JP4354398B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4354398B2
JP4354398B2 JP2004377734A JP2004377734A JP4354398B2 JP 4354398 B2 JP4354398 B2 JP 4354398B2 JP 2004377734 A JP2004377734 A JP 2004377734A JP 2004377734 A JP2004377734 A JP 2004377734A JP 4354398 B2 JP4354398 B2 JP 4354398B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
bonding material
sealing
device portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004377734A
Other languages
Japanese (ja)
Other versions
JP2006186091A (en
Inventor
太郎 和田
健介 井手
正宏 舩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004377734A priority Critical patent/JP4354398B2/en
Publication of JP2006186091A publication Critical patent/JP2006186091A/en
Application granted granted Critical
Publication of JP4354398B2 publication Critical patent/JP4354398B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Combinations Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress an increase or the like in manufacturing costs, and to obtain high junction properties and an improved sealing state in a semiconductor device, such as a multilayer semiconductor device, and to provide a method for manufacturing the semiconductor device. <P>SOLUTION: The semiconductor device comprises a first substrate 2 that has a first device 1 while a first bump electrode 6 is formed on the surface; a second substrate 4 that has a second device 3 while a second bump electrode 10 is formed on the surface, and the first bump electrode 6 is joined to the second bump electrode 10 for lamination on the first substrate 2; and a first sealing jointing material 8 and a second sealing joining material 12 that are interposed between the first substrate 2 and the second substrate 4 for joining them while surrounding the first bump electrode 6 and the second bump electrode 10 in the joined state, and seal the internal space in an airtight state. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、デバイスが形成された基板を積層してなる多層半導体デバイス等の半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device such as a multilayer semiconductor device formed by stacking substrates on which devices are formed, and a method for manufacturing the same.

近年、半導体集積回路の高集積化及び高性能化に伴い、素子の微細化技術に加え、垂直方向にも配線を施して3次元的な配線構造を有する3次元半導体集積回路技術の研究が進められている。この3次元半導体集積回路では、積層された複数層にそれぞれ形成された半導体素子や配線の電気的接続を層間配線を用いて行い、平面方向だけでなく垂直方向においても配線接続することで、平面的な従来の配線構造に比べ、配線自由度が高く、かつ、配線長の短縮化を図ることができる。これにより、素子の微細化に伴って生じる配線抵抗や寄生容量の増大を抑制することが可能になる。   In recent years, along with higher integration and higher performance of semiconductor integrated circuits, research on three-dimensional semiconductor integrated circuit technology that has a three-dimensional wiring structure by wiring in the vertical direction is advanced in addition to element miniaturization technology. It has been. In this three-dimensional semiconductor integrated circuit, electrical connection of semiconductor elements and wirings respectively formed in a plurality of stacked layers is performed by using interlayer wiring, and wiring connection is performed not only in the planar direction but also in the vertical direction. Compared with a typical conventional wiring structure, the degree of freedom of wiring is high and the wiring length can be shortened. As a result, it is possible to suppress an increase in wiring resistance and parasitic capacitance caused by the miniaturization of elements.

この3次元半導体集積回路の技術としては、貼り合わせによる製造方法が提示されている。例えば、特許文献1には、半導体集積回路が形成された複数のウェーハ同士を貼り合わせて複数層の半導体集積回路を積層形成すると共に、互いの半導体集積回路を、バンプを介して垂直方向に層間接続することで、3次元半導体集積回路を構築する技術が提案されている。この技術では、貼り合わせたウェーハの接合部に絶縁エポキシ接着剤等の絶縁性接着剤を注入している。   As a technique of this three-dimensional semiconductor integrated circuit, a manufacturing method by bonding is proposed. For example, in Patent Document 1, a plurality of semiconductor integrated circuits are laminated by laminating a plurality of wafers on which semiconductor integrated circuits are formed, and the semiconductor integrated circuits are stacked in layers in the vertical direction via bumps. A technique for constructing a three-dimensional semiconductor integrated circuit by connecting them has been proposed. In this technique, an insulating adhesive such as an insulating epoxy adhesive is injected into a bonded portion of bonded wafers.

このように絶縁性接着剤を注入するのは、バンプ等による電極での接合だけでは、接合強度が不十分であり、長期安定性や信頼性に欠けてしまうためである。すなわち、絶縁性接着剤でウェーハの接合部(層間接合部)を封止することで、ウェーハの接合性を高めている。併せて、この技術では、絶縁性接着剤が電気的接続部を外界から遮断するため、外部からのガス等の侵入による電気的接続部の汚染や変質を抑制する効果が得られる。   The reason why the insulating adhesive is injected in this manner is that the bonding strength is insufficient only by bonding with electrodes such as bumps, and long-term stability and reliability are lacking. That is, the bonding property of the wafer is enhanced by sealing the bonding portion (interlayer bonding portion) of the wafer with an insulating adhesive. In addition, in this technique, since the insulating adhesive shields the electrical connection portion from the outside, an effect of suppressing contamination and deterioration of the electrical connection portion due to intrusion of gas or the like from the outside can be obtained.

特開平11−261001号公報(特許請求の範囲、図2、図3)Japanese Patent Laid-Open No. 11-261001 (Claims, FIGS. 2 and 3)

上記従来の技術には、以下の課題が残されている。
従来のように接合後に絶縁性接着剤等の絶縁体を層間接合部に注入して封止を行う場合、絶縁体注入工程の追加により、接着剤の引き込みや硬化の時間を要し、タクトの低下、製造コストの増大を生ずる。また、従来のように貼り合わせ工程後に真空吸引等により層間接合部に絶縁体を導入する方法では絶縁材の充填にむらを生じやすく、このため歩留まりの低下等が生じてしまう。さらに、接着剤が誘導電荷を持つため、信号交雑や信号遅延の問題が発生するおそれもある。また、配線にCu等の金属を用いた場合、絶縁性接着剤を介して金属拡散による汚染が生じるおそれがあると共に、絶縁性接着剤からのコンタミネーションが少なからず生じるという不都合もある。
The following problems remain in the conventional technology.
In the case where sealing is performed by injecting an insulator such as an insulating adhesive into the interlayer joint after bonding as in the conventional case, the addition of the insulator injection process requires time for drawing in the adhesive and curing, Decreases and increases manufacturing costs. In addition, in the conventional method of introducing an insulator into the interlayer junction by vacuum suction or the like after the bonding process, unevenness in filling of the insulating material is likely to occur, resulting in a decrease in yield. Furthermore, since the adhesive has an induced charge, there is a risk of problems of signal hybridization and signal delay. In addition, when a metal such as Cu is used for the wiring, there is a possibility that contamination due to metal diffusion may occur through the insulating adhesive, and there is a disadvantage that contamination from the insulating adhesive is not a little.

本発明は、前述の課題に鑑みてなされたもので、貼り合わせによる多層半導体デバイスの層間配線技術において、タクトや歩留まりの低下を抑え、層間配線部の安定維持に充分な強固な接合強度を得るとともに層間配線部の劣化によるデバイスの劣化を抑制することでデバイスの長期安定性・信頼性を維持する半導体装置及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems. In the interlayer wiring technology of a multilayer semiconductor device by bonding, a decrease in tact and yield is suppressed, and a strong bonding strength sufficient for stable maintenance of the interlayer wiring portion is obtained. Another object of the present invention is to provide a semiconductor device that maintains the long-term stability and reliability of the device by suppressing the deterioration of the device due to the deterioration of the interlayer wiring portion, and a manufacturing method thereof.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の半導体装置は、第1のデバイス部を有し第1のデバイス部の電極が表面に形成された第1の基板と、第2のデバイス部を有し第2のデバイス部の電極が表面に形成されていると共に第1のデバイス部の電極と第2のデバイス部の電極とを接合させた状態で第1の基板上に積層された第2の基板と、接合状態の第1のデバイス部の電極と第2のデバイス部の電極とを包囲した状態で第1の基板と第2の基板との間に介在してこれらを接合し、内部の空間を気密状態に封止する封止接合材と、を備え、第1のデバイス部の電極及び第2のデバイス部の電極の少なくとも一方が封止接合材よりも低剛性の導電性材料で形成され、封止接合材は、導電性材料で形成されている第1のデバイス部の電極及び第2のデバイス部の電極の少なくとも一方よりも高剛性であることを特徴とする。 The present invention employs the following configuration in order to solve the above problems. That is, the semiconductor device of the present invention includes a first substrate having a first device portion and an electrode of the first device portion formed on the surface, and a second device portion having a second device portion. A second substrate stacked on the first substrate in a state where the electrode is formed on the surface and the electrode of the first device unit and the electrode of the second device unit are bonded together; The electrode of the first device part and the electrode of the second device part are surrounded and joined between the first substrate and the second substrate to seal the internal space in an airtight state. And at least one of the electrode of the first device portion and the electrode of the second device portion is formed of a conductive material having a rigidity lower than that of the sealing bonding material, and the sealing bonding material is The electrodes of the first device portion and the second device portion formed of a conductive material. Characterized in that it is a more rigid than one even without.

また、本発明の半導体装置の製造方法は、第1のデバイス部を有し第1のデバイス部の電極を表面に形成した第1の基板を作製する工程と、第2のデバイス部を有し第2のデバイス部の電極を表面に形成した第2の基板を作製する工程と、第1のデバイス部の電極と第2のデバイス部の電極とを接合させて第1の基板上に第2の基板を積層する工程と、を備え、接合時に第1のデバイス部の電極及び第2のデバイス部の電極を包囲した状態で第1の基板と第2の基板との間に介在してこれらを接合し、内部を気密状態に封止する封止接合材を、第1の基板及び第2の基板の少なくとも一方に形成しておき、第1のデバイス部の電極及び第2のデバイス部の電極の少なくとも一方が封止接合材よりも低剛性の導電性材料で形成され、封止接合材は、導電性材料で形成されている第1のデバイス部の電極及び第2のデバイス部の電極の少なくとも一方よりも高剛性であることを特徴とする。 In addition, the method for manufacturing a semiconductor device of the present invention includes a step of manufacturing a first substrate having a first device portion and an electrode of the first device portion formed on the surface, and a second device portion. A step of producing a second substrate having the electrode of the second device portion formed on the surface, and joining the electrode of the first device portion and the electrode of the second device portion to the second substrate on the first substrate And laminating the first substrate and the second device in a state of surrounding the electrodes of the first device portion and the second device portion at the time of bonding. joining, the sealing joint material for sealing the internal airtight, it can be formed on at least one of the first and second substrates, the electrode and the second device of the first device part At least one of the electrodes is formed of a conductive material having a rigidity lower than that of the sealing bonding material, and the sealing bonding material , Characterized in that at least one of which more rigid than the first device portion of the electrode and a second device portion of the electrode which is formed of a conductive material.

これらの半導体装置及びその製造方法では、電極部のみによる接合ではなく、封止接合材によって、第1の基板と第2の基板との接合がなされることにより、第1の基板と第2の基板との接合強度が高まると共に、電極部を含む内部空間の気密封止がなされることにより、外部からのガス等の侵入による内部の汚染・変質を防ぐことができる。このように、封止接合材は、デバイス部が配置された内部空間の気密を維持するガスバリアとして機能すると共に、第1の基板と第2の基板との接合を強固に保つ接合部材として機能する。
また、この半導体装置の製造方法では、第1の基板と第2の基板とを積層する際に同時に封止接合材で封止を行うため、封止工程を別個に必要とせず、タクトの低下を回避し、高い生産性を得ることができる。
In these semiconductor devices and manufacturing methods thereof, the first substrate and the second substrate are bonded by the bonding between the first substrate and the second substrate by the sealing bonding material instead of bonding by only the electrode portion. By increasing the bonding strength with the substrate and hermetically sealing the internal space including the electrode portion, it is possible to prevent internal contamination and alteration due to intrusion of gas or the like from the outside. As described above, the sealing bonding material functions as a gas barrier that maintains the airtightness of the internal space in which the device portion is disposed, and also functions as a bonding member that firmly maintains the bonding between the first substrate and the second substrate. .
Further, in this method of manufacturing a semiconductor device, when the first substrate and the second substrate are stacked, sealing is performed with a sealing bonding material at the same time, so that a separate sealing step is not required and the tact is reduced. Can be avoided and high productivity can be obtained.

本発明の半導体装置は、封止接合材で封止した内部の空間が、真空状態又は不活性ガスが充填された状態であることが好ましい。また、本発明の半導体装置の製造方法は、上記接合を真空中又は不活性ガス中で行うことが好ましい。すなわち、これらの半導体装置及びその製造方法では、封止接合材で包囲された内部空間が、真空状態又は不活性ガス充填状態で気密とされるので、当該内部空間内へ外部から侵入する反応性ガスに起因する汚染や変質を抑制することができる。   In the semiconductor device of the present invention, the internal space sealed with the sealing bonding material is preferably in a vacuum state or a state filled with an inert gas. In the method for manufacturing a semiconductor device of the present invention, it is preferable that the bonding is performed in a vacuum or in an inert gas. That is, in these semiconductor devices and manufacturing methods thereof, the internal space surrounded by the sealing bonding material is hermetically sealed in a vacuum state or filled with an inert gas, and therefore, the reactivity that enters the internal space from the outside. Contamination and alteration caused by gas can be suppressed.

また、本発明の半導体装置の製造方法は、上記封止接合材の接合を常温接合で行うことを特徴とする。すなわち、この半導体装置の製造方法では、常温接合により封止接合材の接合を行うので、熱負荷によるデバイス部へのダメージ等を防ぐことができる。   In addition, a method for manufacturing a semiconductor device according to the present invention is characterized in that the sealing bonding material is bonded at room temperature. That is, in this semiconductor device manufacturing method, since the sealing bonding material is bonded by room temperature bonding, damage to the device portion due to a thermal load can be prevented.

また、本発明の半導体装置の製造方法は、第1のデバイス部の電極及び第2のデバイス部の電極の少なくとも一方を封止接合材よりも低剛性の導電性材料でかつ突出した高さで形成し、第1の基板と第2の基板とを圧接して上記の積層を行うことを特徴とする。すなわち、この半導体装置の製造方法では、低剛性の電極を封止接合材よりも突出した高さに設定するので、荷重を加えた状態で第1の基板と第2の基板とを接合すると、封止接合材による接合と同時に、低剛性の電極が変形して圧着され、電極の接合を確実に行うことができる。   In the semiconductor device manufacturing method of the present invention, at least one of the electrode of the first device portion and the electrode of the second device portion is made of a conductive material having a rigidity lower than that of the sealing bonding material and has a protruding height. And the above-described lamination is performed by press-contacting the first substrate and the second substrate. That is, in this method of manufacturing a semiconductor device, since the low-rigidity electrode is set to a height protruding from the sealing bonding material, when the first substrate and the second substrate are bonded with a load applied, Simultaneously with the bonding with the sealing bonding material, the low-rigidity electrode is deformed and pressure-bonded, and the electrode can be reliably bonded.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る半導体装置及びその製造方法によれば、封止接合材によって、第1の基板と第2の基板との接合及びデバイス部が配置された空間の気密封止がなされることにより、第1の基板と第2の基板との接合強度が高まると共に、外部からのガス等の侵入による内部の汚染・変質を防ぐことができ、高い接合性及び良好な封止状態を得ることによりデバイスの長期安定性・信頼性を維持することができる。また、本発明の半導体装置の製造方法によれば、封止工程を別個に必要とすることなく、高い接合性及び良好な封止状態を得ることができる。したがって、安定した特性及び信頼性を有し、高い生産性で強固に封止された積層構造の半導体装置を得ることができる。
The present invention has the following effects.
That is, according to the semiconductor device and the method of manufacturing the same according to the present invention, the sealing bonding material joins the first substrate and the second substrate and hermetically seals the space where the device portion is arranged. As a result, the bonding strength between the first substrate and the second substrate can be increased, and internal contamination and alteration due to intrusion of gas or the like from the outside can be prevented, and high bondability and a good sealing state can be obtained. As a result, the long-term stability and reliability of the device can be maintained. Moreover, according to the manufacturing method of the semiconductor device of this invention, a high bondability and a favorable sealing state can be obtained, without requiring a sealing process separately. Therefore, it is possible to obtain a semiconductor device having a laminated structure which has stable characteristics and reliability and is firmly sealed with high productivity.

以下、本発明に係る半導体装置及びその製造方法の一実施形態を、図1から図4を参照しながら説明する。   Hereinafter, an embodiment of a semiconductor device and a manufacturing method thereof according to the present invention will be described with reference to FIGS.

本実施形態の半導体装置は、図1の(a)に示すように、複数のトランジスタ等からなる第1のデバイス部1が形成された第1の基板2と、複数のトランジスタ等からなる第2のデバイス部3が形成された第2の基板4とを、図1の(b)に示すように、積層してなる半導体集積回路等の多層半導体デバイスSDである。   As shown in FIG. 1A, the semiconductor device according to the present embodiment includes a first substrate 2 on which a first device unit 1 including a plurality of transistors and the like, and a second substrate including a plurality of transistors and the like. As shown in FIG. 1B, a multilayer semiconductor device SD such as a semiconductor integrated circuit is formed by stacking the second substrate 4 on which the device section 3 is formed.

上記第1の基板2は、例えばSi(シリコン)基板であって、内部に第1のデバイス部1が形成されていると共に第1のデバイス部1に接続された第1の貫通配線5が表裏に貫通して形成されている。この第1の貫通配線5の一端は、内側表面に露出しており、先端にハンダ等の導電性材料からなる第1のバンプ電極(第1のデバイス部の電極)6が形成されている。また、第1の基板2には、その外側表面に第1の貫通配線5の他端に接続された第1の表面配線7が形成されている。さらに、この第1の基板2には、その内側表面に第1のバンプ電極6の周囲を包囲した矩形枠状の第1の封止接合材8が形成されている。   The first substrate 2 is, for example, a Si (silicon) substrate, in which the first device portion 1 is formed, and the first through wiring 5 connected to the first device portion 1 is front and back. It is formed to penetrate through. One end of the first through wiring 5 is exposed on the inner surface, and a first bump electrode (electrode of the first device portion) 6 made of a conductive material such as solder is formed at the tip. Further, a first surface wiring 7 connected to the other end of the first through wiring 5 is formed on the outer surface of the first substrate 2. Further, the first substrate 2 is formed with a rectangular frame-shaped first sealing bonding material 8 surrounding the periphery of the first bump electrode 6 on the inner surface thereof.

また、上記第2の基板4は、第1の基板2と同様に、例えばSi基板であって、内部に第2のデバイス部3が形成されていると共に第2のデバイス部3に接続された第2の貫通配線9が表裏に貫通して形成されている。この第2の貫通配線9の一端は、内側表面に露出しており、先端にハンダ等の導電性材料からなる第2のバンプ電極(第2のデバイス部の電極)10が形成されている。また、第2の基板4には、その外側表面に第2の貫通配線9の他端に接続された第2の表面配線11が形成されている。さらに、この第2の基板4には、その内側表面に第2のバンプ電極10の周囲を包囲した矩形枠状の第2の封止接合材12が上記第1の封止接合材8の位置に対応して形成されている。
上記第1及び第2の封止接合材8、12は、第1及び第2のバンプ電極6、10よりも剛性の高い材料、例えばSiで形成されている。
Further, the second substrate 4 is, for example, a Si substrate, like the first substrate 2, and the second device unit 3 is formed therein and connected to the second device unit 3. The 2nd penetration wiring 9 is penetrated and formed in the front and back. One end of the second through wiring 9 is exposed on the inner surface, and a second bump electrode (electrode of the second device portion) 10 made of a conductive material such as solder is formed at the tip. The second substrate 4 has a second surface wiring 11 connected to the other end of the second through wiring 9 on the outer surface thereof. Further, the second sealing member 12 having a rectangular frame shape surrounding the periphery of the second bump electrode 10 on the inner surface of the second substrate 4 has a position of the first sealing member 8. It is formed corresponding to.
The first and second sealing bonding materials 8 and 12 are made of a material having rigidity higher than that of the first and second bump electrodes 6 and 10, for example, Si.

上記第2の基板4は、第1のバンプ電極6に第2のバンプ電極10を接合させた状態で第1の基板2上に接合されている。また、互いに対向配置された第1の封止接合材8と第2の封止接合材12とが接合されて、第1の基板2と第2の基板4とが積層状態とされている。すなわち、第1の封止接合材8及び第2の封止接合材12は、第1の基板2と第2の基板4との間に介在してこれらを接合し、接合状態の第1のバンプ電極6と第2のバンプ電極10とを包囲した状態で内部の空間を気密状態に封止している。第1の封止接合材8及び第2の封止接合材12で封止した内部の空間は、真空状態又はAr(アルゴン)等の不活性ガスが充填された状態とされている。   The second substrate 4 is bonded onto the first substrate 2 with the second bump electrode 10 bonded to the first bump electrode 6. In addition, the first sealing bonding material 8 and the second sealing bonding material 12 that are arranged to face each other are bonded to each other so that the first substrate 2 and the second substrate 4 are laminated. That is, the first sealing bonding material 8 and the second sealing bonding material 12 are interposed between the first substrate 2 and the second substrate 4 to bond them, and the first bonded bonding material 1 The inner space is sealed in an airtight state while surrounding the bump electrode 6 and the second bump electrode 10. The internal space sealed with the first sealing bonding material 8 and the second sealing bonding material 12 is in a vacuum state or a state filled with an inert gas such as Ar (argon).

次に、本実施形態の多層半導体デバイスSDの製造方法について、図2から図4を参照して説明する。   Next, a method for manufacturing the multilayer semiconductor device SD of the present embodiment will be described with reference to FIGS.

まず、図2の(a)に示すように、トランジスタ等の第1のデバイス部1が形成された第1のSiウェーハ13の表面に、第1のデバイス部1の層間接続端子としてハンダ等で第1のバンプ電極6を形成する。同様に、トランジスタ等の第2のデバイス部3が形成された第2のSiウェーハ14の表面に、第2のデバイス部3の層間接続端子としてハンダ等で第2のバンプ電極10を形成する。これらの第1のバンプ電極6及び第2のバンプ電極10は、それぞれ予め第1のSiウェーハ13及び第2のSiウェーハ14に形成された第1の貫通配線5(図示しない)の一端及び第2の貫通配線9(図示しない)の一端に形成される。   First, as shown in FIG. 2A, the surface of the first Si wafer 13 on which the first device portion 1 such as a transistor is formed is soldered as an interlayer connection terminal of the first device portion 1. A first bump electrode 6 is formed. Similarly, the second bump electrode 10 is formed by solder or the like as an interlayer connection terminal of the second device unit 3 on the surface of the second Si wafer 14 on which the second device unit 3 such as a transistor is formed. The first bump electrode 6 and the second bump electrode 10 are respectively connected to one end of the first through wiring 5 (not shown) and the first bump formed in the first Si wafer 13 and the second Si wafer 14 in advance. Two through wirings 9 (not shown) are formed at one end.

これらの第1のバンプ電極6及び第2のバンプ電極10は、次に形成する第1の封止接合材8及び第2の封止接合材12の高さよりも若干高く形成しておく。
なお、図示はしないが第1のSiウェーハ13及び第2のSiウェーハ14には、第1のバンプ電極6及び第2のバンプ電極10と反対の表面に、それぞれ第1の表面配線7及び第2の表面配線11を予め形成しておく。
The first bump electrode 6 and the second bump electrode 10 are formed slightly higher than the height of the first sealing bonding material 8 and the second sealing bonding material 12 to be formed next.
Although not shown, the first Si wafer 13 and the second Si wafer 14 have the first surface wiring 7 and the second Si wafer 14 on the surface opposite to the first bump electrode 6 and the second bump electrode 10, respectively. Two surface wirings 11 are formed in advance.

次に、図2の(b)に示すように、第1のSiウェーハ13及び第2のSiウェーハ14の表面上にSi膜14をCVD等により所定厚さで成膜する。さらに、Si膜14の表面をCMP(Chemical Mechanical Polishing:化学的機械的研磨)により平坦化した後に、図2(c)に示すように、マスクMにより第1のバンプ電極6及び第2のバンプ電極10を包囲する矩形枠状のパターンを施す。次に、図3の(a)に示すように、マスキングされていないSi膜14の不要部分をエッチングにより除去し、矩形枠状に第1の封止接合材8及び第2の封止接合材12をそれぞれ第1のSiウェーハ13及び第2のSiウェーハ14の表面上に形成する。   Next, as shown in FIG. 2B, a Si film 14 is formed with a predetermined thickness on the surfaces of the first Si wafer 13 and the second Si wafer 14 by CVD or the like. Further, after planarizing the surface of the Si film 14 by CMP (Chemical Mechanical Polishing), as shown in FIG. 2C, the first bump electrode 6 and the second bump are masked by the mask M. A rectangular frame-shaped pattern surrounding the electrode 10 is applied. Next, as shown in FIG. 3A, unnecessary portions of the unmasked Si film 14 are removed by etching, and the first sealing bonding material 8 and the second sealing bonding material are formed into a rectangular frame shape. 12 are formed on the surfaces of the first Si wafer 13 and the second Si wafer 14, respectively.

次に、第1のSiウェーハ13と第2のSiウェーハ14とを対向させて位置決めすると共に、図3の(b)に示すように、第1の封止接合材8と第2の封止接合材12とを真空中又はAr等の不活性ガス雰囲気中で互いに圧接して常温接合により接合を行う。この際、第1の封止接合材8と第2の封止接合材12との接合と同時に、第1のバンプ電極6と第2のバンプ電極10との接合が行われる。また、接合された第1の封止接合材8と第2の封止接合材12とにより、真空状態又は不活性ガスが充填された状態で内部の空間が気密状態に封止される。なお、図3の(b)では、わかり易くするために第2のSiウェーハ14を図示していない。このように、第1の封止接合材8及び第2の封止接合材12は、内部空間の気密を維持するガスバリアとして機能すると共に、第1のSiウェーハ13と第2のSiウェーハ14との接合を強固に保つ接合部材として機能する。   Next, the first Si wafer 13 and the second Si wafer 14 are positioned to face each other, and as shown in FIG. 3B, the first sealing bonding material 8 and the second sealing are used. The bonding material 12 is pressed against each other in vacuum or in an inert gas atmosphere such as Ar, and bonded by room temperature bonding. At this time, the first bump electrode 6 and the second bump electrode 10 are bonded simultaneously with the bonding of the first sealing bonding material 8 and the second sealing bonding material 12. Further, the inner space is sealed in an airtight state in a vacuum state or a state filled with an inert gas by the first sealing bonding material 8 and the second sealing bonding material 12 which are bonded. In FIG. 3B, the second Si wafer 14 is not shown for easy understanding. Thus, the first sealing bonding material 8 and the second sealing bonding material 12 function as a gas barrier that maintains the airtightness of the internal space, and the first Si wafer 13 and the second Si wafer 14 It functions as a joining member that keeps the joining firmly.

なお、常温接合を行う場合は、接合面となる第1の封止接合材8の端面及び第2の封止接合材12の端面をそれぞれ活性化処理する。
すなわち、通常、接合面の表面には、大気中の酸素等との反応による酸化膜やフォトリソグラフィ工程中のエッチング材料の残渣やその他の不純物が存在する。そこで、高真空中において、中性原子ビーム、イオンビーム等を接合面表面に照射し、これらの不純物を接合面表面から排除して、接合面表面を清浄にする。さらに、同時に、接合面表面にダングリングボンドが存在する状態、つまり、接合面表面が活性化された状態にする。
In addition, when performing normal temperature bonding, the end surface of the 1st sealing bonding material 8 used as a bonding surface and the end surface of the 2nd sealing bonding material 12 are each activated.
In other words, the surface of the bonding surface usually contains an oxide film due to a reaction with oxygen in the atmosphere, a residue of an etching material during the photolithography process, and other impurities. In view of this, the surface of the bonding surface is irradiated with a neutral atom beam, an ion beam or the like in a high vacuum to remove these impurities from the surface of the bonding surface, thereby cleaning the surface of the bonding surface. Furthermore, at the same time, a state in which dangling bonds are present on the surface of the bonding surface, that is, a state in which the surface of the bonding surface is activated.

この活性化された状態で、第1の封止接合材8の端面と第2の封止接合材12の端面とを互いに圧接して常温接合させる。この常温接合は、接合面同士が互いのダングリングボンド同士で結合を行うことになり、強い結合強度を得ることができると共に、室温において接合可能であるため、熱による歪みがなく、高精度かつ高効率な生産性の良好な接合法である。   In this activated state, the end surface of the first sealing bonding material 8 and the end surface of the second sealing bonding material 12 are pressed against each other and bonded at room temperature. In this room temperature bonding, the bonding surfaces are bonded with each other's dangling bonds, so that strong bonding strength can be obtained and bonding is possible at room temperature, so there is no distortion due to heat, high accuracy and This is a highly efficient joining method with good productivity.

また、第1のバンプ電極6と第2のバンプ電極10とは、第1の封止接合材8及び第2の封止接合材12よりも若干高く形成されていると共に、第1の封止接合材8及び第2の封止接合材12よりも低剛性の導電性材料、すなわち第1の封止接合材8及び第2の封止接合材12に比べて柔らかく展性に富む導電性材料で形成されている。このため、図4の(a)に示すように、第1の封止接合材8と第2の封止接合材12との接合時に、第1のバンプ電極6と第2のバンプ電極10とが荷重で変形して圧着され、確実な接合状態が得られる。   Further, the first bump electrode 6 and the second bump electrode 10 are formed slightly higher than the first sealing bonding material 8 and the second sealing bonding material 12, and the first sealing electrode Conductive material having lower rigidity than the bonding material 8 and the second sealing bonding material 12, that is, a conductive material that is softer and more malleable than the first sealing bonding material 8 and the second sealing bonding material 12. It is formed with. Therefore, as shown in FIG. 4A, when the first sealing bonding material 8 and the second sealing bonding material 12 are bonded, the first bump electrode 6 and the second bump electrode 10 Is deformed by the load and is crimped, and a reliable joining state is obtained.

このようにウェーハ単位で相互に接合及び封止を行った後、図3の(b)に示すダイシングラインDに沿ってダイシングすることにより、接合されて積層状態の第1のSiウェーハ13及び第2のSiウェーハ14を、図3の(c)に示すように、第1の基板2と第2の基板4とが接合された多層半導体デバイスSDに分離切断することで、単体の多層半導体デバイスSDを得ることができる。   After bonding and sealing each other in units of wafers in this way, the first Si wafer 13 and the stacked first Si wafer 13 bonded and laminated by dicing along a dicing line D shown in FIG. As shown in FIG. 3C, the two Si wafers 14 are separated and cut into a multi-layer semiconductor device SD in which the first substrate 2 and the second substrate 4 are joined, so that a single multi-layer semiconductor device is obtained. SD can be obtained.

本実施形態では、接合された第1の封止接合材8及び第2の封止接合材12によって、第1の基板2と第2の基板4との接合及び内部空間の気密封止がなされることにより、第1の基板2と第2の基板4との接合強度が高まると共に、外部からの腐食性ガス等の侵入による内部の汚染・変質を防ぐことができる。
また、第1の基板2となる第1のSiウェーハ13と第2の基板4となる第2のSiウェーハ14とを積層する際に、同時に第1の封止接合材8及び第2の封止接合材12で封止を行うため、封止工程を別個に必要とせず、タクトの低下を回避し、高い生産性を得ることができる。そして、荷重を伴う接合の場合、第1の封止接合材8及び第2の封止接合材12は、荷重を支えて内部構造を保護する支持材としての機能も担っている。
In the present embodiment, the first substrate 2 and the second substrate 4 are bonded and the internal space is hermetically sealed by the bonded first sealing bonding material 8 and the second sealing bonding material 12. As a result, the bonding strength between the first substrate 2 and the second substrate 4 is increased, and internal contamination / degeneration due to the invasion of corrosive gas or the like from the outside can be prevented.
Further, when the first Si wafer 13 to be the first substrate 2 and the second Si wafer 14 to be the second substrate 4 are laminated, the first sealing bonding material 8 and the second sealing are simultaneously formed. Since sealing is performed with the stop bonding material 12, a separate sealing step is not required, and a reduction in tact can be avoided and high productivity can be obtained. In the case of bonding with a load, the first sealing bonding material 8 and the second sealing bonding material 12 also have a function as a support material that supports the load and protects the internal structure.

さらに、第1の封止接合材8及び第2の封止接合材12で包囲された内部空間が、真空状態又は不活性ガス充填状態とされるので、当該内部空間内の雰囲気ガスに起因する汚染や変質を抑制することができる。
また、常温接合により第1の封止接合材8と第2の封止接合材12との接合を行うので、熱負荷による第1のデバイス部1及び第2のデバイス部3へのダメージ等を防ぐことができる。
Furthermore, since the internal space surrounded by the first sealing bonding material 8 and the second sealing bonding material 12 is in a vacuum state or filled with an inert gas, it is caused by the atmospheric gas in the internal space. Contamination and alteration can be suppressed.
In addition, since the first sealing bonding material 8 and the second sealing bonding material 12 are bonded by room-temperature bonding, damage to the first device unit 1 and the second device unit 3 due to a thermal load is caused. Can be prevented.

なお、本発明の技術範囲は上記各実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、本実施形態では、第1のバンプ電極6と第2のバンプ電極10とを圧着して接合させているが、図4の(b)に示すように、第1の貫通配線5及び第2の貫通配線9の一端にこれらのバンプ電極を形成せず、第1の貫通配線5及び第2の貫通配線9の一端を第1のSiウェーハ13及び第2のSiウェーハ14の内側表面から突出させ、互いに突き合わせて常温接合により接合させても構わない。この場合も、第1のバンプ電極6及び第2のバンプ電極10と同様に、第1の封止接合材8及び第2の封止接合材12よりも若干高く第1の貫通配線5及び第2の貫通配線9の一端を突出させると共に、第1の封止接合材8及び第2の封止接合材12よりも低剛性の導電性材料で形成する。これにより、圧接時に第1の貫通配線5と第2の貫通配線9と一端が互いに変形して圧着し、確実な電極接合を得ることができる。
また、上記実施形態では、第1の封止接合材8及び第2の封止接合材12とを第1のSiウェーハ13及び第2のSiウェーハ14に接合して設けているが、他のバリエーションとして、デバイス形成の前に、所定領域を予めエッチング等により壁部に囲まれた凹部としておき、該凹部内にデバイスを形成した後に、壁部を用いて封止する方法で構成しても構わない。この場合、壁部が、ウェーハ(基板)に一体に形成された封止接合材として機能するので、別個に封止接合材を作製しておく必要が無く、部材点数の低減等により、より低コスト化を図ることが可能になる。
For example, in the present embodiment, the first bump electrode 6 and the second bump electrode 10 are bonded by pressure bonding, but as shown in FIG. These bump electrodes are not formed at one end of the two through wirings 9, and the one end of the first through wiring 5 and the second through wiring 9 is connected to the inner surface of the first Si wafer 13 and the second Si wafer 14. You may make it protrude, but it may contact | abut each other and it may join by normal temperature joining. Also in this case, similarly to the first bump electrode 6 and the second bump electrode 10, the first through-wiring 5 and the second through-hole 5 are slightly higher than the first sealing bonding material 8 and the second sealing bonding material 12. One end of each of the two through-wirings 9 is protruded, and is formed of a conductive material having lower rigidity than the first sealing bonding material 8 and the second sealing bonding material 12. Thereby, at the time of press-contact, the 1st penetration wiring 5, the 2nd penetration wiring 9, and one end mutually deform and press-fit, and reliable electrode joining can be obtained.
Moreover, in the said embodiment, although the 1st sealing joining material 8 and the 2nd sealing joining material 12 are joined and provided in the 1st Si wafer 13 and the 2nd Si wafer 14, As a variation, it is possible to configure a method in which a predetermined region is previously formed as a recess surrounded by a wall by etching or the like before forming a device, and a device is formed in the recess and then sealed using the wall. I do not care. In this case, since the wall portion functions as a sealing bonding material formed integrally with the wafer (substrate), there is no need to prepare a sealing bonding material separately, and the lower the number of members. Cost can be reduced.

また、第1の封止接合材8及び第2の封止接合材12をSiで形成したが、他の材料で形成しても構わない。例えば、SiO2等の絶縁性材料やAl等の金属材料でも良い。なお、上述した理由により、第1のバンプ電極6及び第2のバンプ電極10よりも高い剛性を有する材料が好ましい。
また、第1の基板2に形成した第1の封止接合材8と第2の基板4に形成した第2の封止接合材12とを突き合わせて接合を行っているが、第1の基板2又は第2の基板4の一方に、封止に必要な高さに設定した封止接合材を一つだけ形成しておき、これを他方の基板の表面に接合しても構わない。
さらに、本実施形態の製造方法では、ウェーハ単位で接合してダイシングにより単体の多層半導体デバイスSDを得ているが、単体の第1の基板2と第2の基板4とを接合して単体の多層半導体デバイスSDを製造しても構わない。
Moreover, although the 1st sealing bonding material 8 and the 2nd sealing bonding material 12 were formed with Si, you may form with another material. For example, an insulating material such as SiO 2 or a metal material such as Al may be used. For the reasons described above, a material having higher rigidity than the first bump electrode 6 and the second bump electrode 10 is preferable.
Further, the first sealing bonding material 8 formed on the first substrate 2 and the second sealing bonding material 12 formed on the second substrate 4 are abutted and bonded to each other. Only one sealing bonding material set to a height required for sealing may be formed on one of the two or second substrates 4 and bonded to the surface of the other substrate.
Furthermore, in the manufacturing method of the present embodiment, a single multilayer semiconductor device SD is obtained by dicing and bonding in units of wafers, but the single first substrate 2 and the second substrate 4 are bonded to each other. A multilayer semiconductor device SD may be manufactured.

また、隣接する第1の封止接合材8と第2の封止接合材12との間でダイシングしたが、図5に示すように、ウェーハ状態では隣接する多層半導体デバイスSDで一つの第1の封止接合材8及び第2の封止接合材12を共用し、ダイシングでこの第1の封止接合材8及び第2の封止接合材12からなる封止接合材を2つに切り離して分割しても構わない。この場合、ダイシングにより個々の多層半導体デバイスSDに切り離されて分割された第1の封止接合材8及び第2の封止接合材12は、内部空間の気密状態を確保・維持するのに十分な幅になるように設定される。   Further, although dicing is performed between the adjacent first sealing bonding material 8 and the second sealing bonding material 12, as shown in FIG. 5, one first multi-layer semiconductor device SD is adjacent to each other in the wafer state. The sealing bonding material 8 and the second sealing bonding material 12 are shared, and the sealing bonding material composed of the first sealing bonding material 8 and the second sealing bonding material 12 is separated into two by dicing. Can be divided. In this case, the first sealing bonding material 8 and the second sealing bonding material 12 separated into individual multilayer semiconductor devices SD by dicing are sufficient to ensure and maintain the airtight state of the internal space. It is set to be a wide width.

また、本実施形態では、第1の基板2及び第2の基板4とを接合して積層しているが、2つの基板に限らず、3つ以上の基板を同様にして接合し積層した多層半導体デバイスに適用しても構わない。この場合、互いに対向して接合し合う基板同士は、それぞれ第1の基板2及び第2の基板4と同様に、第1の封止接合材8及び第2の封止接合材12に対応した同様の封止接合材が形成されることは言うまでもない。   In the present embodiment, the first substrate 2 and the second substrate 4 are bonded and stacked. However, the present invention is not limited to two substrates, but a multilayer in which three or more substrates are bonded and stacked in the same manner. You may apply to a semiconductor device. In this case, the substrates facing each other and bonded correspond to the first sealing bonding material 8 and the second sealing bonding material 12, respectively, similarly to the first substrate 2 and the second substrate 4, respectively. Needless to say, a similar sealing bonding material is formed.

本発明に係る一実施形態の半導体装置の製造方法を示す接合前後の断面図である。It is sectional drawing before and behind joining which shows the manufacturing method of the semiconductor device of one Embodiment which concerns on this invention. 本実施形態の半導体装置の製造工程において、バンプ電極形成工程からマスキング工程までを工程順に示す要部の斜視図である。In the manufacturing process of the semiconductor device of this embodiment, it is a perspective view of the principal part which shows from a bump electrode formation process to a masking process in order of a process. 本実施形態の半導体装置の製造工程において、封止接合材形成工程からダイシング後までを工程順に示す要部の斜視図である。In the manufacturing process of the semiconductor device of this embodiment, it is a perspective view of the principal part which shows from a sealing bonding material formation process to after dicing in order of a process. 本実施形態の半導体装置の製造工程において、バンプ電極の接合状態及び貫通配線の接合状態を示す要部の断面図である。In the manufacturing process of the semiconductor device of this embodiment, it is sectional drawing of the principal part which shows the joining state of a bump electrode, and the joining state of a penetration wiring. 本実施形態の半導体装置の製造工程において、ダイシング工程の他の例を示す断面図である。In the manufacturing process of the semiconductor device of this embodiment, it is sectional drawing which shows the other example of a dicing process.

符号の説明Explanation of symbols

1…第1のデバイス部、2…第1の基板、3…第2のデバイス部、4…第2の基板、6…第1のバンプ電極(第1のデバイス部の電極)、8…第1の封止接合材、10…第2のバンプ電極(第2のデバイス部の電極)、12…第2の封止接合材、13…第1のSiウェーハ、14…第2のSiウェーハ、SD…多層半導体デバイス   DESCRIPTION OF SYMBOLS 1 ... 1st device part, 2 ... 1st board | substrate, 3 ... 2nd device part, 4 ... 2nd board | substrate, 6 ... 1st bump electrode (electrode of 1st device part), 8 ... 1st DESCRIPTION OF SYMBOLS 1 Sealing bonding material, 10 ... 2nd bump electrode (electrode of 2nd device part), 12 ... 2nd sealing bonding material, 13 ... 1st Si wafer, 14 ... 2nd Si wafer, SD ... Multilayer semiconductor device

Claims (8)

第1のデバイス部を有し前記第1のデバイス部の電極が表面に形成された第1の基板と、
第2のデバイス部を有し前記第2のデバイス部の電極が表面に形成されていると共に前記第1のデバイス部の電極と前記第2のデバイス部の電極とを接合させた状態で前記第1の基板上に積層された第2の基板と、
接合状態の前記第1のデバイス部の電極と前記第2のデバイス部の電極とを包囲した状態で前記第1の基板と前記第2の基板との間に介在してこれらを接合し、内部の空間を気密状態に封止する封止接合材と、を備え
前記第1のデバイス部の電極及び前記第2のデバイス部の電極の少なくとも一方が前記封止接合材よりも低剛性の導電性材料で形成され、
前記封止接合材は、前記導電性材料で形成されている前記第1のデバイス部の電極及び前記第2のデバイス部の電極の少なくとも一方よりも高剛性であることを特徴とする半導体装置。
A first substrate having a first device portion on which an electrode of the first device portion is formed;
The second device portion has the electrode of the second device portion formed on the surface, and the electrode of the first device portion and the electrode of the second device portion are joined together. A second substrate stacked on one substrate;
In a state of surrounding the electrode of the first device portion and the electrode of the second device portion in a bonded state, the electrodes are interposed between the first substrate and the second substrate, and are joined together. A sealing bonding material that seals the space in an airtight state ,
At least one of the electrode of the first device portion and the electrode of the second device portion is formed of a conductive material having a rigidity lower than that of the sealing bonding material,
The semiconductor device, wherein the sealing bonding material is higher in rigidity than at least one of the electrode of the first device portion and the electrode of the second device portion formed of the conductive material .
前記封止接合材で封止した内部の空間が、真空状態又は不活性ガスが充填された状態であることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the internal space sealed with the sealing bonding material is in a vacuum state or a state filled with an inert gas. 前記封止接合材は、前記積層の方向における端面で前記接合がなされることを特徴とする請求項1又は2に記載の半導体装置。The semiconductor device according to claim 1, wherein the sealing bonding material is bonded at an end surface in the stacking direction. 第1のデバイス部を有し前記第1のデバイス部の電極を表面に形成した第1の基板を作製する工程と、
第2のデバイス部を有し前記第2のデバイス部の電極を表面に形成した第2の基板を作製する工程と、
前記第1のデバイス部の電極と前記第2のデバイス部の電極とを接合させて前記第1の基板上に前記第2の基板を積層する工程と、を備え、
前記接合時に前記第1のデバイス部の電極及び前記第2のデバイス部の電極を包囲した状態で前記第1の基板と前記第2の基板との間に介在してこれらを接合し、内部を気密状態に封止する封止接合材を、前記第1の基板及び前記第2の基板の少なくとも一方に形成しておき
前記第1のデバイス部の電極及び前記第2のデバイス部の電極の少なくとも一方が前記封止接合材よりも低剛性の導電性材料で形成され、
前記封止接合材は、導電性材料で形成されている前記第1のデバイス部の電極及び前記第2のデバイス部の電極の少なくとも一方よりも高剛性であることを特徴とする半導体装置の製造方法。
Producing a first substrate having a first device part and having an electrode of the first device part formed on the surface;
Producing a second substrate having a second device portion and having the electrode of the second device portion formed on the surface;
Bonding the electrode of the first device portion and the electrode of the second device portion to laminate the second substrate on the first substrate,
At the time of bonding, the electrodes of the first device portion and the electrodes of the second device portion are surrounded so as to be interposed between the first substrate and the second substrate, and the inside is bonded. A sealing bonding material for sealing in an airtight state is formed on at least one of the first substrate and the second substrate ,
At least one of the electrode of the first device portion and the electrode of the second device portion is formed of a conductive material having a rigidity lower than that of the sealing bonding material,
The semiconductor device manufacturing method, wherein the sealing bonding material is higher in rigidity than at least one of the electrode of the first device portion and the electrode of the second device portion formed of a conductive material. Method.
前記第1のデバイス部の電極及び前記第2のデバイス部の電極の少なくとも一方を前記封止接合材よりも突出した高さで形成し、Forming at least one of the electrode of the first device portion and the electrode of the second device portion at a height protruding from the sealing bonding material;
前記第1の基板と前記第2の基板とを圧接して前記積層を行うことを特徴とする請求項4に記載の半導体装置の製造方法。The method for manufacturing a semiconductor device according to claim 4, wherein the stacking is performed by pressing the first substrate and the second substrate.
前記封止接合材の接合を、真空中又は不活性ガス中で行うことを特徴とする請求項4又は5に記載の半導体装置の製造方法。 6. The method of manufacturing a semiconductor device according to claim 4, wherein the sealing bonding material is bonded in a vacuum or in an inert gas. 前記封止接合材の接合を、常温接合で行うことを特徴とする請求項4〜6のいずれか一項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 4, wherein the sealing bonding material is bonded by room-temperature bonding. 前記封止接合材の接合を、前記積層の方向における端面で行うことを特徴とする請求項4〜7のいずれか一項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 4, wherein the sealing bonding material is bonded to an end face in the stacking direction .
JP2004377734A 2004-12-27 2004-12-27 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4354398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004377734A JP4354398B2 (en) 2004-12-27 2004-12-27 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004377734A JP4354398B2 (en) 2004-12-27 2004-12-27 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006186091A JP2006186091A (en) 2006-07-13
JP4354398B2 true JP4354398B2 (en) 2009-10-28

Family

ID=36738987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004377734A Expired - Fee Related JP4354398B2 (en) 2004-12-27 2004-12-27 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4354398B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064768B2 (en) * 2006-11-22 2012-10-31 新光電気工業株式会社 Electronic component and method for manufacturing electronic component
US8399973B2 (en) 2007-12-20 2013-03-19 Mosaid Technologies Incorporated Data storage and stackable configurations
US7791175B2 (en) * 2007-12-20 2010-09-07 Mosaid Technologies Incorporated Method for stacking serially-connected integrated circuits and multi-chip device made from same
US8618670B2 (en) 2008-08-15 2013-12-31 Qualcomm Incorporated Corrosion control of stacked integrated circuits
JP2010073919A (en) * 2008-09-19 2010-04-02 Rohm Co Ltd Semiconductor device and method of manufacturing the same
EP2937898A1 (en) 2009-07-15 2015-10-28 Silanna Semiconductor U.S.A., Inc. Semiconductor-on-insulator with backside heat dissipation
US9390974B2 (en) * 2012-12-21 2016-07-12 Qualcomm Incorporated Back-to-back stacked integrated circuit assembly and method of making
US9466719B2 (en) 2009-07-15 2016-10-11 Qualcomm Incorporated Semiconductor-on-insulator with back side strain topology
US9496227B2 (en) 2009-07-15 2016-11-15 Qualcomm Incorporated Semiconductor-on-insulator with back side support layer
US8912646B2 (en) 2009-07-15 2014-12-16 Silanna Semiconductor U.S.A., Inc. Integrated circuit assembly and method of making
JP6342033B2 (en) * 2010-06-30 2018-06-13 キヤノン株式会社 Solid-state imaging device
JP5800568B2 (en) * 2011-05-13 2015-10-28 スタンレー電気株式会社 Manufacturing method of semiconductor device
JP5984912B2 (en) * 2012-03-23 2016-09-06 オリンパス株式会社 Manufacturing method of stacked semiconductor
TWI588946B (en) * 2012-12-21 2017-06-21 高通公司 Back-to-back stacked integrated circuit assembly and method of making
CN103545264A (en) * 2013-11-08 2014-01-29 宁波芯健半导体有限公司 Packaging structure with supporting protection structure
CN103560115A (en) * 2013-11-08 2014-02-05 宁波芯健半导体有限公司 Packaging method with supporting and protecting structure
JP2015115446A (en) 2013-12-11 2015-06-22 株式会社東芝 Semiconductor device manufacturing method
US9515181B2 (en) 2014-08-06 2016-12-06 Qualcomm Incorporated Semiconductor device with self-aligned back side features
DE102016110862B4 (en) * 2016-06-14 2022-06-30 Snaptrack, Inc. Module and method of making a variety of modules
US11244874B2 (en) * 2018-03-16 2022-02-08 Mitsubishi Electric Corporation Substrate bonding structure and substrate bonding method
US11521957B1 (en) * 2021-07-08 2022-12-06 Rfhic Corporation Semiconductor device and method of manufacture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988864A (en) * 1982-11-12 1984-05-22 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS5994441A (en) * 1982-11-19 1984-05-31 Nippon Denso Co Ltd Semiconductor device
JPH06310565A (en) * 1993-04-20 1994-11-04 Fujitsu Ltd Flip-chip bonding method
JP3365743B2 (en) * 1999-02-03 2003-01-14 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2006186091A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4354398B2 (en) Semiconductor device and manufacturing method thereof
TWI298913B (en)
JP4600576B2 (en) Semiconductor device and manufacturing method thereof
JP4751351B2 (en) Semiconductor device and semiconductor module using the same
JP5137059B2 (en) Electronic component package, manufacturing method thereof, and electronic component device
JP5729126B2 (en) Manufacturing method of semiconductor device
JP3726579B2 (en) Semiconductor device and manufacturing method thereof
JP2005203775A (en) Multichip package
KR100594716B1 (en) Cap wafer comprising cavity, semiconductor chip comprising the cap wafer, and method thereof
JP2006245090A (en) Package for semiconductor and manufacturing method thereof
JP2019174267A (en) Infrared sensor and manufacturing method for infrared sensor
JP2007042786A (en) Micro device and its packaging method
JP4696152B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5181626B2 (en) Multilayer printed circuit board and inverter device
JP2006201158A (en) Sensor
WO2021124653A1 (en) Semiconductor device
JP7448381B2 (en) Package and package manufacturing method
WO2012165111A1 (en) Method for producing multi-layer substrate and multi-layer substrate
JP2013211380A (en) Wafer laminate and semiconductor device
US10510683B2 (en) Packaging structures for metallic bonding based opto-electronic device and manufacturing methods thereof
JP4371217B2 (en) Hermetic sealing structure for semiconductor devices
JP2006210802A (en) Semiconductor device
JP3490041B2 (en) Semiconductor device and manufacturing method thereof
JP2019029468A (en) package
JP2006126212A (en) Sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090729

R151 Written notification of patent or utility model registration

Ref document number: 4354398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees