JP4345327B2 - Biodegradable polymer, method for producing the same, and molded article - Google Patents

Biodegradable polymer, method for producing the same, and molded article Download PDF

Info

Publication number
JP4345327B2
JP4345327B2 JP2003066841A JP2003066841A JP4345327B2 JP 4345327 B2 JP4345327 B2 JP 4345327B2 JP 2003066841 A JP2003066841 A JP 2003066841A JP 2003066841 A JP2003066841 A JP 2003066841A JP 4345327 B2 JP4345327 B2 JP 4345327B2
Authority
JP
Japan
Prior art keywords
general formula
mol
group
structural unit
following general
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003066841A
Other languages
Japanese (ja)
Other versions
JP2004277454A (en
Inventor
健二 八百
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2003066841A priority Critical patent/JP4345327B2/en
Publication of JP2004277454A publication Critical patent/JP2004277454A/en
Application granted granted Critical
Publication of JP4345327B2 publication Critical patent/JP4345327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性高分子及びその製造方法、並びに成形体に関する。
【0002】
【従来の技術】
環境順応型社会の構築を目指す21世紀において、生分解性高分子は非常に重要な素材である。従来の生分解性高分子材料としては、ポリ乳酸、ポリブチレンサクシネート等の脂肪族ポリエステルが知られている(例えば、特許文献1〜3参照)。中でもポリ乳酸は優れた生分解性を有することから、その実用化に向けての研究開発が早くから進められている。
【0003】
これらの生分解性高分子材料は、一般的に汎用エンジニアリングプラスチックに比べて低い機械的強度を示す。そのため、生分解性高分子材料をそのまま成形体として用いる場合、その用途は非常に狭い範囲に制限される。より具体的には、家庭用ゴミ袋や農業用シートのようにある程度の破損が許容される用途等である。
【0004】
そこで、生分解性高分子材料の適用範囲を拡大すべく、生分解性高分子材料に無機フィラーを分散させて機械的強度を高める試みがなされている(例えば、特許文献4〜6参照)。
【0005】
【特許文献1】
特開平11−124430号公報
【特許文献2】
特開平11−124495号公報
【特許文献3】
特開平6−80872号公報
【特許文献4】
特開平2002−173583号公報
【特許文献5】
特開平2002−173584号公報
【特許文献6】
特開平2002−173606号公報
【0006】
【発明が解決しようとする課題】
しかし、無機フィラーを分散させた生分解性高分子材料であっても、かかる材料からなる成形体を廃棄する際に無機フィラーと生分解性高分子材料とを分離することは非常に困難であるため、成形体全体としては一般のプラスチックと同様に焼却等の廃棄処理をせざるを得ず、環境順応型材料として実用化するためには未だ十分とは言えない。
【0007】
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、生分解性に優れると共に十分に高い機械的強度を有する生分解性高分子及びその製造方法、並びにその生分解性高分子を用いた成形体を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定の2つの構成単位を組み合せて生分解性高分子を構成させた場合に、上記課題が解決されることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明の高分子は、下記一般式(I)で表される構成単位と、下記一般式(II)で表される構成単位と、を有することを特徴とするものである。
【0010】
【化20】

Figure 0004345327
【0011】
【化21】
Figure 0004345327
【0012】
[式中、Xアリーレン基を表し、Yは下記一般式(IV)又は(V)で表される2価の有機基を表し、R及びRはそれぞれ独立にアルキレン基を表し、R、R、R、R、R、R、R及びR10はそれぞれ独立に水素原子、アルキル基又はアリール基を表し、X及びYはそれぞれ独立にアルキレン基を表す。]
【0014】
【化23】
Figure 0004345327
【0015】
【化24】
Figure 0004345327
【0016】
[式中、R 13はアルキレン基を表し、kは0又は1を表す。]
【0017】
本発明の高分子が生分解性及び機械的強度の双方に優れる理由について、本発明者は以下のように推察する。すなわち、本発明の高分子においては、一般式(I)で表される構成単位と一般式(II)で表される構成単位を組み合せたことで、一般式(II)で表される構成単位が部分的な結晶構造をとりながら、一般式(I)で表される比較的大きな構成単位のコンフォメーションを乱すと考えられる。このため、一般式(I)で表される構成単位は単独の高分子のように振る舞い、その剛直さを保ち、得られる高分子が機械的強度に優れたものになると考えられる。一方、一般式(II)で表される構成単位は迅速に生分解する性質を有することから、高分子全体が容易に低分子化し優れた生分解性を示すものと考えられる。
【0018】
上記本発明の高分子は、一般式(I)及び(II)で表される各構成単位の合計量を基準として、一般式(I)で表される構成単位を10モル%〜95モル%含有し、一般式(II)で表される構成単位を5モル%〜90モル%含有することが好ましい。
【0019】
また、本発明の高分子は、下記一般式(VI)で表される化合物と、下記一般式(VII)で表される化合物と、下記一般式(VIII)で表される化合物と、下記一般式(IX)で表される化合物と、を用いて得られることを特徴としてもよい。
【0020】
【化25】
Figure 0004345327
【0021】
【化26】
Figure 0004345327
【0022】
【化27】
Figure 0004345327
【0023】
【化28】
Figure 0004345327
【0024】
[式中、Xアリーレン基を表し、R21及びR22はそれぞれ独立に水素原子又はアルキル基を表し、Xはアルキレン基を表し、R23及びR24はそれぞれ独立に水素原子又はアルキル基を表し、Yは上記一般式(IV)又は(V)で表される2価の有機基を表し、R及びRはそれぞれ独立にアルキレン基を表し、R、R、R、R、R、R、R及びR10はそれぞれ独立に水素原子、アルキル基又はアリール基を表し、Yはアルキレン基を表す。]
【0025】
上記本発明の高分子においては、上記一般式(VI)〜(IX)で表される各化合物の合計量を基準として、一般式(VI)で表される化合物の使用量が5モル%〜47.5モル%であり、一般式(VII)で表される化合物の使用量が2.5モル%〜45モル%であり、一般式(VIII)で表される化合物の使用量が5モル%〜47.5モル%であり、一般式(IX)で表される化合物の使用量が2.5モル%〜45モル%であることが好ましい。
【0026】
また、本発明の高分子の製造方法は、エステル交換触媒の存在下、上記一般式(VI)で表される化合物と、上記一般式(VII)で表される化合物と、上記一般式(VIII)で表される化合物と、上記一般式(IX)で表される化合物と、を含有する混合物を加熱する第1のステップと、第1のステップで加熱した後の混合物に重合触媒を添加し、減圧下で加熱する第2のステップと、を含むことを特徴とする。
【0027】
また、本発明の成形体は、上記本発明の高分子を含有することを特徴とする。
【0028】
【発明の実施の形態】
以下、本発明の好適な実施形態について詳細に説明する。
【0029】
(生分解性高分子)
本発明の生分解性高分子は、下記一般式(I)で表される構成単位と下記一般式(II)で表される構成単位とを有するものであり、生分解性に優れると共に十分に高い機械的強度を有するものである。
【0030】
【化29】
Figure 0004345327
【0031】
【化30】
Figure 0004345327
【0032】
上記一般式(I)中、X1はアルキレン基(好ましくは炭素数1〜20のアルキレン基)又はアリーレン基(好ましくは炭素数6〜14のアリーレン基)を表す。より具体的には、アリーレン基としては、フェニレン基、各種ナフチレン基、各種アントラセン基が挙げられ、アルキレン基としては、メチレン基、エチレン基、各種プロピレン基、各種ブチレン基、各種ペンテン基等が挙げられる。これらの中でも、機械的強度を向上させる場合は、フェニレン基、2,6−ナフチレン基が好ましく、生分解性を向上させる場合は、エチレン基、1,4−ブチレン基が好ましい。
【0033】
上記一般式(I)中、R1及びR2はそれぞれ独立にアルキレン基(好ましくは炭素数1〜6のアルキレン基)を表す。より具体的には、メチレン基、エチレン基、各種プロピレン基、各種ブチレン基、各種ペンテン基、各種ヘキシレン基等が挙げられる。これらの中でも特に、エチレン基が高い機械的強度を示し、製造性にも優れており好ましい。
【0034】
上記一般式(I)中、R3、R4、R5、R6、R7、R8、R9及びR10はそれぞれ独立に水素原子、アルキル基(好ましくは炭素数1〜10のアルキル基)又はアリール基(好ましくは炭素数6〜14のアリール基)を表す。より具体的には、アルキル基としては、メチル基、エチル基、各種プロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基等が挙げられ、アリール基としては、フェニル基、各種ナフチル基等が挙げられる。これらの中でも分子量制御性に優れることから、水素原子及びメチル基が好ましい。
【0035】
上記一般式(II)中、X2及びY2はそれぞれ独立にアルキレン基(好ましくは炭素数2〜10のアルキレン基)を表す。
【0036】
また、上記一般式(I)中、Y1は下記一般式(III)〜(V)のうちのいずれかで表される2価の有機基を表し、上記一般式(V)で表される2価の有機基が機械的強度の点で好ましい。
【0037】
【化31】
Figure 0004345327
【0038】
【化32】
Figure 0004345327
【0039】
【化33】
Figure 0004345327
【0040】
上記一般式(III)中、R11及びR12はそれぞれ独立に水素原子、アルキル基(好ましくは炭素数1〜10のアルキル基)又はアリール基(好ましくは炭素数6〜14のアリール基)を表す。アルキル基として、より具体的には、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基、n−ペンチル基、iso−ペンチル基等が挙げられる。これらの中でも、メチル基が機械的強度の点で好ましい。
【0041】
上記一般式(IV)中、R13はアルキレン基(好ましくは炭素数1〜9のアルキレン基)を表し、kは0又は1を表す。なお、k=0の場合には、2つのメチレン基は直接結合を形成する。また、アルキレン基として、より具体的には、メチレン基、エチレン基、プロピレン基等が挙げられ、これらの中でもプロピレン基が機械的強度及び生分解性の両面で好ましい。
【0042】
上記本発明の生分解性高分子は、一般式(I)及び(II)で表される各構成単位の合計量を基準として、一般式(I)で表される構成単位を10モル%〜95モル%含有し、一般式(II)で表される構成単位を5モル%〜90モル%含有することが好ましい。一般式(I)で表される構成単位が10モル%未満になると、機械的強度が低くなる傾向があり、他方、95モル%を越えると、生分解速度が遅くなる傾向がある。また、一般式(II)で表される構成単位の含有量が5モル%未満になると、生分解速度が遅くなる傾向があり、他方、90モル%を越えると、機械的強度が低くなる傾向がある。
【0043】
なお、一般式(I)で表される構成単位のみからなる高分子は生分解性を有さず、他方、一般式(II)で表される構成単位のみからなる高分子は機械的強度が低い。また、通常、高い機械的強度を有する構成単位と生分解性を有する構成単位とを組み合わせた場合、両方の特性を満足する高分子は得られない。このような従来の生分解性高分子における一般的傾向を鑑みると、本発明の生分解性高分子は、極めて予想外の効果を示した。
【0044】
また、本発明の生分解性高分子は、(A)下記一般式(VI)で表される化合物と、(B)下記一般式(VII)で表される化合物と、(C)下記一般式(VIII)で表される化合物と、(D)下記一般式(IX)で表される化合物と、を用いて得られることを特徴としてもよい(以下、場合により上記化合物を(A)成分、(B)成分などという)。
【0045】
【化34】
Figure 0004345327
【0046】
【化35】
Figure 0004345327
【0047】
【化36】
Figure 0004345327
【0048】
【化37】
Figure 0004345327
【0049】
上記一般式(VI)中、X1は上記一般式(I)におけるX1と同一の定義内容を表し、R21及びR22はそれぞれ独立に水素原子又はアルキル基(好ましくは炭素数1〜10のアルキル基)を表す。
【0050】
上記一般式(VII)中、X2は上記一般式(II)におけるX2と同一の定義内容を表し、R23及びR24はそれぞれ独立に水素原子又はアルキル基(好ましくは炭素数1〜10のアルキル基)を表す。
【0051】
上記一般式(VIII)中、Y1は上記一般式(III)〜(V)のうちのいずれかで表される2価の有機基を表し、R1及びR2はそれぞれ上記一般式(I)におけるR1及びR2と同一の定義内容を表し、R3、R4、R5、R6、R7、R8、R9及びR10はそれぞれ上記一般式(I)におけるR3、R4、R5、R6、R7、R8、R9及びR10と同一の定義内容を表す。
【0052】
上記一般式(IX)中、Y2は上記一般式(II)におけるY2と同一の定義内容を表す。
【0053】
上記本発明の生分解性高分子においては、上記(A)〜(D)成分の合計量を基準として、(A)成分の使用量が5モル%〜47.5モル%であり、(B)成分の使用量が2.5モル%〜45モル%であり、(C)成分の使用量が5モル%〜47.5モル%であり、(D)成分の使用量が2.5モル%〜45モル%であることが好ましい。
【0054】
(A)〜(D)成分を用いて本発明の生分解性高分子を製造する場合、先ず、エステル交換触媒の存在下、(A)〜(D)成分を含有する混合物を加熱する(第1のステップ)。
【0055】
エステル化又はエステル交換を行う際には、エステル交換触媒として、酢酸カルシウム、酢酸マンガン等の金属酢酸塩、テトラブトキシチタン等のチタン化合物、酸化亜鉛、三酸化錫等の金属酸化物等の公知の触媒を用いることができる。触媒の使用量は、用いる触媒等により任意に調節することが好ましい。また、第1のステップは、着色を防止する観点から不活性雰囲気下(より好ましくは窒素雰囲気下)で行うことが好ましい。
【0056】
また、加熱する際の温度は、200〜250℃であることが好ましい。温度が前記上限値を超えると、熱分解が促進し、着色してしまう傾向にある。また、温度が前記下限値未満であると、反応効率が不十分となる傾向にある。反応の際には、原料混合物を撹拌しながら、温度が上記の範囲内となるまで徐々に加熱することが好ましい。
【0057】
なお、反応の進行に伴い、エステル化の場合は水、エステル交換の場合はアルコールが副生するが、これらの副生成物を系外に留去し、その留去量に基づいて反応の終点を確認することができる。
【0058】
次に、第1のステップで加熱した後の混合物に重合触媒を添加し、減圧下で加熱する(第2のステップ)。重合触媒としては、酸化ゲルマニウム、酸化亜鉛、三酸化アンチモン等の金属酸化物、テトラブトキシチタン等のチタン化合物等の公知の触媒を用いることができる。また、重合触媒の使用量は、目的とする高分子の構造に応じて適宜選択される。
【0059】
重合触媒を添加後の操作は減圧下で行われるが、そのときの圧力は1Torr以下であることが好ましい。また、加熱の際の温度は、230〜350℃であることが好ましい。温度が前記上限値を超えると、熱分解を起こし着色する傾向にある。また、温度が前記下限値未満であると、反応効率が不十分となったり、分子量が十分に上がらない傾向にある。反応の際には、第1のステップで加熱した後の前記混合物を撹拌しながら、圧力及び温度が上記の範囲内となるように徐々に(好ましくは1〜2時間かけて)減圧及び加熱を行うことが好ましい。
【0060】
この重合触媒を添加後の重合反応の終点については、撹拌のトルク値を指標とすることができる。また、反応終了後、内容物をテトラヒドロフラン(THF)等の溶剤に溶解し、水中に再沈殿させることによって、本発明の生分解性高分子を単離することができる。
【0061】
上記製造方法により得られる本発明の生分解性高分子は、一般式(I)で表される構成単位と一般式(II)で表される構成単位との、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれであってもよいが、ランダム共重合体の場合は生産性の点で優れており、ブロック共重合体の場合は生分解性、機械的強度を制御しやすい点で優れている。
【0062】
また、本発明の生分解性高分子の重量平均分子量は特に制限されないが、好ましくは10,000〜500,000であり、より好ましくは20,000〜200,000である。重量平均分子量が前記下限値未満であると、機械的強度が不十分となる傾向にある。また、重量平均分子量が前記上限値を超えると、溶剤に対する溶解性、溶融流動性が低下し、成形性が不十分となる傾向にある。
【0063】
(成形体)
本発明の成形体は、上記本発明の生分解性高分子を含有することを特徴とする。このような成形体としては、シート、フィルム、プレート、ボトル等が挙げられる。
【0064】
本発明の生分解性高分子から成形体を得る方法としては、射出成形、押出し成形、ブロー成形、コーティング成形、キャスト成形、ディッピング成形等の公知の成形方法を用いることができる。この際、必要に応じて、ポリ乳酸、ポリブチレンサクシネート、ポリブチレンアジペート、ポリヒドロキシ酪酸、ポリビニルアルコール、セルロース等公知の生分解性高分子を混合、分散、アロイ、ブレンドしても構わない。
【0065】
【実施例】
以下、実施例及び比較例に基づいて本発明を更に具体的に説明するが、本発明は実施例に何ら限定されるものではない。
【0066】
(実施例1)
(A)成分として2,6−ナフタレンジカルボン酸ジメチル5重量部、(B)成分としてコハク酸ジメチル5重量部、(C)成分として9,9−ビス(4−ヒドロキシエトキシフェニル)フルオレン5重量部、(D)成分として1,4−ブタンジオール15重量部、触媒として酢酸カルシウム0.0001重量部を1L三ツ口フラスコに投入し、フラスコ内部を窒素フローし、マントルヒーターにて、少しずつ180℃まで内温を上昇させた。
【0067】
2,6−ナフタレンジカルボン酸ジメチルが溶解したことを確認して、攪拌翼にて内部を攪拌した。三ツ口の一つに蒸留系を設け、反応進行に伴い発生するメタノールを留去した。内温を60℃/時の速度で昇温し、240℃で維持、留去メタノール量が理論量の98%になったことを確認した。
【0068】
ここで、酸化ゲルマニウム0.001重量部を投入し、内部を真空引き、少しずつ減圧しながら、30℃/時の速度で昇温した。内温280℃、圧力0.8Torrで維持し、攪拌のトルクが上昇したことを確認し、反応を終了した。三ツ口フラスコの内容物を一旦室温にまで冷却し、テトラヒドロフランで溶解後、水中に再沈殿させ、本発明の生分解性高分子を得た。
【0069】
得られた生分解性高分子の構造は、FT−IR(IRPrestige−21、島津製作所社製)にて確認した。得られた生分解性高分子のIRスペクトルを図1に示す。
【0070】
表1に実施例1の生分解性高分子の構造式を示した。表1に示すように、実施例1の生分解性高分子は、(A)及び(C)成分に由来し一般式(I)で表される構成単位に相当する構成単位(式中の左側の括弧で括られた構成単位、50モル%)と、(B)及び(D)成分に由来し一般式(II)で表される構成単位に相当する構成単位(式中の右側の括弧で括られた構成単位、50モル%)とのランダム共重合体であった。
【0071】
また、H1−NMR(MINISPEC NMS120、ブルカー・バイオスピン社製)にて生分解性高分子のスペクトルを測定後、帰属した化学シフトにおけるピークの積分値から高分子中の、(A)〜(D)成分に対応する各構成単位の比率を算出した。表1中、(A)成分に対応する構成単位が25.0モル%、(B)成分に対応する構成単位が25.0モル%、(C)成分に対応する構成単位が25.2モル%、(D)成分に対応する構成単位が24.8モル%であった。
【0072】
さらに、得られた生分解性高分子について、ゲルパーミエーションクロマトグラフィー(東ソー社製、HLC8020)を用いて重量平均分子量及び分子量分布を測定した。重量平均分子量及び分子量分布(重量平均分子量Mwを数平均分子量Mnで除したもの)を表2にそれぞれ示す。
【0073】
次に、得られた高分子を用いて、射出成形機(山城精機社製、VS−15−15−P)でJIS−K7161に準じた試験片と5cm角で厚み5mmの試験片を作製した。これらの試験片を用い、ストログラフV50D(東洋精機社製商品名)により引張強度(MPa)と破断伸び(%)をJIS−K7161に準じて測定した。また、その試験片をコンポスト(千代田技研工業社製、CB−50)に30日放置し、その後重量減少率(%)を測定した。得られた結果をそれぞれ表3に示す。
【0074】
(実施例2)
実施例1において、(A)成分をテレフタル酸ジメチル5重量部、(B)をアジピン酸ジメチル5重量部、(C)成分を1,1−ビス(4−ヒドロキシエトキシフェニル)シクロヘキサン5重量部、(D)成分を1,6−ヘキサンジオール15重量部としたこと以外は実施例1と同様にして生分解性高分子を得た。
【0075】
表1に実施例2の生分解性高分子の構造式を示した。表1に示すように、実施例2の生分解性高分子も実施例1と同様に、一般式(I)及び(II)で表される構成単位に相当する構成単位を有するランダム共重合体であった。また、実施例1と同様に、(A)〜(D)成分に対応する各構成単位の比率を算出した。表1中、(A)成分に対応する構成単位が25.1モル%、(B)成分に対応する構成単位が24.9モル%、(C)成分に対応する構成単位が25.1モル%、(D)成分に対応する構成単位が24.9モル%であった。
【0076】
さらに、実施例2の生分解性高分子について、実施例1と同様に、重量平均分子量、分子量分布、引張強度、破断伸び及び重量減少率を測定した。得られた結果をそれぞれ表2及び表3に示す。
【0077】
(実施例3)
実施例1において、(A)成分を2,6−ナフタレンジカルボン酸ジメチル5重量部、(B)成分をコハク酸ジメチル5重量部、(C)成分を2,2−ビス(4−ヒドロキシエトキシフェニル)プロパン5重量部、(D)成分を2,4−ブタンジオール15重量部としたこと以外は実施例1と同様にして、生分解性高分子を得た。
【0078】
表1に実施例3の生分解性高分子の構造式を示した。表1に示すように、実施例3の生分解性高分子も実施例1と同様に、一般式(I)及び(II)で表される構成単位に相当する構成単位を有するランダム共重合体であった。また、実施例1と同様に、(A)〜(D)成分に対応する各構成単位の比率を算出した。表1中、(A)成分に対応する構成単位が25.2モル%、(B)成分に対応する構成単位が24.8モル%、(C)成分に対応する構成単位が25.4モル%、(D)成分に対応する構成単位が24.6モル%であった。
【0079】
さらに、実施例3の生分解性高分子について、実施例1と同様に、重量平均分子量、分子量分布、引張強度、破断伸び及び重量減少率を測定した。得られた結果をそれぞれ表2及び表3に示す。
【0080】
(実施例4)
実施例1において、(A)成分を2,6−ナフタレンジカルボン酸ジメチル1重量部、(B)成分をコハク酸ジメチル9重量部、(C)成分を9,9−ビス(4−ヒドロキシエトキシフェニル)フルオレン1重量部、(D)成分を1,4−ブタンジオール19重量部としたこと以外は実施例1と同様にして生分解性高分子を得た。
【0081】
表1に実施例4の生分解性高分子の構造式を示した。表1に示すように、実施例4の生分解性高分子も実施例1と同様に、一般式(I)及び(II)で表される構成単位に相当する構成単位を有するランダム共重合体であった。また、実施例1と同様に、(A)〜(D)成分に対応する各構成単位の比率を算出した。表1中、(A)成分に対応する構成単位が24.9モル%、(B)成分に対応する構成単位が25.1モル%、(C)成分に対応する構成単位が25.0モル%、(D)成分に対応する構成単位が25.0モル%であった。
【0082】
さらに、実施例4の生分解性高分子について、実施例1と同様に、重量平均分子量、分子量分布、引張強度、破断伸び及び重量減少率を測定した。得られた結果をそれぞれ表2及び表3に示す。
【0083】
(実施例5)
実施例1において、(A)成分を2,6−ナフタレンジカルボン酸ジメチル95重量部、(B)成分をコハク酸ジメチル5重量部、(C)成分を9,9−ビス(4−ヒドロキシエトキシフェニル)フルオレン95重量部、(D)成分を2,4−ブタンジオール105重量部としたこと以外は実施例1と同様にして生分解性高分子を得た。
【0084】
表1に実施例5の生分解性高分子の構造式を示した。表1に示すように、実施例5の生分解性高分子も実施例1と同様に、一般式(I)及び(II)で表される構成単位に相当する構成単位を有するランダム共重合体であった。また、実施例1と同様に、(A)〜(D)成分に対応する各構成単位の比率を算出した。表1中、(A)成分に対応する構成単位が25.4モル%、(B)成分に対応する構成単位が24.6モル%、(C)成分に対応する構成単位が25.8モル%、(D)成分に対応する構成単位が24.2モル%であった。
【0085】
さらに、実施例5の生分解性高分子について、実施例1と同様に、重量平均分子量、分子量分布、引張強度、破断伸び及び重量減少率を測定した。得られた結果をそれぞれ表2及び表3に示す。
【0086】
(比較例1)
市販のポリブチレンサクシネートアジペート(昭和高分子社製、ビオノーレ#3020)について、実施例1と同様に、重量平均分子量、分子量分布、引張強度、破断伸び及び重量減少率を測定した。得られた結果をそれぞれ表2及び表3に示す。
【0087】
(比較例2)
市販のポリ乳酸(島津製作所社製、ラクテイ1000)について、実施例1と同様に、重量平均分子量、分子量分布、引張強度、破断伸び及び重量減少率を測定した。得られた結果をそれぞれ表2及び表3に示す。
【0088】
(比較例3)
実施例1において、(A)及び(B)成分を2,6−ナフタレンジカルボン酸ジメチル10重量部、(C)成分を9,9−ビス(4−ヒドロキシエトキシフェニル)フルオレン5重量部、(D)成分をエチレングリコール10重量部としたこと以外は、実施例1と同様にして高分子を得た。表1に比較例3の高分子の構造式を示した。表1に示すように、比較例3の高分子は、本発明に係る一般式(II)で表される構成単位に対応する構成単位にナフチレン基を有し、本発明に該当しないランダム共重合体であった。また、実施例1と同様に、(A)〜(D)成分に対応する各構成単位の比率を算出した。表1中、(A)及び(B)成分に対応する構成単位の合計が50モル%、(C)成分に対応する構成単位が24.9モル%、(D)成分に対応する構成単位が25.1モル%であった。
【0089】
比較例3の高分子について、実施例1と同様に、重量平均分子量、分子量分布、引張強度、破断伸び及び重量減少率を測定した。得られた結果をそれぞれ表2及び表3に示す。
【0090】
(比較例4)
市販のポリ乳酸(島津製作所社製、ラクテイ1000)60重量部に天然マイカ40重量部を混練し、ペレット状の材料を得た。得られた材料を用い、実施例1と同様に、引張強度、破断伸び及び重量減少率を測定した。得られた結果をそれぞれ表3に示す。
【0091】
【表1】
Figure 0004345327
【0092】
【表2】
Figure 0004345327
【0093】
【表3】
Figure 0004345327
【0094】
表3に示したように、本発明にかかる実施例1〜5の生分解性高分子は引張強度が高く、破断伸びも大きいことから高い機械的強度を有し、更に優れた生分解性を示すことが確認された。一方、比較例1の市販のポリブチレンサクシネートアジペートは機械的強度が不十分であり、比較例2の市販のポリ乳酸は機械的強度が極めて低いことが確認された。また、比較例3に示す高分子は重量減少率が0%であり、比較例4に示す高分子は重量減少率は30%であったが、マイカ分が分解せず環境順応型材料としては不適切であり、機械的強度も不十分であることが確認された。
【0095】
【発明の効果】
以上説明した通り、本発明の生分解性高分子は、生分解性に優れると共に十分に高い機械的強度を有するものである。また、本発明の生分解性高分子の製造方法によれば、このように優れた特性を有する本発明の生分解性高分子を容易に且つ確実に得ることができる。さらに、本発明の生分解性高分子を用いた成形体は、機械的強度及び生分解性に優れるものである。このような成形体は、シート、フィルム、プレート、ボトル等の多種の用途に利用可能である。
【図面の簡単な説明】
【図1】実施例1で得られた生分解性高分子のIRスペクトルを示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biodegradable polymer, a method for producing the same, and a molded body.
[0002]
[Prior art]
In the 21st century, which aims to build an environmentally friendly society, biodegradable polymers are very important materials. As conventional biodegradable polymer materials, aliphatic polyesters such as polylactic acid and polybutylene succinate are known (see, for example, Patent Documents 1 to 3). Among them, polylactic acid has excellent biodegradability, and therefore research and development for its practical use has been promoted from an early stage.
[0003]
These biodegradable polymer materials generally exhibit lower mechanical strength than general-purpose engineering plastics. Therefore, when the biodegradable polymer material is used as a molded product as it is, its use is limited to a very narrow range. More specifically, there are uses such as household garbage bags and agricultural sheets that allow some damage.
[0004]
Then, in order to expand the application range of a biodegradable polymer material, the trial which makes an inorganic filler disperse | distribute to a biodegradable polymer material and raises mechanical strength is made | formed (for example, refer patent documents 4-6).
[0005]
[Patent Document 1]
JP-A-11-124430
[Patent Document 2]
Japanese Patent Laid-Open No. 11-124495
[Patent Document 3]
JP-A-6-80872
[Patent Document 4]
Japanese Unexamined Patent Publication No. 2002-173583
[Patent Document 5]
Japanese Patent Laid-Open No. 2002-173854
[Patent Document 6]
Japanese Patent Application Laid-Open No. 2002-173606
[0006]
[Problems to be solved by the invention]
However, even with a biodegradable polymer material in which an inorganic filler is dispersed, it is very difficult to separate the inorganic filler and the biodegradable polymer material when the molded body made of such a material is discarded. For this reason, the entire molded body must be disposed of by incineration or the like, as in the case of general plastics, and is still not sufficient for practical use as an environmentally compliant material.
[0007]
The present invention has been made in view of the above-described problems of the prior art, and has a biodegradable polymer excellent in biodegradability and sufficiently high mechanical strength, a method for producing the same, and the biodegradable polymer. It aims at providing the molded object using this.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that the above problem can be solved when a biodegradable polymer is constituted by combining two specific structural units, The present invention has been completed.
[0009]
  That is, the present inventionHigh molecularHas a structural unit represented by the following general formula (I) and a structural unit represented by the following general formula (II).
[0010]
Embedded image
Figure 0004345327
[0011]
Embedded image
Figure 0004345327
[0012]
[Where X1IsArylene groupY1Is the following general formula(IV) or (V)Represents a divalent organic group represented by R,1And R2Each independently represents an alkylene group, R3, R4, R5, R6, R7, R8, R9And R10Each independently represents a hydrogen atom, an alkyl group or an aryl group;2And Y2Each independently represents an alkylene group. ]
[0014]
Embedded image
Figure 0004345327
[0015]
Embedded image
Figure 0004345327
[0016]
[In the formula, R 13Represents an alkylene group, and k represents 0 or 1. ]
[0017]
  Of the present inventionHigh molecularAs for the reason why is excellent in both biodegradability and mechanical strength, the present inventors infer as follows. That is, the present inventionHigh molecularIn the above, by combining the structural unit represented by the general formula (I) and the structural unit represented by the general formula (II), the structural unit represented by the general formula (II) has a partial crystal structure. However, it is considered that the conformation of the relatively large structural unit represented by the general formula (I) is disturbed. For this reason, it is considered that the structural unit represented by the general formula (I) behaves like a single polymer, maintains its rigidity, and the resulting polymer has excellent mechanical strength. On the other hand, since the structural unit represented by the general formula (II) has the property of rapidly biodegrading, it is considered that the entire polymer is easily reduced in molecular weight and exhibits excellent biodegradability.
[0018]
  Of the present inventionHigh molecularContains 10 mol% to 95 mol% of the structural unit represented by the general formula (I) based on the total amount of each structural unit represented by the general formulas (I) and (II). It is preferable to contain 5 mol%-90 mol% of the structural unit represented by II).
[0019]
  In addition, the present inventionHigh molecularAre represented by the following general formula (VI), the following general formula (VII), the following general formula (VIII), and the following general formula (IX). And may be obtained using a compound.
[0020]
Embedded image
Figure 0004345327
[0021]
Embedded image
Figure 0004345327
[0022]
Embedded image
Figure 0004345327
[0023]
Embedded image
Figure 0004345327
[0024]
[Where X1IsArylene groupRepresents R21And R22Each independently represents a hydrogen atom or an alkyl group, and X2Represents an alkylene group, R23And R24Each independently represents a hydrogen atom or an alkyl group;1Is the above general formula(IV) or (V)Represents a divalent organic group represented by R,1And R2Each independently represents an alkylene group, R3, R4, R5, R6, R7, R8, R9And R10Each independently represents a hydrogen atom, an alkyl group or an aryl group;2Represents an alkylene group. ]
[0025]
  Of the present inventionHigh molecularThe amount of the compound represented by the general formula (VI) is 5 mol% to 47.5 mol% based on the total amount of each compound represented by the general formulas (VI) to (IX). Yes, the amount of the compound represented by the general formula (VII) is 2.5 mol% to 45 mol%, and the amount of the compound represented by the general formula (VIII) is 5 mol% to 47.5 mol. %, And the amount of the compound represented by the general formula (IX) is preferably 2.5 mol% to 45 mol%.
[0026]
  In addition, the present inventionHigh molecularIn the presence of a transesterification catalyst, the compound represented by the general formula (VI), the compound represented by the general formula (VII), and the compound represented by the general formula (VIII) A first step of heating a mixture containing the compound represented by the general formula (IX), a polymerization catalyst is added to the mixture heated in the first step, and the mixture is heated under reduced pressure. 2 steps.
[0027]
  Further, the molded article of the present invention is the above-mentioned molded article of the present invention.High molecularIt is characterized by containing.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0029]
(Biodegradable polymer)
The biodegradable polymer of the present invention has a structural unit represented by the following general formula (I) and a structural unit represented by the following general formula (II), and is excellent in biodegradability and sufficiently It has high mechanical strength.
[0030]
Embedded image
Figure 0004345327
[0031]
Embedded image
Figure 0004345327
[0032]
In the general formula (I), X1Represents an alkylene group (preferably an alkylene group having 1 to 20 carbon atoms) or an arylene group (preferably an arylene group having 6 to 14 carbon atoms). More specifically, the arylene group includes a phenylene group, various naphthylene groups, and various anthracene groups, and the alkylene group includes a methylene group, an ethylene group, various propylene groups, various butylene groups, various pentene groups, and the like. It is done. Among these, when improving mechanical strength, a phenylene group and a 2,6-naphthylene group are preferable, and when improving biodegradability, an ethylene group and 1,4-butylene group are preferable.
[0033]
In the general formula (I), R1And R2Each independently represents an alkylene group (preferably an alkylene group having 1 to 6 carbon atoms). More specifically, a methylene group, an ethylene group, various propylene groups, various butylene groups, various pentene groups, various hexylene groups, and the like can be given. Among these, an ethylene group is particularly preferable because of high mechanical strength and excellent manufacturability.
[0034]
In the general formula (I), RThree, RFour, RFive, R6, R7, R8, R9And RTenEach independently represents a hydrogen atom, an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms) or an aryl group (preferably an aryl group having 6 to 14 carbon atoms). More specifically, examples of the alkyl group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various pentyl groups, and various hexyl groups. Examples of the aryl group include a phenyl group and various naphthyl groups. Can be mentioned. Among these, a hydrogen atom and a methyl group are preferable because of excellent molecular weight controllability.
[0035]
In the general formula (II), X2And Y2Each independently represents an alkylene group (preferably an alkylene group having 2 to 10 carbon atoms).
[0036]
In the general formula (I), Y1Represents a divalent organic group represented by any one of the following general formulas (III) to (V), and the divalent organic group represented by the general formula (V) is in terms of mechanical strength. preferable.
[0037]
Embedded image
Figure 0004345327
[0038]
Embedded image
Figure 0004345327
[0039]
Embedded image
Figure 0004345327
[0040]
In the general formula (III), R11And R12Each independently represents a hydrogen atom, an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms) or an aryl group (preferably an aryl group having 6 to 14 carbon atoms). More specifically, as the alkyl group, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group Etc. Among these, a methyl group is preferable in terms of mechanical strength.
[0041]
In the general formula (IV), R13Represents an alkylene group (preferably an alkylene group having 1 to 9 carbon atoms), and k represents 0 or 1. When k = 0, the two methylene groups form a direct bond. More specific examples of the alkylene group include a methylene group, an ethylene group, and a propylene group. Among these, a propylene group is preferable in terms of both mechanical strength and biodegradability.
[0042]
The biodegradable polymer of the present invention is based on the total amount of each structural unit represented by the general formulas (I) and (II) based on 10 mol% to the structural unit represented by the general formula (I). It is preferable to contain 95 mol% and to contain 5 mol%-90 mol% of the structural unit represented by the general formula (II). When the structural unit represented by the general formula (I) is less than 10 mol%, the mechanical strength tends to be low, and when it exceeds 95 mol%, the biodegradation rate tends to be slow. Further, when the content of the structural unit represented by the general formula (II) is less than 5 mol%, the biodegradation rate tends to be slow, and when it exceeds 90 mol%, the mechanical strength tends to be low. There is.
[0043]
A polymer consisting only of the structural unit represented by the general formula (I) does not have biodegradability, whereas a polymer consisting only of the structural unit represented by the general formula (II) has a mechanical strength. Low. In general, when a structural unit having high mechanical strength and a structural unit having biodegradability are combined, a polymer satisfying both characteristics cannot be obtained. In view of the general tendency of such conventional biodegradable polymers, the biodegradable polymer of the present invention showed extremely unexpected effects.
[0044]
The biodegradable polymer of the present invention includes (A) a compound represented by the following general formula (VI), (B) a compound represented by the following general formula (VII), and (C) the following general formula. The compound represented by (VIII) and (D) the compound represented by the following general formula (IX) may be used to obtain the compound (hereinafter, the above-mentioned compound may optionally be (A) component, (Referred to as component (B)).
[0045]
Embedded image
Figure 0004345327
[0046]
Embedded image
Figure 0004345327
[0047]
Embedded image
Figure 0004345327
[0048]
Embedded image
Figure 0004345327
[0049]
In the general formula (VI), X1Is X in the above general formula (I)1Represents the same definition as Rtwenty oneAnd Rtwenty twoEach independently represents a hydrogen atom or an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms).
[0050]
In the general formula (VII), X2Is X in the above general formula (II)2Represents the same definition as Rtwenty threeAnd Rtwenty fourEach independently represents a hydrogen atom or an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms).
[0051]
In the general formula (VIII), Y1Represents a divalent organic group represented by any one of the general formulas (III) to (V), and R1And R2Are R in the general formula (I).1And R2Represents the same definition as RThree, RFour, RFive, R6, R7, R8, R9And RTenAre R in the general formula (I).Three, RFour, RFive, R6, R7, R8, R9And RTenIndicates the same definition as.
[0052]
In the general formula (IX), Y2Is Y in the above general formula (II)2Indicates the same definition as.
[0053]
In the biodegradable polymer of the present invention, the amount of the component (A) used is 5 mol% to 47.5 mol% based on the total amount of the components (A) to (D). ) The amount of component used is 2.5 mol% to 45 mol%, the amount of component (C) used is 5 mol% to 47.5 mol%, and the amount of component (D) used is 2.5 mol%. % To 45 mol% is preferred.
[0054]
When producing the biodegradable polymer of the present invention using the components (A) to (D), first, the mixture containing the components (A) to (D) is heated in the presence of a transesterification catalyst (No. 1). 1 step).
[0055]
When performing esterification or transesterification, known esterification catalysts include metal acetates such as calcium acetate and manganese acetate, titanium compounds such as tetrabutoxy titanium, metal oxides such as zinc oxide and tin trioxide, and the like. A catalyst can be used. It is preferable to arbitrarily adjust the amount of catalyst used depending on the catalyst used. The first step is preferably performed in an inert atmosphere (more preferably in a nitrogen atmosphere) from the viewpoint of preventing coloring.
[0056]
Moreover, it is preferable that the temperature at the time of heating is 200-250 degreeC. When the temperature exceeds the upper limit, thermal decomposition is promoted and tends to be colored. Moreover, it exists in the tendency for reaction efficiency to become inadequate that temperature is less than the said lower limit. During the reaction, it is preferable to gradually heat the raw material mixture while stirring until the temperature is within the above range.
[0057]
As the reaction proceeds, water is produced in the case of esterification, and alcohol is produced as a by-product in the case of transesterification. These by-products are distilled out of the system, and the end point of the reaction is determined based on the amount of distillation. Can be confirmed.
[0058]
Next, a polymerization catalyst is added to the mixture heated in the first step, and the mixture is heated under reduced pressure (second step). As the polymerization catalyst, known catalysts such as metal oxides such as germanium oxide, zinc oxide and antimony trioxide, and titanium compounds such as tetrabutoxy titanium can be used. The amount of the polymerization catalyst used is appropriately selected depending on the structure of the target polymer.
[0059]
The operation after the addition of the polymerization catalyst is performed under reduced pressure, and the pressure at that time is preferably 1 Torr or less. Moreover, it is preferable that the temperature in the case of a heating is 230-350 degreeC. When the temperature exceeds the above upper limit, thermal decomposition tends to occur and color tends to occur. On the other hand, when the temperature is lower than the lower limit, the reaction efficiency tends to be insufficient or the molecular weight tends not to increase sufficiently. During the reaction, while stirring the mixture after heating in the first step, the pressure and temperature are gradually reduced (preferably over 1 to 2 hours) so that the pressure and temperature are within the above ranges. Preferably it is done.
[0060]
About the end point of the polymerization reaction after adding this polymerization catalyst, the torque value of stirring can be used as an index. In addition, after completion of the reaction, the biodegradable polymer of the present invention can be isolated by dissolving the content in a solvent such as tetrahydrofuran (THF) and reprecipitating it in water.
[0061]
The biodegradable polymer of the present invention obtained by the above production method comprises a random copolymer, a block copolymer of a structural unit represented by general formula (I) and a structural unit represented by general formula (II) Either a copolymer or a graft copolymer may be used, but a random copolymer is excellent in terms of productivity, and a block copolymer is easy to control biodegradability and mechanical strength. Is excellent.
[0062]
The weight average molecular weight of the biodegradable polymer of the present invention is not particularly limited, but is preferably 10,000 to 500,000, more preferably 20,000 to 200,000. When the weight average molecular weight is less than the lower limit, the mechanical strength tends to be insufficient. Moreover, when a weight average molecular weight exceeds the said upper limit, the solubility with respect to a solvent and melt fluidity will fall, and it exists in the tendency for a moldability to become inadequate.
[0063]
(Molded body)
The molded article of the present invention contains the biodegradable polymer of the present invention. Examples of such a molded body include a sheet, a film, a plate, and a bottle.
[0064]
As a method for obtaining a molded product from the biodegradable polymer of the present invention, a known molding method such as injection molding, extrusion molding, blow molding, coating molding, cast molding, dipping molding or the like can be used. At this time, known biodegradable polymers such as polylactic acid, polybutylene succinate, polybutylene adipate, polyhydroxybutyric acid, polyvinyl alcohol, and cellulose may be mixed, dispersed, alloyed, and blended as necessary.
[0065]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, this invention is not limited to an Example at all.
[0066]
Example 1
As component (A), 5 parts by weight of dimethyl 2,6-naphthalenedicarboxylate, as component (B), 5 parts by weight of dimethyl succinate, as component (C), 5 parts by weight of 9,9-bis (4-hydroxyethoxyphenyl) fluorene In addition, 15 parts by weight of 1,4-butanediol as component (D) and 0.0001 parts by weight of calcium acetate as catalyst are put into a 1 L three-necked flask, and the inside of the flask is nitrogen-flowed, and gradually up to 180 ° C. with a mantle heater. The internal temperature was raised.
[0067]
After confirming that dimethyl 2,6-naphthalenedicarboxylate was dissolved, the inside was stirred with a stirring blade. A distillation system was provided in one of the three necks, and methanol generated as the reaction proceeded was distilled off. The internal temperature was raised at a rate of 60 ° C./hour, maintained at 240 ° C., and it was confirmed that the amount of distilled methanol was 98% of the theoretical amount.
[0068]
Here, 0.001 part by weight of germanium oxide was added, the inside was evacuated, and the temperature was increased at a rate of 30 ° C./hour while gradually reducing the pressure. The internal temperature was maintained at 280 ° C. and the pressure was maintained at 0.8 Torr. After confirming that the stirring torque had increased, the reaction was completed. The contents of the three-necked flask were once cooled to room temperature, dissolved in tetrahydrofuran, and then reprecipitated in water to obtain the biodegradable polymer of the present invention.
[0069]
The structure of the obtained biodegradable polymer was confirmed by FT-IR (IR Prestige-21, manufactured by Shimadzu Corporation). The IR spectrum of the obtained biodegradable polymer is shown in FIG.
[0070]
Table 1 shows the structural formula of the biodegradable polymer of Example 1. As shown in Table 1, the biodegradable polymer of Example 1 is derived from the components (A) and (C) and corresponds to the structural unit represented by the general formula (I) (left side in the formula) And a structural unit corresponding to the structural unit derived from the components (B) and (D) and represented by the general formula (II) (in the right parenthesis in the formula) It was a random copolymer with the enclosed structural unit (50 mol%).
[0071]
H1-After measuring the spectrum of the biodegradable polymer by NMR (MINISPEC NMS120, manufactured by Bruker BioSpin), from the integrated value of the peak in the assigned chemical shift to the components (A) to (D) in the polymer The ratio of each corresponding structural unit was calculated. In Table 1, the structural unit corresponding to the component (A) is 25.0 mol%, the structural unit corresponding to the component (B) is 25.0 mol%, and the structural unit corresponding to the component (C) is 25.2 mol%. %, And the structural unit corresponding to the component (D) was 24.8 mol%.
[0072]
Furthermore, about the obtained biodegradable polymer, the weight average molecular weight and molecular weight distribution were measured using the gel permeation chromatography (the Tosoh company make, HLC8020). Weight average molecular weight and molecular weight distribution (weight average molecular weight MwNumber average molecular weight MnTable 2 shows those obtained by dividing by.
[0073]
Next, using the obtained polymer, a test piece according to JIS-K7161 and a test piece having a thickness of 5 mm and a thickness of 5 mm were prepared with an injection molding machine (VS-15-15-P, manufactured by Yamashiro Seiki Co., Ltd.). . Using these test pieces, the tensile strength (MPa) and the elongation at break (%) were measured according to JIS-K7161 with a strograph V50D (trade name, manufactured by Toyo Seiki Co., Ltd.). Moreover, the test piece was left for 30 days in a compost (manufactured by Chiyoda Giken Kogyo Co., Ltd., CB-50), and then the weight reduction rate (%) was measured. Table 3 shows the obtained results.
[0074]
(Example 2)
In Example 1, the component (A) is 5 parts by weight of dimethyl terephthalate, the component (B) is 5 parts by weight of dimethyl adipate, the component (C) is 5 parts by weight of 1,1-bis (4-hydroxyethoxyphenyl) cyclohexane, A biodegradable polymer was obtained in the same manner as in Example 1 except that the component (D) was changed to 15 parts by weight of 1,6-hexanediol.
[0075]
Table 1 shows the structural formula of the biodegradable polymer of Example 2. As shown in Table 1, the biodegradable polymer of Example 2 is a random copolymer having structural units corresponding to the structural units represented by the general formulas (I) and (II) as in Example 1. Met. Moreover, the ratio of each structural unit corresponding to (A)-(D) component was computed similarly to Example 1. FIG. In Table 1, the structural unit corresponding to the component (A) is 25.1 mol%, the structural unit corresponding to the component (B) is 24.9 mol%, and the structural unit corresponding to the component (C) is 25.1 mol%. %, The structural unit corresponding to the component (D) was 24.9 mol%.
[0076]
Further, with respect to the biodegradable polymer of Example 2, as in Example 1, the weight average molecular weight, molecular weight distribution, tensile strength, elongation at break and weight reduction rate were measured. The obtained results are shown in Table 2 and Table 3, respectively.
[0077]
(Example 3)
In Example 1, component (A) was 5 parts by weight of dimethyl 2,6-naphthalenedicarboxylate, component (B) was 5 parts by weight of dimethyl succinate, and component (C) was 2,2-bis (4-hydroxyethoxyphenyl). ) A biodegradable polymer was obtained in the same manner as in Example 1 except that 5 parts by weight of propane and 15 parts by weight of component (D) were changed to 15 parts by weight of 2,4-butanediol.
[0078]
Table 1 shows the structural formula of the biodegradable polymer of Example 3. As shown in Table 1, the biodegradable polymer of Example 3 is a random copolymer having structural units corresponding to the structural units represented by the general formulas (I) and (II) as in Example 1. Met. Moreover, the ratio of each structural unit corresponding to (A)-(D) component was computed similarly to Example 1. FIG. In Table 1, the structural unit corresponding to the component (A) is 25.2 mol%, the structural unit corresponding to the component (B) is 24.8 mol%, and the structural unit corresponding to the component (C) is 25.4 mol%. %, And the structural unit corresponding to the component (D) was 24.6 mol%.
[0079]
Further, with respect to the biodegradable polymer of Example 3, the weight average molecular weight, molecular weight distribution, tensile strength, elongation at break and weight reduction rate were measured in the same manner as in Example 1. The obtained results are shown in Table 2 and Table 3, respectively.
[0080]
(Example 4)
In Example 1, component (A) is 1 part by weight of dimethyl 2,6-naphthalenedicarboxylate, component (B) is 9 parts by weight of dimethyl succinate, and component (C) is 9,9-bis (4-hydroxyethoxyphenyl). ) A biodegradable polymer was obtained in the same manner as in Example 1 except that 1 part by weight of fluorene and 19 parts by weight of the component (D) were 1,4-butanediol.
[0081]
Table 1 shows the structural formula of the biodegradable polymer of Example 4. As shown in Table 1, the biodegradable polymer of Example 4 is a random copolymer having structural units corresponding to the structural units represented by the general formulas (I) and (II) as in Example 1. Met. Moreover, the ratio of each structural unit corresponding to (A)-(D) component was computed similarly to Example 1. FIG. In Table 1, the structural unit corresponding to the component (A) is 24.9 mol%, the structural unit corresponding to the component (B) is 25.1 mol%, and the structural unit corresponding to the component (C) is 25.0 mol%. %, The structural unit corresponding to the component (D) was 25.0 mol%.
[0082]
Further, with respect to the biodegradable polymer of Example 4, as in Example 1, the weight average molecular weight, molecular weight distribution, tensile strength, elongation at break and weight reduction rate were measured. The obtained results are shown in Table 2 and Table 3, respectively.
[0083]
(Example 5)
In Example 1, (A) component is 95 parts by weight of dimethyl 2,6-naphthalenedicarboxylate, (B) component is 5 parts by weight of dimethyl succinate, and (C) component is 9,9-bis (4-hydroxyethoxyphenyl). ) A biodegradable polymer was obtained in the same manner as in Example 1 except that 95 parts by weight of fluorene and 105 parts by weight of component (D) were used.
[0084]
Table 1 shows the structural formula of the biodegradable polymer of Example 5. As shown in Table 1, the biodegradable polymer of Example 5 is a random copolymer having structural units corresponding to the structural units represented by the general formulas (I) and (II) as in Example 1. Met. Moreover, the ratio of each structural unit corresponding to (A)-(D) component was computed similarly to Example 1. FIG. In Table 1, the structural unit corresponding to the component (A) is 25.4 mol%, the structural unit corresponding to the component (B) is 24.6 mol%, and the structural unit corresponding to the component (C) is 25.8 mol%. %, And the structural unit corresponding to the component (D) was 24.2 mol%.
[0085]
Further, with respect to the biodegradable polymer of Example 5, the weight average molecular weight, molecular weight distribution, tensile strength, elongation at break and weight loss rate were measured in the same manner as in Example 1. The obtained results are shown in Table 2 and Table 3, respectively.
[0086]
(Comparative Example 1)
In the same manner as in Example 1, the weight average molecular weight, molecular weight distribution, tensile strength, elongation at break, and weight loss rate of the commercially available polybutylene succinate adipate (Showa Polymer Co., Ltd., Bionore # 3020) were measured. The obtained results are shown in Table 2 and Table 3, respectively.
[0087]
(Comparative Example 2)
For commercially available polylactic acid (manufactured by Shimadzu Corporation, Lacty 1000), the weight average molecular weight, molecular weight distribution, tensile strength, elongation at break and weight loss rate were measured in the same manner as in Example 1. The obtained results are shown in Table 2 and Table 3, respectively.
[0088]
(Comparative Example 3)
In Example 1, the components (A) and (B) were 10 parts by weight of dimethyl 2,6-naphthalenedicarboxylate, the component (C) was 5,9 parts by weight of 9,9-bis (4-hydroxyethoxyphenyl) fluorene, (D ) A polymer was obtained in the same manner as in Example 1 except that the component was 10 parts by weight of ethylene glycol. Table 1 shows the structural formula of the polymer of Comparative Example 3. As shown in Table 1, the polymer of Comparative Example 3 has a naphthylene group in the structural unit corresponding to the structural unit represented by the general formula (II) according to the present invention, and does not fall within the present invention. It was a coalescence. Moreover, the ratio of each structural unit corresponding to (A)-(D) component was computed similarly to Example 1. FIG. In Table 1, the total of the structural units corresponding to the components (A) and (B) is 50 mol%, the structural unit corresponding to the component (C) is 24.9 mol%, and the structural unit corresponding to the component (D) is It was 25.1 mol%.
[0089]
For the polymer of Comparative Example 3, the weight average molecular weight, molecular weight distribution, tensile strength, elongation at break and weight loss rate were measured in the same manner as in Example 1. The obtained results are shown in Table 2 and Table 3, respectively.
[0090]
(Comparative Example 4)
40 parts by weight of natural mica was kneaded with 60 parts by weight of commercially available polylactic acid (manufactured by Shimadzu Corporation, Lacty 1000) to obtain a pellet-shaped material. Using the obtained material, the tensile strength, breaking elongation and weight loss rate were measured in the same manner as in Example 1. Table 3 shows the obtained results.
[0091]
[Table 1]
Figure 0004345327
[0092]
[Table 2]
Figure 0004345327
[0093]
[Table 3]
Figure 0004345327
[0094]
As shown in Table 3, the biodegradable polymers of Examples 1 to 5 according to the present invention have high mechanical strength because of high tensile strength and large elongation at break, and further excellent biodegradability. It was confirmed to show. On the other hand, it was confirmed that the commercially available polybutylene succinate adipate of Comparative Example 1 has insufficient mechanical strength, and the commercially available polylactic acid of Comparative Example 2 has extremely low mechanical strength. Further, the polymer shown in Comparative Example 3 had a weight reduction rate of 0%, and the polymer shown in Comparative Example 4 had a weight reduction rate of 30%. It was confirmed that it was inappropriate and the mechanical strength was insufficient.
[0095]
【The invention's effect】
As described above, the biodegradable polymer of the present invention is excellent in biodegradability and has sufficiently high mechanical strength. Moreover, according to the method for producing a biodegradable polymer of the present invention, the biodegradable polymer of the present invention having such excellent characteristics can be obtained easily and reliably. Furthermore, the molded body using the biodegradable polymer of the present invention is excellent in mechanical strength and biodegradability. Such a molded body can be used for various applications such as a sheet, a film, a plate, and a bottle.
[Brief description of the drawings]
1 is a graph showing an IR spectrum of a biodegradable polymer obtained in Example 1. FIG.

Claims (6)

下記一般式(I)で表される構成単位と、下記一般式(II)で表される構成単位と、を有することを特徴とする高分子
Figure 0004345327
Figure 0004345327
[式中、Xアリーレン基を表し、Yは下記一般式(IV)又は(V)で表される2価の有機基を表し、R及びRはそれぞれ独立にアルキレン基を表し、R、R、R、R、R、R、R及びR10はそれぞれ独立に水素原子、アルキル基又はアリール基を表し、X及びYはそれぞれ独立にアルキレン基を表す。]
Figure 0004345327
Figure 0004345327
[式中、R 13はアルキレン基を表し、kは0又は1を表す。]
A polymer comprising a structural unit represented by the following general formula (I) and a structural unit represented by the following general formula (II).
Figure 0004345327
Figure 0004345327
[Wherein, X 1 represents an arylene group , Y 1 represents a divalent organic group represented by the following general formula (IV) or (V) , and R 1 and R 2 each independently represent an alkylene group. , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represents a hydrogen atom, an alkyl group or an aryl group, and X 2 and Y 2 are each independently an alkylene group. Represents. ]
Figure 0004345327
Figure 0004345327
[ Wherein, R 13 represents an alkylene group, and k represents 0 or 1. ]
前記一般式(I)及び(II)で表される各構成単位の合計量を基準として、前記一般式(I)で表される構成単位を10モル%〜95モル%含有し、前記一般式(II)で表される構成単位を5モル%〜90モル%含有することを特徴とする請求項1に記載の高分子Containing 10 mol% to 95 mol% of the structural unit represented by the general formula (I) based on the total amount of the structural units represented by the general formulas (I) and (II); 2. The polymer according to claim 1, comprising 5 to 90 mol% of the structural unit represented by (II). 下記一般式(VI)で表される化合物と、下記一般式(VII)で表される化合物と、下記一般式(VIII)で表される化合物と、下記一般式(IX)で表される化合物と、を用いて得られることを特徴とする高分子
Figure 0004345327
Figure 0004345327
Figure 0004345327
Figure 0004345327
[式中、Xアリーレン基を表し、R21及びR22はそれぞれ独立に水素原子又はアルキル基を表し、Xはアルキレン基を表し、R23及びR24はそれぞれ独立に水素原子又はアルキル基を表し、Yは下記一般式(IV)又は(V)で表される2価の有機基を表し、R及びRはそれぞれ独立にアルキレン基を表し、R、R、R、R、R、R、R及びR10はそれぞれ独立に水素原子、アルキル基又はアリール基を表し、Yはアルキレン基を表す。]
Figure 0004345327
Figure 0004345327
[式中、R 13はアルキレン基を表し、kは0又は1を表す。]
The compound represented by the following general formula (VI), the compound represented by the following general formula (VII), the compound represented by the following general formula (VIII), and the compound represented by the following general formula (IX) And a polymer obtained by using.
Figure 0004345327
Figure 0004345327
Figure 0004345327
Figure 0004345327
[Wherein, X 1 represents an arylene group , R 21 and R 22 each independently represent a hydrogen atom or an alkyl group, X 2 represents an alkylene group, and R 23 and R 24 each independently represent a hydrogen atom or an alkyl group. Y 1 represents a divalent organic group represented by the following general formula (IV) or (V) , R 1 and R 2 each independently represents an alkylene group, and R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represents a hydrogen atom, an alkyl group or an aryl group, and Y 2 represents an alkylene group. ]
Figure 0004345327
Figure 0004345327
[ Wherein, R 13 represents an alkylene group, and k represents 0 or 1. ]
前記一般式(VI)〜(IX)で表される各化合物の合計量を基準として、前記一般式(VI)で表される化合物の使用量が5モル%〜47.5モル%であり、前記一般式(VII)で表される化合物の使用量が2.5モル%〜45モル%であり、前記一般式(VIII)で表される化合物の使用量が5モル%〜47.5モル%であり、前記一般式(IX)で表される化合物の使用量が2.5モル%〜45モル%であることを特徴とする請求項3に記載の高分子Based on the total amount of each compound represented by the general formulas (VI) to (IX), the amount of the compound represented by the general formula (VI) is 5 mol% to 47.5 mol%, The amount of the compound represented by the general formula (VII) is 2.5 mol% to 45 mol%, and the amount of the compound represented by the general formula (VIII) is 5 mol% to 47.5 mol. The polymer according to claim 3, wherein the amount of the compound represented by the general formula (IX) is 2.5 mol% to 45 mol%. エステル交換触媒の存在下、下記一般式(VI)で表される化合物と、下記一般式(VII)で表される化合物と、下記一般式(VIII)で表される化合物と、下記一般式(IX)で表される化合物と、を含有する混合物を加熱する第1のステップと、
前記第1のステップで加熱した後の前記混合物に重合触媒を添加し、減圧下で加熱する第2のステップと、
を含むことを特徴とする高分子の製造方法。
Figure 0004345327
Figure 0004345327
Figure 0004345327
Figure 0004345327
[式中、Xアリーレン基を表し、R21及びR22はそれぞれ独立に水素原子又はアルキル基を表し、Xはアルキレン基を表し、R23及びR24はそれぞれ独立に水素原子又はアルキル基を表し、Yは下記一般式(IV)又は(V)で表される2価の有機基を表し、R及びRはそれぞれ独立にアルキレン基を表し、R、R、R、R、R、R、R及びR10はそれぞれ独立に水素原子、アルキル基又はアリール基を表し、Yはアルキレン基を表す。]
Figure 0004345327
Figure 0004345327
[式中、R 13はアルキレン基を表し、kは0又は1を表す。]
In the presence of a transesterification catalyst, a compound represented by the following general formula (VI), a compound represented by the following general formula (VII), a compound represented by the following general formula (VIII), and the following general formula ( IX), a first step of heating a mixture containing:
A second step of adding a polymerization catalyst to the mixture after heating in the first step and heating under reduced pressure;
A method for producing a polymer , comprising:
Figure 0004345327
Figure 0004345327
Figure 0004345327
Figure 0004345327
[Wherein, X 1 represents an arylene group , R 21 and R 22 each independently represent a hydrogen atom or an alkyl group, X 2 represents an alkylene group, and R 23 and R 24 each independently represent a hydrogen atom or an alkyl group. Y 1 represents a divalent organic group represented by the following general formula (IV) or (V) , R 1 and R 2 each independently represents an alkylene group, and R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represents a hydrogen atom, an alkyl group or an aryl group, and Y 2 represents an alkylene group. ]
Figure 0004345327
Figure 0004345327
[ Wherein, R 13 represents an alkylene group, and k represents 0 or 1. ]
請求項1〜4のうちのいずれか一項に記載の高分子を含有することを特徴とする成形体。A molded article comprising the polymer according to any one of claims 1 to 4.
JP2003066841A 2003-03-12 2003-03-12 Biodegradable polymer, method for producing the same, and molded article Expired - Fee Related JP4345327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066841A JP4345327B2 (en) 2003-03-12 2003-03-12 Biodegradable polymer, method for producing the same, and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066841A JP4345327B2 (en) 2003-03-12 2003-03-12 Biodegradable polymer, method for producing the same, and molded article

Publications (2)

Publication Number Publication Date
JP2004277454A JP2004277454A (en) 2004-10-07
JP4345327B2 true JP4345327B2 (en) 2009-10-14

Family

ID=33284626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066841A Expired - Fee Related JP4345327B2 (en) 2003-03-12 2003-03-12 Biodegradable polymer, method for producing the same, and molded article

Country Status (1)

Country Link
JP (1) JP4345327B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875670B2 (en) 2002-08-12 2011-01-25 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US7985801B2 (en) 2002-08-12 2011-07-26 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US8211968B2 (en) 2002-08-12 2012-07-03 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
US8513347B2 (en) 2005-07-15 2013-08-20 Exxonmobil Chemical Patents Inc. Elastomeric compositions
CN101885838B (en) * 2009-05-13 2014-01-22 金发科技股份有限公司 Bio-degradable polyester and method for preparing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5225209B2 (en) * 2009-06-10 2013-07-03 大阪瓦斯株式会社 Polyester resin having a fluorene skeleton
JP7001330B2 (en) * 2015-07-16 2022-02-03 大阪瓦斯株式会社 Biodegradable copolymer and its manufacturing method and biodegradability improving method
JP7015342B2 (en) * 2020-06-30 2022-02-02 大阪瓦斯株式会社 Biodegradable copolymer and its manufacturing method and biodegradability improving method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875670B2 (en) 2002-08-12 2011-01-25 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US7985801B2 (en) 2002-08-12 2011-07-26 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US8211968B2 (en) 2002-08-12 2012-07-03 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US8217112B2 (en) 2002-08-12 2012-07-10 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US8703030B2 (en) 2003-08-12 2014-04-22 Exxonmobil Chemical Patents Inc. Crosslinked polyethylene process
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
US8513347B2 (en) 2005-07-15 2013-08-20 Exxonmobil Chemical Patents Inc. Elastomeric compositions
CN101885838B (en) * 2009-05-13 2014-01-22 金发科技股份有限公司 Bio-degradable polyester and method for preparing same

Also Published As

Publication number Publication date
JP2004277454A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
CN103649168B (en) The biodegradable aliphatic-aromatic copolyester of colour stable, its manufacture method and goods
CN103764714B (en) By the method that phosphorous catalyst based on titanium prepares (polybutylene terephthalate (PBT)-copolymerization-tetramethylene adipate) in situ
JP4345327B2 (en) Biodegradable polymer, method for producing the same, and molded article
EP2480589A1 (en) Biodegradable aliphatic-aromatic copolyesters, methods of manufacture, and articles thereof
AU5717994A (en) Thermoplastic biodegradable resins and a process of preparation thereof
JP2015517606A (en) Production method of polyester resin
JP5082353B2 (en) Flexibility imparting agent for resin and biodegradable resin composition containing the flexibility imparting agent
KR20010083551A (en) Method for the preparation of polybutylene terephthalate resin
AU2014374626A2 (en) Composition for producing biodegradable polyester resin, and production method for biodegradable polyester resin
KR20140076354A (en) Method for continuous production of biodegradable aliphatic/aromatic polyester copolymer
KR20090090695A (en) Lactic acid copolymer and method for manufacturing of it
KR101690082B1 (en) Biodegradable resin composition and biodegradable film prepared therefrom
US20220243005A1 (en) Biodegradable resin composition having improved mechanical property, formability, and weatherproof and method for manufacturing the same
CN108026257B (en) Terminal-modified polybutylene terephthalate resin, thermoplastic resin composition containing same, and molded article
KR101644962B1 (en) Biodegradable polylactide-based aliphatic/aromatic copolyester resin composition and method for preparing the same
KR102069509B1 (en) Biodegradable poly(butylene tetramethyleneglutarate-co-butylene terephthalate) aliphatic and aromatic polyester resin and the manufacturing method thereof
KR101941123B1 (en) Biodegradable resin composition and biodegradable film prepared therefrom
KR102190327B1 (en) Method for preparing poly(ether ester) copolymer
JP2003160736A (en) Plasticizer for non-chlorine based resin and resin composition
JP5135740B2 (en) Polyester and production method thereof, and polyester block copolymer
JP3783948B2 (en) Lactic acid polymer composition
KR101372857B1 (en) Blend composition biodegradable polyester, manufacturing method thereof and fabric made of them
JP3421955B2 (en) Copolyester
KR100368533B1 (en) Manufacturing method of biodegradable aliphatic polyester
KR0121977B1 (en) Method for manufacturing high molecule aliphatic polyester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Ref document number: 4345327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

LAPS Cancellation because of no payment of annual fees
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350