JP4348152B2 - フェロニッケルおよびフェロニッケル精錬原料の製造方法 - Google Patents

フェロニッケルおよびフェロニッケル精錬原料の製造方法 Download PDF

Info

Publication number
JP4348152B2
JP4348152B2 JP2003327931A JP2003327931A JP4348152B2 JP 4348152 B2 JP4348152 B2 JP 4348152B2 JP 2003327931 A JP2003327931 A JP 2003327931A JP 2003327931 A JP2003327931 A JP 2003327931A JP 4348152 B2 JP4348152 B2 JP 4348152B2
Authority
JP
Japan
Prior art keywords
mixture
ferronickel
reduced
reduction
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003327931A
Other languages
English (en)
Other versions
JP2004156140A (ja
Inventor
宏志 杉立
英年 田中
孝夫 原田
逸雄 宮原
勲 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003327931A priority Critical patent/JP4348152B2/ja
Publication of JP2004156140A publication Critical patent/JP2004156140A/ja
Application granted granted Critical
Publication of JP4348152B2 publication Critical patent/JP4348152B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は、フェロニッケルの製造方法に関し、特に低品位の酸化ニッケル鉱石から高効率でフェロニッケルまたはフェロニッケル精錬原料を製造する方法に関する。
現在わが国で行われている酸化ニッケル鉱石からフェロニッケルを製造する方法は、電気炉法およびクルップレン(Krupp−Ren)法である。電気炉法には完全還元法と選択還元法とがある。
完全還元法は、酸化ニッケル鉱石に石炭を添加混合してロータリーキルンで仮焼のみ行い、これを電気炉で溶解し還元してフェロニッケルを得る方法である。
選択還元法は、酸化ニッケル鉱石に石炭を添加混合してロータリーキルンで予備還元を行い、これを電気炉で溶解して残りの還元を完結させることによりフェロニッケルを得る方法である。
クルップレン法は、酸化ニッケル鉱石に無煙炭を添加し加圧成形して団鉱とし、これをロータリーキルン内で加熱し還元して半溶融のルッペ(メタル)とスラグとし、この半溶融物を水砕して磁選、浮選などによりルッペを分離回収してフェロニッケルを得る方法である(以上、非特許文献1参照)。
以上の方法はいずれもロータリーキルンを用いるものであり、以下のようなロータリーキルン特有の多くの問題点を有する。すなわち、ロータリーキルンは転動により原料を移動させるという基本原理に基づくためダスト発生量が多く、キルン内にダムリングが生起しやすい問題がある。また、ダムリング防止のために原料のスラグ成分を制約する手段が提案されているが、原料の選択の幅が狭くなる問題がある(例えば、特許文献1参照)。また、原料の滞留時間にバラツキが生じるため過剰な長さを必要とし、設備の設置面積が大きい、キルンの表面積が大きくなり熱放散量が多いため燃料消費量が高い等の問題もある(例えば、特許文献2参照)。
さらに、上記の方法では、酸化ニッケル鉱中の酸化ニッケルおよび酸化鉄は同じように還元されて金属化し、Ni成分のみを優先的に金属化するようなことはできず、低Ni含有鉱石からはNi含有量の高いフェロニッケルを製造できない問題がある。
この、低Ni含有鉱石からはNi含有量の高いフェロニッケルを製造できない問題に対しては、以下の開示がなされている。
一つは、クルップレン法と同様の方法であって、酸化ニッケル鉱石を予備処理したのち焼成炉中で半溶融還元処理し、その後、金属Fe,Niを回収してフェロニッケルを製造する方法において、焼成炉での半溶融還元処理の際に、まずFe、Niをともに強還元性雰囲気の下で還元し、引き続きFeのみを酸化性雰囲気の下で再酸化させることにより、ルッペ中のNi分を相対的に増大させて高Ni含有フェロニッケルを製造する方法である(特許文献3参照)。
他の一つは、同じくクルップレン法と同様の方法であって、酸化ニッケル鉱石を予備処理したのち焼成炉中で半溶融還元処理し、その後、金属Fe,Niを回収してフェロニッケルを製造する方法において、焼成炉での半溶融還元処理の際に、所定のNiおよびFeの還元率(金属化率)を得るのに必要な量の外装炭材を幾つかに区分して断続的に、もしくは連続的に添加することにより、ルッペ中のNi分を相対的に増大させて高Ni含有フェロニッケルを製造する方法である(特許文献4参照)。
日本鉄鋼協会編、鉄鋼便覧、第4版、第2巻、発行所:日本鉄鋼協会、平成14年7月30日発行、第7章第3節第4項 特公昭48−43766号公報(第2頁) 特開平9−291319号公報(第2頁) 特開平5−186838号公報 特開平5−247581号公報
しかしながら、上記特許文献3および4に開示された発明を実用化すべく焼成炉としてロータリーキルンを用いることは、ロータリーキルンの構造上実現困難である。すなわち、常時回転しているキルンの側壁から炉内へガスや固体を装入する必要があるが、キルンの構造を複雑にし、操業トラブルが発生しやすくまた設備コストも上昇するためである。
また、仮に上記特許文献3および4に開示された発明にロータリーキルンを採用できたとしても、ダスト発生量が多い、キルン内にダムリングが生起しやすい、設備の設置面積が大きい、壁面からの熱放散量が多く燃料消費量が高い等ロータリーキルン固有の問題点も残されたままである。
そこで、本発明の目的は、低品位の酸化ニッケル鉱石(酸化ニッケル含有原料)を用いても、Ni含有量の高いフェロニッケルが安定して高効率でかつ安価に製造できるフェロニッケルの製造方法を提供することを目的とする。
請求項1の発明は、酸化ニッケルおよび酸化鉄を含有する原料と炭素質還元材とを混合して混合物となす混合工程と、この混合物を移動炉床炉内で加熱し還元して還元混合物を得る還元工程と、この還元混合物を溶解炉で溶解してフェロニッケルを得る溶解工程と、を備え、前記混合物の余剰炭素量を、前記還元混合物中のNiの金属化率が40%以上で、かつFeの金属化率が前記Niの金属化率より15%以上低くなるように調整することを特徴とするフェロニッケルの製造方法である。
ここに、余剰炭素量(%)=(還元前の混合物中の炭素の質量%)−(還元前の混合物中のFeおよびNiと結合している酸素の質量%)×12/16である。
請求項2の発明は、酸化ニッケルおよび酸化鉄を含有する原料と炭素質還元材とを混合して混合物となす混合工程と、この混合物を移動炉床炉内で加熱し還元して還元混合物を得る還元工程と、この還元混合物を溶解炉で溶解してフェロニッケルを得る溶解工程と、を備え、前記移動炉床炉内における前記混合物の滞留時間を、前記還元混合物中のNiの金属化率が40%以上で、かつFeの金属化率が前記Niの金属化率より15%以上低くなるように調整することを特徴とするフェロニッケルの製造方法である。
請求項3の発明は、前記Niの金属化率を85%以上とする請求項1または2に記載のフェロニッケルの製造方法である。
混合物の加熱還元に移動炉床炉を用いることにより、混合物が炉床上に静置されるためダスト発生量が大幅に減少する。またダストの炉壁への付着に起因すると考えられるダムリングの発生も防止される。したがって、ダムリングの発生防止のために原料のスラグ成分を調整する必要がなく原料選択の自由度が高い。さらに、移動炉床炉内における混合物の滞留時間を均一にすることができるため、ロータリーキルンのような過剰設備を必要とせず設備がコンパクトで設備の設置面積が小さく、かつ熱放散量も小さい。
また、移動炉床炉内の混合物の余剰炭素量または滞留時間を調節して、還元混合物中のFeの金属化率をNiの金属化率より15%以上小さくすることにより、低Ni含有鉱石中の酸化ニッケルを優先的に金属化する一方、酸化鉄の金属化を抑制できるため、還元混合物を溶解炉で溶解することにより容易かつ効率的に高Ni含有フェロニッケルが得られる。また、還元混合物中のNiの金属化率を40%以上、より好ましくは85%以上とすることにより、還元混合物中に残留する酸化ニッケルを溶解炉で還元するのに必要な還元所要熱が少なくなり、溶解炉におけるエネルギー消費量を低減できる。なお、NiおよびFeの金属化率の定義は以下の通りである。
Niの金属化率(%)=金属Ni(質量%)/全Ni(質量%)×100
Feの金属化率(%)=金属Fe(質量%)/全Fe(質量%)×100
請求項4の発明は、前記還元工程と前記溶解工程との間に、前記還元混合物を、前記移動床炉内またはこの移動炉床炉から排出し収納した別の容器内において、450〜1100℃の温度範囲まで冷却し、この温度範囲に17s以上保持する還元混合物保持工程を設けたことを特徴とする請求項1〜3のいずれか1項に記載のフェロニッケルの製造方法である。
還元混合物を450〜1100℃の温度範囲に所定時間保持することにより、還元混合物中において酸化ニッケルを金属鉄で還元して金属ニッケルと酸化鉄にする反応(NiO+Fe→Ni+FeO)を進行させて、Niの金属化率をさらに上昇させると同時にFeの金属化率を低下させることができるため、Niの優先還元をより進めることができる。
請求項5の発明は、酸化ニッケルおよび酸化鉄を含有する原料と炭素質還元材とを混合して混合物となす混合工程と、移動炉床炉内で、この混合物を加熱し還元して還元混合物としたのち、引き続きこの還元混合物を加熱し溶融して還元溶融物を得る還元・溶融工程と、この還元溶融物を、前記移動炉床炉内において、またはこの移動炉床炉から排出した後に、冷却し固化させて還元固化物を得る固化工程と、この還元固化物を、メタルとスラグとに分離してフェロニッケルを得る分離工程と、を備え、前記混合物の余剰炭素量を、前記還元混合物中のNiの金属化率が40%以上で、かつFeの金属化率が前記Niの金属化率より15%以上低くなるように調整することを特徴とするフェロニッケルの製造方法である。
ここに、余剰炭素量(%)=(還元前の混合物中の炭素の質量%)−(還元前の混合物中のFeおよびNiと結合している酸素の質量%)×12/16である。
請求項6の発明は、前記Niの金属化率を85%以上とする請求項5に記載のフェロニッケルの製造方法である。
移動炉床炉のみで還元・溶融することにより低Ni含有鉱石からNi含有量の高いフェロニッケルが得られるため、溶解炉が不要となり、設備コストの大幅な削減やエネルギー消費量の大幅な低減となる。
請求項7の発明は、酸化ニッケルおよび酸化鉄を含有する原料と炭素質還元材とを混合して混合物となす混合工程と、この混合物を移動炉床炉内で加熱し還元してフェロニッケル精錬原料を得る還元工程と、を備え、前記混合物の余剰炭素量を、前記フェロニッケル精錬原料中のNiの金属化率が40%以上で、かつFeの金属化率が前記Niの金属化率より15%以上低くなるように調整することを特徴とするフェロニッケル精錬原料の製造方法である。
ここに、余剰炭素量(%)=(還元前の混合物中の炭素の質量%)−(還元前の混合物中のFeおよびNiと結合している酸素の質量%)×12/16である。
請求項8の発明は、前記Niの金属化率を85%以上とする請求項7に記載のフェロニッケル精錬原料の製造方法である。
請求項1〜3の発明と同様に、混合物の加熱還元に移動炉床炉を用いることにより、ダスト発生量が大幅に減少し、またダストの炉壁への付着に起因すると考えられるダムリングの発生も防止される。したがって、ダムリングの発生防止のために原料のスラグ成分を調整する必要がなく原料選択の自由度が高い。さらに、混合物の炉内滞留時間を均一にすることができるため、ロータリーキルンのような過剰設備を必要とせず設備がコンパクトで設備の設置面積が小さく、かつ熱放散量も小さい。また、請求項1〜3の発明と同様に、移動炉床炉内の混合物の余剰炭素量または滞留時間を調節して、還元混合物中のFeの金属化率をNiの金属化率より15%以上小さくすることにより、低Ni含有鉱石中の酸化ニッケルを優先的に金属化する一方、酸化鉄の金属化を抑制できるため、容易かつ効率的にNi含有量の高い製品フェロニッケルを製造できるフェロニッケル精錬原料が得られる。また、フェロニッケル精錬原料中のNiの金属化率を40%以上、より好ましくは85%以上とすることにより、後工程の溶解炉での酸化ニッケルの還元所要熱を少なくでき、エネルギー消費量を低減できる。
請求項9の発明は、前記余剰炭素量を−2%以下とする請求項1または5に記載のフェロニッケルの製造方法である。
請求項10の発明は、前記余剰炭素量を−2%以下とする請求項7に記載のフェロニッケル精錬原料の製造方法である。
余剰炭素量が少ないほどFeの金属化率が低く抑えられるうえ、加熱還元により得られる還元混合物の強度(例えば圧潰強度)が高くなり、取り扱いが容易になるとともに溶解時の歩留も高くなる。
請求項11の発明は、酸化ニッケルおよび酸化鉄を含有する原料と炭素質還元材とを混合して混合物となす混合工程と、この混合物を移動炉床炉内で加熱し還元して還元混合物を得る還元工程と、この還元混合物を溶解炉で溶解してフェロニッケルを得る溶解工程と、を備え、前記還元工程と前記溶解工程との間に、前記還元混合物を、前記移動床炉内またはこの移動炉床炉から排出し収納した別の容器内において、450〜1100℃の温度範囲まで冷却し、この温度範囲に17s以上保持する還元混合物保持工程を設けたことを特徴とするフェロニッケルの製造方法である。
請求項4の発明と同様に、還元混合物を450〜1100℃の温度範囲に所定時間保持することにより、還元混合物中において酸化ニッケルを金属鉄で還元して金属ニッケルと酸化鉄にする反応(NiO+Fe→Ni+FeO)を進行させて、Niの金属化率をさらに上昇させると同時にFeの金属化率を低下させることができるため、Niの優先還元をより進めることができる。
以上より、本発明によれば、低品位の酸化ニッケル含有原料を用いても、Ni含有量の高いフェロニッケルが安定して高効率でかつ安価に製造できるフェロニッケルの製造方法を提供することができる。
以下に本発明の実施の形態について図を参照しつつ詳細に説明する。
〔実施の形態1〕
図1に、本発明の一実施形態に係るフェロニッケルの製造工程を示す。ここに、符号1は酸化ニッケルおよび酸化鉄を含有する原料(以下、単に「原料」ともいう。)、符号2は炭素質還元材、符号3は造粒機、符号4は塊成物(混合物)、符号5は移動炉床炉、符号6は還元塊成物(還元混合物)、符号7は溶解炉、符号8はメタル(フェロニッケル)、符号9はスラグを示す。
酸化ニッケルおよび酸化鉄を含有する原料1としては、酸化ニッケル鉱石のほかフェロニッケル製造工場で発生するキルンダストなどのフェロニッケルやニッケル製造工程の残渣も使用できる。酸化ニッケル鉱石としては従来用いられているガーニエライトのほか、Ni含有ラテライトやリモナイトなどの低Ni含有鉱石も使用できる。これらの鉱石や残渣を適宜混合して使用してもよい。ロータリーキルンを用いず移動炉床炉5を使用するため、ダムリングの発生がなく原料1のスラグ成分の制限がないので、自由な原料選択ができる。原料1中に水分を多く含む場合は、事前に乾燥しておくことが望ましい。乾燥の度合いは後工程の混合工程での混合手段(本実施の形態では造粒機3)を考慮して決めるとよい。炭素質還元材2としては固定炭素を含むものであればよく、石炭、コークス、木炭、廃トナー、バイオマスの炭化物などが利用できる。また、これらを適宜混合して用いてもよい。
炭素質還元材2の塊成物(混合物)4中の配合率は、移動炉床炉5内で原料1中の酸化ニッケルおよび酸化鉄を還元するのに必要な炭素量と、溶解炉6で還元塊成物(還元混合物)6中の残留酸化ニッケルの還元等により消費される炭素量と、フェロニッケル中に残存する炭素量とから決定すればよい。
[混合工程]:原料1と炭素質還元材2とを混合するには図示しない混合機を用いるとよい。混合物はそのまま移動炉床炉5に装入してもよいが、造粒機3で塊成化することが好ましい。塊成化することにより、移動炉床炉5や溶解炉7からのダスト発生量が減るとともに、移動炉床炉5内における塊成物(混合物)4内部の伝熱効率が向上して還元速度が上昇するからである。塊成物(混合物)4には造滓材などの副原料を添加してもよい。造粒機3としては、ブリケットプレスなどの圧縮成形機やディスク型ペレタイザーなどの転動造粒機のほか押出成形機を用いてもよい。造粒後の塊成物(混合物)4の水分が高い場合は移動炉床炉5に装入する前に乾燥してもよい。
[還元工程]:造粒した塊成物(混合物)4は移動炉床炉5に装入し、雰囲気温度1000〜1400℃で加熱し還元する。移動炉床炉4としては回転炉床炉や直線炉、多段炉などが使用できる。これらの移動炉床炉は、被加熱物である塊成化物(混合物)4が炉床上に静置されるためダストなどの発生が少なく、また、いずれの炉もコンパクトであり、ロータリーキルンに比べて設備費、設置面積を節減できる。1000〜1400℃の温度域での塊成物(混合物)4の滞留時間は3〜20minの範囲で以下のNiの金属化率とFeの金属化率との関係を満足するように適宜調整すればよい。すなわち、移動炉床炉4内で、塊成物(混合物)4中のNiの金属化率を40%以上、好ましくは50%以上、より好ましくは85%以上、さらに好ましくは90%以上とし、Feの金属化率はNiの金属化率より15%以上、好ましくは20%以上低い値に還元する。Feの金属化率は、原料1中のNi含有量、Fe含有量、および製品であるフェロニッケル8中の目標Ni含有量から決定する。例えばフェロニッケル8中のNi含有量を16%とするには、原料1に用いられる酸化ニッケル鉱石の種類(表1参照)によって図2に示すようなNiおよびFeの金属化率が必要になる。高品位鉱を除くと、標準鉱でNiの金属化率より15〜20%低いFeの金属化率が必要になる。また低品位鉱ではさらに低いFeの金属化率が必要になる。
Figure 0004348152
また、原料1中のNi含有量とFe含有量とから、必要となるFeの金属化率を示すと図3のようになる。原料1中のNi含有量が低く、またFe含有量が高いほどFeの金属化率を低く抑える必要がある。なお、図3ではフェロニッケル8中のNi含有量は16%、還元塊成物(還元混合物)6中のNiの金属化率は90%とした。フェロニッケル8中のNi含有量を16%より高い例えば20%に上昇させるにはさらにFeの金属化率を低く維持する必要がある。
なお、還元塊成物(還元混合物)6中のNiおよびFeの金属化率は、塊成物(混合物)4への炭素質還元材2の配合率の調整によっても可能であり、上記滞留時間の調整と併せて行うことにより、さらに原料1選択の自由度やフェロニッケル8のNi含有量を高めることが可能となる。
移動炉床炉5内で還元された還元塊成物(還元混合物)6は、移動炉床炉5内に設けられた輻射式冷却板や冷媒吹き付け装置などにより通常1000℃程度に冷却してから排出装置で排出する。
[還元混合物保持工程]:還元塊成物(還元混合物)6の冷却期間中に未還元の酸化ニッケルが金属化したFeにより還元される、NiO+Fe→Ni+FeOの反応が進行してNiの金属化率が上昇すると同時にFeの金属化率が低下して、還元塊成物(還元混合物)6中のNiの優先還元がより助長される。この反応をより積極的に利用するため、移動炉床炉5内において、または移動炉床炉5から排出して図示しない別の容器内に収納して、還元塊成物(還元混合物)6を450〜1100℃の温度範囲まで冷却し、この温度範囲に17s以上保持することが好ましい。下限温度を450℃としたのは、450℃未満では上記の反応速度が小さくなりすぎて効果が少ないためであり、より好ましい下限温度は650℃である。一方、上限温度を1100℃としたのは、1100℃を超えると還元塊成物(還元混合物)6内に残留する酸化鉄と炭素質還元材との間で、FeO+CO→Fe+CO2およびCO2+C→2COの連鎖反応が活発化して却ってFeの金属化率が上昇してしまうためであり、より好ましい上限温度は1000℃である。また、上記温度範囲における保持時間の下限を17sとしたのは以下の理由による。すなわち、後述の実施例における還元実験(雰囲気温度:1300℃)の結果から得られた、還元時間とNi金属化率との関係(図6参照)を数式化すると、以下の式が得られた。
MetNi=83.9×[1−exp(−t/46)]+15.3
ここに、MetNi:Ni金属化率(%)、t:還元時間(s)
上式より、還元塊成物(還元混合物)6中の未還元の酸化ニッケル(NiO)のうち30%が金属Niに還元されるまでの時間は17sであるので、保持時間の下限は17sとした。なお、上記冷却後の上限温度(1100℃)がこの還元実験の雰囲気温度1300℃より少し低いことなどを考慮すれば保持時間の下限を17sよりやや長い20sに設定することがより好ましい。また上式より、還元塊成物(還元混合物)6中の未還元の酸化ニッケル(NiO)のうち50%が金属Niに還元されるまでの時間は32sであるので、さらに好ましい保持時間の下限は32sであり、特に好ましい保持時間の下限は40sである。なお、保持時間には、還元塊成物(還元混合物)6が上記温度範囲内に維持される限り、移動炉床炉5または前記別の容器から排出された後、溶解炉7に装入されるまでの移送中の時間を含んでもよい。
[溶解工程]:移動炉床炉5または前記別の容器から排出された還元塊成物(還元混合物)6は好ましくはそれ以上冷却せずに高温のまま溶解炉7に装入する。溶解炉7はシュートなどで移動炉床炉5または前記別の容器の排出部と直結してもよいし、コンベアなどの搬送機器を用いたり、一旦コンテナなどに貯えてから溶解炉7に装入してもよい。移動炉床炉5と溶解炉7とが近接していない場合や、溶解炉の運転を停止しているような場合には、還元塊成物(還元混合物)6は常温まで冷却して半製品(フェロニッケル精錬原料)として保管・輸送して用いてもよい。あるいは冷却せずに高温のまま熱間成形して表面積を小さくしてから冷却して耐再酸化性の良好な半製品(フェロニッケル精錬原料)とし、保管・輸送して用いることも好ましい。溶解炉7としては電気炉が使用できるが、この際、溶湯中の炭素量、電気炉の電圧や電極位置、および酸素や攪拌ガスの吹き込みは、ニッケル歩留を高く保ち、鉄の還元を抑えるように調整することが好ましい。石炭、重油、天然ガスなどの化石エネルギーを利用した溶解炉を使用してもよい。溶解炉7には必要に応じて造滓材などを装入し、1400〜1700℃の高温で還元塊成物(還元混合物)6を溶解し、メタル8とスラグ9に分離する。メタル8はフェロニッケル8として取り出し、必要に応じて二次精錬を行って製品フェロニッケルとする。スラグ9はコンクリート用骨材などに利用できる。
〔実施の形態2〕
図4に、本発明の別の実施形態に係るフェロニッケルの製造工程を示す。ここに、符号11は酸化ニッケルおよび酸化鉄を含有する原料(以下、単に「原料」ともいう。)、符号12は炭素質還元材、符号13は造粒機、符号14は塊成物(混合物)、符号15は移動炉床炉、符号16は還元固化物、符号17はスクリーン、符号18はメタル(フェロニッケル)、符号19はスラグを示す。
本実施の形態2において、原料11、炭素質還元材12、造粒機13および塊成物(混合物)14は、上記実施の形態1の原料1、炭素質還元材2、造粒機3および塊成物(混合物)4と同様であり、[混合工程]についても上記実施の形態1と同様であるので、説明を省略する。
[還元・溶融工程]:造粒した塊成物(混合物)14を移動炉床炉15に装入し、先ず雰囲気温度1000〜1400℃で加熱し還元する。1000〜1400℃の温度域での塊成物(混合物)14の滞留時間は、上記実施の形態1と同様の考え方により、3〜20minの範囲でNiの金属化率とFeの金属化率との関係が以下の関係を満足するように適宜調整すればよい。すなわち、上記温度域での、塊成物(混合物)14中のNiの金属化率を85%以上、好ましくは90%以上とし、Feの金属化率はNiの金属化率より15%以上、好ましくは20%以上低い値に還元して還元塊成物(還元混合物)とする。引き続き移動炉床炉15内でこの還元塊成物(還元混合物)を上記雰囲気温度より高い1100〜1500℃の雰囲気温度で加熱し溶融し、還元溶融物とする。1100〜1500℃の温度域での還元塊成物(還元混合物)の滞留時間は0.5〜10minの範囲で還元塊成物(還元混合物)が十分に溶融してメタルとスラグに分離するように適宜調整すればよい。なお、上記のように移動炉床炉15内で2段階に雰囲気温度を変化させることなく、最初から1100〜1500℃の雰囲気温度により1段階で加熱して還元と溶融とを同時に進行させてもよく、より短時間で還元溶融物を得ることができる。なお、メタルとスラグは両方とも溶融させてもよいし、どちらか一方のみ溶融させてもよい。例えば、メタルのみ溶融させてスラグから分離させてもよい。
[固化工程]:この還元溶融物を移動炉床炉15内において、または移動炉床炉15から排出した後に、1000℃程度に冷却し固化させて還元固化物16とする。移動炉床炉15内での冷却・固化手段としては上記実施の形態1で述べた輻射式冷却板や冷媒吹き付け装置などを用いることができる。また、移動炉床炉15から排出した後の冷却・固化手段としては、水砕などの手段を用いることができる。
[分離工程]:この還元固化物を、スクリーン17によりメタル(フェロニッケル)18とスラグ19に篩い分ける。分離されたスラグ19からは必要に応じてさらに磁選、浮選などの手段によりメタル分を回収することができる。分離されたメタル18は必要に応じて二次精錬を行って製品フェロニッケルとする。あるいはメタル18は半製品(フェロニッケル精錬原料)として、溶解炉での溶解原料として用いてもよい。半製品として用いる場合、上記実施の形態1の方法では半製品である還元塊成物中にはスラグ分が残存しているのに対し、本実施の形態2の方法によれば半製品であるメタル18からはすでにスラグ分が除去されているため、溶解炉でのスラグ分の溶解エネルギーが不要となり、溶解炉の消費エネルギーが大幅に減少する。また、スラグ分がない分半製品の重量が減少して保管や輸送コストが削減できるため、酸化ニッケル鉱石の産出場所で本発明を実施すれば好適である。また、保管や輸送の便利のため必要に応じて塊成化などを行ってもよい。
本発明の移動炉床炉内における混合原料の還元状況を把握するため、実験室規模の小型加熱炉を用いて以下の還元実験を実施した。
酸化ニッケルおよび酸化鉄を含有する原料として表2に示す組成の原料と炭素質還元材としてコークス粉(固定炭素分:77.7質量%)を85.7:14.3の質量比で混合し、適量の水分を添加して小型ディスク型ペレタイザーで造粒して直径13mmのペレットを作製した。このペレットを乾燥後、小型加熱炉中にバッチ装入し、雰囲気温度一定の下で保持時間を種々変更して加熱還元を行い、還元後のペレットの組成を化学分析してNiおよびFeの金属化率を求めた。雰囲気は窒素雰囲気とし、雰囲気温度は1200℃および1300℃の2水準とした。
Figure 0004348152
還元実験の結果から得られた、保持時間(滞留時間)とNiおよびFeの金属化率との関係を図5および図6に示す。図5は雰囲気温度1200℃、図6は雰囲気温度1300℃の場合をそれぞれ示すが、いずれの雰囲気温度でもNiの還元がFeの還元に優先して行われることがわかる。また、1200℃より1300℃の方が還元速度が大きいことがわかる。例えば図5より、1200℃の場合で保持時間(滞留時間)を2minとすると、Niの金属化率は90%程度に達するのに対してFeの金属化率は60%程度に抑制されるのがわかる。したがって、雰囲気温度などの加熱条件に応じて滞留時間を適宜調整することにより、Niの金属化率をできるだけ高めつつFeの金属化率をできるだけ低く抑えた半製品を得ることができることがわかる。実機の移動炉床炉内での混合原料の還元状況は炉の形状・規模の相違による昇温速度の相違や雰囲気のガス組成などの影響を受けるため、移動炉床炉内で実際に滞留時間を種々変更して還元混合物のNiおよびFeの金属化率を測定することにより、最適な滞留時間を決定することが望ましい。
酸化ニッケル鉱石(質量%で、T.Ni:2.4%、T.Fe:14.7%、SiO2:35.5%、MgO:25.8%)を94質量部(乾量)と石炭(質量%で、FC:74.0%、VM:15.5%、Ash:10.5%)を6質量部(乾量)混合したものをブリケットプレスで体積5.5cm3のブリケットに塊成化した。このブリケットを回転炉床炉に装入し1100〜1300℃の雰囲気温度下で滞留時間を5minに調整して半製品(還元ブリケット)のFeの金属化率が約60%になるようにした。このとき回転炉床炉からはNi金属化率約98%の半製品(還元ブリケット)が88質量部得られた。この半製品(還元ブリケット)を1000℃の温度で電気炉に熱間装入して溶解精錬し、Ni:20〜21質量%の粗フェロニッケル11質量部と、FeO:約10質量%のスラグ80質量部を得た。電気炉でのNi1トン当たりの消費電力は13000kWhとなり、従来のロータリーキルンを予備還元炉として用いる電気炉法(選択還元法)で要していた約20000kWhから大幅に低減した。
上記実施例2で使用したものと同じ原料および炭素質還元材を使用して、酸化ニッケル鉱石93質量部(乾量)に石炭7質量部(乾量)を混合したものに適量の水分を添加してディスク型ペレタイザーで造粒し、直径約18mmのペレットとした。このペレットをドライヤーで乾燥した後、回転炉床炉に装入し、まず1300〜1350℃の雰囲気温度下で加熱還元しNiがほぼ全量金属化し、Feが約60%金属化した時点で1350〜1450℃の雰囲気温度下でさらに加熱してペレットを溶融した。この溶融物を、引き続き回転炉床炉内に設置したチルプレート(輻射式冷却板)で冷却固化させたのち回転炉床炉から排出し、スクリーンによりメタル(粗フェロニッケル)とスラグとに篩い分けた。その結果、Ni:20質量%、Fe:74質量%、C:2質量%の粗フェロニッケル11質量部と、FeO:約10質量%のスラグ77質量部を得た。
難還元性の酸化ニッケル鉱石(質量%で、T.Ni:2.1%、T.Fe:18.8%、SiO2:35.0%、MgO:19.5%)を96.5質量部(乾量)と石炭(質量%で、FC:72%、VM:18%、Ash:10%)を3.5質量部(乾量)混合したものをタブレット形成機で直径25mm、厚さ13mmのタブレットに成形した。このタブレットを回転炉床炉に装入し、1200℃の雰囲気温度下で滞留時間を種々変更して還元を行った。
この還元実験の結果から得られた、滞留時間とNiおよびFeの金属化率との関係を図7に示す。図7より、この酸化ニッケル鉱石は難還元性であるためNiの金属化率は56%程度で頭打ちになるものの、Feに比べれば急速に金属化され、1200℃で6min以上加熱還元することにより、Feの金属化率をNiの金属化率より15%以上低くすることができることがわかる。
上記実施例4で使用したものと同じ酸化ニッケル鉱石と石炭を用い、その配合割合を種々変更して上記実施例4と同じ直径25mm、厚さ13mmのタブレットに成形した。そして、このタブレットを回転炉床炉に装入して1200℃の雰囲気温度下で滞留時間12minにて加熱還元することにより、NiおよびFeの金属化率に及ぼす余剰炭素量の影響を調査した。ここに、余剰炭素量(%)=(還元前の混合物中の炭素の質量%)−(還元前の混合物中のFeおよびNiと結合している酸素の質量%)×12/16である。
還元実験の結果から得られた、余剰炭素量とNiおよびFeの金属化率との関係を図8に示す。図8より、余剰炭素量によってNiおよびFeの金属化率を調節することができ、特にFeの金属化率を感度良く調整することができることがわかる。余剰炭素量は、好ましくは0%以下、より好ましくは−2%以下、さらに好ましくは−4%以下とすればよい。余剰炭素量が少ないほどFeの金属化率が低く抑えられるうえ、加熱還元により得られる還元塊成物の強度(例えば圧潰強度)が高くなり、取り扱いが容易になるとともに溶解時の歩留も高くなる。
上記実施例4および5で使用したものと同じ原料および炭素質還元材を使用して、酸化ニッケル鉱石90.5質量部と石炭9,5質量部とを混合し、上記実施例4および5と同じ直径25mm、厚さ13mmのタブレットに成形した。そして、このタブレットを回転炉床炉に装入し、1200℃、1250℃、1300℃の雰囲気温度下で、滞留時間15minにて加熱還元することにより、NiおよびFeの金属化率に及ぼす雰囲気温度の影響を調査した。
還元実験の結果から得られた、雰囲気温度とNiおよびFeの金属化率との関係を図8に示す。図8より、雰囲気温度を高くすることによって、Niの金属化率はほとんど変化しないのに対し、Feの金属化率は上昇してNiの金属化率に近づき、両者の差が小さくなることがわかる。
1300℃の雰囲気温度でFeの金属化率をNiの金属化率よりも15%以上低くするには、上記実施例4および5の結果より明らかなように、滞留時間を短くすることおよび/または石炭(炭素質還元材)の配合量を調整する(すなわち、余剰炭素量を調整する)ことで可能である。
なお、上記実施例2〜6では塊成化に際しバインダーを用いなかったが、塊成物の強度が得られない場合には適当なバインダーを添加してもよい。
本発明の一実施形態に係るフェロニッケルの製造工程を示すフロー図である。 フェロニッケル中のNi含有量を16質量%とする、還元混合物のNi金属化率とFe金属化率との関係を示すグラフ図である。 フェロニッケル中のNi含有量を16質量%、還元混合物のNi金属化率を90%とする、原料中のNiおよびFe含有量とFeの金属化率との関係を示すグラフ図である。 本発明の別の実施形態に係るフェロニッケルの製造工程を示す設備フロー図である。 雰囲気温度1200℃における、滞留時間とNiおよびFeの金属化率との関係を示すグラフ図である。 雰囲気温度1300℃における、滞留時間とNiおよびFeの金属化率との関係を示すグラフ図である。 難還元性の酸化ニッケル鉱石の還元における、滞留時間とNiおよびFeの金属化率との関係を示すグラフ図である。 余剰炭素量とNiおよびFeの金属化率との関係を示すグラフ図である。 雰囲気温度とNiおよびFeの金属化率との関係を示すグラフ図である。
符号の説明
1、11…酸化ニッケルおよび酸化鉄を含有する原料
2、12…炭素質還元材
3、13…造粒機
4、14…塊成物(混合物)
5、15…移動炉床炉
6…還元塊成物(還元混合物)
7…溶解炉
8、18…メタル(フェロニッケル)
9、19…スラグ
16…還元固化物
17…スクリーン

Claims (11)

  1. 酸化ニッケルおよび酸化鉄を含有する原料と炭素質還元材とを混合して混合物となす混合工程と、
    この混合物を移動炉床炉内で加熱し還元して還元混合物を得る還元工程と、
    この還元混合物を溶解炉で溶解してフェロニッケルを得る溶解工程と、
    を備え
    前記混合物の余剰炭素量を、前記還元混合物中のNiの金属化率が40%以上で、かつFeの金属化率が前記Niの金属化率より15%以上低くなるように調整することを特徴とするフェロニッケルの製造方法。
    ここに、余剰炭素量(%)=(還元前の混合物中の炭素の質量%)−(還元前の混合物中のFeおよびNiと結合している酸素の質量%)×12/16である。
  2. 酸化ニッケルおよび酸化鉄を含有する原料と炭素質還元材とを混合して混合物となす混合工程と、
    この混合物を移動炉床炉内で加熱し還元して還元混合物を得る還元工程と、
    この還元混合物を溶解炉で溶解してフェロニッケルを得る溶解工程と、
    を備え、
    前記移動炉床炉内における前記混合物の滞留時間を、前記還元混合物中のNiの金属化率が40%以上で、かつFeの金属化率が前記Niの金属化率より15%以上低くなるように調整することを特徴とするフェロニッケルの製造方法。
  3. 前記Niの金属化率を85%以上とする請求項1または2に記載のフェロニッケルの製造方法。
  4. 前記還元工程と前記溶解工程との間に、前記還元混合物を、前記移動床炉内またはこの移動炉床炉から排出し収納した別の容器内において、450〜1100℃の温度範囲まで冷却し、この温度範囲に17s以上保持する還元混合物保持工程を設けたことを特徴とする請求項1〜3のいずれか1項に記載のフェロニッケルの製造方法。
  5. 酸化ニッケルおよび酸化鉄を含有する原料と炭素質還元材とを混合して混合物となす混合工程と、
    移動炉床炉内で、この混合物を加熱し還元して還元混合物としたのち、引き続きこの還元混合物を加熱し溶融して還元溶融物を得る還元・溶融工程と、
    この還元溶融物を、前記移動炉床炉内において、またはこの移動炉床炉から排出した後に、冷却し固化させて還元固化物を得る固化工程と、
    この還元固化物を、メタルとスラグとに分離してフェロニッケルを得る分離工程と、
    を備え
    前記混合物の余剰炭素量を、前記還元混合物中のNiの金属化率が40%以上で、かつFeの金属化率が前記Niの金属化率より15%以上低くなるように調整することを特徴とするフェロニッケルの製造方法。
    ここに、余剰炭素量(%)=(還元前の混合物中の炭素の質量%)−(還元前の混合物中のFeおよびNiと結合している酸素の質量%)×12/16である。
  6. 前記Niの金属化率を85%以上とする請求項5に記載のフェロニッケルの製造方法。
  7. 酸化ニッケルおよび酸化鉄を含有する原料と炭素質還元材とを混合して混合物となす混合工程と、
    この混合物を移動炉床炉内で加熱し還元してフェロニッケル精錬原料を得る還元工程と、
    を備え
    前記混合物の余剰炭素量を、前記フェロニッケル精錬原料中のNiの金属化率が40%以上で、かつFeの金属化率が前記Niの金属化率より15%以上低くなるように調整することを特徴とするフェロニッケル精錬原料の製造方法。
    ここに、余剰炭素量(%)=(還元前の混合物中の炭素の質量%)−(還元前の混合物中のFeおよびNiと結合している酸素の質量%)×12/16である。
  8. 前記Niの金属化率を85%以上とする請求項7に記載のフェロニッケル精錬原料の製造方法。
  9. 前記余剰炭素量を−2%以下とする請求項1または5に記載のフェロニッケルの製造方法。
  10. 前記余剰炭素量を−2%以下とする請求項7に記載のフェロニッケル精錬原料の製造方法。
  11. 酸化ニッケルおよび酸化鉄を含有する原料と炭素質還元材とを混合して混合物となす混合工程と、
    この混合物を移動炉床炉内で加熱し還元して還元混合物を得る還元工程と、
    この還元混合物を溶解炉で溶解してフェロニッケルを得る溶解工程と、
    を備え、
    前記還元工程と前記溶解工程との間に、前記還元混合物を、前記移動床炉内またはこの移動炉床炉から排出し収納した別の容器内において、450〜1100℃の温度範囲まで冷却し、この温度範囲に17s以上保持する還元混合物保持工程を設けたことを特徴とするフェロニッケルの製造方法。
JP2003327931A 2002-10-18 2003-09-19 フェロニッケルおよびフェロニッケル精錬原料の製造方法 Expired - Fee Related JP4348152B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003327931A JP4348152B2 (ja) 2002-10-18 2003-09-19 フェロニッケルおよびフェロニッケル精錬原料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002304575 2002-10-18
JP2003327931A JP4348152B2 (ja) 2002-10-18 2003-09-19 フェロニッケルおよびフェロニッケル精錬原料の製造方法

Publications (2)

Publication Number Publication Date
JP2004156140A JP2004156140A (ja) 2004-06-03
JP4348152B2 true JP4348152B2 (ja) 2009-10-21

Family

ID=32827996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327931A Expired - Fee Related JP4348152B2 (ja) 2002-10-18 2003-09-19 フェロニッケルおよびフェロニッケル精錬原料の製造方法

Country Status (1)

Country Link
JP (1) JP4348152B2 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236501A (ja) * 2010-04-15 2011-11-24 Hyuga Seirensho:Kk 木質ペレットを使用したフェロニッケル製錬方法
JP2011225903A (ja) * 2010-04-15 2011-11-10 Hyuga Seirensho:Kk 木質ペレットを使用したフェロニッケル製錬方法
JP5445777B2 (ja) * 2010-07-28 2014-03-19 住友金属鉱山株式会社 低品位ニッケル酸化鉱石からのフェロニッケル製錬原料の製造方法
JP5858101B2 (ja) 2014-07-15 2016-02-10 住友金属鉱山株式会社 ペレットの製造方法、ニッケル酸化鉱の製錬方法
JP5839090B1 (ja) 2014-07-25 2016-01-06 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法、ペレットの装入方法
JP5842967B1 (ja) * 2014-07-25 2016-01-13 住友金属鉱山株式会社 ペレットの製造方法、鉄−ニッケル合金の製造方法
JP6179478B2 (ja) 2014-08-01 2017-08-16 住友金属鉱山株式会社 ペレットの製造方法、鉄−ニッケル合金の製造方法
JP6303901B2 (ja) * 2014-08-01 2018-04-04 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
JP5858105B1 (ja) 2014-08-01 2016-02-10 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
JP6314781B2 (ja) * 2014-10-06 2018-04-25 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
JP5975093B2 (ja) * 2014-12-24 2016-08-23 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
JP5958576B1 (ja) * 2015-02-24 2016-08-02 住友金属鉱山株式会社 サプロライト鉱の製錬方法
JP6333770B2 (ja) * 2015-05-07 2018-05-30 株式会社日向製錬所 フェロニッケルの製造方法
JP6428528B2 (ja) * 2015-08-10 2018-11-28 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
JP6455374B2 (ja) * 2015-09-08 2019-01-23 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
JP6477371B2 (ja) * 2015-09-08 2019-03-06 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
EP3778938A1 (en) 2016-04-22 2021-02-17 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
AU2017257842B2 (en) 2016-04-27 2020-07-09 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method
JP6900695B2 (ja) * 2017-02-09 2021-07-07 住友金属鉱山株式会社 金属酸化物の製錬方法
JP6900696B2 (ja) * 2017-02-09 2021-07-07 住友金属鉱山株式会社 金属酸化物の製錬方法
JP6900699B2 (ja) * 2017-02-15 2021-07-07 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法
JP6809377B2 (ja) * 2017-05-24 2021-01-06 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP6953835B2 (ja) * 2017-06-28 2021-10-27 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7052239B2 (ja) * 2017-07-19 2022-04-12 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP6900837B2 (ja) * 2017-08-18 2021-07-07 住友金属鉱山株式会社 酸化鉱石の製錬方法、還元炉
JP6900836B2 (ja) * 2017-08-18 2021-07-07 住友金属鉱山株式会社 酸化鉱石の製錬方法、還元炉
JP6891722B2 (ja) * 2017-08-18 2021-06-18 住友金属鉱山株式会社 酸化鉱石の製錬方法、還元炉
JP6972907B2 (ja) * 2017-10-20 2021-11-24 住友金属鉱山株式会社 酸化鉱石の製錬方法
KR20190076511A (ko) * 2017-12-22 2019-07-02 주식회사 포스코 니켈 광석의 다단계 환원방법
JP7167534B2 (ja) * 2018-08-06 2022-11-09 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7196461B2 (ja) * 2018-08-21 2022-12-27 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7167565B2 (ja) * 2018-09-05 2022-11-09 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7119856B2 (ja) * 2018-09-28 2022-08-17 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7293634B2 (ja) * 2018-12-18 2023-06-20 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7293910B2 (ja) * 2019-06-26 2023-06-20 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7338309B2 (ja) * 2019-08-06 2023-09-05 住友金属鉱山株式会社 酸化鉱石の製錬方法

Also Published As

Publication number Publication date
JP2004156140A (ja) 2004-06-03

Similar Documents

Publication Publication Date Title
JP4348152B2 (ja) フェロニッケルおよびフェロニッケル精錬原料の製造方法
US20070113708A1 (en) Ferronickel and process for producing raw material for ferronickel smelting
JP4438297B2 (ja) 還元金属の製造方法および炭材内装塊成物
US8262766B2 (en) Method for reducing chromium containing raw material
JP5551168B2 (ja) 微粒子状鉄担体から凝集体を製造する方法
RU2435868C1 (ru) Способ получения брикетированного восстановленного железа и способ получения чугуна
JP4295544B2 (ja) 冶金用改質炭の製造方法、ならびに冶金用改質炭を用いた還元金属および酸化非鉄金属含有スラグの製造方法
EP1426451B1 (en) Method for producing reduced iron compact in rotary hearth reducing furnace, reduced iron compact, and method for producing pig iron using the same
JP2010229525A (ja) フェロニッケルおよびフェロバナジウムの製造方法
JP5334240B2 (ja) 製鋼用還元鉄塊成鉱の製造方法
EP2035590B1 (en) Process for recycling of steel industry iron-bearing by-products by treating pellets in direct reduction furnaces
JP5512205B2 (ja) 塊成化状高炉用原料の強度改善方法
JP2017505379A (ja) マンガン含有合金鉄の生産方法
JP2011246760A (ja) フェロモリブデンの製造方法およびフェロモリブデン
JP2006152432A (ja) 溶鉄の製造方法
JP2003301205A (ja) 高炉原料装入方法
JP3732024B2 (ja) 還元鉄ペレットの製造方法
JP5521387B2 (ja) 還元鉄成形体の製造方法、及び銑鉄の製造方法
KR20020012506A (ko) 이동형 노상 노에 원료 및 탄재를 장입하는 방법 및 장치
JP2011179090A (ja) 粒鉄製造方法
JP3864506B2 (ja) 半還元鉄塊成鉱およびその製造方法ならびに銑鉄の製造方法
JP2023019428A (ja) ニッケル酸化鉱石の製錬方法
JPH034609B2 (ja)
KR20170136664A (ko) 환원성이 향상된 탄재 내장 산화철 괴성화물 및 이의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees