatively low temperature of 450 ° C. or lower is preferable, but if the decomposition reaction is allowed to proceed in a similar system under vacuum, it can proceed at a lower temperature. The choice of reaction field or carbon allows the preparation of fine nano-sized particles to micro-order sized crystals.
[0016]
〔Heating temperature〕
In order to obtain a composite compound, a metal salt or a sufficiently mixed mixture may be heated. The heating temperature may be between the decomposition temperature of the metal salt used and the temperature below the decomposition temperature of the carbon material. In the case of transition metal oxides such as manganese and iron, the valence of the metal is greatly affected by the temperature. Therefore, the temperature setting is important.
[0017]
〔atmosphere〕
In order to obtain a complex compound, a reaction in air is possible, but in order to obtain a specific oxide, it is important to control the enzyme partial pressure. The atmosphere can be controlled by introducing oxygen gas, nitrogen gas, or a mixed gas thereof, but can also be controlled by adding an oxidizing-reducing reagent to the reaction field.
[0018]
[Action]
Heating metal nitrates and carbonates, hydroxides and their hydrates, or solutions, these compounds have been shown to decompose and become oxides, but in most cases they are several tens of microns or more. Generate particles and lumps of size.
In the present invention, a metal nitrate, carbonate, hydroxide or hydrate thereof, or a solution and a carbon material are mixed, and these compounds are attached to the surface of the carbon material. Then, a metal oxide / carbon material nanocomposite is obtained by thermal decomposition.
Therefore, the surface area of the carbon material used is important. In order to obtain smaller nanoparticles, it is appropriate to use a carbon material with a high surface area.
[0019]
It is known that nitrates of manganese, cobalt, and chromium are decomposed at a low temperature of 300 ° C. or lower. At this temperature, the carbon material does not decompose. Therefore, when the mixture of both is heated at an appropriate temperature or atmosphere, a composite compound of a metal oxide and a carbon material can be generated.
For example, manganese nitrate is decomposed when heated to 200 ° C. or more to produce manganese dioxide. Since the acetylene black of the other carbon material decomposes at 460 ° C. or higher, a composite of manganese dioxide and acetylene black is obtained when heated at 200-460 ° C. Depending on the oxygen pressure in the reaction field, manganese nitrate can be decomposed into Mn 2 O 3 and Mn 3 O 4. In this case, a complex of Mn 2 O 3 , Mn 3 O 4 and acetylene black is obtained.
[0020]
In the lithium secondary battery of the present invention, the composite compound is used as a positive electrode active material. The production of the positive electrode is the same as in the conventional method, but since the composite compound contains a carbon material, it is not necessary to add a conductive material.
On the other hand, the negative electrode is not particularly limited as long as it is a material capable of occluding and releasing lithium ions. For example, metallic lithium, lithium-aluminum, lithium-mercury, lithium-lead, lithium-tin, wood alloy, etc. A lithium alloy, a polyacetylene, a carbon composite such as graphite, and a lithium complex can be raised.
Further, the electrolyte is not particularly limited as long as it is conventionally used for lithium batteries.
[0021]
【Example】
The details of the present invention will be described in Examples. The present invention is not limited to these examples.
[0022]
Example 1
Mn (NO 3 ) 2 · 6H 2 O (liquid, 11.5 g) and 1 g of acetylene black were mixed well and heated at 320 ° C. for 8 hours. After completion of the heating, a composite compound is obtained.
The obtained composite compound is a particle of about 100 nm or less (FIG. 1). Indistinguishable between carbon and manganese oxide particles. From the TEM observation, the bond between acetylene black and manganese oxide can be confirmed.
[0023]
Example 2
The composite compound obtained in Example 1 and Teflon (registered trademark) fiber were mixed, and then molded to prepare a positive electrode. A coin-type battery was prepared using lithium metal as a negative electrode and 1M LiPF 6 / EC + DEC (1: 1) as an electrolyte. The battery was charged and discharged at 4.9-1.2V.
The first discharge obtained a high capacity of 320 mAh / g (FIG. 2). Up to 20 showed stable cycle characteristics.
[0024]
Comparative Example 1
Mn (NO 3 ) 2 · 6H 2 O was heated at 320 ° C. for 8 hours. The obtained product is β-MnO 2 , and it can be seen from the SEM photograph that the particles are 5 micrometers or more (FIG. 3).
[0025]
【The invention's effect】
It is possible to provide a manganese oxide / acetylene black nanocomposite compound that can be used as a material useful in battery engineering.
[Brief description of the drawings]
FIG. 1 MnO 2 .acetylene black composite compound FIG. 2 First discharge curve and charge / discharge curve up to 20th FIG. 3 Dioxide obtained by thermal decomposition of Mn (NO 3 ) 2 · 6H 2 O manganese

Claims (5)

遷移金属の硝酸塩、炭酸塩、水酸化物から選ばれた1種または2種以上の金属化合物をアセチレンブラックの表面に付着させ、200〜460℃に加熱して該化合物を分解することにより得られたナノサイズの金属酸化物と炭素材料との複合化合物。 It is obtained by attaching one or more metal compounds selected from transition metal nitrates, carbonates and hydroxides to the surface of acetylene black and heating to 200 to 460 ° C. to decompose the compounds. Compound of nano-sized metal oxide and carbon material . 遷移金属が、マンガン、コバルトまたはクロムである請求項1複合化合物。 The composite compound according to claim 1 , wherein the transition metal is manganese, cobalt or chromium . 目的の化合物によって加熱する際の雰囲気を制御する請求項1または2の複合化合物。  The composite compound according to claim 1 or 2, which controls an atmosphere when heated by a target compound. 遷移金属の硝酸塩、炭酸塩、水酸化物から選ばれた1種または2種以上の金属化合物をアセチレンブラックの表面に付着させ、200〜460℃に加熱して該化合物を分解することを特徴とするナノサイズの金属酸化物と炭素材料からなる複合化合物の製造方法。One or more metal compounds selected from nitrates, carbonates and hydroxides of transition metals are attached to the surface of acetylene black, and the compounds are decomposed by heating to 200 to 460 ° C. A method for producing a composite compound comprising a nano-sized metal oxide and a carbon material. 請求項1ないし4のいずれかの複合化合物を用いたリチウム二次電池またはキャパシタデバイス。  A lithium secondary battery or a capacitor device using the composite compound according to claim 1.
JP2002216926A 2002-07-25 2002-07-25 Nanocomposite compound of oxide and carbon, and battery using the same Expired - Fee Related JP4365071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216926A JP4365071B2 (en) 2002-07-25 2002-07-25 Nanocomposite compound of oxide and carbon, and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216926A JP4365071B2 (en) 2002-07-25 2002-07-25 Nanocomposite compound of oxide and carbon, and battery using the same

Publications (2)

Publication Number Publication Date
JP2004063141A JP2004063141A (en) 2004-02-26
JP4365071B2 true JP4365071B2 (en) 2009-11-18

Family

ID=31938545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216926A Expired - Fee Related JP4365071B2 (en) 2002-07-25 2002-07-25 Nanocomposite compound of oxide and carbon, and battery using the same

Country Status (1)

Country Link
JP (1) JP4365071B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209171B2 (en) * 2004-03-11 2013-06-12 株式会社Kri Capacitor and manufacturing method thereof
KR101153480B1 (en) * 2010-06-24 2012-06-11 연세대학교 산학협력단 A lithium manganese oxide-carbon nano composite and a fabricating method thereof
KR101337365B1 (en) * 2010-09-20 2013-12-05 주식회사 엘지화학 Cathode Active Material with High Capacity and Improved Conductivity and Non-aqueous Electrolyte Secondary Battery Comprising the Same
JP5664404B2 (en) * 2011-03-29 2015-02-04 東レ株式会社 Metal compound-conductive agent composite, lithium secondary battery using the same, and method for producing metal compound-conductive agent composite

Also Published As

Publication number Publication date
JP2004063141A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
CN102869613B (en) Nickel complex hydroxide particle and rechargeable nonaqueous electrolytic battery
JP6485232B2 (en) Method for producing positive electrode active material
US8277683B2 (en) Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries
JP6176152B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2009120019A1 (en) Olivine-type cathode active material precursor for lithium battery, olivine-type cathode active material for lithium battery, method for preparing the same and lithium battery with the same
KR100578447B1 (en) Process for manufacturing nano-crystalline cathode material for high rate lithum rechargeable battery by self-mixing method
KR20140126302A (en) Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JP2012254889A (en) Nickel/manganese composite hydroxide particle and method of manufacturing the same, cathode active material for nonaqueous electrolyte secondary cell and method of manufacturing the same, and nonaqueous electrolyte secondary cell
JP2009029670A (en) Olivine-type lithium iron phosphate compound and method for producing the same, positive electrode active substance, and non-aqueous electrolyte battery using olivine-type lithium iron phosphate compound
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
JP2018190720A (en) Positive electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery
JP7452569B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP6933143B2 (en) A method for producing a positive electrode active material precursor for a non-aqueous electrolyte secondary battery, a method for producing a positive electrode active material precursor for a non-aqueous electrolyte secondary battery, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
Zhang et al. Simplified co-precipitation synthesis of spinel LiNi0. 5Mn1. 5O4 with improved physical and electrochemical performance
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP7452570B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2023040082A (en) Metal complex hydroxide and production method therefor, cathode active material for lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery using the same
JP2023027147A (en) Metal composite hydroxide and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery using the same
JP7206819B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP7293576B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using the same
JP4522682B2 (en) Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
CN106946296B (en) A kind of micron order monocrystalline lithium nickelate and its preparation method and application
TW201704155A (en) Lithium-nickel-manganese composite oxide, method for producing the same, and positive electrode, electricity storage device eachusing the same
JP2019077577A (en) Transition metal composite hydroxide particles, production method thereof, positive electrode active material for lithium ion secondary battery, production method thereof, and lithium ion secondary battery
JP4365071B2 (en) Nanocomposite compound of oxide and carbon, and battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees