JP4351936B2 - Method for producing titanium oxide photocatalyst - Google Patents

Method for producing titanium oxide photocatalyst Download PDF

Info

Publication number
JP4351936B2
JP4351936B2 JP2004071070A JP2004071070A JP4351936B2 JP 4351936 B2 JP4351936 B2 JP 4351936B2 JP 2004071070 A JP2004071070 A JP 2004071070A JP 2004071070 A JP2004071070 A JP 2004071070A JP 4351936 B2 JP4351936 B2 JP 4351936B2
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
oxide photocatalyst
sulfur
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004071070A
Other languages
Japanese (ja)
Other versions
JP2005254174A (en
Inventor
照尚 横野
裕 竹田
治 叶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2004071070A priority Critical patent/JP4351936B2/en
Publication of JP2005254174A publication Critical patent/JP2005254174A/en
Application granted granted Critical
Publication of JP4351936B2 publication Critical patent/JP4351936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、酸化チタン光触媒およびその製造方法に関するものであり、詳しくは、可視光応答型で光触媒活性が高く有害物分解や湿式太陽電池に有効な酸化チタン光触媒に関するものである。   The present invention relates to a titanium oxide photocatalyst and a method for producing the same, and more particularly to a titanium oxide photocatalyst that is visible light responsive and has high photocatalytic activity and is effective for harmful substance decomposition and wet solar cells.

酸化チタン粉末は、白色顔料として古くから利用されており、近年は化粧品などの紫外線遮蔽材料、光触媒、コンデンサ、サーミスタの構成材料あるいはチタン酸バリウムの原料等電子材料に用いられる焼結材料に広く利用されている。特にここ数年、光触媒としての利用が盛んに試みられており、酸化チタンにそのバンドギャップ以上のエネルギーを持つ光を照射することによって酸化チタンが励起されて、伝導帯に電子が生じ、また価電帯に正孔が生じるが、この電子による還元力または正孔による酸化力を利用した光触媒反応の用途開発が盛んに行われている。この酸化チタン光触媒の用途は非常に多岐に渡っており、水の分解による水素の発生、酸化還元反応を利用した有機化合物の合成、排ガス処理、空気清浄、防臭、殺菌、抗菌、水処理、照明機器等の汚れ防止等、数多くの用途開発が行われている。   Titanium oxide powder has long been used as a white pigment, and in recent years it has been widely used in sintered materials used in electronic materials such as UV shielding materials for cosmetics, photocatalysts, capacitors, thermistors, and barium titanate materials. Has been. In particular, there have been many attempts to use it as a photocatalyst in recent years. Titanium oxide is excited by irradiating titanium oxide with light having energy higher than its band gap, and electrons are generated in the conduction band. Holes are generated in the electric band, and development of applications for photocatalytic reactions using the reducing power of electrons or the oxidizing power of holes has been actively conducted. This titanium oxide photocatalyst has a wide variety of uses, including generation of hydrogen by water decomposition, synthesis of organic compounds using redox reactions, exhaust gas treatment, air purification, deodorization, sterilization, antibacterial, water treatment, lighting Numerous applications have been developed, such as preventing contamination of equipment.

しかしながら、酸化チタンは可視光付近の波長領域において大きな屈折率を示すため、可視光領域では殆ど光吸収は起こらない。これは、アナターゼ型二酸化チタンは3.2eV、ルチル型二酸化チタンは3.0eVというバンドギャップを有することに起因しており、酸化チタンの吸収可能な光の波長は、アナターゼ型酸化チタンで385nm以下、ルチル型酸化チタンで415nm以下である。これらの波長の光は大部分が紫外線領域に該当し、地球上に無限にある太陽光にはごく一部しか含まれておらず、従来知られている酸化チタン光触媒は、紫外線照射下では光触媒特性を発現するものの、太陽光のもとでは、そのエネルギーのうちごく一部しか活用できずに、光触媒として十分な活性は期待できない。また、屋内での蛍光灯などの下での利用を考えると、蛍光灯のスペクトルは殆どが400nm以上であるため、光触媒として十分な特性を発現することはできない。そこで可視光領域での触媒活性を発現させより利用性の高く高活性の光触媒の開発が行なわれている。   However, since titanium oxide exhibits a large refractive index in the wavelength region near visible light, light absorption hardly occurs in the visible light region. This is because anatase-type titanium dioxide has a band gap of 3.2 eV and rutile-type titanium dioxide has a band gap of 3.0 eV, and the wavelength of light that can be absorbed by titanium oxide is 385 nm or less for anatase-type titanium oxide. The rutile type titanium oxide has a thickness of 415 nm or less. Most of the light of these wavelengths falls in the ultraviolet region, and only a small portion is contained in infinite sunlight on the earth. Conventionally known titanium oxide photocatalysts are photocatalysts under ultraviolet irradiation. Although it exhibits the characteristics, only a part of its energy can be used under sunlight, and sufficient activity as a photocatalyst cannot be expected. Also, considering the use under fluorescent lamps indoors, since the spectrum of fluorescent lamps is almost 400 nm or more, sufficient characteristics as a photocatalyst cannot be expressed. In view of this, photocatalysts having higher utility and higher activity have been developed by exhibiting catalytic activity in the visible light region.

例えば、特許文献1(特開平9−262482号公報)では、Cr、V、Cu、Fe、Mg、Ag、Pd、Ni、MnおよびPtからなる群から選択される1種以上の金属のイオンが1×1015イオン/g−TiO2以上の割合で酸化チタンの表面から内部に含有させた光触媒が開示されており、これらの金属のイオンを30KeV以上の高エネルギーに加速して、酸化チタンに照射し、該金属イオンを酸化チタンに導入する。また、特許文献2(特開平11−290697号公報)では、真空槽内に遷移金属を含む固体と前記遷移金属がドーピングされる酸化チタンとを保持する工程と、前記真空槽内の内部に金属プラズマを発生させ、発生した前記金属プラズマを照射することにより前記遷移金属をドーピングした光触媒酸化チタンが開示されている。しかしながら、これらの発明は、酸化チタンに金属イオンをドーピングするために金属イオンを高エネルギーに加速したり、また金属プラズマを発生させるなど非常に特別な装置を用いなければならず、工業的規模での製造には適していない。 For example, in Patent Document 1 (Japanese Patent Laid-Open No. 9-262482), one or more kinds of metal ions selected from the group consisting of Cr, V, Cu, Fe, Mg, Ag, Pd, Ni, Mn, and Pt are included. A photocatalyst containing titanium oxide from the surface at a rate of 1 × 10 15 ions / g-TiO 2 or more is disclosed, and ions of these metals are accelerated to a high energy of 30 KeV or more to form titanium oxide. Irradiation introduces the metal ions into titanium oxide. Moreover, in patent document 2 (Unexamined-Japanese-Patent No. 11-290697), the process which hold | maintains the solid containing a transition metal and the titanium oxide by which the said transition metal is doped in a vacuum chamber, and a metal inside the said vacuum chamber A photocatalytic titanium oxide doped with the transition metal by generating plasma and irradiating the generated metal plasma is disclosed. However, these inventions must use a very special apparatus such as accelerating metal ions to high energy and generating metal plasma in order to dope metal ions into titanium oxide. Not suitable for manufacturing.

このような問題を解決するために、特許文献3(特開平12−237598号公報)には、酸化チタンなどの半導体の表面に、前記半導体の構成成分とは異なる成分であるB, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, W, Pt, Hg, Pb, Bi, Pr, Nd, Pm, Sm, Eu, Gd,Tb, Dy, Ho, Er, Tm, YbおよびLuからなる群から選ばれる少なくとも1種である陽イオンを含む媒体を接触させることにより、前記半導体に前記陽イオンを含有させる第1の工程と、前記陽イオンを含有する前記半導体を還元雰囲気において加熱する第2の工程とを含むことを特徴とする可視光応答型光触媒の製造方法が開示されている。しかしながら、このような方法により金属イオンを酸化チタンにドープした光触媒は必ずしも触媒活性が十分ではなく、さらなる改良が望まれていた。   In order to solve such a problem, Patent Document 3 (Japanese Patent Laid-Open No. 12-237598) discloses that B, P, Ti, which are components different from the constituent components of the semiconductor, on the surface of the semiconductor such as titanium oxide. , V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, W, Pt, Hg, Pb, Bi, Pr , Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and a medium containing at least one cation selected from the group consisting of Lu, and contacting the semiconductor A method for producing a visible light responsive photocatalyst comprising a first step of containing a cation and a second step of heating the semiconductor containing the cation in a reducing atmosphere is disclosed. . However, the photocatalyst doped with metal ions in titanium oxide by such a method does not necessarily have sufficient catalytic activity, and further improvement has been desired.

上記のように遷移金属などの金属イオンを酸化チタンにドープし可視光領域での触媒活性を発現させた光触媒の他、特許文献4(WO 01/010552号公報)では、酸化チタン結晶の酸素サイトの一部を窒素原子で置換すること、または酸化チタン結晶の格子間に窒素原子をドーピングすること、または酸化チタンの結晶粒界に窒素原子をドーピングすることのいずれかまたはこれらの組み合わせにより酸化チタン結晶に窒素原子を含有させた光触媒物質であり、酸化チタン結晶に窒素を含有させたTi−O−N構成を有した、可視光領域において光触媒作用を発現する光触媒物質が開示されている。このような光触媒物質を得る方法として、窒素ガス雰囲気中での酸化チタンのスパッタリングが挙げられているが、製造コストが高く工業的規模での製造は困難である。また、酸化チタンをアンモニア雰囲気で焼成するという簡便な方法の開示もあるが、酸化チタン中に十分に窒素原子がドーピングされず、結果として得られる光触媒は触媒活性が十分ではなかった。
特開平9−262482号公報 特開平11−290697号公報 特開平12−237598号公報 WO 01/010552号公報
In addition to the photocatalyst in which titanium ions are doped with metal ions such as transition metals as described above to exhibit catalytic activity in the visible light region, in Patent Document 4 (WO 01/010552), oxygen sites of titanium oxide crystals are disclosed. Titanium oxide by either substituting part of it with nitrogen atoms, doping nitrogen atoms between the lattices of titanium oxide crystals, or doping nitrogen atoms into the crystal grain boundaries of titanium oxide, or a combination thereof A photocatalytic substance containing a nitrogen atom in a crystal and a photocatalytic substance exhibiting a photocatalytic action in the visible light region having a Ti—O—N structure in which a titanium oxide crystal contains nitrogen is disclosed. As a method for obtaining such a photocatalytic substance, sputtering of titanium oxide in a nitrogen gas atmosphere is mentioned. However, the production cost is high and it is difficult to produce on an industrial scale. Moreover, although there is also a disclosure of a simple method of firing titanium oxide in an ammonia atmosphere, the nitrogen oxide is not sufficiently doped in titanium oxide, and the resulting photocatalyst has insufficient catalytic activity.
JP-A-9-262482 JP-A-11-290697 JP-A-12-237598 WO 01/010552 Publication

従って、本発明の課題は、可視光領域で光触媒活性が発現する酸化チタン光触媒であって、高活性で、かつ低コストの酸化チタン光触媒を提供することにある。   Accordingly, an object of the present invention is to provide a titanium oxide photocatalyst exhibiting photocatalytic activity in the visible light region and having high activity and low cost.

かかる実情において、本発明者らは鋭意検討を行った結果、酸化チタンがルチル型およびアナターゼ型の混合結晶であって、かつ硫黄原子を含有する酸化チタンが、可視光領域において、高い光吸収特性を発現することを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies. As a result, titanium oxide is a mixed crystal of rutile type and anatase type, and titanium oxide containing a sulfur atom has high light absorption characteristics in the visible light region. The present invention was completed.

すなわち、本発明は、塩化チタン水溶液を加水分解またはアルカリで中和して得られた酸化チタン粉末とチオ尿素の混合物を、酸化性雰囲気下、300〜600℃で焼成することにより、ルチル化率が5〜99%であるルチル型およびアナターゼ型の混合結晶であって、かつ硫黄原子を陽イオンとして含有する酸化チタン光触媒を得ることを特徴とする酸化チタン光触媒の製造方法を提供するものである。 That is, the present invention provides a rutile ratio by calcining a mixture of titanium oxide powder and thiourea obtained by hydrolysis or alkali neutralization of an aqueous titanium chloride solution at 300 to 600 ° C. in an oxidizing atmosphere. The present invention provides a method for producing a titanium oxide photocatalyst characterized by obtaining a titanium oxide photocatalyst which is a rutile-type and anatase-type mixed crystal containing 5 to 99% and containing a sulfur atom as a cation. .

本発明の酸化チタン光触媒によれば、紫外線領域だけではなく可視光領域の光触媒活性が高いことから、太陽光の当たらない蛍光灯などの室内においても十分に光触媒作用を発揮することができ、今まで紫外線領域に止まっていた光触媒の用途を拡大することが可能となる。   According to the titanium oxide photocatalyst of the present invention, the photocatalytic activity not only in the ultraviolet region but also in the visible light region is high, so that the photocatalytic action can be sufficiently exerted even in a room such as a fluorescent lamp that is not exposed to sunlight. The application of the photocatalyst that has remained in the ultraviolet region can be expanded.

本発明の酸化チタン光触媒は、酸化チタンがルチル型およびアナターゼ型の混合結晶であって、かつ硫黄原子を含有するが、酸化チタンのルチル化率は5〜99%、好ましくは20〜80%、より好ましくは30〜70%である。本発明の酸化チタン光触媒はルチル型とアナターゼ型の混合結晶であるが、この他に非晶質の酸化チタンを含んでいてもよい。このルチル型とアナターゼ型の酸化チタン中に硫黄原子を含有するものであり、この硫黄原子は酸化チタン中のチタン原子と置換して陽イオンとして酸化チタン中にドープされたものである。具体的にはTi1−xの化学式で表すことができ、チタン原子に対する硫黄原子の含有量であるxは0.001以上、好ましくは0.002以上、より好ましくは0.002〜0.008である。また、平均粒径はSEM写真画像観察による1次粒子の粒径で5〜50nm、BET比表面積は50〜250m/gである。本発明の酸化チタン光触媒は、上記硫黄原子の含有量により異なるが、総じて淡黄色または黄色の粉末である。 In the titanium oxide photocatalyst of the present invention, the titanium oxide is a mixed crystal of rutile type and anatase type and contains a sulfur atom, but the rutile ratio of titanium oxide is 5 to 99%, preferably 20 to 80%, More preferably, it is 30 to 70%. The titanium oxide photocatalyst of the present invention is a mixed crystal of rutile type and anatase type, but may also contain amorphous titanium oxide. The rutile-type and anatase-type titanium oxides contain sulfur atoms, and these sulfur atoms are substituted for titanium atoms in titanium oxide and are doped into titanium oxide as cations. Specifically, it can be represented by the chemical formula Ti 1-x S x O 2 , and x, which is the content of sulfur atoms with respect to titanium atoms, is 0.001 or more, preferably 0.002 or more, more preferably 0.002. ~ 0.008. Moreover, an average particle diameter is 5-50 nm by the particle diameter of the primary particle by SEM photograph image observation, and a BET specific surface area is 50-250 m < 2 > / g. The titanium oxide photocatalyst of the present invention is generally a pale yellow or yellow powder although it varies depending on the content of the sulfur atom.

以下、本発明の酸化チタン光触媒の調製方法を述べる。   Hereafter, the preparation method of the titanium oxide photocatalyst of this invention is described.

本発明のルチル型およびアナターゼ型の混合結晶である酸化チタンは、公知の方法で得られることができ、例えばアルコキシチタンを加水分解する方法、塩化チタン水溶液の加水分解あるいは中和する方法、または硫酸チタニルを原料として用いる方法などの液相法、または四塩化チタン蒸気を加水分解あるいは酸素と反応させる気相方法が採用し得る。これらのなかでも塩化チタン水溶液を原料とした方法が本発明の酸化チタン光触媒を効率よくまた低コストで得ることができる。アルコキシチタンを原料に用いた液相法では粒径が小さく、比表面積の大きな酸化チタンを得ることができ、結果として光触媒活性の高い酸化チタン光触媒を得ることができる。しかしながら得られる酸化チタンのルチル化率の制御が難しくまたアルコキシチタンは非常に高価であり、工業的規模で生産した場合製造コストが高く光触媒を広く普及させることが難しい。一方、気相法は安価な酸化チタンを製造することができるが、得られる酸化チタンの粒径が液相法に比べて大きく、光触媒を形成した際の活性が低くなるという欠点がある。   Titanium oxide which is a mixed crystal of rutile type and anatase type of the present invention can be obtained by a known method, for example, a method of hydrolyzing alkoxy titanium, a method of hydrolyzing or neutralizing an aqueous titanium chloride solution, or sulfuric acid A liquid phase method such as a method using titanyl as a raw material, or a gas phase method in which titanium tetrachloride vapor is hydrolyzed or reacted with oxygen can be employed. Among these, the method using a titanium chloride aqueous solution as a raw material can obtain the titanium oxide photocatalyst of the present invention efficiently and at low cost. In the liquid phase method using alkoxy titanium as a raw material, titanium oxide having a small particle size and a large specific surface area can be obtained. As a result, a titanium oxide photocatalyst having high photocatalytic activity can be obtained. However, it is difficult to control the rutile ratio of the resulting titanium oxide, and alkoxy titanium is very expensive. When produced on an industrial scale, the production cost is high and it is difficult to widely disseminate the photocatalyst. On the other hand, the vapor phase method can produce inexpensive titanium oxide, but has a drawback that the particle size of the obtained titanium oxide is larger than that of the liquid phase method, and the activity when the photocatalyst is formed becomes low.

本発明の酸化チタン光触媒を形成する好ましい方法としては、先ず、塩化チタン水溶液を加水分解またはアルカリで中和して得られる酸化チタン粉末と硫黄または含硫黄化合物との混合物を得、その後この混合物を焼成する。塩化チタン水溶液は、三塩化チタン水溶液または四塩化チタン水溶液が好ましい。三塩化チタン水溶液は、例えば塩酸に金属チタンを溶解することで得ることができる。金属チタンとしてはチタン粉末やスポンジ状チタン、または切粉などのチタンスクラップなどが用いられる。四塩化チタン水溶液は、四塩化チタンを水または塩酸に溶解させて得ることができる。塩化チタン水溶液中のチタン濃度は任意であるが、製造効率または得られる酸化チタン粉末の粒径などを考慮するとチタン含有量が1〜20重量%、好ましくは5〜15重量%である。また塩化チタン水溶液は不純物成分が少なく純度が高いことが望ましく、具体的にはアルミニウム、鉄、及びバナジウムがそれぞれ1ppm以下、ケイ素及びスズがそれぞれ10ppm以下である。   As a preferred method for forming the titanium oxide photocatalyst of the present invention, first, a mixture of titanium oxide powder and sulfur or a sulfur-containing compound obtained by hydrolyzing or neutralizing an aqueous solution of titanium chloride with an alkali is obtained. Bake. The titanium chloride aqueous solution is preferably a titanium trichloride aqueous solution or a titanium tetrachloride aqueous solution. The aqueous titanium trichloride solution can be obtained, for example, by dissolving titanium metal in hydrochloric acid. As the metal titanium, titanium powder, sponge-like titanium, or titanium scrap such as chips are used. The titanium tetrachloride aqueous solution can be obtained by dissolving titanium tetrachloride in water or hydrochloric acid. The titanium concentration in the aqueous titanium chloride solution is arbitrary, but the titanium content is 1 to 20% by weight, preferably 5 to 15% by weight in consideration of the production efficiency or the particle size of the resulting titanium oxide powder. In addition, it is desirable that the aqueous solution of titanium chloride has few impurity components and high purity. Specifically, aluminum, iron, and vanadium are each 1 ppm or less, and silicon and tin are each 10 ppm or less.

上記塩化チタン水溶液を加水分解またはアルカリで中和して酸化チタン粉末を得るが、具体的には以下のような方法が挙げられる。
(1)塩化チタン水溶液を還流下で加熱し、加水分解して酸化チタン粉末を析出させる。このとき塩素ガスが発生するが、加圧または還流器などにより塩酸ガスの発生を抑え、低pH領域で加水分解することによって、より微粒の酸化チタン粉末を得ることができる。
(2)塩化チタン水溶液とアンモニア、アンモニア水あるいはNaOH,KOHなどのアルカリ金属の水酸化物を接触させ、酸化チタン粉末を析出させる。このときこれらのアルカリの内、金属成分を含まないアンモニアまたはアンモニア水で中和することが望ましい。
The titanium chloride aqueous solution is hydrolyzed or neutralized with an alkali to obtain a titanium oxide powder. Specific examples include the following methods.
(1) A titanium chloride aqueous solution is heated under reflux and hydrolyzed to precipitate a titanium oxide powder. Chlorine gas is generated at this time, but finer titanium oxide powder can be obtained by suppressing the generation of hydrochloric acid gas by pressurizing or refluxing and hydrolyzing in a low pH region.
(2) An aqueous titanium chloride solution is contacted with an alkali metal hydroxide such as ammonia, aqueous ammonia or NaOH, KOH to precipitate titanium oxide powder. At this time, it is desirable to neutralize with ammonia or aqueous ammonia containing no metal component among these alkalis.

上記のように塩化チタン水溶液を加水分解あるいは中和して得られた後、オルトチタン酸またはメタチタン酸が生成するが、光触媒活性を向上させるためにはメタチタン酸が生成するような条件で塩化チタン水溶液を加水分解または中和することが望ましい。その後塩酸分やアルカリ成分など不純物を除去するために洗浄を行ない、乾燥して酸化チタン粉末を得る。さらに、必要に応じて結晶水などの水分を除去するために加熱処理を行なう。   After obtaining by hydrolyzing or neutralizing the aqueous titanium chloride solution as described above, orthotitanic acid or metatitanic acid is produced, but in order to improve the photocatalytic activity, titanium chloride is produced under conditions such that metatitanic acid is produced. It is desirable to hydrolyze or neutralize the aqueous solution. Thereafter, cleaning is performed to remove impurities such as hydrochloric acid and alkali components, followed by drying to obtain titanium oxide powder. Further, heat treatment is performed as necessary to remove water such as crystal water.

上記(2)の方法において、塩化チタン水溶液をNaOH、KOH、CaOH(消石灰)などのアルカリ金属またはアルカリ土類金属等の金属の水酸化物で中和し、得られる酸化チタン粉末にこれらの金属成分が残留しても差し支えなく、最終的に得られる光触媒の特性にあまり影響はない。例えば、塩化チタン水溶液を消石灰溶液を添加し中和して酸化チタン水和物を析出させ、この懸濁液にポリ塩化アルミニウムのような凝集剤を添加して固形物を沈降分離させる。このような方法は、酸性水などの排水処理などに一般に用いられている工程であり、工業的規模で非常に効率よく酸化チタンン粉末を製造することが可能となる。   In the method of (2) above, the aqueous titanium chloride solution is neutralized with a hydroxide of an alkali metal such as NaOH, KOH, CaOH (slaked lime) or a metal such as an alkaline earth metal, and these metals are added to the resulting titanium oxide powder. The components may remain, and the properties of the finally obtained photocatalyst are not significantly affected. For example, an aqueous titanium chloride solution is neutralized by adding a slaked lime solution to precipitate titanium oxide hydrate, and a flocculant such as polyaluminum chloride is added to this suspension to precipitate and separate solids. Such a method is a process generally used for wastewater treatment such as acidic water, and it is possible to produce titanium oxide powder very efficiently on an industrial scale.

上記のようにして得られる酸化チタン粉末は、加水分解あるいはアルカリでの中和の条件により平均粒径、比表面積また結晶形を制御することができるが、光触媒の活性を向上させるためには、比表面積が大きいほうが好ましい。具体的にはBET比表面積で50m/g以上、好ましくは100m/g以上、特に好ましくは150〜250m/gである。 The titanium oxide powder obtained as described above can control the average particle size, specific surface area, and crystal form depending on the conditions of hydrolysis or neutralization with alkali. In order to improve the activity of the photocatalyst, A larger specific surface area is preferred. Specifically 50 m 2 / g or more in BET specific surface area is preferably 100 m 2 / g or more, particularly preferably 150 to 250 2 / g.

さらに、この時点で得られる酸化チタン粉末を所望のルチル化率に制御し、最終的にルチル型とアナターゼ型の混合結晶を含む酸化チタン光触媒を形成する。得られる酸化チタン粉末のルチル化率は、上記の塩化チタン水溶液の加水分解またはアルカリによる中和の時間または速度によって制御することができる。例えば四塩化チタン水溶液をアンモニア水などで中和する場合、短時間で中和するとアナターゼリッチのルチル化率の低い酸化チタンが得られ、また中和反応の速度を遅くするとルチル化率の高い酸化チタンを得ることができる。中和速度としてはチタン原子を重量換算で1分当たり50〜500gが好ましく、より好ましくは100〜300gである。1分当たり200gのチタン原子を中和する速度より遅い場合、ルチル化率が50%以上となる。また、塩化チタン水溶液を中和あるいは加水分解する際の反応系のpHによっても得られる酸化チタンのルチル化率を制御でき、例えば酸化チタン粉末が析出した後、低pH雰囲気で熟成反応するとルチル化率が向上しルチル型とアナターゼ型の混合結晶を得ることができる。   Further, the titanium oxide powder obtained at this point is controlled to a desired rutile ratio, and finally a titanium oxide photocatalyst containing mixed crystals of rutile type and anatase type is formed. The rutile ratio of the obtained titanium oxide powder can be controlled by the time or speed of hydrolysis or neutralization with the alkali of the above titanium chloride aqueous solution. For example, when neutralizing a titanium tetrachloride aqueous solution with ammonia water, etc., neutralization in a short time yields titanium oxide with a low anatase-rich rutile ratio, and slowing the neutralization reaction results in an oxidation with a high rutile ratio. Titanium can be obtained. The neutralization rate is preferably 50 to 500 g, more preferably 100 to 300 g, per minute in terms of titanium atoms. When it is slower than the rate of neutralizing 200 g of titanium atoms per minute, the rutile ratio becomes 50% or more. In addition, the rutile ratio of titanium oxide obtained can be controlled by the pH of the reaction system when neutralizing or hydrolyzing the titanium chloride aqueous solution. For example, after titanium oxide powder is precipitated, the ripening reaction is carried out in a low pH atmosphere. The rate is improved, and a rutile type and anatase type mixed crystal can be obtained.

また、上記方法で用いられる含硫黄化合物は、常温で液体あるいは固体の化合物が好ましく、含硫黄無機化合物、含硫黄有機化合物あるいは金属の硫化物などが挙げられる。具体的にはチオエーテル類、チオ尿素類、チオアミド類、チオアルコール類、チオアルデヒド類、チアジル類、メルカプタール類、チオール類、チオシアン酸塩類などであり、具体的な化合物としては、チオ尿素、スルホ酢酸、チオフェノール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン、チオベンゾフェノン、ビチオフェン、フェノチアジン、スルホラン、チアジン、チアゾール、チアジアゾール、チアゾリン、チアゾリジン、チアントレン、チアン、チオアセトアニリド、チオアセトアミド、チオベンズアミド、チオアニソール、チオニン、メチルチオール、チオエーテル、チオシアン、硫酸、スルホン酸類、スルホニウム塩類、スルホンアミド類、スルフィン酸類、スルホキシド類、スルフィン類、スルファン類、などが挙げられる。なおこれらの化合物は1種または2種以上組み合わせて用いることができる。   The sulfur-containing compound used in the above method is preferably a liquid or solid compound at room temperature, and examples thereof include sulfur-containing inorganic compounds, sulfur-containing organic compounds, and metal sulfides. Specific examples include thioethers, thioureas, thioamides, thioalcohols, thioaldehydes, thiazyl, mercaptals, thiols, and thiocyanates. Specific compounds include thiourea and sulfoacetic acid. , Thiophenol, thiophene, benzothiophene, dibenzothiophene, thiobenzophenone, bithiophene, phenothiazine, sulfolane, thiazine, thiazole, thiadiazole, thiazoline, thiazolidine, thianthrene, thiane, thioacetanilide, thioacetamide, thiobenzamide, thioanisole, thionine, methyl Thiol, thioether, thiocyan, sulfuric acid, sulfonic acids, sulfonium salts, sulfonamides, sulfinic acids, sulfoxides, sulfines, sulfanes, etc. It is. These compounds can be used alone or in combination of two or more.

上記のなかでも含硫黄有機化合物が好ましく、さらには酸素原子を含まず硫黄原子と窒素原子が混在した有機化合物が特に好ましく、具体的には、チオ尿素が好ましい。   Among these, sulfur-containing organic compounds are preferable, and organic compounds containing no oxygen atom and containing sulfur and nitrogen atoms are particularly preferable, and specifically, thiourea is preferable.

本発明では上記の酸化チタン粉末と硫黄または含硫黄化合物の混合物を形成する。この混合物の形成方法は、
(1)塩化チタン水溶液に硫黄または含硫黄化合物を混合し、次いで加水分解またはアルカリで中和して酸化チタン粉末と硫黄または含硫黄化合物との混合物を得る方法、
(2)塩化チタン水溶液を加水分解またはアルカリで中和して酸化チタン粉末を得、次いで該酸化チタン粉末と硫黄または含硫黄化合物とを混合し混合物を得る方法、
(3)塩化チタン水溶液を加水分解またはアルカリで中和して酸化チタン粉末を得、得られた酸化チタン粉末を仮焼し、次いで該酸化チタン粉末と硫黄または含硫黄化合物とを混合し混合物を得る方法、
(4)塩化チタン水溶液に硫黄または含硫黄化合物を混合し、次いで加水分解またはアルカリで中和して固形物を形成した後、さらに硫黄または含硫黄化合物を混合して酸化チタン粉末と硫黄または含硫黄化合物の混合物を得る方法、
などが挙げられる。
In the present invention, a mixture of the above titanium oxide powder and sulfur or a sulfur-containing compound is formed. The method of forming this mixture is:
(1) A method of obtaining a mixture of titanium oxide powder and sulfur or a sulfur-containing compound by mixing sulfur or a sulfur-containing compound with an aqueous titanium chloride solution and then neutralizing with hydrolysis or alkali.
(2) A method in which an aqueous titanium chloride solution is hydrolyzed or neutralized with an alkali to obtain a titanium oxide powder, and then the titanium oxide powder and sulfur or a sulfur-containing compound are mixed to obtain a mixture;
(3) Titanium chloride aqueous solution is hydrolyzed or neutralized with alkali to obtain titanium oxide powder, the obtained titanium oxide powder is calcined, and then the titanium oxide powder and sulfur or a sulfur-containing compound are mixed to obtain a mixture. How to get,
(4) Sulfur or a sulfur-containing compound is mixed with an aqueous titanium chloride solution, then hydrolyzed or neutralized with alkali to form a solid, and further mixed with sulfur or a sulfur-containing compound to obtain titanium oxide powder and sulfur or a sulfur-containing compound. A method for obtaining a mixture of sulfur compounds,
Etc.

本発明で用い酸化チタン粉末と混合する硫黄または含硫黄化合物の量は、硫黄原子の重量に換算すると、酸化チタンに対し、通常1重量%以上であり、好ましくは5重量%以上、より好ましくは10〜30重量%である。硫黄または含硫黄化合物の混合量が少ないと、最終的に光触媒酸化チタンに含まれる硫黄原子量が少なくなり、十分な可視光吸収が起こらなくなる。   The amount of sulfur or sulfur-containing compound to be mixed with the titanium oxide powder used in the present invention is usually 1% by weight or more, preferably 5% by weight or more, more preferably, based on titanium oxide when converted to the weight of sulfur atoms. 10 to 30% by weight. If the amount of sulfur or sulfur-containing compound mixed is small, the amount of sulfur atoms contained in the photocatalytic titanium oxide will eventually decrease, and sufficient visible light absorption will not occur.

次いで、上記で得られた酸化チタン粉末と硫黄または含硫黄化合物の混合物を焼成し酸化チタン光触媒を形成するが、焼成温度は200〜800℃、好ましくは300〜600℃、より好ましくは400〜500℃である。含硫黄有機化合物を用いた場合、その化合物が分解し硫黄原子が遊離して酸化チタン中のチタン原子と置換する温度で行なう。また焼成雰囲気は、空気、酸素などの酸化性雰囲気、水素ガスやアンモニアガスなどの還元性雰囲気、窒素ガスやアルゴンガスなどの不活性雰囲気、また真空下などで行なわれる。これらのなかでも水素ガスのような還元性雰囲気で行なうことによって、より可視光領域での光触媒活性が向上し好ましい。水素ガスのような還元性ガスのみでもよいが、水素と酸素の混合ガス、水素と酸素と不活性ガスの混合ガスの雰囲気で焼成することも有効である。さらに焼成時に硫黄が蒸発しまたは含硫黄化合物が分解して硫黄成分が焼成炉から排出しないよう、ある程度硫黄成分の分圧を保持するよう焼成雰囲気を保つことが重要である。炭素原子を有する含硫黄有機化合物など焼成時に分解して炭酸ガスなどの副生ガスを発生する場合は、ある程度焼成雰囲気から排出したほうがよい。従って、焼成する際の容器は、完全にオープンまたは密閉のものではなく、ある程度の圧力がかかりかつ副生ガスを排出し得るような、上部が開放され、この上部に非固定式の蓋体を備えた円筒形、皿状または矩形などの容器が好ましい。   Next, the titanium oxide powder obtained above and a mixture of sulfur or a sulfur-containing compound are calcined to form a titanium oxide photocatalyst. The calcining temperature is 200 to 800 ° C, preferably 300 to 600 ° C, more preferably 400 to 500. ° C. When a sulfur-containing organic compound is used, the reaction is performed at a temperature at which the compound is decomposed and sulfur atoms are liberated and replaced with titanium atoms in titanium oxide. The firing atmosphere is performed in an oxidizing atmosphere such as air or oxygen, a reducing atmosphere such as hydrogen gas or ammonia gas, an inert atmosphere such as nitrogen gas or argon gas, or under vacuum. Of these, the photocatalytic activity in the visible light region is preferably improved by carrying out in a reducing atmosphere such as hydrogen gas. Although only a reducing gas such as hydrogen gas may be used, firing in an atmosphere of a mixed gas of hydrogen and oxygen or a mixed gas of hydrogen, oxygen and inert gas is also effective. Furthermore, it is important to maintain the firing atmosphere so that the partial pressure of the sulfur component is maintained to some extent so that sulfur does not evaporate during the firing or the sulfur-containing compound decomposes and the sulfur component is not discharged from the firing furnace. When a by-product gas such as carbon dioxide gas is generated by decomposition during firing, such as a sulfur-containing organic compound having a carbon atom, it is better to exhaust from the firing atmosphere to some extent. Therefore, the container for firing is not completely open or sealed, and the upper part is opened so that a certain amount of pressure is applied and the by-product gas can be discharged, and a non-fixed lid is placed on the upper part. A cylindrical, dished or rectangular container provided is preferred.

上記のようにして得られた酸化チタン光触媒は、必要に応じて洗浄して遊離の硫黄成分やその他を除去する。また、粒子の分散性を向上させるために界面活性剤などにより表面処理することもできる。   The titanium oxide photocatalyst obtained as described above is washed as necessary to remove free sulfur components and others. Moreover, in order to improve the dispersibility of particle | grains, it can also surface-treat with surfactant etc.

また、前記酸化チタン光触媒は、可視光の光吸収特性に優れており、紫外可視拡散反射スペクトルを測定して、波長300〜350nmの吸光度の積分値を1として、通常、波長350〜400nmの吸光度の積分値が0.3〜0.9であり、且つ波長400〜500nmの吸光度の積分値が0.3〜0.9であり、好ましくは波長350〜400nmの吸光度の積分値が0.4〜0.8であり、且つ波長400〜500nmの吸光度の積分値が0.4〜0.8であり、さらに好ましくは、波長350〜400nmの吸光度の積分値が0.5〜0.7であり、且つ波長400〜500nmの吸光度の積分値が0.5〜0.75である。   Moreover, the titanium oxide photocatalyst is excellent in visible light absorption characteristics, and an ultraviolet-visible diffuse reflection spectrum is measured, and the integrated value of the absorbance at a wavelength of 300 to 350 nm is set to 1, usually, the absorbance at a wavelength of 350 to 400 nm. The integrated value of the absorbance at a wavelength of 400 to 500 nm is 0.3 to 0.9, and the integrated value of the absorbance at a wavelength of 350 to 400 nm is preferably 0.4. The integrated value of absorbance at a wavelength of 400 to 500 nm is 0.4 to 0.8, and more preferably, the integrated value of absorbance at a wavelength of 350 to 400 nm is 0.5 to 0.7. And the integrated value of the absorbance at a wavelength of 400 to 500 nm is 0.5 to 0.75.

本発明の酸化チタン光触媒は、上記のように粉末でも用いることができるが、一般的な光触媒の用途として、排ガス処理、防臭、防汚などの基材に酸化チタン光触媒を塗布し酸化チタン光触媒層を形成して用いられることが多いため、水または有機溶媒の分散液、コーティング液または塗料にすることが望ましい。近年ではアセトアルデヒドなどシックハウスの問題から光触媒材料も水系の環境型のコーティング剤または塗料が要求されており、本発明の酸化チタン光触媒も水系の分散液または塗料として用いることが望ましい。   The titanium oxide photocatalyst of the present invention can be used as a powder as described above, but as a general photocatalyst application, a titanium oxide photocatalyst layer is applied by applying a titanium oxide photocatalyst to a substrate for exhaust gas treatment, deodorization, antifouling, etc. Therefore, it is desirable to use water or an organic solvent dispersion, coating liquid or paint. In recent years, water-based environmental coating agents or paints are also required for photocatalyst materials due to the problem of sick house such as acetaldehyde, and the titanium oxide photocatalyst of the present invention is desirably used as an aqueous dispersion or paint.

上記のようにして得られる本発明の酸化チタン光触媒は、可視光領域での吸収特性に優れており、ブラックライトなど特に紫外光の光源がなくとも、太陽光や室内における蛍光灯による光源で十分に光触媒活性が発現する。また、酸化チタンに窒素原子をドープしたものなど従来の可視光応答型光触媒に比べて、効率的にかつ低コストで製造できるため工業的に非常に有利であり、排ガス処理、空気清浄、防臭、殺菌、抗菌、水処理、照明機器等の汚れ防止、酸化作用による有害物の分解作用を利用した光触媒装置などを目的とした光触媒塗料や光触媒コーティング材などに広く適用できる。   The titanium oxide photocatalyst of the present invention obtained as described above has excellent absorption characteristics in the visible light region, and even if there is no ultraviolet light source such as black light, a light source using sunlight or a fluorescent lamp in a room is sufficient. Photocatalytic activity is exhibited. In addition, compared to conventional visible light responsive photocatalysts such as titanium oxide doped with nitrogen atoms, it is industrially very advantageous because it can be produced efficiently and at low cost, exhaust gas treatment, air purification, deodorization, It can be widely applied to photocatalyst paints and photocatalyst coating materials for the purpose of sterilization, antibacterial, water treatment, prevention of soiling of lighting equipment, etc., and photocatalytic devices utilizing the action of decomposing harmful substances due to oxidation.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

実施例および比較例において酸化チタン光触媒の評価は以下のように実施した。
(1)酸化チタン光触媒中の硫黄含有量の測定
エネルギー分散型蛍光X線分析装置(EDX)を付帯した電界放出型走査型電子顕微鏡(Field Emission-SEM:FE-SEM)(日立電子走査顕微鏡S−4700)にて酸化チタン中の硫黄原子の定量分析を行なった。
(2)可視光吸収特性の測定
積分球付き紫外可視分光光度計(日本分光株式会社製V−550−DS)により酸化チタン光触媒の拡散反射吸収スペクトルを測定した。
(3)ルチル化率の測定
ASTM D 3720-84に従いX線回折パターンにおける、ルチル型結晶酸化チタンの最強干渉線(面指数110)のピーク面積(Ir)と、酸化チタン粉末の最強干渉線(面指数101)のピーク面積(Ia)を求め前述の算出式より求めた。なお、X線回折測定条件は下記の通りである。
In the examples and comparative examples, the titanium oxide photocatalyst was evaluated as follows.
(1) Measurement of sulfur content in titanium oxide photocatalyst Field Emission-SEM (FE-SEM) with an energy dispersive X-ray fluorescence spectrometer (EDX) (Hitachi Electron Scanning Microscope S) -4700), a quantitative analysis of sulfur atoms in titanium oxide was performed.
(2) Measurement of visible light absorption characteristics The diffuse reflection absorption spectrum of the titanium oxide photocatalyst was measured with an ultraviolet-visible spectrophotometer with an integrating sphere (V-550-DS manufactured by JASCO Corporation).
(3) Measurement of the rutile ratio The peak area (Ir) of the strongest interference line (surface index 110) of rutile crystalline titanium oxide in the X-ray diffraction pattern according to ASTM D 3720-84, and the strongest interference line of titanium oxide powder ( The peak area (Ia) of the plane index 101) was obtained and obtained from the above formula. The X-ray diffraction measurement conditions are as follows.

(X線回折測定条件)
回折装置 RAD−1C(株式会社リガク製)
X線管球 Cu
管電圧・管電流40kV、30mA
スリット DS−SS:1度、RS:0.15mm
モノクロメータグラファイト
測定間隔 0.002度
計数方法 定時計数法
(X-ray diffraction measurement conditions)
Diffraction device RAD-1C (manufactured by Rigaku Corporation)
X-ray tube Cu
Tube voltage / tube current 40kV, 30mA
Slit DS-SS: 1 degree, RS: 0.15mm
Monochromator graphite measurement interval 0.002 degrees
Counting method Constant clock method

攪拌器を具備した容量1000ミリリッターの丸底フラスコにチタン濃度4重量%の四塩化チタン水溶液297g挿入し、次いで60℃に加熱した。次いで反応系のpHが7.4に維持させるようにアンモニア水を添加して、60℃で1時間中和処理を行なった。得られた固形物を濾過し純水で洗浄し、これに100mlの純水に溶解させたチオ尿素9.7gを添加し30分攪拌した。その後、固形物を60℃で乾燥して、ボールミルにて粉砕して酸化チタン粉末とチオ尿素の混合物を得た。この混合物を焼成炉に装入し400℃で3時間焼成した。その後ボールミルにて粉砕して、純水で洗浄した後、60℃で乾燥して淡黄色の酸化チタン光触媒を得た。得られた酸化チタン光触媒中の硫黄含有量を測定したところ0.13重量%、比表面積は109m/g、ルチル化率は10%であった。また可視光吸収特性を図1に示した。 297 g of a titanium tetrachloride aqueous solution having a titanium concentration of 4% by weight was inserted into a 1000-milliliter round bottom flask equipped with a stirrer, and then heated to 60 ° C. Next, ammonia water was added so that the pH of the reaction system was maintained at 7.4, and neutralization was performed at 60 ° C. for 1 hour. The obtained solid was filtered and washed with pure water, and 9.7 g of thiourea dissolved in 100 ml of pure water was added thereto and stirred for 30 minutes. Thereafter, the solid was dried at 60 ° C. and pulverized with a ball mill to obtain a mixture of titanium oxide powder and thiourea. This mixture was placed in a firing furnace and fired at 400 ° C. for 3 hours. Thereafter, it was pulverized by a ball mill, washed with pure water, and then dried at 60 ° C. to obtain a pale yellow titanium oxide photocatalyst. When the sulfur content in the obtained titanium oxide photocatalyst was measured, it was 0.13% by weight, the specific surface area was 109 m 2 / g, and the rutile ratio was 10%. The visible light absorption characteristics are shown in FIG.

攪拌器を具備した容量1000ミリリッターの丸底フラスコにチタン濃度4重量%の四塩化チタン水溶液297ml挿入し、次いで100mlの純水に溶解させたチオ尿素9.7gを添加して60℃に加熱した。次いで反応系のpHが7.4に維持させるようにアンモニア水を添加して、60℃で1時間中和処理を行なった。得られた固形物を濾過し純水で洗浄し30分攪拌した。その後、固形物を60℃で乾燥して、ボールミルにて粉砕して酸化チタン粉末とチオ尿素の混合物を得た。この混合物を焼成炉に装入し400℃で3時間焼成した。その後ボールミルにて粉砕して、純水で洗浄した後、60℃で乾燥して淡黄色の酸化チタン光触媒を得た。得られた酸化チタン光触媒中の硫黄含有量を測定したところ0.05重量%、比表面積は120m/g、ルチル化率は60%であった。また可視光吸収特性を図1に示した。 297 ml of titanium tetrachloride aqueous solution having a titanium concentration of 4% by weight was inserted into a 1000 ml round bottom flask equipped with a stirrer, and then 9.7 g of thiourea dissolved in 100 ml of pure water was added and heated to 60 ° C. did. Next, ammonia water was added so that the pH of the reaction system was maintained at 7.4, and neutralization was performed at 60 ° C. for 1 hour. The obtained solid was filtered, washed with pure water, and stirred for 30 minutes. Thereafter, the solid was dried at 60 ° C. and pulverized with a ball mill to obtain a mixture of titanium oxide powder and thiourea. This mixture was placed in a firing furnace and fired at 400 ° C. for 3 hours. Thereafter, it was pulverized by a ball mill, washed with pure water, and then dried at 60 ° C. to obtain a pale yellow titanium oxide photocatalyst. When the sulfur content in the obtained titanium oxide photocatalyst was measured, it was 0.05% by weight, the specific surface area was 120 m 2 / g, and the rutile ratio was 60%. The visible light absorption characteristics are shown in FIG.

比較例1
攪拌器を具備した容量1000ミリリッターの丸底フラスコにチタン濃度4重量%の四塩化チタン水溶液297ml挿入し60℃に加熱した。次いで反応系のpHが7.4に維持させるようにアンモニア水を添加して、60℃で1時間中和処理を行なった。得られた固形物を濾過し純水で洗浄し30分攪拌した。その後、固形物を60℃で乾燥して、ボールミルにて粉砕して酸化チタン粉末を得た。この酸化チタン粉末を焼成炉に装入し、アンモニアガスを焼成炉に導入してアンモニア雰囲気で400℃で3時間焼成した。その後ボールミルにて粉砕して、純水で洗浄した後、60℃で乾燥して淡黄色の酸化チタン光触媒を得た。得られた酸化チタンの比表面積は579m/gルチル化率は15%であった。また可視光吸収特性を図1に示した。
Comparative Example 1
297 ml of a titanium tetrachloride aqueous solution having a titanium concentration of 4% by weight was inserted into a 1000-ml round bottom flask equipped with a stirrer and heated to 60 ° C. Next, ammonia water was added so that the pH of the reaction system was maintained at 7.4, and neutralization was performed at 60 ° C. for 1 hour. The obtained solid was filtered, washed with pure water, and stirred for 30 minutes. Thereafter, the solid was dried at 60 ° C. and pulverized with a ball mill to obtain a titanium oxide powder. This titanium oxide powder was charged into a firing furnace, ammonia gas was introduced into the firing furnace, and firing was performed at 400 ° C. for 3 hours in an ammonia atmosphere. Thereafter, it was pulverized by a ball mill, washed with pure water, and then dried at 60 ° C. to obtain a pale yellow titanium oxide photocatalyst. The specific surface area of the obtained titanium oxide was 579 m 2 / g rutile, and the rate was 15%. The visible light absorption characteristics are shown in FIG.

比較例2
攪拌器を具備した容量1000ミリリッターの丸底フラスコにエタノール500mlを装入し、40℃加熱しここにチオ尿素24.2gを添加して溶解させた。次いで、テトライソプロポキシチタン26.2mlを添加して攪拌しながら80℃に加熱してテトライソプロポキシチタンを加水分解して固形物を析出させた。得られた固形物を60℃で乾燥して、ボールミルにて粉砕して酸化チタン粉末とチオ尿素の混合物を得た。この混合物を焼成炉に装入し、400℃で3時間焼成した。その後ボールミルにて粉砕して、純水で洗浄した後、60℃で乾燥して淡黄色の酸化チタン光触媒を得た。得られた酸化チタンの比表面積は190m/gルチル化率は0%であった。また可視光吸収特性を図1に示した。
Comparative Example 2
Was charged ethanol 500ml round bottom flask equipped with a stirrer capacity 1000 milliliters, it was heated to 40 ° C., and here was added and dissolved thiourea 24.2 g. Next, 26.2 ml of tetraisopropoxytitanium was added and heated to 80 ° C. with stirring to hydrolyze tetraisopropoxytitanium and precipitate a solid. The obtained solid was dried at 60 ° C. and pulverized with a ball mill to obtain a mixture of titanium oxide powder and thiourea. This mixture was placed in a firing furnace and fired at 400 ° C. for 3 hours. Thereafter, it was pulverized by a ball mill, washed with pure water, and then dried at 60 ° C. to obtain a pale yellow titanium oxide photocatalyst. The obtained titanium oxide had a specific surface area of 190 m 2 / g and a rutile ratio of 0%. The visible light absorption characteristics are shown in FIG.

酸化チタン光触媒の紫外可視分光光度計による拡散反射吸収スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the diffuse reflection absorption spectrum by the ultraviolet visible spectrophotometer of a titanium oxide photocatalyst.

Claims (8)

塩化チタン水溶液を加水分解またはアルカリで中和して得られた酸化チタン粉末とチオ尿素の混合物を、酸化性雰囲気下、300〜600℃で焼成することにより、ルチル化率が5〜99%であるルチル型およびアナターゼ型の混合結晶であって、かつ硫黄原子を陽イオンとして含有する酸化チタン光触媒を得ることを特徴とする酸化チタン光触媒の製造方法。 A mixture of titanium oxide powder and thiourea obtained by hydrolyzing or neutralizing an aqueous titanium chloride solution with an alkali is fired at 300 to 600 ° C. in an oxidizing atmosphere, so that the rutile ratio is 5 to 99%. A method for producing a titanium oxide photocatalyst comprising obtaining a titanium oxide photocatalyst which is a mixed crystal of a rutile type and an anatase type and contains a sulfur atom as a cation . 塩化チタン水溶液にチオ尿素を混合し、次いで加水分解またはアルカリで中和して酸化チタン粉末とチオ尿素との混合物を得た後、該混合物を300〜600℃で焼成することを特徴とする請求項1に記載の酸化チタン光触媒の製造方法。   A thiourea is mixed with an aqueous titanium chloride solution, and then hydrolyzed or neutralized with an alkali to obtain a mixture of titanium oxide powder and thiourea, and then the mixture is fired at 300 to 600 ° C. Item 2. A method for producing a titanium oxide photocatalyst according to Item 1. 塩化チタン水溶液を加水分解またはアルカリで中和して酸化チタン粉末を得、次いで該酸化チタン粉末とチオ尿素とを混合し混合物を得た後、300〜600℃で焼成することを特徴とする請求項1に記載の酸化チタン光触媒の製造方法。   An aqueous titanium chloride solution is hydrolyzed or neutralized with an alkali to obtain a titanium oxide powder, and then the titanium oxide powder and thiourea are mixed to obtain a mixture, followed by firing at 300 to 600 ° C. Item 2. A method for producing a titanium oxide photocatalyst according to Item 1. 前記塩化チタン水溶液が、三塩化チタン水溶液または四塩化チタン水溶液であることを特徴とする請求項1〜請求項3のいずれかに記載の酸化チタン光触媒の製造方法。   The method for producing a titanium oxide photocatalyst according to any one of claims 1 to 3, wherein the titanium chloride aqueous solution is a titanium trichloride aqueous solution or a titanium tetrachloride aqueous solution. 前記アルカリがアルカリ金属の水酸化物またはアンモニアであることを特徴とする請求項1〜請求項4のいずれかに記載の酸化チタン光触媒の製造方法。   The method for producing a titanium oxide photocatalyst according to any one of claims 1 to 4, wherein the alkali is an alkali metal hydroxide or ammonia. 前記酸化チタン粉末のルチル化率が5〜99%であることを特徴とする請求項1〜請求項5のいずれかに記載の酸化チタン光触媒の製造方法。   The method for producing a titanium oxide photocatalyst according to any one of claims 1 to 5, wherein the rutile ratio of the titanium oxide powder is 5 to 99%. 前記酸化チタン粉末のルチル化率が30〜70%であることを特徴とする請求項1〜請求項5のいずれかに記載の酸化チタン光触媒の製造方法。   The method for producing a titanium oxide photocatalyst according to any one of claims 1 to 5, wherein a rutile ratio of the titanium oxide powder is 30 to 70%. 得られる酸化チタン光触媒が、紫外可視拡散反射スペクトルを測定したときに、波長300〜350nmの吸光度の積分値を1として、波長350〜400nmの吸光度の積分値が0.3〜0.9であり、且つ波長400〜500nmの吸光度の積分値が0.3〜0.9であることを特徴とする請求項1〜請求項7のいずれかに記載の酸化チタン光触媒の製造方法。   When the obtained titanium oxide photocatalyst measures an ultraviolet-visible diffuse reflection spectrum, the integrated value of the absorbance at a wavelength of 300 to 350 nm is 1, and the integrated value of the absorbance at a wavelength of 350 to 400 nm is 0.3 to 0.9. And the integrated value of the light absorbency of wavelength 400-500nm is 0.3-0.9, The manufacturing method of the titanium oxide photocatalyst in any one of Claims 1-7 characterized by the above-mentioned.
JP2004071070A 2004-03-12 2004-03-12 Method for producing titanium oxide photocatalyst Expired - Fee Related JP4351936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071070A JP4351936B2 (en) 2004-03-12 2004-03-12 Method for producing titanium oxide photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071070A JP4351936B2 (en) 2004-03-12 2004-03-12 Method for producing titanium oxide photocatalyst

Publications (2)

Publication Number Publication Date
JP2005254174A JP2005254174A (en) 2005-09-22
JP4351936B2 true JP4351936B2 (en) 2009-10-28

Family

ID=35080433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071070A Expired - Fee Related JP4351936B2 (en) 2004-03-12 2004-03-12 Method for producing titanium oxide photocatalyst

Country Status (1)

Country Link
JP (1) JP4351936B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604175B2 (en) * 2004-06-11 2010-12-22 株式会社アトックス Method for producing visible light responsive photocatalyst
US20090264679A1 (en) * 2004-12-14 2009-10-22 Daniel Ostgard Control of metal catalyst settling rates, settling densities and improved performance via use of flocculants
JP2008179528A (en) * 2006-12-26 2008-08-07 Toho Titanium Co Ltd Manufacture method of titanium oxide
JP4849566B2 (en) * 2007-06-05 2012-01-11 東邦チタニウム株式会社 Method for producing sulfur-containing titanium oxide and method for producing sulfur-containing titanium oxide dispersion
JP4841506B2 (en) * 2007-06-11 2011-12-21 東邦チタニウム株式会社 Method for producing metal oxide
JP5364928B2 (en) * 2009-07-08 2013-12-11 学校法人福岡大学 Method for producing non-metallic element-doped titanium oxide photocatalyst
WO2022091547A1 (en) * 2020-10-29 2022-05-05 Dic株式会社 Glove

Also Published As

Publication number Publication date
JP2005254174A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4353978B2 (en) Method for producing titanium oxide photocatalyst
Raza et al. A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide
Fagan et al. Improved high temperature stability of anatase TiO2 photocatalysts by N, F, P co-doping
Zaleska Doped-TiO2: a review
JP4523344B2 (en) Method for producing titanium oxide dispersion
WO2006064799A1 (en) Composite metal oxide photocatalyst exhibiting responsibility to visible light
JP4540069B2 (en) Composition for forming titanium oxide photocatalyst coating film, method for producing the same, coating film for photocatalyst, and coated product for photocatalyst
KR20000067090A (en) manufacturing method of titanium dioxide powder for photocatalyst
CN113663693B (en) Preparation method of indium zinc sulfide-titanium dioxide composite material and application of indium zinc sulfide-titanium dioxide composite material in production of hydrogen peroxide for wastewater treatment
Wang et al. Preparation and characterization of TiO2 nanoparticles by two different precipitation methods
KR101146899B1 (en) Photocatalyst having titanium dioxide and a metal tungsten oxide junction structure and preparation method thereof
Pirgholi-Givi et al. Comparison of the photocatalytic activity of perovskite structures: Bismuth, barium, and zinc titanate nanostructures for photodegradation of methylene blue from water
JP4351936B2 (en) Method for producing titanium oxide photocatalyst
JP2011063473A (en) Method for producing metal oxide-containing titanium oxide compound
JP4475594B2 (en) Method for forming coating film for titanium oxide photocatalyst
JP4386788B2 (en) Method for producing titanium oxide photocatalyst
Gao et al. Effect of ultraviolet irradiation on crystallization behavior and surface microstructure of titania in the sol–gel process
JP2008230950A (en) N- and/or s-doped tubular titanium oxide particle and method for producing the same
KR101855747B1 (en) Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom
JP2008179528A (en) Manufacture method of titanium oxide
JP2005254173A (en) Titania fiber photocatalyst and its manufacturing method
KR101808034B1 (en) Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
WO2008081957A1 (en) Method for producing metal-containing sulfur-introduced titanium oxide and metal-containing sulfur-introduced titanium oxide
KR101242576B1 (en) Photocatalyst having a tin oxide with metal ion and titanium dioxide composite structure and preparation method thereof
JP4089989B2 (en) Method of treating harmful substances in water with titanium oxide photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4351936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees