JP4364321B2 - Two-stage cyclone system - Google Patents

Two-stage cyclone system Download PDF

Info

Publication number
JP4364321B2
JP4364321B2 JP16468498A JP16468498A JP4364321B2 JP 4364321 B2 JP4364321 B2 JP 4364321B2 JP 16468498 A JP16468498 A JP 16468498A JP 16468498 A JP16468498 A JP 16468498A JP 4364321 B2 JP4364321 B2 JP 4364321B2
Authority
JP
Japan
Prior art keywords
stage cyclone
cyclone
stage
ash
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16468498A
Other languages
Japanese (ja)
Other versions
JPH11347454A (en
Inventor
久幸 折田
知彦 宮本
守 水本
修 伊藤
輝幸 岡崎
雅人 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP16468498A priority Critical patent/JP4364321B2/en
Publication of JPH11347454A publication Critical patent/JPH11347454A/en
Application granted granted Critical
Publication of JP4364321B2 publication Critical patent/JP4364321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【0001】
【発明の属する技術分野】
本発明は遠心力を利用した高性能脱塵装置に関する。
【0002】
【従来の技術】
遠心力を利用した高性能脱塵装置は加圧流動層複合発電システム(以下、PFBCと表記)で使われている。PFBCでは、ガスタービンの翼の摩耗を防ぐためにマルチサイクロンを直列に接続した二段サイクロンシステムで高性能化を図っている。この技術は特開平9−271695号公報に記載されているが、該方式の二段サイクロンシステムでは各段のマルチサイクロンを別々の圧力容器に収納することになるため、複数基の圧力容器を必要とし、建設コストが高くなる。
【0003】
【発明が解決しようとする課題】
本発明の目的は、二段サイクロンシステムでの建設コストを低減することにある。
【0004】
【課題を解決するための手段】
本発明の請求項1,2記載の二段サイクロンは、一つの圧力容器に収納することによって達成される。
【0005】
具体的には、圧力容器内に挿入した配管と該配管に一段目サイクロンの入口を接続し、一段目サイクロンの除塵ガス出口に二段目サイクロンの入口を接続し、一段目サイクロンと二段目サイクロンの各捕集灰出口に灰放出空間を各々設ける。一段目サイクロンの灰放出空間の上方に二段目サイクロンの灰放出空間を設け、一段目サイクロンの灰放出空間が前記圧力容器の最下部に設けられ、その上側に二段目サイクロンの灰放出空間が設けられるように、それぞれを隔壁によって仕切ることである。
【0006】
また、請求項2記載の二段サイクロンシステムは、各段のサイクロンが複数個であって、一段目サイクロンの各除塵ガス出口が集合管に接続され、該集合管から再分岐されて二段目サイクロンの各入口に接続することである。
【0007】
また、請求項3記載の二段サイクロンシステムは、各段のサイクロンとも捕集灰出口径を除塵ガス出口径より太くすることである。
【0008】
また、請求項4記載の二段サイクロンシステムは、各段のサイクロンの捕集灰出口の真下に円錐型の突起物を設け、該突起物を前記隔壁上面に固定することである。
【0009】
また、請求項5記載の二段サイクロンシステムは、圧力容器側壁の二段目サイクロンの灰放出空間の下部に灰を排出する配管を接続し、該配管の後流にブローダウンサイクロンを設け、該ブローダウンサイクロンのガス出口後流に排ガス冷却器を設け、該排ガス冷却器後流に流量調節バルブを備えることである。
【0010】
また、請求項6記載の二段サイクロンシステムは、二段目サイクロンの灰放出空間の圧力とブローダウンサイクロンのガス出口の圧力を測定する測定装置と、それらの各測定圧を取り込み、圧力差から前記バルブに開度の指令を転送し、ガス量を自動制御する装置を備えることである。
【0011】
即ち、本発明の二段サイクロンシステムでは、一段目サイクロンの灰放出空間と二段目サイクロンの灰放出空間に隔壁を設けている。これによって、一段目サイクロンの捕集灰出口から二段目サイクロンの捕集灰出口へガス及び灰が迂回することを防ぐことができる。
【0012】
一段目サイクロンの灰放出空間を圧力容器の最下部に配置し、二段目サイクロンの灰放出空間を一段目サイクロンの灰放出空間の上部に配置することで、一段目サイクロンと二段目サイクロンを一つの圧力容器に収納できる。また、一段目サイクロンで捕集した灰は粗粒であり、灰自身の自重で圧力容器から排出できる。一方、二段目サイクロンで捕集した灰は細粒であるため、灰放出空間から気流搬送で排出する。
【0013】
本発明の二段サイクロンシステムでは、複数の一段目サイクロンの各除塵ガス出口が集合管に接続され、該集合管から再分岐されて二段目サイクロンの各入口と接続している。これは二段目サイクロンの入口圧を均一にするためであり、均一化により各二段目サイクロンへの流入ガス量が等しくなり、安定して脱塵することができる。
【0014】
本発明の二段サイクロンシステムでは、各段のサイクロンを捕集灰出口径を除塵ガス出口径より太くすることにより、捕集灰出口の内管外側からのガスの吹き出しを促進し、内管外側に寄せられた灰の放出を円滑にすることができる。
【0015】
本発明の各段のサイクロンは捕集灰出口の真下に円錐型の突起物を設けている。捕集灰出口の内管中心部ではガスの吸い込みがあり、円錐型の突起物によって灰放出空間へ放出された灰が再び吸い込まれるのを抑制することができる。
【0016】
本発明の二段サイクロンシステムでは、二段目サイクロンの排出配管後流にブローダウンサイクロンを設け、捕集灰とガスとを分離した後、排ガス冷却器を設けているため、排ガス冷却器での灰による閉塞を防ぐことができる。
【0017】
二段目サイクロンの灰放出空間の圧力と前記ブローダウンサイクロンの除塵ガス出口の圧力との差を測定し、圧力差に応じて流量調節バルブを制御できるので、ブローダウンガス量を自動的に一定に保つことができる。
【0018】
【発明の実施の形態】
(実施例1)
図1に本発明の二段サイクロンシステムを示す。圧力容器2内に一段目サイクロン3,二段目サイクロン5が収納されている。ばい塵を含んだ排ガスは入口管1から一段目サイクロン3に流入し、粗粒子の塵を除去した後、除塵ガス出口4から二段目サイクロンの入口8に至る。二段目サイクロン5では一段目サイクロンで捕集されなかった細粒子の塵を除去し、排ガスは除塵ガス出口6を経て出口管7から流出する。一方、一段目サイクロンで捕集した粗粒子の塵は、捕集灰出口9から灰放出空間12に至り、二段目サイクロンで捕集した細粒子の塵は、捕集灰出口10から灰放出空間13に至る。
【0019】
各灰放出空間12,13は隔壁11によって仕切られている。隔壁11は、一段目サイクロンの捕集灰出口9から放出された灰が二段目サイクロンの捕集灰出口10へ迂回するのを防いでいる。
【0020】
一段目サイクロンの灰放出空間12は灰放出空間12を圧力容器2の最下部に設けている。粗粒子の塵が多いため自重を利用して排出配管16から排出する。また、下方に狭まったテーパ壁15によって自重を利用し易くしている。一方、二段目サイクロンの灰放出空間13は隔壁11の上部に設けている。細粒子の塵が多いため、気流によって搬送し、排出配管14から放出する。なお、実施例は二段サイクロンシステムについて説明したが、必ずしも二段サイクロンシステムに限定されるものではなく、多段のサイクロンシステムを用いた場合に適用できる。
【0021】
(実施例2)
図2(a),(b)に本発明の一段目サイクロンの各除塵ガス出口が集合管に接続し、再分岐して二段目サイクロンの各入口に接続した二段サイクロンシステムを示す。排ガスを一段目サイクロンの各除塵ガス出口4から集合管17に流入し、再分岐して二段目サイクロンの各入口8に流入している。集合管17は、二段目サイクロンの入口圧を均一にし、各二段目サイクロンへの流入ガス量を等しくする作用があり、安定して脱塵することができる。
【0022】
一段目サイクロン3の胴径を二段目サイクロン5より大きくしている。これは、一段目サイクロン3で粗粒子の塵を確実に捕集するためである。サイクロン内では、入口から1周した灰が再びサイクロン入口のガス流と衝突し、弾かれて中心部の除塵ガス出口に至る。これは灰が粗粒子であっても生じる現象である。粗粒子を捕集する一段目サイクロン3では胴径を大きくして入口と除塵ガス出口4との距離を長くし、灰が入口のガス流に衝突しても除塵ガス出口に至らないようにしている。
【0023】
一方、二段目サイクロン5は一段目サイクロンで捕集できなかった細粒子の塵を捕集するため、胴径を小さくして遠心力を高めている。サイクロンは、同一の入口流速においては胴径が小さいほど圧力損出は大きくなる。二段目サイクロンの胴径を一段目サイクロンより小さくしているが、一段目サイクロンより個数を多くすることによって、マルチサイクロンとして圧力損出を下げている。集合管17のない実施例1では各段のサイクロンの個数が同一になるが、集合管17によって各段のサイクロンの個数を違わせることができ、二段サイクロンシステムの高性能化を図り易くしている。
【0024】
各段のサイクロンとも捕集灰出口径を除塵ガス出口径より太くしている。これによって、捕集灰出口の内管外側からのガスの吹き出しを促進し、内管外側に寄せられた灰の放出を円滑にしている。しかし、捕集灰出口径が除塵ガス出口より大き過ぎる場合、捕集灰出口の内管外側からの吹き出しガス量が多くなる反面内管中心部の吸い込みガス量も多くなるため、放出した灰が捕集灰出口に吸い込まれ、脱塵効率が低下する。脱塵実験で捕集灰出口径と除塵ガス出口径の最適値について検討した結果、捕集灰出口径を除塵ガス出口径の1.1〜1.3倍にすればよい。
【0025】
捕集灰出口の内管中心部での吸い込みガス量を低下させる手段として、二段目サイクロンの捕集灰出口10の真下に円錐型の吸い込み防止部位18を設けている。これによって、サイクロンからの旋回流を阻止し、中心部の吸い込みガス量を抑制する。防止部位18の寸法について計算で検討した結果、円錐型の外径を除塵ガス出口径の0.65倍以上にすればよい。
【0026】
(実施例3)
図3に本発明の二段目サイクロンの捕集灰の排出システムを備えた二段サイクロンシステムを示す。二段目サイクロンの捕集灰排出配管14の後流にブローダウンサイクロン19,排ガス冷却器22,流量調節バルブ23を設けている。ブローダウンサイクロン19でガスと捕集灰を分離するため、排ガス冷却器22,流量調節バルブ23での灰による閉塞を防ぐことができる。
【0027】
ブローダウンサイクロン19の上流の捕集灰排出配管14では灰濃度が高く、閉塞する恐れがある。それを防ぐために、二段目サイクロンの灰放出空間13の圧力とサイクロンの除塵ガス出口21の圧力を測定する圧力測定機24を設け、それら圧力を取り込み、圧力差から流量調節バルブ23に開度の指令を送る制御装置25を設け、自動的にブローダウンガス量を一定に保つようにしている。
【0028】
【発明の効果】
本発明の二段サイクロンシステムは、一つの圧力容器に二段サイクロンシステムを収納できるため、建設コストを低減できる。
【0029】
本発明の二段サイクロンシステムは、一段目サイクロンの除塵ガスを集合してから再分岐するため、一段目サイクロンと二段目サイクロンの個数が違った場合にでも適用できる。
【0030】
本発明の二段サイクロンシステムは、二段目サイクロンの捕集灰出口から灰放出空間への灰の放出が円滑で、かつ、放出した灰の吸い込みを抑制できるため高効率脱塵することができる。
【0031】
本発明の二段サイクロンシステムは、排ガス冷却器での閉塞を防ぐとともに、二段目サイクロンの灰放出空間からのブローダウンガス量を自動制御できるため、二段目サイクロンの捕集灰を安定して排出できる。
【図面の簡単な説明】
【図1】本発明の二段サイクロンシステム図。
【図2】(a)及び(b)は本発明の二段サイクロンシステムの側断面及び同図(a)の上側断面図。
【図3】本発明の二段目サイクロンの捕集灰の排出システムを備えた二段サイクロンシステムの構成図。
【符号の説明】
1…入口管、2…圧力容器、3…一段目サイクロン、4…一段目サイクロンの除塵ガス出口、5…二段目サイクロン、6…二段目サイクロンの除塵ガス出口、7…出口管、8…二段目サイクロン入口、9…圧力容器入口管、10…二段目サイクロンの捕集灰出口、11…隔壁、12…一段目サイクロンの灰放出空間、13…二段目サイクロンの灰放出空間、14…二段目サイクロンの捕集灰排出配管、15…テーパ壁、16…一段目サイクロンの捕集灰排出配管、17…集合空間、18…吸い込み防止部位、19…ブローダウンサイクロン、20…ホッパ、21…ブローダウンサイクロンのガス出口、22…排ガス冷却器、23…流量調節バルブ、24…圧力測定機、25…制御装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-performance dedusting device using centrifugal force.
[0002]
[Prior art]
High-performance dedusting equipment using centrifugal force is used in a pressurized fluidized bed combined power generation system (hereinafter referred to as PFBC). In PFBC, in order to prevent wear of the blades of the gas turbine, a high performance is achieved by a two-stage cyclone system in which multicyclones are connected in series. This technique is described in Japanese Patent Application Laid- Open No. 9-271695 . However, in the two-stage cyclone system of this type, a multi-cyclone at each stage is housed in separate pressure vessels, so a plurality of pressure vessels are required. And the construction cost is high.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to reduce the construction cost in a two-stage cyclone system.
[0004]
[Means for Solving the Problems]
The two-stage cyclone according to the first and second aspects of the present invention is achieved by being housed in one pressure vessel.
[0005]
Specifically, the inlet of the first-stage cyclone is connected to the pipe inserted into the pressure vessel and the pipe, the inlet of the second-stage cyclone is connected to the dust removal gas outlet of the first-stage cyclone, and the first-stage cyclone and the second-stage cyclone are connected. An ash discharge space will be provided at each collection ash outlet of the cyclone. An ash discharge space for the second-stage cyclone is provided above the ash discharge space for the first-stage cyclone, an ash-release space for the first-stage cyclone is provided at the bottom of the pressure vessel, and an ash-release space for the second-stage cyclone is provided above the ash discharge space. as is provided, it is to partition the respective by the partition wall.
[0006]
Further, in the two-stage cyclone system according to claim 2, each stage has a plurality of cyclones, each dust removal gas outlet of the first-stage cyclone is connected to the collecting pipe, and is re-branched from the collecting pipe. Connect to each inlet of the cyclone.
[0007]
The two-stage cyclone system according to claim 3 is to make the collection ash outlet diameter larger than the dust removal gas outlet diameter in each stage cyclone.
[0008]
Further, the two-stage cyclone system according to claim 4 is to provide a conical projection directly under the collection ash outlet of the cyclone of each stage, and fix the projection to the upper surface of the partition wall.
[0009]
Further, in the second-stage cyclone system according to claim 5, a pipe for discharging ash is connected to the lower part of the ash discharge space of the second-stage cyclone on the side wall of the pressure vessel, and a blow-down cyclone is provided downstream of the pipe, An exhaust gas cooler is provided in the downstream of the gas outlet of the blowdown cyclone, and a flow rate adjusting valve is provided in the downstream of the exhaust gas cooler.
[0010]
Further, the two-stage cyclone system according to claim 6 takes in the measurement device for measuring the pressure of the ash discharge space of the second-stage cyclone and the pressure of the gas outlet of the blow-down cyclone, and takes each of these measurement pressures, A device for transferring an opening degree command to the valve and automatically controlling the gas amount is provided.
[0011]
That is, in the two-stage cyclone system of the present invention, the partition walls are provided in the ash emission space of the first-stage cyclone and the ash emission space of the second-stage cyclone. Thereby, it is possible to prevent gas and ash from detouring from the collecting ash outlet of the first-stage cyclone to the collecting ash outlet of the second-stage cyclone.
[0012]
The first-stage cyclone and second-stage cyclone are placed by placing the first-stage cyclone ash discharge space at the bottom of the pressure vessel and the second-stage cyclone ash discharge space above the first-stage cyclone ash discharge space. Can be stored in one pressure vessel. Moreover, the ash collected by the first-stage cyclone is coarse and can be discharged from the pressure vessel by its own weight. On the other hand, since the ash collected by the second-stage cyclone is fine, it is discharged from the ash discharge space by airflow conveyance.
[0013]
In the two-stage cyclone system of the present invention, each dust removal gas outlet of each of the plurality of first-stage cyclones is connected to the collecting pipe, is re-branched from the collecting pipe, and is connected to each inlet of the second-stage cyclone. This is to make the inlet pressure of the second-stage cyclone uniform, and by equalization, the amount of gas flowing into each second-stage cyclone becomes equal, and dust can be stably removed.
[0014]
In the two-stage cyclone system of the present invention, the cyclone of each stage is made larger in the collection ash outlet diameter than the dust removal gas outlet diameter, thereby facilitating gas blow-out from the outer side of the inner pipe of the collection ash outlet. It is possible to smoothly release the ash that is brought to the surface.
[0015]
Each stage cyclone of the present invention is provided with a conical protrusion just below the collection ash outlet. Gas is sucked in the central portion of the inner tube of the collection ash outlet, and the ash discharged into the ash discharge space by the conical protrusion can be suppressed from being sucked again.
[0016]
In the two-stage cyclone system of the present invention, a blow-down cyclone is provided in the downstream of the discharge pipe of the second-stage cyclone, and after separating the collected ash and gas, an exhaust gas cooler is provided. Blockage by ash can be prevented.
[0017]
The difference between the pressure in the ash discharge space of the second-stage cyclone and the pressure at the dust removal gas outlet of the blow-down cyclone can be measured, and the flow control valve can be controlled according to the pressure difference, so the amount of blow-down gas is automatically fixed. Can be kept in.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
FIG. 1 shows a two-stage cyclone system of the present invention. A first-stage cyclone 3 and a second-stage cyclone 5 are accommodated in the pressure vessel 2. The exhaust gas containing dust flows into the first-stage cyclone 3 from the inlet pipe 1, and after removing coarse dust, reaches the inlet 8 of the second-stage cyclone from the dust removal gas outlet 4. The second-stage cyclone 5 removes fine particle dust that has not been collected by the first-stage cyclone, and the exhaust gas flows out from the outlet pipe 7 through the dust removal gas outlet 6. On the other hand, coarse particle dust collected by the first-stage cyclone reaches the ash discharge space 12 from the collection ash outlet 9, and fine particle dust collected by the second-stage cyclone discharges ash from the collection ash outlet 10. It reaches the space 13.
[0019]
Each ash discharge space 12, 13 is partitioned by a partition wall 11. The partition wall 11 prevents the ash discharged from the collection ash outlet 9 of the first-stage cyclone from detouring to the collection ash outlet 10 of the second-stage cyclone.
[0020]
The ash discharge space 12 of the first-stage cyclone is provided with the ash discharge space 12 at the lowermost part of the pressure vessel 2. Since there is much coarse particle dust, it is discharged from the discharge pipe 16 using its own weight. Further, the self-weight is easily utilized by the tapered wall 15 narrowed downward. On the other hand, the ash discharge space 13 of the second-stage cyclone is provided above the partition wall 11. Since there are many fine particles of dust, it is conveyed by the air current and discharged from the discharge pipe 14. In addition, although the Example demonstrated the two-stage cyclone system, it is not necessarily limited to a two-stage cyclone system, It can apply when using a multistage cyclone system.
[0021]
(Example 2)
FIGS. 2 (a) and 2 (b) show a two-stage cyclone system in which each dust removal gas outlet of the first-stage cyclone of the present invention is connected to the collecting pipe, re-branched, and connected to each inlet of the second-stage cyclone. The exhaust gas flows into the collecting pipe 17 from each dust removal gas outlet 4 of the first-stage cyclone, re-divides, and flows into each inlet 8 of the second-stage cyclone. The collecting pipe 17 has an effect of making the inlet pressure of the second-stage cyclones uniform and equalizing the amount of gas flowing into each second-stage cyclone, and can stably dedust.
[0022]
The body diameter of the first stage cyclone 3 is made larger than that of the second stage cyclone 5. This is because the coarse dust is reliably collected by the first-stage cyclone 3. In the cyclone, the ash that has made one round from the inlet again collides with the gas flow at the cyclone inlet and is bounced to reach the dust removal gas outlet in the center. This is a phenomenon that occurs even if ash is coarse particles. In the first-stage cyclone 3 that collects coarse particles, the barrel diameter is increased to increase the distance between the inlet and the dust removal gas outlet 4 so that ash does not reach the dust removal gas outlet even if it collides with the gas flow at the inlet. Yes.
[0023]
On the other hand, the second-stage cyclone 5 collects fine particle dust that could not be collected by the first-stage cyclone, so that the barrel diameter is reduced to increase the centrifugal force. In the cyclone, the pressure loss increases as the body diameter decreases at the same inlet flow velocity. The body diameter of the second-stage cyclone is smaller than that of the first-stage cyclone, but by increasing the number of the first-stage cyclone, the pressure loss is reduced as a multi-cyclone. In the first embodiment without the collecting pipe 17, the number of cyclones in each stage is the same, but the number of cyclones in each stage can be made different by the collecting pipe 17, which makes it easy to improve the performance of the two-stage cyclone system. ing.
[0024]
The cyclone at each stage has a larger collection ash outlet diameter than the dust removal gas outlet diameter. As a result, gas is blown out from the outside of the inner tube of the collection ash outlet, and the ash brought out to the outside of the inner tube is smoothly discharged. However, if the diameter of the collected ash outlet is too larger than the dust removal gas outlet, the amount of gas blown from the outside of the inner pipe of the collection ash outlet will increase, while the amount of sucked gas at the center of the inner pipe will also increase. It is sucked into the collection ash outlet and the dust removal efficiency decreases. As a result of examining the optimum values of the collected ash outlet diameter and the dust removal gas outlet diameter in the dust removal experiment, the collection ash outlet diameter may be 1.1 to 1.3 times the dust removal gas outlet diameter.
[0025]
As means for reducing the amount of suction gas at the center of the inner tube of the collection ash outlet, a conical suction prevention portion 18 is provided immediately below the collection ash outlet 10 of the second-stage cyclone. As a result, the swirling flow from the cyclone is prevented, and the amount of sucked gas at the center is suppressed. As a result of examining the size of the prevention portion 18 by calculation, the outer diameter of the conical shape may be 0.65 times the dust removal gas outlet diameter or more.
[0026]
(Example 3)
FIG. 3 shows a second-stage cyclone system equipped with the second-stage cyclone collection ash discharge system of the present invention. A blowdown cyclone 19, an exhaust gas cooler 22, and a flow rate adjusting valve 23 are provided downstream of the second-stage cyclone collection ash discharge pipe 14. Since the gas and the collected ash are separated by the blow-down cyclone 19, blockage by ash at the exhaust gas cooler 22 and the flow rate control valve 23 can be prevented.
[0027]
The collected ash discharge pipe 14 upstream of the blowdown cyclone 19 has a high ash concentration and may be clogged. In order to prevent this, a pressure measuring device 24 for measuring the pressure of the ash discharge space 13 of the second-stage cyclone and the pressure of the dust-removing gas outlet 21 of the cyclone is provided. Is provided so as to automatically keep the blowdown gas amount constant.
[0028]
【The invention's effect】
Since the two-stage cyclone system of the present invention can accommodate the two-stage cyclone system in one pressure vessel, the construction cost can be reduced.
[0029]
The second-stage cyclone system of the present invention is re-branched after collecting the dust removal gas of the first-stage cyclone, and therefore can be applied even when the numbers of the first-stage cyclone and the second-stage cyclone are different.
[0030]
The two-stage cyclone system of the present invention can discharge ash smoothly from the collection ash outlet of the second-stage cyclone to the ash discharge space, and can suppress the suction of the released ash, so that highly efficient dedusting can be achieved. .
[0031]
The two-stage cyclone system of the present invention prevents clogging in the exhaust gas cooler and can automatically control the amount of blowdown gas from the ash discharge space of the second-stage cyclone, thereby stabilizing the collected ash of the second-stage cyclone. Can be discharged.
[Brief description of the drawings]
FIG. 1 is a diagram of a two-stage cyclone system of the present invention.
FIGS. 2A and 2B are a side sectional view of the two-stage cyclone system of the present invention and an upper sectional view of FIG.
FIG. 3 is a configuration diagram of a second-stage cyclone system including the second-stage cyclone collection ash discharge system of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inlet pipe, 2 ... Pressure vessel, 3 ... First stage cyclone, 4 ... First stage cyclone dust removal gas outlet, 5 ... Second stage cyclone, 6 ... Second stage cyclone dust removal gas outlet, 7 ... Outlet pipe, 8 2nd-stage cyclone inlet, 9 ... Pressure vessel inlet pipe, 10 ... 2nd-stage cyclone collection ash outlet, 11 ... Bulkhead, 12 ... 1st-stage cyclone ash discharge space, 13 ... 2nd-stage cyclone ash discharge space , 14 ... Second stage cyclone collection ash discharge pipe, 15 ... Tapered wall, 16 ... First stage cyclone collection ash discharge pipe, 17 ... Assembly space, 18 ... Suction prevention part, 19 ... Blow down cyclone, 20 ... Hopper, 21 ... Blow-down cyclone gas outlet, 22 ... Exhaust gas cooler, 23 ... Flow control valve, 24 ... Pressure measuring device, 25 ... Control device.

Claims (6)

圧力容器と、該圧力容器内部に配管と複数のサイクロンを内蔵したサイクロンシステムにおいて、前記配管には一段目のサイクロンの入口を接続し、一段目サイクロンの除塵ガス出口には二段目のサイクロンの入口を接続し、一段目サイクロンと二段目サイクロンの各捕集灰出口に灰放出空間を設け、それぞれの灰放出空間は、一段目サイクロンの灰放出空間が前記圧力容器の最下部に設けられ、その上側に二段目サイクロンの灰放出空間が設けられるように、隔壁によって仕切ることを特徴とする二段サイクロンシステム。In a cyclone system having a pressure vessel and a pipe and a plurality of cyclones built in the pressure vessel, an inlet of a first-stage cyclone is connected to the pipe, and a dust removal gas outlet of the first-stage cyclone is connected to a second-stage cyclone. An inlet is connected, and an ash discharge space is provided at each collection ash outlet of the first-stage cyclone and second-stage cyclone. Each ash discharge space is provided with an ash-release space of the first-stage cyclone at the bottom of the pressure vessel. The second-stage cyclone system is partitioned by a partition so that an ash discharge space for the second-stage cyclone is provided on the upper side . 請求項1記載の二段サイクロンシステムにおいて、各段のサイクロンが複数であって、一段目サイクロンの各除塵ガス出口は集合管に接続され、該集合管から再分岐されて二段目サイクロンの各入口に接続することを特徴とする二段サイクロンシステム。2. The two-stage cyclone system according to claim 1 , wherein each stage has a plurality of cyclones, each dust removal gas outlet of the first-stage cyclone is connected to the collecting pipe, and is re-branched from the collecting pipe to each of the second-stage cyclones. A two-stage cyclone system characterized by connecting to the entrance. 圧力容器と、該圧力容器内部に配管と複数のサイクロンを内蔵したサイクロンシステムにおいて、前記配管には一段目のサイクロンの入口を接続し、一段目サイクロンの除塵ガス出口には二段目のサイクロンの入口を接続し、一段目サイクロンと二段目サイクロンの各捕集灰出口に灰放出空間を設け、それぞれの灰放出空間は隔壁によって仕切る二段サイクロンシステムであって、
一段目サイクロン,二段目サイクロンの捕集灰出口径を除塵ガス出口径より太くすることを特徴とする二段サイクロンシステム。
In a cyclone system having a pressure vessel and a pipe and a plurality of cyclones built in the pressure vessel, an inlet of a first-stage cyclone is connected to the pipe, and a dust removal gas outlet of the first-stage cyclone is connected to a second-stage cyclone. An inlet is connected, an ash discharge space is provided at each collection ash outlet of the first-stage cyclone and the second-stage cyclone, and each ash-release space is a two-stage cyclone system partitioned by a partition,
A two-stage cyclone system characterized in that the collection ash outlet diameter of the first-stage cyclone and the second-stage cyclone is made larger than the dust removal gas outlet diameter.
圧力容器と、該圧力容器内部に配管と複数のサイクロンを内蔵したサイクロンシステムにおいて、前記配管には一段目のサイクロンの入口を接続し、一段目サイクロンの除塵ガス出口には二段目のサイクロンの入口を接続し、一段目サイクロンと二段目サイクロンの各捕集灰出口に灰放出空間を設け、それぞれの灰放出空間は隔壁によって仕切る二段サイクロンシステムであって、
各段のサイクロンの捕集灰出口の下部に円錐型の突起物を設け、該突起物を前記隔壁に固定することを特徴とする二段サイクロンシステム。
In a cyclone system having a pressure vessel and a pipe and a plurality of cyclones built in the pressure vessel, an inlet of a first-stage cyclone is connected to the pipe, and a dust removal gas outlet of the first-stage cyclone is connected to a second-stage cyclone. An inlet is connected, an ash discharge space is provided at each collection ash outlet of the first-stage cyclone and the second-stage cyclone, and each ash-release space is a two-stage cyclone system partitioned by a partition,
Second stepped Lee Kron system characterized by lower the conical projection provided on the collecting ash outlet of the cyclone of each stage, to secure the projecting Okoshibutsu to the partition wall.
請求項1記載の二段サイクロンシステムにおいて、圧力容器側壁部には二段目サイクロンの灰放出空間に開孔接続された配管を接続し、該配管の後流にブローダウンサイクロン,排ガス冷却器,流量調節バルブを設けたことを特徴とする二段サイクロンシステム。2. The two-stage cyclone system according to claim 1, wherein a pipe connected to the ash discharge space of the second-stage cyclone is connected to the pressure vessel side wall, and a blow-down cyclone, an exhaust gas cooler, A two-stage cyclone system characterized by a flow control valve. 圧力容器と、該圧力容器内部に配管と複数のサイクロンを内蔵したサイクロンシステムにおいて、前記配管には一段目のサイクロンの入口を接続し、一段目サイクロンの除塵ガス出口には二段目のサイクロンの入口を接続し、一段目サイクロンと二段目サイクロンの各捕集灰出口に灰放出空間を設け、それぞれの灰放出空間は隔壁によって仕切る二段サイクロンシステムであって、
圧力容器側壁部には二段目サイクロンの灰放出空間に開孔接続された配管を接続し、該配管の後流にブローダウンサイクロン,排ガス冷却器,流量調節バルブを設け、
二段目サイクロンの灰放出空間の圧力と前記ブローダウンサイクロンの除塵ガス出口圧を測定する測定装置と、それらの測定圧を取り込み、圧力差から前記流量調節バルブに開度の指令を転送して排ガス量を自動制御する装置とを備えたことを特徴とする二段サイクロンシステム。
In a cyclone system having a pressure vessel and a pipe and a plurality of cyclones built in the pressure vessel, an inlet of a first-stage cyclone is connected to the pipe, and a dust removal gas outlet of the first-stage cyclone is connected to a second-stage cyclone. An inlet is connected, an ash discharge space is provided at each collection ash outlet of the first-stage cyclone and the second-stage cyclone, and each ash-release space is a two-stage cyclone system partitioned by a partition,
A pipe connected to the ash discharge space of the second-stage cyclone is connected to the side wall of the pressure vessel, and a blowdown cyclone, an exhaust gas cooler, and a flow control valve are provided downstream of the pipe.
A measuring device that measures the pressure in the ash discharge space of the second-stage cyclone and the dust removal gas outlet pressure of the blow-down cyclone, and takes those measured pressures, and transfers the opening degree command to the flow control valve from the pressure difference A two-stage cyclone system comprising a device for automatically controlling the amount of exhaust gas.
JP16468498A 1998-06-12 1998-06-12 Two-stage cyclone system Expired - Lifetime JP4364321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16468498A JP4364321B2 (en) 1998-06-12 1998-06-12 Two-stage cyclone system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16468498A JP4364321B2 (en) 1998-06-12 1998-06-12 Two-stage cyclone system

Publications (2)

Publication Number Publication Date
JPH11347454A JPH11347454A (en) 1999-12-21
JP4364321B2 true JP4364321B2 (en) 2009-11-18

Family

ID=15797899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16468498A Expired - Lifetime JP4364321B2 (en) 1998-06-12 1998-06-12 Two-stage cyclone system

Country Status (1)

Country Link
JP (1) JP4364321B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377753B1 (en) * 2012-05-23 2014-03-24 신진 엠.티.테크 주식회사 Multi-centrifugal type cutting oil purification apparatus
KR101438139B1 (en) * 2013-02-06 2014-09-12 신진 엠.티.테크 주식회사 A purification apparatus for cutting-oil which having inner multi-centrifugal separation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI293034B (en) * 2006-07-31 2008-02-01 Ind Tech Res Inst Multi-stage, multi-tube cyclone device and method for classifying and collecting nano-particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377753B1 (en) * 2012-05-23 2014-03-24 신진 엠.티.테크 주식회사 Multi-centrifugal type cutting oil purification apparatus
KR101438139B1 (en) * 2013-02-06 2014-09-12 신진 엠.티.테크 주식회사 A purification apparatus for cutting-oil which having inner multi-centrifugal separation

Also Published As

Publication number Publication date
JPH11347454A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
KR101141109B1 (en) Cyclonic separating apparatus
EP1059993B1 (en) Cleaning apparatus
CN100430146C (en) Cyclonic separating apparatus
EP1938733B1 (en) Cyclonic separation apparatus and vacuum cleaner having such a separation apparatus
US7291190B2 (en) Cyclonic separating apparatus
US4198290A (en) Dust separating equipment
JP2008541816A (en) Dust and dust cyclone separator
US6989039B2 (en) Cyclonic separating apparatus
US7955406B2 (en) Cyclonic separation apparatus
US7648544B2 (en) Swirl tube separator
WO2004008932A1 (en) Cyclonic vacuum cleaner
WO2016140964A1 (en) Improved swirl tube separators
JP4364321B2 (en) Two-stage cyclone system
AU2003256582B2 (en) Cyclone separator with a vortex extender pin
JP2005342334A (en) Vacuum cleaner
JP3625980B2 (en) Cyclone system for separating solid components in gas
US20030140788A1 (en) Device for separating dirt and debris in flowing media
JP4300593B2 (en) Cyclone system
EP1938732B1 (en) Cyclonic separation apparatus
KR200453028Y1 (en) Cyclonic separating apparatus
GB2390989A (en) Cyclone separator having a constriction in the outer wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term