JP4300593B2 - Cyclone system - Google Patents

Cyclone system Download PDF

Info

Publication number
JP4300593B2
JP4300593B2 JP21279397A JP21279397A JP4300593B2 JP 4300593 B2 JP4300593 B2 JP 4300593B2 JP 21279397 A JP21279397 A JP 21279397A JP 21279397 A JP21279397 A JP 21279397A JP 4300593 B2 JP4300593 B2 JP 4300593B2
Authority
JP
Japan
Prior art keywords
cyclone
gas
removal device
solid
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21279397A
Other languages
Japanese (ja)
Other versions
JPH1147640A (en
Inventor
輝幸 岡崎
隆平 川部
知彦 宮本
久幸 折田
和雄 池内
正治 倉本
貞夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chugoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chugoku Electric Power Co Inc, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP21279397A priority Critical patent/JP4300593B2/en
Publication of JPH1147640A publication Critical patent/JPH1147640A/en
Application granted granted Critical
Publication of JP4300593B2 publication Critical patent/JP4300593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cyclones (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス中の固体粒子を遠心力で分離除去する固体除去装置(以下、サイクロンという)に係り、特に複数機のサイクロンからなるマルチサイクロンのダストホッパ(固体粒子回収部)からガスを抽気するようにしたサイクロンシステムに関する。
【0002】
【従来の技術】
サイクロンは構造が簡単で、しかも可動部分を伴わないので、広く工業的に普及した遠心集塵装置である。
【0003】
サイクロンの集塵効率を向上させる手段として、まず、「サイクロン分離器」(1980,加藤中道館)の143頁にあるように、構造物(渦芯遮断円錐体)をサイクロン内に設置する方法がある。しかし、サイクロン内に構造物を設置すると、構造物の支持体が流れの抵抗となって、旋回流が弱まるため、集塵効率が低下する可能性がある。また、構造物とサイクロン本体との間にダストが沈積し、サイクロンを閉塞して、集塵効率が低下する可能性もある。よって構造物を内部に設置するサイクロンには最適な設計が必要となる。
【0004】
次に、サイクロンの集塵効率を向上させる手段として、「粉体工学ハンドブック」(1965,朝倉書店)の396頁にあるように、サイクロン内のガスの一部をサイクロン下部のダストホッパから抽気するブローダウンがある。ところで、本発明が対象とする高温高圧下のサイクロンシステムでブローダウンをする場合、抽気されたガスをそのまま系外に排出すると、エネルギ損失が大きくなる問題がある。そのため、ガスを系内に戻す必要がある。ここで、ブローダウンしたガスをリサイクルする技術としては、特開昭55−44368号公報、特公平6−98255号公報に開示された例がある。前者は集塵装置で分離された粉塵を排出管からガスとともに抜き出し、サイクロンで分離したのち、ガスのみを排風機を使用して集塵装置の上流に戻す装置を開示している。後者は、ルーバー型の集塵器の下部にダスト抜き管で接続されたダストホッパを設け、このダスト抜き管と前記ルーバー型の集塵器の下流側の主排風機の上流側の排ガスダクトを、ブローダウン系集塵器を介装したブローダウン管で接続した排ガス処理装置を開示している。この装置では、転炉からのガスを冷却した後にルーバー型の集塵器で脱塵する。いずれの装置も、ブローダウンに排風機を用いるが、高温高圧下のサイクロンシステムでは、排風機が高温にさらされて強度上の問題があるため、排風機を使用したブローダウンはできないという問題もある。
【0005】
【発明が解決しようとする課題】
よって、本発明の目的はサイクロン内に構造物をもつ高温高圧下のサイクロンシステムにおいて、システム内の圧力差を利用してブローダウンを可能にすることである。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明の手段は、本体の接線方向に取り付けられ、固体粒子を含んだガスが導入される入口配管と、ガスに角運動量を与え、ガス中の固体粒子を遠心力により分離除去する固体除去装置と、固体粒子を回収する固体除去装置の管状の脚と、固体除去装置の上部の中心軸線上に配置され、固体粒子を除去したガスを取り出す排気内筒と、この排気内筒に接続された出口配管と、固体除去装置を内装する圧力容器とを備えたサイクロンシステムにおいて、固体除去装置の下部の中心軸線上に配置され、上部が軸対象で外径が排気内筒内径の0.65倍を超える径の構造物と、圧力容器の固体粒子回収部と出口配管を結ぶ配管とを備え、固体除去装置の管状の脚の内径が構造物の外径よりも小さいとともに、構造物の下方に配置され、かつ、固体除去装置の中心軸線を中心とし、構造物の外径を外径とする円筒状の領域の内側に、構造物を支持する複数本の支柱を備えたことを特徴とする。
【0007】
発明者等は、サイクロンの集塵性能を向上させるべく、サイクロン管中心部にどのような構造物を設置すべきかを検討した。まず、管中心部に構造物を有するサイクロンのガス流動を計算した。計算によれば、サイクロン中心部に構造物があると、構造物が流れに対する抵抗体となり、構造物の下部では旋回力が弱まる。したがって、旋回によって生じるサイクロン中心部の圧力の低い領域は、構造物の下部に存在しなくなる。この時、構造物の外径を排気内筒の径の0.65倍以上とすれば、構造物の下部の圧力はサイクロン出口配管内の圧力よりも高くなることを見出した。つまり、ダストホッパの圧力がサイクロン出口配管の圧力より高くなる。よって、この状態でダストホッパとサイクロン出口配管を結ぶブローダウン配管を設けることで、システム内の圧力差を利用してブローダウンを行うことが可能となる。
【0008】
サイクロンの脚の内径を前記構造物の外径より小さくすると、旋回する渦が前記構造物で遮断されるため、サイクロンに流入したガスは前記構造物の下部において、前記構造物の外径の内側(サイクロンの中心軸線からの距離が前記構造物の半径よりも小さい領域)に流入しない。
【0009】
サイクロンの脚の内径を前記構造物の外径より小さくすると、サイクロンに流入したガスは構造物の下部において、構造物の外径の内側に流入しないため、構造物の下部において、構造物の径の内側(サイクロンの中心軸線からの距離が前記構造物の半径よりも小さい領域)に構造物の支持体を設置すれば、構造物の支持体は上流の旋回流に影響を及ぼさない。
【0010】
【発明の実施の形態】
図1に本発明の第1の実施例を示す。本実施例のサイクロンシステムは、ガス入り側を加圧流動層燃焼装置1に連絡配管2で接続され、ガス出側をサイクロン出口配管8を介してガスタービン10に接続されている。本実施例のサイクロンシステムは、図示のように、半球形の壁面をなす頭部とこの頭部の開放端の円形断面に同心状につながる円筒形の中間部と中間部の他端に同心状に大径端がつながる円錐台形の底部とからなる圧力容器5と、前記頭部と中間部の間に圧力容器5の中心軸線にほぼ垂直に配置されて圧力容器5内部を頭部区画とダストホッパつまり固体粒子回収部をなす胴側区画に分ける仕切壁5aと、圧力容器5の中心軸線上に配置され頭部の壁面と仕切壁5aを貫通するガス導入配管5bと、圧力容器5の胴側区画に軸線を圧力容器5の中心軸線にほぼ平行させて内装され、前記ガス導入配管5bにそれぞれ接続された複数のサイクロン3と、圧力容器5の円錐台形状の底部の小径端に接続されたダスト回収配管6と、圧力容器5の頭部区画に接続されたサイクロン出口配管8と、サイクロン出口配管8と圧力容器5の胴側区画を連通するブローダウン配管9と、を含んで構成されている。
【0011】
サイクロン3は、軸対称な形状の本体3aと、本体3aとガス導入配管5bを接続する入口配管3bと、本体3aの上部の中心軸線上に配置され一端が本体3a内に開口するとともに他端が圧力容器5の頭部区画内で開口する排気内筒7と、本体3aの下端に同心状に接続され胴側区画内で開口する管状の脚4と、本体3aの下部に内装され支持体12で本体3a下端に支持された構造物11と、を含んで構成されている。入口配管3bは本体3aの外周に対して接線方向に接続され、排気内筒7の本体3a内での開口位置は、入口配管3bの接続位置よりも脚4側(以下、脚4側を下方、排気内筒7側を上方として説明する)になっている。本体3aは、入口配管3b及び排気内筒7が接続されている円筒部と、この円筒部の下端に大径端が同心状に接続された円錐形部と、この円錐形部の小径端に同心状に接続されたダストバンカとからなり、前記管状の脚4はダストバンカの下端に接続されている。
【0012】
構造物11は円錐形をなしていて、先端を上に向け、ダストバンカに同心状に配置されている。構造物11の先端部は前記円錐形部の小径端の中心に位置し、その底面が支持体12により、ダストバンカの下端部に支持されている。支持体12の大きさは、構造物11及び支持体12を本体3aの中心軸線方向に投影した場合、支持体12の投影領域が構造物11の底面の投影領域に収まる大きさとしてある。言い替えると、本体3aの中心軸線から測った支持体12の最大半径は、本体3aの中心軸線から測った構造物11の底面の外周の半径よりも小さくなっている。そして、構造物11の底面外径は、排気内筒7の内径の0.8倍となっており、脚4の内径は構造物11の底面外径より細くなっている。また、構造物11の底面外径は、前記円錐形部の小径端の径よりも小さくなっている。
【0013】
上記構成のサイクロンシステムにおけるガス及びダストの流れは次のとおりである。まず、加圧流動層燃焼装置1内に石炭と石灰石と空気が供給され、石炭の流動層燃焼が行われる。流動層燃焼に生成された燃焼ガス(固体粒子を含んだガス)は加圧流動層燃焼装置1から排出され、連絡配管2、ガス導入配管5a、入口配管3aを通ってサイクロン本体3aへ導入される。サイクロン本体3aへ導入されたガスは、サイクロン本体3a内で旋回しながら下降し、サイクロン本体3aの下部のある点で流れが下降から上昇へ反転する。ガスに含まれていた固体粒子は旋回による遠心力でサイクロン本体3aの内周壁面側に移動し、内周壁面に沿って落下する。サイクロン本体3aで固体粒子(以下、ダストという)を除去し流れ方向を反転させたガスは、サイクロン中心部を通って排気内筒7から流出する。排気内筒7から流出したガスは、頭部区画を経てサイクロン出口配管8からガスタービン10に導入される。また、胴側区画(ダストホッパ)内のガスの一部は、胴側区画(ダストホッパ)とサイクロン出口配管8を結ぶブローダウン配管9を経てブローダウンによって抽気され、ガスタービン10に導かれる。
【0014】
一方、サイクロン本体3aの内周壁面に沿って落下したダストは、ダストバンカを経て、サイクロン本体3aを収納する圧力容器5の胴側区画内に、サイクロン本体3a下部のサイクロンの脚4から排出され、ダスト回収配管6を通って回収される。
【0015】
図2に、サイクロン3内の中心軸から外周部に向かう方向(半径方向)の圧力分布を示す。図のように、サイクロン上部から下部に向かう方向(中心軸方向)には圧力はほとんど変わらず、サイクロン内の半径方向圧力分布は中心部が低く、外周部が高い分布となる。サイクロンの中心から排気内筒7の半径の0.65倍の距離の位置での圧力は、ほぼ排気内筒7の平均圧力、すなわち、サイクロン出口配管8内の圧力に等しくなる。ブローダウンをするためには、圧力容器5の胴側区画内の圧力が上記平均圧力以上でなければならない。
【0016】
本発明のサイクロンシステムは、構造物11の外径が排気内筒7の径の0.65倍以上であるため、サイクロン中心部の、排気内筒7の平均圧力より圧力が低い領域が下部に達するのが防止される。よって、圧力容器5の胴側区画内の圧力は少なくとも排気内筒7の平均圧力、すなわちサイクロン出口配管8内の圧力より高くなって、排風機を使わなくてもシステム内の圧力差のみで胴側区画内のガスのサイクロン出口配管8へのブローダウンが可能になる。
【0017】
図3にサイクロン本体3aの鉛直断面におけるガスの流線を示す。本図では、流れの上下方向の流線を示し、周方向の流れは無視してある。図示のように、サイクロンの脚4の内径を構造物11の底面外径より小さくしてあるので、サイクロンに流入したガス流れは、構造物11下部において、構造物11の径の内側には流入しない。よって、構造物11下部において、構造物11の径の内側の領域に構造物11を支える支持体12が存在しても、上部の旋回流れに影響を与えない。もし旋回流が影響を受けると、旋回方向のガス速度が低下し、ダストに働く遠心力も減少するため、集塵効率が低下する。なお、支持体12はダストのつまり防止を考え、図4のように数本の支柱によって構成することが望ましい。
【0018】
また、サイクロンの脚4の内径が構造物11の外径よりも太いと、旋回流が圧力容器5の胴側区画内にまで達し、一度遠心分離され圧力容器5内に捕集されたダストが、再び圧力容器5からサイクロン本体3aに戻る流れに巻き上げられて、集塵率が低下する可能性がある。しかし、上記実施例では、サイクロンの脚4の内径は構造物11の外径より細いため、ガスの流れは、圧力容器5内に達することなく反転、上昇してサイクロンから排気内筒7を経て排出され、集塵率が低下する可能性を回避することができる。
【0019】
【発明の効果】
本発明によれば、高温高圧下でシステム内の圧力差のみでブローダウンが可能になる。
【図面の簡単な説明】
【図1】本発明の実施例を示す系統構成図である。
【図2】サイクロン本体内の半径方向の位置とその位置の圧力との関係を示す概念図である。
【図3】図1に示すサイクロンの鉛直断面における流線を示す断面図である。
【図4】図1に示すサイクロンの構造物及び支持体を内装した部分を拡大して示す斜視図である。
【符号の説明】
1 加圧流動層燃焼装置
2 連絡配管
3 サイクロン
3a 本体
3b 入口配管
4 サイクロンの脚
5 圧力容器
5a 仕切壁
5b ガス導入配管
6 ダスト回収配管
7 排気内筒
8 サイクロン出口配管
9 ブローダウン配管
10 ガスタービン
11 構造物
12 構造物の支持体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid removal device (hereinafter referred to as a cyclone) that separates and removes solid particles in a gas by centrifugal force, and in particular, gas is extracted from a multicyclone dust hopper (solid particle recovery unit) composed of a plurality of cyclones. It is related to the cyclone system.
[0002]
[Prior art]
Cyclone is a centrifugal dust collector that is widely used industrially because it has a simple structure and no moving parts.
[0003]
As a means for improving the cyclone dust collection efficiency, first, as shown on page 143 of “Cyclone Separator” (1980, Kato Nakadokan), a method of installing a structure (vortex core blocking cone) in the cyclone. There is. However, when a structure is installed in the cyclone, the support of the structure becomes a flow resistance, and the swirl flow is weakened, which may reduce the dust collection efficiency. In addition, dust may be deposited between the structure and the cyclone body, blocking the cyclone and reducing the dust collection efficiency. Therefore, an optimum design is required for the cyclone in which the structure is installed.
[0004]
Next, as a means of improving the dust collection efficiency of the cyclone, as shown on page 396 of the “Powder Engineering Handbook” (1965, Asakura Shoten), a blower for extracting a part of the gas in the cyclone from the dust hopper below the cyclone. There is down. By the way, when blow-down is performed in a high-temperature and high-pressure cyclone system targeted by the present invention, if the extracted gas is discharged out of the system as it is, there is a problem that energy loss increases. Therefore, it is necessary to return the gas into the system. Here, examples of techniques for recycling the blown down gas include those disclosed in JP-A-55-44368 and JP-B-6-98255. The former discloses a device in which dust separated by a dust collector is extracted from a discharge pipe together with gas, separated by a cyclone, and then only the gas is returned to the upstream side of the dust collector using a wind blower. The latter is provided with a dust hopper connected to the lower part of the louver type dust collector by a dust vent pipe, and the exhaust duct on the upstream side of the main exhaust fan on the downstream side of the dust vent pipe and the louver type dust collector, An exhaust gas treatment device connected by a blow-down pipe with a blow-down dust collector is disclosed. In this apparatus, after the gas from the converter is cooled, dust is removed by a louver type dust collector. Both devices use a blower for blowdown, but in a cyclone system under high temperature and high pressure, the blower is exposed to high temperatures and there is a problem in strength, so there is also a problem that blowdown using a blower cannot be performed. is there.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to enable blowdown by utilizing a pressure difference in the system in a high-temperature and high-pressure cyclone system having a structure in the cyclone.
[0006]
[Means for Solving the Problems]
The means of the present invention for achieving the above-described object includes an inlet pipe that is attached in a tangential direction of the main body and into which a gas containing solid particles is introduced, gives angular momentum to the gas, and separates solid particles in the gas by centrifugal force. A solid removal device to remove, a tubular leg of the solid removal device to collect solid particles, an exhaust inner cylinder arranged on the central axis of the upper portion of the solid removal device to take out the gas from which the solid particles have been removed, In a cyclone system that includes an outlet pipe connected to a cylinder and a pressure vessel that houses the solid removal device, the cyclone system is arranged on the central axis of the lower portion of the solid removal device, the upper part is an axial object, and the outer diameter is the exhaust inner cylinder inner diameter. A structure having a diameter exceeding 0.65 times, a pipe connecting the solid particle recovery part of the pressure vessel and the outlet pipe, and the inner diameter of the tubular leg of the solid removal device is smaller than the outer diameter of the structure, Arranged below the structure Is, and, around the central axis of the solids removal device, the inside of the cylindrical region of the outer diameter of the structure and an outer diameter, characterized by comprising a plurality of supports for supporting the structure.
[0007]
The inventors examined what structure should be installed in the center of the cyclone tube in order to improve the dust collection performance of the cyclone. First, the gas flow of a cyclone having a structure at the center of the tube was calculated. According to the calculation, if there is a structure at the center of the cyclone, the structure becomes a resistance to the flow, and the turning force is weakened at the lower part of the structure. Therefore, the low pressure region in the center of the cyclone generated by swirling does not exist in the lower part of the structure. At this time, it was found that if the outer diameter of the structure is 0.65 times or more the diameter of the exhaust inner cylinder, the pressure in the lower part of the structure is higher than the pressure in the cyclone outlet pipe. That is, the pressure of the dust hopper becomes higher than the pressure of the cyclone outlet pipe. Therefore, by providing a blowdown pipe that connects the dust hopper and the cyclone outlet pipe in this state, it is possible to perform blowdown using a pressure difference in the system.
[0008]
If the inner diameter of the cyclone leg is made smaller than the outer diameter of the structure, the swirling vortex is blocked by the structure, so that the gas flowing into the cyclone is inside the outer diameter of the structure at the lower part of the structure. It does not flow into (a region where the distance from the center axis of the cyclone is smaller than the radius of the structure).
[0009]
If the inner diameter of the cyclone leg is made smaller than the outer diameter of the structure, the gas flowing into the cyclone does not flow inside the outer diameter of the structure at the lower part of the structure. If the structure support is installed inside the region (the region where the distance from the center axis of the cyclone is smaller than the radius of the structure), the structure support does not affect the upstream swirl flow.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first embodiment of the present invention. In the cyclone system of the present embodiment, the gas inlet side is connected to the pressurized fluidized bed combustion apparatus 1 by the connecting pipe 2, and the gas outlet side is connected to the gas turbine 10 via the cyclone outlet pipe 8. As shown in the figure, the cyclone system according to the present embodiment is concentrically formed between a head portion forming a hemispherical wall surface, a cylindrical middle portion concentrically connected to a circular section of the open end of the head portion, and the other end of the middle portion. A pressure vessel 5 having a frustoconical bottom connected to a large-diameter end, and a head compartment and a dust hopper disposed between the head and the intermediate portion substantially perpendicular to the central axis of the pressure vessel 5. That is, the partition wall 5a divided into the body side section that forms the solid particle recovery unit, the gas introduction pipe 5b that is disposed on the central axis of the pressure vessel 5 and penetrates the wall surface of the head and the partition wall 5a, and the body side of the pressure vessel 5 The compartment is internally mounted with its axis substantially parallel to the central axis of the pressure vessel 5, and connected to the plurality of cyclones 3 connected to the gas introduction pipe 5 b and the small diameter end of the truncated cone shape of the pressure vessel 5. Dust collection pipe 6 and head of pressure vessel 5 A cyclone outlet pipe 8 connected to the compartment, and is configured to include a blowdown pipe 9 which communicates the cylinder side section of the cyclone outlet pipe 8 and the pressure vessel 5, a.
[0011]
The cyclone 3 is arranged on an axially symmetrical main body 3a, an inlet pipe 3b for connecting the main body 3a and the gas introduction pipe 5b, and a central axis on the upper part of the main body 3a. Is an exhaust inner cylinder 7 which opens in the head section of the pressure vessel 5, a tubular leg 4 which is concentrically connected to the lower end of the main body 3a and opens in the trunk side section, and a support body which is installed in the lower part of the main body 3a. 12 and the structure 11 supported by the lower end of the main body 3a. The inlet pipe 3b is tangentially connected to the outer periphery of the main body 3a, and the opening position of the exhaust inner cylinder 7 in the main body 3a is lower than the connection position of the inlet pipe 3b on the leg 4 side (hereinafter referred to as the leg 4 side downward). , The exhaust inner cylinder 7 side will be described as the upper side). The main body 3a includes a cylindrical portion to which the inlet pipe 3b and the exhaust inner cylinder 7 are connected, a conical portion having a large diameter end concentrically connected to a lower end of the cylindrical portion, and a small diameter end of the conical portion. It consists of a dust bunker connected concentrically, and the tubular leg 4 is connected to the lower end of the dust bunker.
[0012]
The structure 11 has a conical shape and is disposed concentrically on the dust bunker with the tip facing upward. The distal end portion of the structure 11 is located at the center of the small diameter end of the conical portion, and the bottom surface thereof is supported by the lower end portion of the dust bunker by the support body 12. The size of the support 12 is such that when the structure 11 and the support 12 are projected in the direction of the central axis of the main body 3 a, the projection area of the support 12 fits within the projection area on the bottom surface of the structure 11. In other words, the maximum radius of the support 12 measured from the central axis of the main body 3a is smaller than the radius of the outer periphery of the bottom surface of the structure 11 measured from the central axis of the main body 3a. The outer diameter of the bottom surface of the structure 11 is 0.8 times the inner diameter of the exhaust inner cylinder 7, and the inner diameter of the legs 4 is smaller than the outer diameter of the bottom surface of the structure 11. Further, the outer diameter of the bottom surface of the structure 11 is smaller than the diameter of the small diameter end of the conical portion.
[0013]
The flow of gas and dust in the cyclone system configured as described above is as follows. First, coal, limestone, and air are supplied into the pressurized fluidized bed combustor 1, and fluidized bed combustion of coal is performed. Combustion gas (gas containing solid particles) generated in fluidized bed combustion is discharged from the pressurized fluidized bed combustion apparatus 1 and introduced into the cyclone body 3a through the communication pipe 2, the gas introduction pipe 5a, and the inlet pipe 3a. The The gas introduced into the cyclone body 3a descends while turning in the cyclone body 3a, and the flow reverses from descending to ascending at a certain point below the cyclone body 3a. The solid particles contained in the gas move to the inner peripheral wall surface side of the cyclone main body 3a by centrifugal force due to swirling and fall along the inner peripheral wall surface. The gas in which the solid particles (hereinafter referred to as dust) are removed by the cyclone body 3a and the flow direction is reversed flows out from the exhaust inner cylinder 7 through the center of the cyclone. The gas flowing out from the exhaust inner cylinder 7 is introduced into the gas turbine 10 from the cyclone outlet pipe 8 through the head section. A part of the gas in the cylinder side section (dust hopper) is extracted by blowdown through a blowdown pipe 9 connecting the cylinder side section (dust hopper) and the cyclone outlet pipe 8 and led to the gas turbine 10.
[0014]
On the other hand, the dust that has fallen along the inner peripheral wall surface of the cyclone body 3a is discharged from the cyclone leg 4 below the cyclone body 3a into the trunk side compartment of the pressure vessel 5 that houses the cyclone body 3a through a dust bunker. It is recovered through the dust recovery pipe 6.
[0015]
FIG. 2 shows the pressure distribution in the direction (radial direction) from the central axis in the cyclone 3 toward the outer periphery. As shown in the figure, the pressure hardly changes in the direction from the upper part to the lower part of the cyclone (center axis direction), and the radial pressure distribution in the cyclone is low in the central part and high in the outer peripheral part. The pressure at a position 0.65 times the radius of the exhaust inner cylinder 7 from the center of the cyclone becomes substantially equal to the average pressure of the exhaust inner cylinder 7, that is, the pressure in the cyclone outlet pipe 8. In order to blow down, the pressure in the trunk side section of the pressure vessel 5 must be equal to or higher than the average pressure.
[0016]
In the cyclone system of the present invention, since the outer diameter of the structure 11 is 0.65 times or more of the diameter of the exhaust inner cylinder 7, the region where the pressure is lower than the average pressure of the exhaust inner cylinder 7 at the center of the cyclone reaches the lower part. Is prevented. Therefore, the pressure in the cylinder side section of the pressure vessel 5 is at least higher than the average pressure of the exhaust inner cylinder 7, that is, the pressure in the cyclone outlet pipe 8, and only the pressure difference in the system is used without using the exhaust fan. It becomes possible to blow down the gas in the side compartment to the cyclone outlet pipe 8.
[0017]
FIG. 3 shows gas flow lines in a vertical section of the cyclone body 3a. In this figure, flow lines in the vertical direction of the flow are shown, and the flow in the circumferential direction is ignored. As shown in the figure, since the inner diameter of the cyclone leg 4 is smaller than the outer diameter of the bottom surface of the structure 11, the gas flow flowing into the cyclone flows into the structure 11 at the lower part of the structure 11. do not do. Therefore, even if the support body 12 that supports the structure 11 exists in a region inside the diameter of the structure 11 at the lower part of the structure 11, the upper swirling flow is not affected. If the swirl flow is affected, the gas velocity in the swirl direction decreases and the centrifugal force acting on the dust also decreases, so the dust collection efficiency decreases. The support 12 is preferably composed of several support columns as shown in FIG. 4 in order to prevent dust clogging.
[0018]
Further, if the inner diameter of the cyclone leg 4 is larger than the outer diameter of the structure 11, the swirling flow reaches the trunk side section of the pressure vessel 5, and the dust once centrifuged and collected in the pressure vessel 5 is collected. There is a possibility that the dust collection rate is lowered by being wound up again by the flow returning from the pressure vessel 5 to the cyclone body 3a. However, in the above embodiment, since the inner diameter of the cyclone leg 4 is smaller than the outer diameter of the structure 11, the gas flow reverses and rises without reaching the pressure vessel 5 and passes through the exhaust inner cylinder 7 from the cyclone. It is possible to avoid the possibility of being discharged and the dust collection rate being lowered.
[0019]
【The invention's effect】
According to the present invention, blowdown can be performed only by a pressure difference in the system under high temperature and high pressure.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing an embodiment of the present invention.
FIG. 2 is a conceptual diagram showing a relationship between a radial position in a cyclone main body and a pressure at the position.
3 is a cross-sectional view showing streamlines in a vertical cross section of the cyclone shown in FIG. 1. FIG.
4 is an enlarged perspective view showing a part in which a cyclone structure and a support body shown in FIG. 1 are installed; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pressurized fluidized-bed combustion apparatus 2 Communication pipe 3 Cyclone 3a Main body 3b Inlet pipe 4 Cyclone leg 5 Pressure vessel 5a Partition wall 5b Gas introduction pipe 6 Dust collection pipe 7 Exhaust inner cylinder 8 Cyclone outlet pipe 9 Blowdown pipe 10 Gas turbine 11 Structure 12 Structure Support

Claims (1)

本体の接線方向に取り付けられ、固体粒子を含んだガスが導入される入口配管と、
前記ガスに角運動量を与え、ガス中の固体粒子を遠心力により分離除去する固体除去装置と、
前記固体粒子を回収する前記固体除去装置の管状の脚と、
前記固体除去装置の上部の中心軸線上に配置され、前記固体粒子を除去したガスを取り出す排気内筒と、
該排気内筒に接続された出口配管と、
前記固体除去装置を内装する圧力容器とを備えたサイクロンシステムにおいて、
前記固体除去装置の下部の中心軸線上に配置され、上部が軸対象で外径が前記排気内筒内径の0.65倍を超える径の構造物と、前記圧力容器の固体粒子回収部と前記出口配管を結ぶ配管とを備え、
前記固体除去装置の管状の脚の内径が前記構造物の外径よりも小さいとともに、該構造物の下方に配置され、かつ、前記固体除去装置の中心軸線を中心とし、前記構造物の外径を外径とする円筒状の領域の内側に、前記構造物を支持する複数本の支柱を備えたことを特徴とするサイクロンシステム。
An inlet pipe that is attached in the tangential direction of the main body and into which gas containing solid particles is introduced;
A solid removal device that imparts angular momentum to the gas and separates and removes solid particles in the gas by centrifugal force;
A tubular leg of the solid removal device for collecting the solid particles;
An exhaust inner cylinder that is arranged on the central axis of the upper part of the solid removal device and takes out the gas from which the solid particles have been removed;
An outlet pipe connected to the exhaust inner cylinder;
In a cyclone system comprising a pressure vessel that houses the solids removal device,
A structure that is disposed on the central axis of the lower part of the solid removal device, whose upper part is an axis and whose outer diameter exceeds 0.65 times the inner diameter of the exhaust inner cylinder, the solid particle recovery part of the pressure vessel, and the A pipe connecting the outlet pipe,
The inner diameter of the tubular leg of the solid removal device is smaller than the outer diameter of the structure, and is disposed below the structure, and the outer diameter of the structure is centered on the central axis of the solid removal device A cyclone system comprising a plurality of struts for supporting the structure inside a cylindrical region having an outer diameter of .
JP21279397A 1997-08-07 1997-08-07 Cyclone system Expired - Fee Related JP4300593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21279397A JP4300593B2 (en) 1997-08-07 1997-08-07 Cyclone system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21279397A JP4300593B2 (en) 1997-08-07 1997-08-07 Cyclone system

Publications (2)

Publication Number Publication Date
JPH1147640A JPH1147640A (en) 1999-02-23
JP4300593B2 true JP4300593B2 (en) 2009-07-22

Family

ID=16628481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21279397A Expired - Fee Related JP4300593B2 (en) 1997-08-07 1997-08-07 Cyclone system

Country Status (1)

Country Link
JP (1) JP4300593B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8246704B2 (en) * 2010-06-03 2012-08-21 Integradigm Corporation Contained vorticies device
JP5755042B2 (en) * 2011-06-16 2015-07-29 スチールプランテック株式会社 Waste heat recovery equipment, waste heat recovery method, and sintering machine system
US9376931B2 (en) 2012-01-27 2016-06-28 General Electric Company Turbomachine passage cleaning system
JP2018114469A (en) * 2017-01-19 2018-07-26 三菱日立パワーシステムズ株式会社 Cyclone built-in type storage device, gasification combined power generator, and particle separation method

Also Published As

Publication number Publication date
JPH1147640A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
US6896720B1 (en) Cleaning apparatus
EP1059993B1 (en) Cleaning apparatus
CN107469470B (en) Gas-liquid separator
US7648544B2 (en) Swirl tube separator
CA1224162A (en) Steam separating apparatus and separators used therein
JP4300593B2 (en) Cyclone system
US3042202A (en) Cyclone classifier
US4565554A (en) Steam separating apparatus and separators used therein
MXPA05000719A (en) Cyclone separator with a vortex extender pin.
WO1999022872A1 (en) Cyclone separator
CN113750654B (en) Nested multi-rotor cyclone dust removal device
US4278452A (en) Cyclone separator
US4257786A (en) Cyclone separator
RU2489194C1 (en) Vortex dust arrester
JPS6124448B2 (en)
JPH0317525B2 (en)
JP4364321B2 (en) Two-stage cyclone system
CN111298993B (en) Cyclone venturi gas-solid separator
EP0231931A2 (en) A cyclone with forced gas stream whirling
CA2158412C (en) Apparatus for de-entraining liquid in gas scrubbers and the like
CN2164912Y (en) Inclined tube type cylindric multitube cyclone
CN220195178U (en) Cyclone separator
CN219850182U (en) Improved diffusion cyclone dust collector
CN209061403U (en) A kind of multicyclone
JPH0244859Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees