JP4348719B2 - Light absorbing material and composition for forming the same - Google Patents

Light absorbing material and composition for forming the same Download PDF

Info

Publication number
JP4348719B2
JP4348719B2 JP2002365948A JP2002365948A JP4348719B2 JP 4348719 B2 JP4348719 B2 JP 4348719B2 JP 2002365948 A JP2002365948 A JP 2002365948A JP 2002365948 A JP2002365948 A JP 2002365948A JP 4348719 B2 JP4348719 B2 JP 4348719B2
Authority
JP
Japan
Prior art keywords
light
dye
composition
absorbing
nanorods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002365948A
Other languages
Japanese (ja)
Other versions
JP2004198665A (en
Inventor
寛樹 平田
佳明 高田
成圭 李
大剛 溝口
眞興 石原
聖人 室内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2002365948A priority Critical patent/JP4348719B2/en
Priority to KR1020030011329A priority patent/KR100932409B1/en
Priority to CN031075045A priority patent/CN1440997B/en
Priority to TW092103807A priority patent/TWI313702B/en
Publication of JP2004198665A publication Critical patent/JP2004198665A/en
Application granted granted Critical
Publication of JP4348719B2 publication Critical patent/JP4348719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可視光・近赤外光領域の波長に対して選択的な光吸収機能を有するフィルター層を形成する光吸収材形成用組成物、およびこのフィルター層を有する光吸収材に関する。この光吸収材形成用組成物は塗料組成物、塗膜、またはフィルムなど多様な形態を有することができる。
【0002】
【従来の技術】
光の三原色である赤色、緑色および青色の着色を目的として特定波長を選択的に吸収する染料をバインダーに分散させて塗布し、得られた塗膜をフィルターとして利用することが知られている(特許文献1)。また、近赤外光を遮断する目的として750nm〜1100nmに吸収を有する染料をバインダーに分散させて塗布し、得られた塗膜をフィルターとして利用することも知られている(特許文献2)。
【0003】
また、金属微粒子に光を照射したときに生じるプラズモン吸収と呼ばれる共鳴吸収現象が知られており(非特許文献1)、この現象を利用して塗料としての着色性や溶液の安定性を高めた塗料が開発されている(特許文献3、4)。この吸収は金属の種類と形状によって吸収波長域が異なり、例えば、球状の金微粒子が水に分散した金コロイドは530nm付近に吸収域を持つが、微粒子の形状を短軸10nmのロッド状にすると、ロッドの短軸に起因する530nm付近の吸収と共にロッドの長軸に起因する長波長側の吸収を有することが知られており、短軸と長軸の比を制御することによって所望の波長を吸収することができる。さらに、金属配線パターンを形成することを目的として、固体表面に担持させたプラズモン吸収する無機質微粒子を直径100nm未満およびアスペクト比1以上に成長させた微細ロッドにして使用することが知られている(特許文献5)。
【0004】
【特許文献1】
特開2001−108815公報
【特許文献2】
特開2002−022935公報
【特許文献3】
特開平11−80647号公報
【特許文献4】
特開平11−319538号公報
【特許文献5】
特開2001−064794公報
【非特許文献1】
S-S.Chang et al,Langmuir,1999,15.p701-709
【0005】
【発明が解決しようとする課題】
上記従来技術において、染料を利用して特定波長を吸収する方法は、染料が金属微粒子に比較して耐熱性、耐光性および耐薬品性に劣り、長時間経過すると退色や吸収機能の低下を生じるものが多く、信頼性に問題点があった。また、染料は吸光係数が小さいために十分な効果を得るには染料の添加量を多く必要とし、コスト的に不利であった。さらに、金属微粒子を利用する方法は、金属微粒子のプラズモン吸収が目的とする吸収波長領域以外にも生じて着色するものがあるため、特にディスプレイ用光学フィルターなどのようなフィルター自体に無彩色が要求される用途では色補正等の必要があった。固体表面の金属微粒子を利用する方法は、この金属微粒子を固体表面に担持した状態で成長させたものを利用するため、各種溶媒、バインダーに分散させることができず、塗料化することができない。また、金属微粒子のプラズモン吸収は合成過程における成長目的にのみ利用されており、金属ナノロッドの長軸に起因する可視光・近赤外光の特定波長の選択的な吸収に利用したものではない。
【0006】
【課題を解決するための手段】
本発明は、金属ナノロッドの光吸収特性を利用し、金属ナノロッドと光吸収機能を有する染料とを組み合わせて用いることによって、従来の上記問題を解決したものであり、可視光および近赤外光の波長に対して選択的な光吸収機能を有すると共に耐久性に優れた光吸収材とその形成用組成物を提供する。
【0007】
本発明によれば、以下の構成からなる光吸収材とその形成用組成物が提供される。
〔1〕長軸が400nm未満であって、アスペクト比が1より大きいロッド状の金属微粒子(以下、金属ナノロッドと云う)と染料およびバインダーを含有する組成物であって、530nmおよび850nmの波長を吸収する金ナノロッドと、410nmの波長を吸収する染料と、700nmの波長を吸収する染料を含有し、850nmの近赤外光を吸収し、可視光域(400nm〜700nm)の光透過率が一定で無彩色である光吸収材形成用組成物。
〔2〕金属ナノロッド(長軸400nm未満、アスペクト比が1より大きい)と染料およびバインダーを含有する組成物であって、530nmおよび1200nmの波長を吸収する金ナノロッドと、410nmの波長を吸収する染料と、700nmの波長を吸収する染料を含有し、1200nmの近赤外光を吸収し、可視光域(400nm〜700nm)の光透過率が一定で無彩色である光吸収材形成用組成物。
〔3〕金属ナノロッド(長軸400nm未満、アスペクト比が1より大きい)と染料およびバインダーを含有する組成物であって、530nmおよび1200nmの波長を吸収する金ナノロッドと、410nmおよび850nmの波長を吸収する銀ナノロッドと、700nmの波長を吸収する染料を含有し、850nmの近赤外光を吸収し、可視光域(400nm〜700nm)の光透過率が一定で無彩色である光吸収材形成用組成物。
〔4〕金属ナノロッド(長軸400nm未満、アスペクト比が1より大きい)と染料およびバインダーを含有する組成物であって、530nmおよび700nmの波長を吸収する金ナノロッドと、410nmの波長を吸収する染料を含有し、700nmの可視光を吸収し、この吸収域以外の可視光域の光透過率が一定である光吸収材形成用組成物。
〔5〕上記[1]〜上記[4]の光吸収材形成用組成物によって形成された光吸収材、
〔6〕近赤外光カットフィルム、近赤外光カットフィルター、または近赤外光カットガラスに用いられる上記[5]に記載する光吸収材。
【0008】
本発明の光吸収材形成用組成物は、長軸が400nm未満であって、アスペクト比が1より大きいロッド状の金属ナノロッドと、染料およびバインダーを必須成分として含有し、さらに必要に応じて溶媒や硬化促進剤、消泡剤、粘性調整剤等の各種添加剤などを配合したものから構成される。
【0009】
金属ナノロッドの金属種としては金、銀、銅、およびそれらの合金などを用いることができる。本発明に用いる金属ナノロッドは長軸が400nm未満であり、アスペクト比(長軸/短軸比)が1より大きいものである。特に、アスペクト比は2〜10が好適である。なお、長軸が400nm以上であると、これを溶媒に分散させたときに安定なコロイド状の分散液が得られない。また、アスペクト比(長軸/短軸比)が1の場合には、球状の金属微粒子が溶媒に分散したコロイド状の分散液と同じ吸収しか得られず、可視光および近赤外光の任意の波長に対する選択的な吸収効果が得られない。
【0010】
長軸が400nm未満であって、アスペクト比が1より大きい金属ナノロッドを用いることにより、金属ナノロッドの長軸による波長吸収能によって波長400nm〜2000nmの可視光・近赤外光の特待波長に対して選択的な光吸収効果を有することができる。なお、例えば金ナノロッドは短軸の波長吸収能として530nm付近に吸収域が存在するが、短軸の長さが2nm以下であればこの影響は無視できる。また、本発明に用いる金属ナノロッドは長軸が400nm未満であり、好ましくは200nm以下である。これを溶媒に分散させたものは肉眼で粒子として認識し難い。
【0011】
また、上記金属ナノロッドは導電性を有するので、この金属ナノロッドを含有する組成物は電磁波に対して遮蔽機能を有する。さらに、この金属ナノロッド含有組成物を基材表面にコーティングすることによって導電性コーティング膜を形成することができる。
【0012】
染料は一般に可視光域の特定波長を吸収して目的の色に着色するためのものであり、本発明は一般の光の三原色である赤色、緑色および青色(目的によっては赤、緑および青の補色系でもよい)の着色が得られるような染料を特に制限なく使用することができる。例えば、赤色の着色層はアゾ系染料等、緑色の着色層はフタロシアニン系染料等、青色の着色層はアントラキノン系染料等が代表的なものとして挙げられる。また、近赤外光吸収染料としては、シアニン染料、金属キレート染料等が挙げられるが、これらに限定されるものではない。
【0013】
本発明は金属ナノロッドと染料を組み合わせて用いたものであり、染料によって可視光域における光吸収を補正することによって無彩色の光吸収材を得ることができる。さらに、金属ナノロッドを用いることによって耐熱性に優れた光吸収材を得ることができる。
【0014】
バインダーとしては、通常塗料用や成型用に利用されている可視光から近赤外光領域の光に対して透過性がある各種樹脂が特に制限無く使用できる。例えば、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール、等の各種有機樹脂や、ラジカル重合性のオリゴマーやモノマー(場合により硬化剤やラジカル重合開始剤と併用する)が代表的なものとして挙げられる。
【0015】
本発明の光吸収材およびその形成用組成物において、必要に応じて配合する溶媒としては、バインダーが溶解もしくは安定に分散するような溶媒を適宜選択すればよく、具体的には、水, メタノール、エタノール、プロパノール、ヘキサノール、エチレングリコール等のアルコール, キシレン、トルエン等の芳香族炭化水素, シクロヘキサン等の脂環式炭化水素, アセトン、メチルエチルケトン等のケトン, 酢酸エチル、酢酸ブチル等のエステル, エチレングリコールモノブチルエーテル等のエーテル等, あるいはこれらの混合物が代表的なものとして挙げられるが、これらに限定されるものではない。
【0016】
金属ナノロッド、染料、およびバインダーの配合量は、バインダー10重量部に対して、金属ナノロッドの含有量0.001〜90重量部、染料の含有量0.001〜90重量部が適当であり、また、金属ナノロッドの含有量は染料1重量部に対して0.01〜100重量部が好ましい。金属ナノロッドおよび染料の配合量が上記範囲より少ないと十分な所望の効果が得られない。一方、これらの配合量が上記範囲より多いとコストの点で不利であり、また金属ナノロッドの短軸に起因する固有のプラズモン吸収が強くなり、目的の波長以外の吸収効果が強くなるので好ましくない。なお、金属ナノロッドと染料は、波長吸収範囲がほぼ同一、または異なる二種ないし三種以上の金属ナノロッドと染料を組み合わせて用いることができる。
【0017】
本発明の光吸収材形成用組成物は、塗料組成物、塗膜、フィルム、または板材など多様な形態で用いることができ、この光吸収材形成用組成物によって形成されたフィルター層を有する光吸収材を得ることができる。具体的には、例えば、(イ)可視光線および近赤外光を吸収したい基材に直接に塗装もしくは印刷し、可視光線・近赤外光吸収フィルターとしての硬化塗膜を形成させる。(ロ)本発明の組成物をフィルム状や板状等に形成し、その成形物を可視光線・近赤外光吸収フィルターとして可視光線・近赤外光を吸収したい基材に積層もしくは包囲する。(ハ)本発明の組成物によって形成した上記塗膜やフィルムなどの成形物を透明なガラス製もしくはプラスチック製基材に積層させ、その積層体を可視光線・近赤外光吸収フィルターとして可視光線・近赤外光を吸収したい基材に積層もしくは包囲して用いる。上記各使用態様において、光吸収フィルターの厚さは概ね0.01μm〜1mmが適当であり、コストや光透過性などを考慮すると0.1μm〜100μmが好ましい。
【0018】
本発明の上記組成物によって形成した塗膜やフィルム、板材などをフィルター層として有するものは、波長400nm〜2000nmの可視光・近赤外光領域に属する特定波長を選択的に吸収する機能を有し、可視光・近赤外光カットフィルム、可視光・近赤外光カットフィルター、または可視光・近赤外光カットガラスなどの耐熱性に優れた光吸収材として用いることができる。
【0019】
【実施例および比較例】
以下、本発明を実施例および比較例によって具体的に示す。なお、以下の実施例は主に400nm〜1200nmの波長域における光吸収機能を示しているが、金属ナノロッドの種類や長さ、組成等の条件などを変更することによって2000nmまでの波長域についても同様の光吸収機能を有することができる。
【0020】
〔実施例および比較例〕
表1に示す配合比で金属ナノロッド、染料、バインダーを混合し、光吸収材形成用組成物を調製した。この塗料をスピンコーターでそれぞれガラス基板に塗布し、5分間静置後、乾燥炉にて加熱(80℃×1時間)、もしくは高圧水銀ランプにて紫外線を照射し硬化させ、光吸収材フィルターを形成した。このフィルターについて、作製直後と耐熱試験(80℃×1000時間)を行った後の透過率変化を測定した。この結果を表1に示した。
【0021】
表1の結果に示すように、本発明の試料No.A1は金ナノロッドBの光吸収機能によって850nmの近赤外光が吸収されており、また染料の光吸収機能によって可視光域(400nm〜700nm)の光透過率は一定であり、無彩色の光吸収フィルターが得られる。同様に、試料No.A2は金ナノロッドCの光吸収機能によって1200nmの近赤外光が吸収されており、また試料No.A3は金ナノロッドBおよび銀ナノロッドAの光吸収機能によって850nmの近赤外光が吸収されており、さらに試料No.A2およびA3はこれらの金属ナノロッドおよび染料の光吸収機能によって可視光域(400nm〜700nm)の光透過率は一定であり、無彩色の光吸収フィルターが得られる。また、試料No.A4は金ナノロッドAの光吸収機能によって700nmの可視光が吸収されており、さらに金ナノロッドAおよび染料の光吸収機能によって700nm付近以外の可視光域の光透過率は一定であり、特定色の光吸収フィルターが得られる。
【0022】
一方、比較例No.B1は金属ナノロッドを含まずに染料を単独に用いているので可視光〜近赤外光における光吸収効果が低く、かつ染料の耐熱性が低いので耐熱試験後の光透過率が高い。比較例No.B2は染料を含まずに金ナノロッドBを単独に用いているので、可視光域において染料による光吸収の補正がなく、無彩色のものが得られない。比較例No.B3、No.B4は特定の染料を単独に用いたものであり、光吸収効果を高めるには染料を多量に必要とし、しかも耐熱性が低いので、耐熱試験後の光吸収効果が大幅に低下している。
【0023】
【表1】

Figure 0004348719
【0024】
【発明の効果】
本発明の光吸収フィルターは、表1から明らかなように、可視光線・近赤外光の特定波長に対して選択的な吸収効果を有し、光吸収フィルターとして利用することができる。また、本発明の光吸収フィルターはフィルター自体の色は無彩色であり、しかも耐熱性に優れており耐熱試験後の透過率が高い。また、染料の添加量は少量で足りると云った極めて優れた特性を有しており、少量の金属ナノロッドを含むことによって極めて優れた吸収特性を有するので、可視光線・近赤外光吸収フィルターの用途を拡大することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light-absorbing-material-forming composition that forms a filter layer having a light-absorbing function selective to wavelengths in the visible light / near-infrared light region, and a light-absorbing material having the filter layer. The composition for forming a light absorbing material can have various forms such as a coating composition, a coating film, or a film.
[0002]
[Prior art]
It is known that a dye that selectively absorbs a specific wavelength for the purpose of coloring red, green, and blue, which are the three primary colors of light, is dispersed in a binder and applied, and the resulting coating is used as a filter ( Patent Document 1). In addition, for the purpose of blocking near-infrared light, it is also known that a dye having absorption at 750 nm to 1100 nm is dispersed and applied in a binder, and the obtained coating film is used as a filter (Patent Document 2).
[0003]
In addition, a resonance absorption phenomenon called plasmon absorption that occurs when light is irradiated on metal fine particles is known (Non-patent Document 1), and this phenomenon was used to improve the colorability and the stability of the solution as a paint. Paints have been developed (Patent Documents 3 and 4). The absorption wavelength range of this absorption varies depending on the type and shape of the metal. For example, a colloidal gold particle in which spherical gold fine particles are dispersed in water has an absorption range near 530 nm, but the shape of the fine particles is made into a rod shape with a short axis of 10 nm. It is known to have an absorption near 530 nm due to the short axis of the rod and an absorption on the long wavelength side due to the long axis of the rod, and the desired wavelength can be adjusted by controlling the ratio of the short axis to the long axis. Can be absorbed. Furthermore, for the purpose of forming a metal wiring pattern, it is known to use plasmon-absorbing inorganic fine particles carried on a solid surface as a fine rod grown to a diameter of less than 100 nm and an aspect ratio of 1 or more ( Patent Document 5).
[0004]
[Patent Document 1]
JP 2001-108815 A [Patent Document 2]
JP 2002-022935 A [Patent Document 3]
Japanese Patent Laid-Open No. 11-80647 [Patent Document 4]
JP-A-11-319538 [Patent Document 5]
JP 2001-066494 A [Non-Patent Document 1]
SS.Chang et al, Langmuir, 1999, 15.p701-709
[0005]
[Problems to be solved by the invention]
In the above prior art, the method of absorbing a specific wavelength using a dye is inferior in heat resistance, light resistance and chemical resistance compared to metal fine particles, and causes fading and a decrease in absorption function after a long time. There were many things, and there was a problem in reliability. Further, since the dye has a small extinction coefficient, a large amount of the dye is required to obtain a sufficient effect, which is disadvantageous in terms of cost. Furthermore, the method using metal fine particles requires coloring of the plasmon absorption of the metal fine particles in addition to the intended absorption wavelength region, and in particular, the achromatic color is required for the filter itself such as an optical filter for a display. In some applications, color correction was necessary. Since the method using the metal fine particles on the solid surface uses a material grown with the metal fine particles supported on the solid surface, it cannot be dispersed in various solvents and binders and cannot be made into a paint. In addition, plasmon absorption of metal fine particles is used only for the purpose of growth in the synthesis process, and is not used for selective absorption of specific wavelengths of visible light and near infrared light caused by the long axis of metal nanorods.
[0006]
[Means for Solving the Problems]
The present invention solves the above-mentioned conventional problems by using a combination of a metal nanorod and a dye having a light absorption function, utilizing the light absorption characteristics of the metal nanorod. Provided are a light absorbing material having a light absorbing function selective to a wavelength and having excellent durability and a composition for forming the same.
[0007]
According to this invention, the light absorption material which consists of the following structures, and the composition for its formation are provided.
[1] A composition containing rod-shaped metal fine particles (hereinafter referred to as metal nanorods) having a major axis of less than 400 nm and an aspect ratio of more than 1, a dye and a binder, and having wavelengths of 530 nm and 850 nm It contains gold nanorods that absorb, dyes that absorb wavelengths of 410 nm, and dyes that absorb wavelengths of 700 nm, absorbs near-infrared light of 850 nm, and has a constant light transmittance in the visible light range (400 nm to 700 nm). A composition for forming a light absorbing material that is achromatic.
[2] A composition comprising metal nanorods (major axis less than 400 nm, aspect ratio greater than 1), dye and binder, gold nanorods absorbing wavelengths of 530 nm and 1200 nm, and dye absorbing wavelengths of 410 nm And a dye that absorbs a wavelength of 700 nm, absorbs near-infrared light of 1200 nm, has a constant light transmittance in the visible light region (400 nm to 700 nm), and is an achromatic composition.
[3] A composition comprising metal nanorods (major axis less than 400 nm, aspect ratio greater than 1), dye and binder, gold nanorods absorbing wavelengths of 530 nm and 1200 nm, and wavelengths of 410 nm and 850 nm Silver nanorods and a dye that absorbs 700 nm wavelength, absorbs near-infrared light of 850 nm, has a constant light transmittance in the visible light region (400 nm to 700 nm), and is achromatic. Composition.
[4] A composition comprising metal nanorods (major axis less than 400 nm, aspect ratio greater than 1), dye and binder, gold nanorods absorbing wavelengths of 530 nm and 700 nm, and dye absorbing wavelengths of 410 nm A composition for forming a light absorbing material, which absorbs visible light of 700 nm and has a constant light transmittance in a visible light region other than the absorption region.
[5] A light absorbing material formed by the light absorbing material forming composition according to [1] to [4] above,
[6] The light absorbing material according to [5], which is used for a near infrared light cut film, a near infrared light cut filter, or a near infrared light cut glass.
[0008]
The composition for forming a light-absorbing material of the present invention contains rod-shaped metal nanorods having a major axis of less than 400 nm and an aspect ratio of more than 1, a dye and a binder as essential components, and optionally a solvent. And a mixture of various additives such as curing accelerators, antifoaming agents, viscosity modifiers, and the like.
[0009]
Gold, silver, copper, and alloys thereof can be used as the metal species of the metal nanorods. The metal nanorod used in the present invention has a major axis of less than 400 nm and an aspect ratio (major axis / minor axis ratio) of greater than 1. In particular, the aspect ratio is preferably 2 to 10. When the major axis is 400 nm or more, a stable colloidal dispersion cannot be obtained when this is dispersed in a solvent. When the aspect ratio (major axis / minor axis ratio) is 1, only the same absorption as that of a colloidal dispersion in which spherical metal fine particles are dispersed in a solvent can be obtained. The selective absorption effect with respect to the wavelength of can not be obtained.
[0010]
By using a metal nanorod having a major axis of less than 400 nm and an aspect ratio of greater than 1, the wavelength absorptivity by the major axis of the metal nanorod can be used for special wavelengths of visible light and near infrared light having a wavelength of 400 nm to 2000 nm. It can have a selective light absorption effect. For example, gold nanorods have an absorption region in the vicinity of 530 nm as the wavelength absorption capability of the short axis, but this influence can be ignored if the length of the short axis is 2 nm or less. The metal nanorods used in the present invention have a major axis of less than 400 nm, preferably 200 nm or less. What is dispersed in a solvent is difficult to recognize as particles with the naked eye.
[0011]
Moreover, since the said metal nanorod has electroconductivity, the composition containing this metal nanorod has a shielding function with respect to electromagnetic waves. Furthermore, a conductive coating film can be formed by coating the surface of the substrate with this metal nanorod-containing composition.
[0012]
The dye generally absorbs a specific wavelength in the visible light region and is colored into a target color. The present invention is based on the three primary colors of red, green, and blue (depending on the purpose, red, green, and blue). Dyes that can be colored in a complementary color) can be used without particular limitation. For example, a red colored layer is typically an azo dye, a green colored layer is a phthalocyanine dye, and a blue colored layer is an anthraquinone dye. Examples of the near infrared light absorbing dye include cyanine dyes and metal chelate dyes, but are not limited thereto.
[0013]
The present invention uses a combination of metal nanorods and a dye, and an achromatic light absorbing material can be obtained by correcting light absorption in the visible light region with the dye. Furthermore, the light absorber excellent in heat resistance can be obtained by using a metal nanorod.
[0014]
As the binder, various resins that are normally transmissive for visible light to near-infrared light, which are used for paints and moldings, can be used without particular limitation. For example, various organic resins such as acrylic resin, polyester resin, alkyd resin, urethane resin, silicone resin, fluorine resin, epoxy resin, polycarbonate resin, polyvinyl chloride resin, polyvinyl alcohol, radical polymerizable oligomers and monomers (in case Can be used in combination with a curing agent or a radical polymerization initiator.
[0015]
In the light absorbing material and the composition for forming the same of the present invention, as a solvent to be blended as necessary, a solvent in which the binder is dissolved or stably dispersed may be appropriately selected. Specifically, water, methanol , Alcohols such as ethanol, propanol, hexanol and ethylene glycol, aromatic hydrocarbons such as xylene and toluene, alicyclic hydrocarbons such as cyclohexane, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, ethylene glycol Representative examples include ethers such as monobutyl ether, and mixtures thereof, but are not limited thereto.
[0016]
The compounding amount of the metal nanorod, the dye, and the binder is suitably 0.001 to 90 parts by weight of the metal nanorods and 0.001 to 90 parts by weight of the dye with respect to 10 parts by weight of the binder. The content of the metal nanorods is preferably 0.01 to 100 parts by weight with respect to 1 part by weight of the dye. If the blending amount of the metal nanorods and the dye is less than the above range, sufficient desired effects cannot be obtained. On the other hand, if the blending amount is larger than the above range, it is disadvantageous in terms of cost, and the intrinsic plasmon absorption due to the short axis of the metal nanorods becomes strong, and the absorption effect other than the target wavelength becomes strong, which is not preferable. . The metal nanorods and the dyes can be used in combination of two or more kinds of metal nanorods and dyes having substantially the same or different wavelength absorption ranges.
[0017]
The composition for forming a light absorbing material of the present invention can be used in various forms such as a coating composition, a coating film, a film, or a plate, and light having a filter layer formed by the composition for forming a light absorbing material. An absorbent material can be obtained. Specifically, for example, (a) coating or printing is directly performed on a base material that wants to absorb visible light and near infrared light to form a cured coating film as a visible light / near infrared light absorbing filter. (B) The composition of the present invention is formed into a film, plate, or the like, and the molded product is laminated or surrounded as a visible light / near infrared light absorbing filter on a base material to absorb visible light / near infrared light. . (C) The molded product such as the above-mentioned coating film or film formed by the composition of the present invention is laminated on a transparent glass or plastic substrate, and the laminate is visible light as a visible light / near infrared light absorption filter.・ Used by laminating or surrounding a base material that wants to absorb near infrared light. In each of the above-mentioned usage modes, the thickness of the light absorption filter is suitably about 0.01 μm to 1 mm, and preferably 0.1 μm to 100 μm in view of cost, light transmittance, and the like.
[0018]
Those having a coating layer, a film, a plate, or the like formed from the composition of the present invention as a filter layer have a function of selectively absorbing a specific wavelength belonging to the visible light / near infrared light region having a wavelength of 400 nm to 2000 nm. And it can be used as a light absorbing material excellent in heat resistance such as a visible light / near infrared light cut film, a visible light / near infrared light cut filter, or a visible light / near infrared light cut glass.
[0019]
Examples and Comparative Examples
Hereinafter, the present invention will be specifically described by Examples and Comparative Examples. In addition, although the following examples mainly show the light absorption function in the wavelength range of 400 nm to 1200 nm, the wavelength range up to 2000 nm can be changed by changing the conditions such as the type, length, and composition of the metal nanorods. It can have a similar light absorption function.
[0020]
[Examples and Comparative Examples]
Metal nanorods, dyes, and binders were mixed at a blending ratio shown in Table 1 to prepare a composition for forming a light absorbing material. This paint is applied to each glass substrate with a spin coater, allowed to stand for 5 minutes, then heated in a drying oven (80 ° C x 1 hour) or irradiated with UV light with a high-pressure mercury lamp to cure, and a light absorbing material filter. Formed. About this filter, the transmittance | permeability change immediately after preparation and after performing a heat test (80 degreeC x 1000 hours) was measured. The results are shown in Table 1.
[0021]
As shown in the results of Table 1, the sample No. A1 of the present invention absorbs near-infrared light of 850 nm by the light absorption function of the gold nanorod B, and the visible light range (400 nm to The light transmittance of 700 nm) is constant, and an achromatic light absorption filter can be obtained. Similarly, sample No. A2 has absorbed near-infrared light of 1200 nm by the light absorption function of the gold nanorod C, and sample No. A3 has a near red of 850 nm by the light absorption function of the gold nanorod B and silver nanorod A. External light is absorbed, and sample Nos. A2 and A3 have a constant light transmittance in the visible light region (400 nm to 700 nm) due to the light absorption function of these metal nanorods and dyes, and achromatic light absorption filter Is obtained. Sample No. A4 absorbs visible light of 700 nm by the light absorption function of the gold nanorod A, and the light transmittance of the visible light region other than around 700 nm is constant by the light absorption function of the gold nanorod A and the dye. Yes, a light absorption filter of a specific color can be obtained.
[0022]
On the other hand, since Comparative Example No. B1 does not contain metal nanorods and uses a dye alone, the light absorption effect in visible light to near infrared light is low, and the heat resistance of the dye is low. The rate is high. Since Comparative Example No. B2 does not contain a dye and uses the gold nanorod B alone, there is no correction of light absorption by the dye in the visible light range, and an achromatic color cannot be obtained. Comparative Examples No. B3 and No. B4 use specific dyes alone, and a large amount of dye is required to enhance the light absorption effect and the heat resistance is low. Has fallen significantly.
[0023]
[Table 1]
Figure 0004348719
[0024]
【The invention's effect】
As is clear from Table 1, the light absorption filter of the present invention has a selective absorption effect with respect to specific wavelengths of visible light and near infrared light, and can be used as a light absorption filter. Further, the light absorption filter of the present invention has an achromatic color as the filter itself, is excellent in heat resistance, and has a high transmittance after a heat test. In addition, the amount of the dye added is extremely small, that is, a small amount is sufficient, and by including a small amount of metal nanorods, it has extremely excellent absorption characteristics. Applications can be expanded.

Claims (6)

長軸が400nm未満であって、アスペクト比が1より大きいロッド状の金属微粒子(以下、金属ナノロッドと云う)と染料およびバインダーを含有する組成物であって、530nmおよび850nmの波長を吸収する金ナノロッドと、410nmの波長を吸収する染料と、700nmの波長を吸収する染料を含有し、850nmの近赤外光を吸収し、可視光域(400nm〜700nm)の光透過率が一定で無彩色である光吸収材形成用組成物。A composition containing rod-shaped fine metal particles (hereinafter referred to as metal nanorods) having a major axis of less than 400 nm and an aspect ratio of more than 1, a dye and a binder, and absorbing gold at wavelengths of 530 nm and 850 nm Contains a nanorod, a dye that absorbs a wavelength of 410 nm, and a dye that absorbs a wavelength of 700 nm. A composition for forming a light absorbing material. 金属ナノロッド(長軸400nm未満、アスペクト比が1より大きい)と染料およびバインダーを含有する組成物であって、530nmおよび1200nmの波長を吸収する金ナノロッドと、410nmの波長を吸収する染料と、700nmの波長を吸収する染料を含有し、1200nmの近赤外光を吸収し、可視光域(400nm〜700nm)の光透過率が一定で無彩色である光吸収材形成用組成物。  A composition comprising metal nanorods (major axis less than 400 nm, aspect ratio greater than 1), dye and binder, gold nanorods absorbing wavelengths of 530 nm and 1200 nm, dyes absorbing wavelength of 410 nm, 700 nm A composition for forming a light absorbing material, which contains a dye that absorbs the wavelength of 1, absorbs near-infrared light of 1200 nm, has a constant light transmittance in the visible light region (400 nm to 700 nm), and is achromatic. 金属ナノロッド(長軸400nm未満、アスペクト比が1より大きい)と染料およびバインダーを含有する組成物であって、530nmおよび1200nmの波長を吸収する金ナノロッドと、410nmおよび850nmの波長を吸収する銀ナノロッドと、700nmの波長を吸収する染料を含有し、850nmの近赤外光を吸収し、可視光域(400nm〜700nm)の光透過率が一定で無彩色である光吸収材形成用組成物。  A composition comprising metal nanorods (major axis less than 400 nm, aspect ratio greater than 1), dye and binder, gold nanorods absorbing wavelengths of 530 nm and 1200 nm, and silver nanorods absorbing wavelengths of 410 nm and 850 nm And a dye for absorbing a wavelength of 700 nm, absorbing near-infrared light of 850 nm, having a constant light transmittance in the visible light region (400 nm to 700 nm) and an achromatic composition. 金属ナノロッド(長軸400nm未満、アスペクト比が1より大きい)と染料およびバインダーを含有する組成物であって、530nmおよび700nmの波長を吸収する金ナノロッドと、410nmの波長を吸収する染料を含有し、700nmの可視光を吸収し、この吸収域以外の可視光域の光透過率が一定である光吸収材形成用組成物。  A composition comprising metal nanorods (major axis less than 400 nm, aspect ratio greater than 1), dye and binder, comprising gold nanorods absorbing wavelengths of 530 nm and 700 nm, and dye absorbing wavelengths of 410 nm A composition for forming a light absorbing material that absorbs visible light of 700 nm and has a constant light transmittance in a visible light region other than the absorption region. 請求項1〜請求項4の光吸収材形成用組成物によって形成された光吸収材。    The light absorption material formed with the composition for light absorption material formation of Claims 1-4. 近赤外光カットフィルム、近赤外光カットフィルター、または近赤外光カットガラスに用いられる請求項5に記載する光吸収材。  The light absorbing material according to claim 5, which is used for a near infrared light cut film, a near infrared light cut filter, or a near infrared light cut glass.
JP2002365948A 2002-02-25 2002-12-17 Light absorbing material and composition for forming the same Expired - Fee Related JP4348719B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002365948A JP4348719B2 (en) 2002-12-17 2002-12-17 Light absorbing material and composition for forming the same
KR1020030011329A KR100932409B1 (en) 2002-02-25 2003-02-24 Compositions, coatings, polymer films and optical filters containing metal nanorods
CN031075045A CN1440997B (en) 2002-02-25 2003-02-24 Composition, coating film, high molecular film, optical filter lens containing metal nano strip
TW092103807A TWI313702B (en) 2002-02-25 2003-02-24 Composition, coating film, polymer film and optical filter comprising metal nanorods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365948A JP4348719B2 (en) 2002-12-17 2002-12-17 Light absorbing material and composition for forming the same

Publications (2)

Publication Number Publication Date
JP2004198665A JP2004198665A (en) 2004-07-15
JP4348719B2 true JP4348719B2 (en) 2009-10-21

Family

ID=32763309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365948A Expired - Fee Related JP4348719B2 (en) 2002-02-25 2002-12-17 Light absorbing material and composition for forming the same

Country Status (1)

Country Link
JP (1) JP4348719B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573153B2 (en) * 2003-03-26 2010-11-04 三菱マテリアル株式会社 Metal nanorod, metal nanorod-containing composition, method for producing the same, and use thereof
JP5117679B2 (en) * 2005-04-27 2013-01-16 株式会社リコー Dye material using multiphoton absorption material, method for producing dye material, multiphoton absorption reaction material, reaction product of multiphoton absorption reaction material, multiphoton absorption reaction aid, and dye solution
JP4667969B2 (en) * 2005-06-14 2011-04-13 富士フイルム株式会社 Black composition, photosensitive transfer material, substrate with light-shielding image, color filter, liquid crystal display element, and method for producing light-shielding image
JP4855040B2 (en) * 2005-10-14 2012-01-18 富士フイルム株式会社 Infrared shielding filter
JP4855039B2 (en) * 2005-10-14 2012-01-18 富士フイルム株式会社 Image display device
JP4855070B2 (en) * 2005-12-28 2012-01-18 富士フイルム株式会社 Metal fine particle dispersion and infrared shielding filter
JP4931197B2 (en) * 2006-08-24 2012-05-16 リケンテクノス株式会社 Adhesive composition and adhesive sheet member using the same
KR20100019223A (en) * 2008-08-08 2010-02-18 삼성전자주식회사 Absorptive coating member, heating device, fixing device and image forming apparatus employing the fixing device
KR20100049351A (en) 2008-11-03 2010-05-12 삼성전자주식회사 Light-absorptive device, fixing unit using the light-absorptive device and image forming apparatus
JP2013091728A (en) * 2011-10-26 2013-05-16 Ishihara Chem Co Ltd Thermosetting resin composition, carbon fiber-reinforced plastic and production method thereof

Also Published As

Publication number Publication date
JP2004198665A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4254069B2 (en) Manufacturing method of near-infrared cut material
EP3252117B1 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
JP4348719B2 (en) Light absorbing material and composition for forming the same
JP2001262016A (en) Dark color ink, and coating liquid, film, substrate, resin composition, and molded resin article prepared by using the same
AU2010250467A1 (en) Coating composition and optical article
CN107110446A (en) Back light unit and the display device including it
JP4332610B2 (en) Composition containing metal nanorod and metal oxide powder and use thereof
KR100932409B1 (en) Compositions, coatings, polymer films and optical filters containing metal nanorods
JP2003315531A (en) Polymer film containing metal nanorod and optical filter
JP4512876B2 (en) Metal fine particles, method for producing metal fine particles, composition containing metal fine particles, etc.
JP4556204B2 (en) Metal nanofiber-containing composition and use thereof
JP7075713B2 (en) Dispersions, colored layers, colored films, colored substrates, colored combined substrates, and inks
JP2004238504A (en) Light absorption material and its formation composition
KR20210016348A (en) Colored resin composition and its manufacturing method, near-infrared light-shielding film and decorative substrate
KR101285465B1 (en) Composition for manufacturing anti-glare film, and anti-glare film prepared by using the same
JP2003313506A (en) Metal nanorod-containing composition
JP2004045887A (en) Optical filter
JPH11236514A (en) Near infrared ray transmitting and dark colored azo-based pigment composition
JPH0772332A (en) Polarizing plate having heat ray shielding function
US7582230B2 (en) Liquid crystal display and colour filter with improved transparency for green light
JP4348872B2 (en) Structure having a laminate and a visible light absorbing film, and visible light absorbing ink
JP2011241272A (en) Infrared absorptive composition, infrared absorptive ink, recorded matter, image recording method, and image detecting method
WO2005037940A1 (en) Near-infrared shielding paint, near-infrared shielding laminate obtained therefrom and process for producing the same
JP2002286930A5 (en)
KR20180002277A (en) Polymeric beads, process for preparing polymeric beads and optical film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4348719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees