JP4344269B2 - 火災感知器およびその状態情報取得システム - Google Patents

火災感知器およびその状態情報取得システム Download PDF

Info

Publication number
JP4344269B2
JP4344269B2 JP2004100358A JP2004100358A JP4344269B2 JP 4344269 B2 JP4344269 B2 JP 4344269B2 JP 2004100358 A JP2004100358 A JP 2004100358A JP 2004100358 A JP2004100358 A JP 2004100358A JP 4344269 B2 JP4344269 B2 JP 4344269B2
Authority
JP
Japan
Prior art keywords
sensitivity
pulse
state information
fire
fire detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004100358A
Other languages
English (en)
Other versions
JP2005284911A (ja
Inventor
尚 伊藤
義裕 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2004100358A priority Critical patent/JP4344269B2/ja
Priority to US11/088,803 priority patent/US7280039B2/en
Priority to CA2502632A priority patent/CA2502632C/en
Priority to CA2742626A priority patent/CA2742626C/en
Priority to CN200910001831XA priority patent/CN101483004B/zh
Priority to CNB2005100637025A priority patent/CN100501786C/zh
Priority to EP05251959A priority patent/EP1583055B1/en
Priority to EP10007413A priority patent/EP2234080B1/en
Priority to EP10007412A priority patent/EP2234079B1/en
Publication of JP2005284911A publication Critical patent/JP2005284911A/ja
Priority to US11/649,287 priority patent/US7498949B2/en
Application granted granted Critical
Publication of JP4344269B2 publication Critical patent/JP4344269B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/14Checking intermittently signalling or alarm systems checking the detection circuits
    • G08B29/145Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

この発明は、建物各部の各監視空間に設置され、例えば煙を検知して火災発生を報知する火災感知器およびその状態情報取得システムに関し、特に状態情報の一つである感度情報を発信する火災感知器およびその状態情報取得システムに関するものである。
従来の火災感知器では、火災受信機と信号線を介して接続されて、火災の検出時に、火災信号を出力して、火災受信機が必要な火災警報動作を行うようになっている。このような火災感知器から状態情報を受信する方式として、信号伝送を用いて火災受信機と交信するシステムの場合に、受信機からの呼出信号を受信すると、感度データをコード化した伝送信号を受信機に返送するとともに、受信機に対する伝送データ「0」、「1」に応じて赤外の伝送表示灯を発光させて外部に伝送させていた(例えば、特許文献1)。
また、他の従来の火災感知器では、周期的に、煙検出器の感度データをコード化した伝送信号によりLEDを発光させて外部に伝送させていた(例えば、特許文献2)。
特開平7−262467号公報 米国特許第6469623号明細書
従来の火災感知器では、検出素子の感度データをコード化して伝送表示灯やLEDを発光させて外部に伝送していたので、伝送表示灯やLEDの発光回数が極めて多くなり、消費電力が多くなってしまうという課題があった。
そして、火災感知システムでは、この種の火災感知器を建物内の各監視空間に設置することから、多数の火災感知器が設置されることになり、システム全体としての消費電力は大きなものとなってしまうので、個々の火災感知器の消費電力を小さくすることが要求されている。
この発明は、このような状況に鑑み、感度データに応じて発信素子から発するパルスの時間的要素、例えばパルス幅やパルス間隔を設定し、設定されたパルスの時間的要素に基づいて発信素子をパルス発信させて感度データを外部に伝送するようにし、発信素子の発信回数を削減して消費電力を小さくした火災感知器および火災感知器の状態情報取得システムを得ることを目的とする。
この発明による火災感知器は、火災を検出する検出部と、上記検出部の状態に応じた状態情報を判定・出力する状態情報判定・出力手段と、外部に向けてパルスを発して上記状態情報を送信する発信素子と、上記状態情報に基づいて上記パルスの時間的要素を設定し、設定された時間的要素に基づいて上記発信素子から上記パルスを発せさせる状態情報送信手段と、を備えたものである。そして、上記状態情報判定・出力手段は、上記状態情報としての感度が感度許容範囲に入っているか否かを判定するとともに現在の感度を出力し、上記状態情報送信手段は、上記現在の感度が上記感度許容範囲を所定段数に分割してなる感度レベルのいずれの段の感度レベルに入っているかを判断し、上記現在の感度が入っている上記段の感度レベルに適合する上記時間的要素としてパルス間隔を設定し、設定されたパルス間隔で上記発信素子に2パルスを所定のタイミングで発信させる。
また、この発明による火災感知器の状態情報取得システムは、火災感知器の火災を検出する検出部、上記検出部の状態に応じた状態情報を判定・出力する状態情報判定・出力手段、外部に向けてパルスを発して上記状態情報を送信する発信素子、および、上記状態情報に基づいて上記発信素子から上記パルスを発せさせる状態情報送信手段を有する火災感知器と、上記発信素子からの上記パルスを受信して上記状態情報を取得する状態情報取得手段および取得した上記状態情報を表示する表示器を有する受信装置と、を備えている。そして、上記状態情報判定・出力手段は、上記状態情報としての感度が感度許容範囲に入っているか否かを判定するとともに現在の感度を出力し、上記状態情報送信手段は、上記現在の感度が上記感度許容範囲を所定段数に分割してなる感度レベルのいずれの段の感度レベルに入っているかを判断し、上記現在の感度が入っている上記段の感度レベルに適合する上記時間的要素としてパルス間隔を設定し、設定されたパルス間隔で2つのパルスを所定のタイミングで上記発信素子から発信させ、上記受信装置は、上記所定のタイミングに上記2つのパルスのみ受信したときに、該パルス間隔から導き出した上記状態情報を上記表示器に表示するとともに、上記所定のタイミングに3つ以上のパルスを受信したときに、上記表示器にエラー表示するようになっているものである。
この発明によれば、検出部の状態に応じた状態情報に基づいてパルスの時間的要素であるパルス幅やパルス時間が設定され、設定されたパルス幅やパルス間隔などの時間的要素でパルスが発信素子から発信される。従って、検出部の状態情報を外部に送信する発信素子の発信回数が極めて少なくてすみ、消費電力の小さな火災感知器およびその火災感知器の状態情報取得システムが実現される。
実施の形態1.
図1はこの発明の実施の形態1に係る火災感知器の状態情報取得システムを模式的に示すシステム図、図2はこの発明の実施の形態1に係る火災感知器を示す正面図、図3はこの発明の実施の形態1に係る火災感知器の構成を模式的に示すブロック図、図4はこの発明の実施の形態1に係る火災感知器の回路構成を模式的に示すブロック回路図、図5はこの発明の実施の形態1に係る感度テスターを示す正面図、図6はこの発明の実施の形態1に係る感度テスターの構成を模式的に示すブロック図、図7はこの発明の実施の形態1に係る感度テスターの回路構成を模式的に示すブロック回路図である。図8はこの発明の実施の形態1に係る火災感知器の全体動作を説明するフロー図、図9はこの発明の実施の形態1に係る火災感知器における火災判別動作を説明するフロー図、図10はこの発明の実施の形態1に係る火災感知器における感度測定動作を説明するフロー図、図11はこの発明の実施の形態1に係る火災感知器におけるブリンキング動作を説明するフロー図、図12はこの発明の実施の形態1に係る感度テスターの動作を説明するフロー図である。図13はこの発明の実施の形態1に係る火災感知器における感度とA/D値との関係を説明する図、図14はこの発明の実施の形態1に係る火災感知器における火災表示灯および感度データ送信用発光素子の動作を説明するタイミングチャート、図15はこの発明の実施の形態1に係る火災感知器における感度データ送信用発光素子への出力パルスを示す図、図16はこの発明の実施の形態1に係る火災感知器における感度レベルに対応するパルス間隔の設定状態を説明するタイミングチャート、図17はこの発明の実施の形態1に係る感度テスターにおける動作を説明するタイミングチャートである。
図1において、火災感知器の状態情報取得システムは、例えば天井に取り付けられて火災を検知する火災感知器1と、火災感知器1に電源兼信号線4で接続され、火災感知器1に電力を供給するとともに、火災感知器1からの火災信号を受信する火災受信機2と、点検者が火災感知器1の検出部の状態を確認する際に、火災感知器1からの状態信号を受信・表示する受信装置としての感度テスター3とから構成されている。
つぎに、火災感知器1の構成について図2乃至図4を参照しつつ説明する。なお、ここでは、火災感知器1として煙感知器を用いるものとする。
煙検出用発光素子11は、煙を検出するための発光を行う発光ダイオード(LED)であり、煙検出用受光素子12は、煙検出用発光素子11から発光された光を受光するためのフォトダイオードである。煙検出用発光素子11および煙検出用受光素子12は、本体10内に設けられた暗箱(図示せず)内に設置され、煙検出部を構成している。この暗箱は、煙が入るラビリンスを備えている。そして、煙検出用発光素子11から発光された光がラビリンスから入った煙粒子により散乱され、その散乱光が煙検出用受光素子12に受光される。この煙検出用受光素子12の出力がアンプ13によって増幅される。
マイコン14は、火災感知器1全体の動作を制御する回路チップであり、マイクロプロセッサ(MPU)およびデータを保持するための記憶手段(メモリ)を内部に備え、各部に入出力するための複数のポートおよびアナログデジタル変換器(A/D)を有している。そして、マイコン14は、アンプ13の出力をA/D変換してデータ(A/D値)として取り込む。ここで、マイコン14は、アンプ13のゲインを火災判別時に対して感度測定時に高くなるように切り換えている。
EEPROM15は、書き換え可能な不揮発性メモリであり、火災判別レベル、初期状態での出力レベル、煙検出機能に関する断線判別レベル、感度許容範囲の上限値および下限値のレベルなどがA/D値と対比されるデータとして格納されている。これらのデータは、製造時に、感度調整されて書き込まれることになる。
火災表示灯16は、火災(煙)を検知したことを視覚的に報知するものであり、赤色などの可視光を発光するLEDが用いられる。この火災表示灯16は、火災感知器1の設置場所のどの方向からも見えるように、本体10の外面に2つ設けられている。
ブリンキング用トランジスタ17は、マイコン14からのパルス出力を受けて例えば10.5秒間隔で周期的にオンする。そこで、火災表示灯16が、例えば10.5秒間隔で周期的に点灯(ブリンキング)し、火災感知器1が稼働していることを視覚的に判別できる。
スイッチング回路18は、火災を検出したときに、マイコン14からの出力に基づいてオンされる自己保持回路である。このスイッチング回路18のオン状態保持により、火災受信機2からの一対の電源兼信号線4間のインピーダンスが高インピーダンスから低インピーダンスに変化され、火災受信機2に火災信号を送出する。また、この火災信号の送出と同時に、火災表示灯16が連続点灯する。
端子19は、火災受信機2からの一対の電源兼信号線4が接続される端子であり、火災信号出力端子と電源端子とを兼ねている。
発信素子としての感度データ送信用発光素子20は、感度データを送信する赤外LEDであり、マイコン14の制御により、例えば10.5秒間隔の周期で火災表示灯16の点灯に同期して発光(送信)している。この感度データ送信用発光素子20は、その発光が火災感知器1の設置面である天井から床面に向かって円錐状に出射されるように本体10の正面側に配設されている。即ち、感度データ送信用発光素子20の送信角度範囲が広角度となっている。
ここで、EEPROM15に書き込まれるデータについて図13を参照しつつ説明する。なお、図13は火災感知器1における感度とA/D値との関係を示している。
この火災感知器1における感度許容範囲は、例えば1%/ft〜3%/ftとなっている。そして、初期の特性(NORMAL LEVEL)に基づいて、上下限の状態の特性を予想して、その状態の0%/ftのA/D値をD2、D3として、D1、D2、D3およびD4(A/D値)が、それぞれ断線判別レベル、感度許容範囲の下限値、感度許容範囲の上限値および火災判別レベルとして予め設定されて、EEPROM15に書き込まれる。また、感度許容範囲における上限領域(D3近辺)及び下限領域(D2近辺)を密に、かつ、中央領域を粗にして、例えばトータル30段に分割して得られた30段のレベル(A/D値)が感度出力されるパルス間隔TwのレベルとしてEEPROM15に書き込まれる。この30段の分割に関する粗密によって、限られた段数の中で、異常に近い部分のレベルを詳細に出力することができる。なお、D1、D2、D3およびD4の関係は、D1<D2<D3<D4となっている。
さらに、上記の30段に対応するパルス間隔Twが各感度レベルに対応付けられてEEPROM15に書き込まれる。つまり、D3に対応するパルス間隔Twは1msに設定され、D2に対応するパルス間隔Twは40msに設定されている。また、1msと40msとの間をトータル30分割して得られたパルス間隔Twが、それぞれ上述の30段の感度レベルに対応する。さらに、感度異常の送信信号を表すパルス間隔Tw1、Tw2が例えば感度許容範囲に対応するパルス間隔1ms〜40msの範囲外である60ms、65msに設定されてEEPROM5に格納されている。
なお、後述するように、マイコン14は、感度としてA/D値が上下限D2、D3の範囲を外れるときに感度異常と判断して、火災表示灯16によって異常状態を示す点滅を行うので、異常時の範囲を上記30段から外しているが、異常時の範囲を含めて、上記30段のレベルを設定してもよい。
また、マイコン14のMPUには、検出部の状態に応じた状態情報を判定・出力する状態情報判定・出力手段23と、状態情報に基づいてパルスの時間的要素を設定し、設定された時間的要素に基づいて感度データ送信用発光素子20からパルスを発せさせる状態情報送信手段24とが格納されている。そして、状態情報判定・出力手段23は、取り込まれた6つのA/D値を平均化して現在の感度とし、現在の感度が感度許容範囲内に入っているか否かを判定するとともに、出力する。一方、状態情報送信手段24は、状態情報判定・出力手段23により得られた現在の感度が感度許容範囲を30段に分割して得られた感度レベルのいずれの段の感度レベルに合致しているかを判定し、合致する段の感度レベルに適合する2パルスのパルス間隔Twを設定して感度データ送信用発光素子20にパルス発光させる。また、状態情報送信手段24は、状態情報判定・出力手段23により得られた現在の感度が感度許容範囲外と判定すると、パルス間隔Tw1(Tw2)を選定して感度データ送信用発光素子20にパルス発光させる。ここで、状態情報は検出部の感度である。
つぎに、感度テスター3の構成について図5乃至図7を参照しつつ説明する。
電源兼切換表示灯31は、緑色とオレンジ色の2色のLEDで構成され、感度テスター3の電源がオンされている状態を示すとともに、火災感知器が光電式/イオン化式の切換状態を示す。そして、感度を測定する対象として、光電式の火災感知器の場合には緑色のLEDを点灯させ、イオン化式の火災感知器である場合にはオレンジ色のLEDを点灯させる。なお、電源投入時には、光電式が選択されるようになっている。
エラー表示灯32は赤色のLEDで構成され、感度テスター3が火災感知器1からの感度データを正常に受信できなかった場合に点灯する。表示器33は感度の数値を表示する7セグメント表示器であり、また、受信した感度データが許容範囲の上限値を超えている場合に「88」を表示し、下限値を下回っている場合に「00」を表示する。なお、感度データが許容範囲外であることがわかれば、「88」又は「00」以外の表示であってもよい。
感度データ受信用受光素子34は、感度データ送信用発光素子20から発光された赤外光を受光するためのフォトダイオードである。そして、光学フィルタ(図示せず)が感度データ受信用受光素子34の前面に配置され、可視光をカットしている。また、感度データ受信用受光素子34は本体30に穿設された開口30aから離間させて本体30内に配設され、受光角度を狭くして指向性を高めている。
電源スイッチ35は、本体30の表面に設けられた押し釦式のスイッチであり、長押しにより電源をオン/オフする。そして、電源投入後の通常操作(長押しでない操作)により、光電式とイオン化式とのモード切替が行われる。測定開始スイッチ36は、本体30の表面に設けられた押し釦式のスイッチであり、この測定開始スイッチ36の作動により、火災感知器1から発信される感度データの信号の受信を開始する。
マイコン37は、感度テスター3全体の動作を制御する回路チップであり、マイクロプロセッサ(MPU)38およびデータを保持するための記憶手段(メモリ)39を内部に備え、各部に入出力するための複数のポートを有している。
そして、感度データ受信用受光素子34の出力はアンプ40によって増幅され、搬送波復調器41により復調された後、マイコン37に取り込まれる。マイコン37に取り込まれた感度データのパルス間隔Twが、パルス間隔測定部42によって測定される。MPU38は、測定されたパルス間隔Twとメモリ39に格納されているデータとを比較して火災感知器1の感度の状態を判定し、判定結果を表示駆動部43に出力して表示器33に表示させる。ここで、感度データ受信用受光素子34、アンプ40、搬送波復調器41およびマイコン37などから状態情報取得手段が構成されている。なお、感度テスター3は手のひらサイズで携帯型であり、感度テスター3には、電池44が内蔵されている。
つぎに、このように構成された火災感知器の動作について図8乃至図11に示されるフローチャートおよび図14乃至図16に示されるタイムチャートを参照しつつ説明する。なお、以降および各図において、ステップ1、ステップ2・・を便宜上S1、S2・・と示している。
まず、火災感知器1全体の動作を制御するマイコン14の動作について、図8に示されるフローチャートに基づいて説明する。
電源が火災感知器1に投入され、動作をスタートする(S1)。そして、イニシャル処理(S2)を行った後、マイコン14を所定周期で起動させるタイマー回路21が動作を開始する。このタイマー回路21は3.5秒毎にタイムアップし(S3)、マイコン14に起動出力を出力する。これにより、マイコン14が、図14の(a)に示されるように、3.5秒周期でスリープ状態からラン状態となる。
ついで、マイコン14が起動すると、計数C1を1インクリメントする(S4)。そして、計数C1が3であるか否かを判定する(S5)。
S5において、C1≠3であれば、S6に移行して火災判別ルーチンを実行した後、S9に移行してブリンキングルーチンを実行する。また、S5において、C1=3であれば、C1を0に戻し(S7)、S8に移行して感度測定ルーチンを実行した後、S9に移行してブリンキングルーチンを実行する。このS4およびS5における計数動作は、3回に1回、火災判別ルーチンに代えて感度測定ルーチンを実行させるものである。
そして、S9のブリンキングルーチンが終了すれば、初期に戻って、タイムアップ(S3)を待つ。この時、マイコン14はスリープ状態であり、ステップとして示されていないが、ブリンキングルーチンの処理後に、マイコン14は自動的にラン状態からスリープ状態に入る。
つぎに、火災判別ルーチンの処理について図9を参照しつつ説明する。
火災判別ルーチンでは、マイコン14は、まずアンプ13を起動させ(S11)、ついで煙検出用発光素子11を発光させる。そして、マイコン14は、アンプ13で増幅された煙検出用受光素子12の受光出力をA/D変換して取り込む(S12)。
ついで、マイコン14は、取り込んだA/D値とEEPROM15に格納されている断線判別レベル(D1)とを比較し、煙検出用発光素子11または煙検出用受光素子12の断線などの異常を判別する(S13)。S13において、断線(取り込んだA/D値≦D1)と判別されると、S14に移行して断線フラグF1をオンする。また、断線でない(取り込んだA/D値>D1)と判別されると、S15に移行して断線フラグF1をオフとする。
続いて、マイコン14は、A/D値をEEPROM15に格納されている火災判別レベル(D4)と比較し、火災が発生したかを判別する(S16)。S16において、火災が発生していない(取り込んだA/D値<D4)と判別されると、S9に移行してブリンキングルーチンが実行される。一方、S16において、火災が発生している(取り込んだA/D値≧D4)と判別されると、S17に移行してスイッチング回路18に火災出力を出力し、その後マイコン14がストップ状態となる。
そして、スイッチング回路18は、火災出力を受けてオンして自己保持し、端子19間を低インピーダンス状態に維持する。これにより、端子19に接続されている電源兼信号線4を介して火災受信機2に火災信号が出力される。また、スイッチング回路18がオン状態に自己保持されているので、火災表示灯16が、図14の(c)に示されるように、点灯状態を維持し、火災発生が視覚的に報知される。ここで、マイコン14を火災出力後にストップ状態とすることは、スイッチング回路18がオン状態となると、低インピーダンス状態となり、電源電位が低下してしまい、火災感知器1が通常通りに動作できなくなるからである。
つぎに、感度測定ルーチンの処理について図10を参照しつつ説明する。
感度測定ルーチンでは、マイコン14は、まずアンプ13を起動させ(S21)、ついで煙検出用発光素子11を発光させる。そして、マイコン14は、アンプ13で増幅された煙検出用受光素子12の受光出力をA/D変換して取り込む(S22)。この感度測定ルーチンでは、煙が存在していないため、煙検出用受光素子12の出力は低レベルとなる。そこで、低レベルの出力を正確に判別するために、アンプ13のゲインを高く設定し、大きく増幅した受光出力を取り込んでいる。
ついで、マイコン14は、メモリに記憶されているA/D値を書き換える。すなわち、メモリに格納されている一番古いデータを最新のデータに更新するフィルター処理を行う。そして、メモリに格納されている6個のデータからA/D値の平均値を算出する(S23)。この算出した平均値を現在の感度としてメモリの所定位置に格納する(S24)。
ついで、マイコン14は、メモリに格納されている平均値と、EEPROM15に格納されている許容範囲の上限値および下限値のレベル(D3、D2)とを比較し、現在の感度が許容範囲内であるかを判別する(S25)。S25において、現在の感度が許容範囲外(取り込んだA/D値<D2,あるいはA/D値>D3)であると判別されると、S26に移行して異常フラグF2をオンとする。一方、S25において、現在の感度が許容範囲内(D2≦取り込んだA/D値≦D3)であると判別されると、S27に移行して異常フラグF2をオフとする。その後、S9に移行してブリンキングルーチンが実行される。ここで、S23〜S27が状態情報判定・出力手段23の動作に相当する。
なお、火災感知器1の経年変化は、暗箱内の汚れや回路素子の劣化などにより感度が徐々に変化することにより発生するものである。この感度変化は徐々に変化することから、この感度測定ルーチンでは、1分間の平均値をとることで、一瞬の異常値の影響をなくしている。
つぎに、ブリンキングルーチンの処理について図11を参照しつつ説明する。
ブリンキングルーチンでは、マイコン14は、まず係数C1が0であるかを判別する(S31)。S31において、C1≠0であると判別されると、初期に戻って、タイムアップ(S3)を待つ。また、S31において、C1=0であると判別されると、S32に移行して断線フラグF1がオンしているかを判別する。
そして、S32において、断線フラグF1がオンしていると判別されると、初期に戻って、タイムアップ(S3)を待つ。この時、マイコン14はブリンキング用トランジスタ17の消灯を維持する。そして、火災表示灯16は、図14の(d)に示されるように、消灯し、断線不良の発生、あるいは電源オフが視覚的に報知される。一方、S32において、断線フラグF1がオフしていると判別されると、S33に移行して異常フラグF2がオンしているかを判別する。
そして、S33において、異常フラグF2がオフしていると判別されると、S34に移行し、マイコン14はブリンキング用トランジスタ17に通常のパルス点灯出力を行う。このパルス点灯出力により、ブリンキング用トランジスタ17がパルス的にオンし、火災表示灯16はパルス点灯し、火災感知器1が正常に動作していることを視覚的に報知する。この火災表示灯16のパルス点灯は、係数C1が0のときのみ行われ、図14の(b)に示されるように、10.5秒に1回の割合で、周期的にパルス点灯するブリンキング動作となる。
S33において、異常フラグF2がオンしていると判別されると、S35に移行してブリンキング用トランジスタ17にパルス点灯出力を2回出力した後、S36に移行する。そして、パルス点灯出力がブリンキング用トランジスタ17に2回出力されると、火災表示灯16が、図14の(e)に示されるように、例えば100msの間隔で2回続けてパルス点灯するダブルブリンキングを行い、通常のブリンキングと明確に区別でき、火災感知器1が感度異常であることが視覚的に報知される。また、S36では、メモリに格納されている現在の感度のデータを読み出し、当該データに対応した発光出力を出力する(S37)。この時、現在の感度のデータが感度許容範囲より下回っていると、パルス間隔Tw1を選択し、パルス間隔Tw1の発光出力を出力する。また、現在の感度のデータが感度許容範囲を上回っていると、パルス間隔Tw2を選択し、パルス間隔Tw2の発光出力を出力する。ここで、S31〜S37が状態情報送信手段24の動作に相当する。
ついで、マイコン14は、メモリに格納されている現在の感度のデータを読み出し(S36)、当該データに対応した発光出力を出力し(S37)、初期に戻って、タイムアップ(S3)を待つ。S37においては、マイコン14は、EEPROM15に格納されている感度許容範囲の上限値(D3)から下限値(D2)までに対して、現在の感度のデータがD2とD3との間のいずれの段の感度レベルに属しているかを判断する。そして、例えば現在の感度のデータがD3に一致していれば、図16の(a)に示されるように、1msのパルス間隔Twの発光出力を出力する。また、現在の感度のデータがD2に一致していれば、図16の(b)に示されるように、40msのパルス間隔Twの発光出力を出力する。そして、EEPROM15に格納されている30段の感度レベルに対応するパルス間隔Twから、現在の感度のデータが属する段の感度レベルに対応するパルス間隔Twを選択し、選択されたパルス間隔Twの発光出力を出力する。
また、S37において、現在の感度のデータが感度許容範囲より下回っていると、パルス間隔Tw1を選択し、パルス間隔Tw1の発光出力を出力する。また、現在の感度のデータが感度許容範囲を上回っていると、パルス間隔Tw2を選択し、パルス間隔Tw2の発光出力を出力する。
この感度のデータに対応した発光出力は、図15に示されるように、特定の周波数fc、例えば38kHzで変調されて、感度データ送信用発光素子20に出力される。これにより、感度データ送信用発光素子20から発光される光が白熱電球や蛍光灯などのノイズ光源から光と区別される。
このように、この感度のデータに対応した発光出力は、現在の感度を2つのパルス間隔Twに換算し、換算されたパルス間隔Twとなるように感度データ送信用発光素子20を2回パルス発光させるものである。これにより、最初のパルス発光から次のパルス発光までの時間が現在の感度を表すことになる。この感度のデータの送信は、図14の(f)に示されるように、火災表示灯16のブリンキングと同じタイミングで10.5秒ごとに行われ、火災表示灯16のブリンキングが行われないときには、感度のデータの送信も行われない。なお、図14の(f)における1回のオンでは、図15に示されるように2回のパルスが発光されているが、タイミングとして1回に示している。
つぎに、感度テスター3の動作について図12および図17を参照しつつ説明する。なお、図12に示されるフローチャートは、感度テスター3全体の動作を制御するマイコン37の動作である。
感度テスター3は、まず電源スイッチ35の長押しにより電源が投入されてスタートする(S41)。そこで、マイコン37はイニシャル処理(S42)を行った後、スイッチ操作を監視する。
そして、S43において、電源スイッチ35が通常操作されると、モード切替が行われ(S44)、感度測定される火災感知器1が光電式かイオン化式かが選択され、電源兼切換表示灯31が選択されたモードに応じて点灯する。
ついで、S45において、測定開始スイッチ36がオンされたか否かを判別する。測定開始スイッチ36がオンされたと判別されると、S46に移行してタイマーT1がスタートされ、感度データを示す1回目のパルスP1を待つ(S47)。この時、タイマーT1は例えば30秒に設定され、タイマーT1がタイムアップするまで1回目のパルスP1を待つ(S48)。そして、タイマーT1がタイムアップすると、エラーと判断し、S62に移行してエラー表示灯32を点灯させ、エラー表示する。
そして、S47において1回目のパルスP1が受信されると、カウンタがスタートされ(S49)、タイマーT1がクリアされる(S50)。ついで、タイマーT2がスタートされ(S51)、感度データを示す2回目のパルスP2を待つ(S52)。この時、タイマーT2は例えば0.5秒に設定され、タイマーT2がタイムアップするまで2回目のパルスP2を待つ(S53)。そして、タイマーT2がタイムアップすると、エラーと判断し、S62に移行してエラー表示灯32を点灯させ、エラー表示する。
そして、S52において2回目のパルスP2が受信されると、カウンタがストップされ(S54)、タイマーT2がクリアされる(S55)。ついで、タイマーT3がスタートされ(S56)、パルスを待つ(S57)。この時、タイマーT3は例えば3.0秒に設定されている。そして、タイマーT3がタイムアップするまでに3回目のパルスが受信されると、ノイズによるエラーと判断し、タイマーT3がクリアされ(S58)、S62に移行してエラー表示灯32を点灯させ、エラー表示する。つまり、必要のないパルスを検出していることであり、図17の(b)に示されるように、3回目のパルスがノイズパルスPnと認識され、エラー表示されることになる。
また、図17の(a)に示されるように、3回目のパルスが受信されることなくタイマーT3がタイムアップする(S59)と、S60に移行する。そこで、マイコン37は、カウンタがスタートしてストップするまでのカウント値から現在の感度を換算し、現在の感度の数値(単位:%/ft)を表示器33に表示する(S61)。また、カウント値から換算された現在の感度が感度許容範囲を下回っていると、「00」を表示器33に表示し、上回っていると、「88」を表示器33に表示する。これにより、点検者が、感度の異常を認識できる。この時、マイコン37は、取得した現在の感度をメモリ39に保持し、表示器33への表示を維持する。
このように、感度テスター3は、測定開始スイッチ36の操作に基づいて火災感知器1からの感度データの受信動作を行い、表示器33に受信した現在の感度を表示(S61)し、あるいは、エラー表示灯32にエラー表示する(S62)。その後、マイコン37は、イニシャル処理を行った後のスイッチ操作の監視に戻る。そして、測定開始スイッチ36の操作があるたびに、上述の動作を繰り返す。なお、測定開始スイッチ36の操作時には、表示器33またはエラー表示灯32の表示はクリアされ、メモリ39に格納されている現在の感度もクリアされる。
また、タイマーT1、T2がタイムアップしてしまった場合(S48、S53)、或いはタイマーT3がタイムアップする前に3つめのパルスが受信された場合(S57)には、感度データを示す2つのパルスP1、P2が正常に受信されなかったとし、マイコン37は、エラー表示灯32を点灯し、エラー表示を行う。そこで、点検者は、測定開始スイッチ36を操作して、感度測定を再度実行することになる。
また、火災感知器1の近傍に設置されている照明機器から照明光として赤外光が照射されることがある。この照明機器からの赤外光が感度テスター3に受信されると、タイマーT3がタイムアップする前に3つめのパルス、即ちノイズが受信されたことになる。この場合、エラー表示灯32が点灯し、点検者が視覚的にエラーを認識できる。そこで、点検者は、感度テスター3を火災感知器1に近づけて感度測定を再度実行することができ、ノイズを確実に排除することができる。
このように、この実施の形態1によれば、現在の感度が感度許容範囲内のいずれの段の感度レベルに入っているかを判断し、現在の感度が入っている段の感度レベルに適合するパルス間隔Twを設定し、設定されたパルス間隔Twで感度データ送信用発光素子20に2パルスを所定のタイミングで発信させるようにしている。そこで、感度データをコード化した伝送データに基づいて発光素子を発光させて感度データを送信する従来技術に比べて、感度データ送信用発光素子20の発光回数が極めて低減され、低消費電力の火災感知器1およびその状態情報取得システムを実現できる。
また、感度許容範囲の上限領域および下限領域を密に分割し、感度許容範囲の中央領域を粗に分割して、30段の感度レベルを得ているので、感度許容範囲の上限領域および下限領域の分解能が高くなり、感度許容範囲の上限領域または下限領域に到達した時の現在の感度を高精度に検知できる。そこで、現在の感度が感度許容範囲外となる前に、火災感知器1の検出部を交換することができ、安定した火災検知を実現できる。
また、感度データ送信用発光素子20から感度データを送信するパルスに同期して、火災表示灯16をブリンキングさせているので、点検者が火災感知器1から感度データが送信されていることを目視確認でき、感度データの点検作業が容易となる。
また、感度テスター3が、所定のタイミングに3つ以上のパルスを受信したときに、又は、所定のタイミング外でパルスを受信したときに、エラー表示灯32にエラー表示するようにしているので、ノイズによる感度データの誤検出を目視確認できる。そこで、エラー表示32にエラー表示されたら、再度測定をし直すことで、ノイズの影響を排除して、正確な感度データを得ることができる。
また、感度データ送信用発光素子20の送信角度範囲が広角度範囲に設定され、感度データ受信用受光素子34の受信角度範囲が狭角度範囲に設定されている。そこで、感度テスター3の作業位置が限定されず、感度テスター3の受信方向を火災感知器1に向けることで、ノイズ成分を拾わずに確実な信号の受信を行うことができる。
また、現在の感度が感度許容範囲内であるか否かを判別し、感度許容範囲外である(感度異常)と判別したときに、パルス間隔Tw1、Tw2で2パルスを感度データ送信用発光素子20から発光させるとともに、火災表示灯16をダブルブリンキングさせている。そこで、点検者が、感度テスター3の表示器33に「00」又は「88」の表示から感度異常を認識できるとともに、火災表示灯16のダブルブリンキングから感度異常を認識できるので、感度異常が実際に発生していることを明確に判断できる。
また、感度許容範囲内に入っている感度情報と感度許容範囲内に入っていない異常情報とが単一の感度データ送信用発光素子20を用いて送信されているので、部品点数が削減され、火災感知器1の低コスト化、小型化が図られる。
実施の形態2.
図18はこの発明の実施の形態2に係る火災感知器の状態情報取得システムを模式的に示すシステム図、図19はこの発明の実施の形態2に係る火災感知器を示す正面図、図20はこの発明の実施の形態2に係る火災感知器の構成を模式的に示すブロック図、図21はこの発明の実施の形態2に係る火災感知器の回路構成を模式的に示すブロック回路図、図22はこの発明の実施の形態2に係る感度テスターを示す正面図、図23はこの発明の実施の形態2に係る感度テスターの構成を模式的に示すブロック図、図24はこの発明の実施の形態2に係る感度テスターの回路構成を模式的に示すブロック回路図である。図25はこの発明の実施の形態2に係る火災感知器の全体動作を説明するフロー図、図26はこの発明の実施の形態2に係る火災感知器における火災判別動作を説明するフロー図、図27はこの発明の実施の形態2に係る火災感知器における感度測定動作を説明するフロー図、図28はこの発明の実施の形態2に係る火災感知器におけるブリンキング動作を説明するフロー図、図29はこの発明の実施の形態2に係る感度テスターの動作を説明するフロー図である。図30はこの発明の実施の形態2に係る火災感知器における火災表示灯および感度データ送信用発光素子の動作を説明するタイミングチャートである。
図18において、火災感知器の状態情報取得システムは、例えば天井に取り付けられて火災を検知する火災感知器1Aと、火災感知器1Aに電源兼信号線4で接続され、火災感知器1Aに電力を供給するとともに、火災感知器1Aからの火災信号を受信する火災受信機2と、点検者が火災感知器1Aの検出部の状態を確認する際に、火災感知器1Aからの状態信号を受信・表示する受信装置としての感度テスター3Aとから構成されている。
図19乃至図21において、起動パルス受信用受光素子27は、感度テスター3Aから送信される起動パルスを受光するためのフォトダイオードである。そして、光学フィルタ(図示せず)が起動パルス受信用受光素子27の前面に配置され、可視光をカットしている。さらに、起動パルス受信用受光素子27の受信角度範囲が、感度データ送信用発光素子20と同様に、広角度となっている。また、マイコン14は、起動パルス受信用受光素子27による起動パルスの受信を周期的に確認し、起動パルスの受信時に、感度データ送信用発光素子20から感度データ(P1+P2)に代えて応答パルスP0を送信した後、状態情報判定・出力手段23および状態情報送信手段24などを実行させるようになっている。
なお、火災感知器1Aの他の構成は上述の火災感知器1と同様に構成されている。
図22乃至図24において、起動パルス送信用発光素子45は、火災感知器1Aに向けて起動パルスを送信する赤外LEDである。この起動パルス送信用発光素子45は、マイコン37からの制御により、起動パルスを発光・送信する。また、起動パルス送信用発光素子45は本体30に穿設された開口30bから離間させて本体30内に配設され、送信角度範囲を狭くして指向性を高めている。
起動パルス送信・測定開始スイッチ46は、本体30の表面に設けられた押し釦式のスイッチであり、この起動パルス送信・測定開始スイッチ46の作動により、火災感知器1Aに起動パルスを送信するとともに、火災感知器1Aから送信される感度データの信号の受信を開始する。
マイコン37は、感度テスター3A全体の動作を制御する回路チップであり、マイクロプロセッサ(MPU)38およびデータを保持するための記憶手段(メモリ)39を内部に備え、各部に入出力するための複数のポートを有している。
そして、マイコン37は、起動パルス送信・測定開始スイッチ46の作動を受けて、起動パルス送信用発光素子45から起動パルスを発光させ、火災感知器1Aに起動パルスを送信する。また、マイコン37は、火災感知器1Aからの送信信号を受信して、火災感知器1Aへの起動パルスの送信を停止するとともに、火災感知器1Aから発信される感度データの信号の受信を開始する。
そして、感度データ受信用受光素子34の出力はアンプ40によって増幅され、搬送波復調器41により復調された後、マイコン37に取り込まれる。マイコン37に取り込まれた感度データのパルス間隔Twが、パルス間隔測定部42Aによって測定される。MPU38は、測定されたパルス間隔Twとメモリ39に格納されているデータとを比較して火災感知器1Aの感度の状態を判定し、判定結果を表示駆動部43に出力して表示器33に表示させる。
なお、感度テスター3Aの他の構成は上述の感度テスター3と同様に構成されている。
つぎに、このように構成された火災感知器の動作について図25乃至図28に示されるフローチャートおよび図30、図15および図16に示されるタイムチャートを参照しつつ説明する。なお、以降および各図において、ステップ101、ステップ102・・を便宜上S101、S102・・と示している。
まず、火災感知器1A全体の動作を制御するマイコン14の動作について、図25に示されるフローチャートに基づいて説明する。
電源が火災感知器1Aに投入され、動作をスタートする(S101)。そして、イニシャル処理(S102)を行った後、マイコン14を所定周期で起動させるタイマー回路21が動作を開始する。このタイマー回路21は3.5秒毎にタイムアップし(S103)、マイコン14に起動出力を出力する。これにより、マイコン14が、図30の(a)に示されるように、3.5秒周期でスリープ状態からラン状態となる。
ついで、マイコン14が起動すると、計数C1を1インクリメントする(S104)。そして、計数C1が3であるか否かを判定する(S105)。
S105において、C1≠3であれば、S106に移行して火災判別ルーチンを実行した後、S109に移行してブリンキングルーチンを実行する。また、S105において、C1=3であれば、C1を0に戻し(S107)、S108に移行して感度測定ルーチンを実行した後、S109に移行してブリンキングルーチンを実行する。このS104およびS105における計数動作は、3回に1回、火災判別ルーチンに代えて感度測定ルーチンを実行させるものである。
そして、S109のブリンキングルーチンが終了すれば、初期に戻って、タイムアップ(S103)を待つ。この時、マイコン14はスリープ状態であり、ステップとして示されていないが、ブリンキングルーチンの処理後に、マイコン14は自動的にラン状態からスリープ状態に入る。
つぎに、火災判別ルーチンの処理について図26を参照しつつ説明する。
火災判別ルーチンでは、マイコン14は、まずアンプ13を起動させる(S111)。このアンプ13の起動時、アンプ13の立ち上がり時間があるので、それに合わせて、起動パルス受信用受光素子27が起動パルスを受信しているか否かを判別する(S112)。S112において、起動パルス受信用受光素子27が起動パルスを受信していると判別されると、S113に移行して起動フラグF3をオンする。ついで、S114に移行して感度データ送信用発光素子20から応答パルスP0を送信した後、受光出力を取り込むことなくS109に移行してブリンキングルーチンが実行される。
ここで、S114の後にすぐS109へ移行するのは、応答パルスP0の発光によるわずかな電源電圧変動の影響を受けることが考えられ、正確なA/D値取り込みが確保できないからである。
また、S112において、起動パルス受信用受光素子27が起動パルスを受信していないと判別されると、S115に移行する。そして、S115において、マイコン14は、煙検出用発光素子11を発光させ、アンプ13で増幅された煙検出用受光素子12の受光出力をA/D変換して取り込む。
ついで、マイコン14は、取り込んだA/D値とEEPROM15に格納されている断線判別レベル(D1)とを比較し、煙検出用発光素子11または煙検出用受光素子12の断線などの異常を判別する(S116)。S116において、断線(取り込んだA/D値≦D1)と判別されると、S118に移行して断線フラグF1をオンする。また、断線でない(取り込んだA/D値>D1)と判別されると、S117に移行して断線フラグF1をオフとする。
続いて、マイコン14は、A/D値をEEPROM15に格納されている火災判別レベル(D4)と比較し、火災が発生したかを判別する(S119)。S119において、火災が発生していない(取り込んだA/D値<D4)と判別されると、S109に移行してブリンキングルーチンが実行される。一方、S119において、火災が発生している(取り込んだA/D値≧D4)と判別されると、S120に移行してスイッチング回路18に火災出力を出力し、その後S121に移行してマイコン14がストップ状態となる。
そして、スイッチング回路18は、火災出力を受けてオンして自己保持し、端子19間を低インピーダンス状態に維持する。これにより、端子19に接続されている電源兼信号線4を介して火災受信機2に火災信号が出力される。また、スイッチング回路18がオン状態に自己保持されているので、火災表示灯16が、図30の(c)に示されるように、点灯状態を維持し、火災発生が視覚的に報知される。ここで、マイコン14を火災出力後にストップ状態とすることは、スイッチング回路18がオン状態となると、低インピーダンス状態となり、電源電位が低下してしまい、火災感知器1Aが通常通りに動作できなくなるからである。
つぎに、感度測定ルーチンの処理について図27を参照しつつ説明する。
感度測定ルーチンでは、マイコン14は、まずアンプ13を起動させる(S131)。このアンプ13の起動時、アンプ13の立ち上がり時間があるので、それに合わせて、起動パルス受信用受光素子27が起動パルスを受信しているか否かを判別する(S132)。S132において、起動パルス受信用受光素子27が起動パルスを受信していると判別されると、S133に移行して起動フラグF3をオンする。ついで、S134に移行して感度データ送信用発光素子20から応答パルスP0を送信した後、受光出力を取り込むことなくS109に移行してブリンキングルーチンが実行される。
また、S132において、起動パルス受信用受光素子27が起動パルスを受信していないと判別されると、S135に移行する。そして、S135において、マイコン14は、煙検出用発光素子11を発光させ、アンプ13で増幅された煙検出用受光素子12の受光出力をA/D変換して取り込む。この感度測定ルーチンでは、煙が存在していないため、煙検出用受光素子12の出力は低レベルとなる。そこで、低レベルの出力を正確に判別するために、アンプ13のゲインを高く設定し、大きく増幅した受光出力を取り込んでいる。
ついで、マイコン14は、メモリに記憶されているA/D値を書き換える。すなわち、メモリに格納されている一番古いデータを最新のデータに更新するフィルター処理を行う。そして、メモリに格納されている6個のデータからA/D値の平均値を算出する(S136)。この算出した平均値を現在の感度としてメモリの所定位置に格納する(S137)。
ついで、マイコン14は、メモリに格納されている平均値と、EEPROM15に格納されている許容範囲の上限値および下限値のレベル(D3、D2)とを比較し、現在の感度が許容範囲内であるかを判別する(S138)。S138において、現在の感度が許容範囲外(取り込んだA/D値<D2、あるいはA/D値>D3)であると判別されると、S140に移行して異常フラグF2をオンとする。一方、S138において、現在の感度が許容範囲内(D2≦取り込んだA/D値≦D3)であると判別されると、S139に移行して異常フラグF2をオフとする。その後、S109に移行してブリンキングルーチンが実行される。
なお、火災感知器1Aの経年変化は、暗箱内の汚れや回路素子の劣化などにより感度が徐々に変化することにより発生するものである。この感度変化は徐々に変化することから、この感度測定ルーチンでは、1分間の平均値をとることで、一瞬の異常値の影響をなくしている。
つぎに、ブリンキングルーチンの処理について図28を参照しつつ説明する。
ブリンキングルーチンでは、マイコン14は、まず送信フラグF4がオンされているか否かを判別する(S141)。そして、S141において、送信フラグF4がオンされていると判別されると、マイコン14は、メモリに格納されている現在の感度のデータを読み出し(S142)、当該データに対応した発光出力を出力し(S143)、送信フラグF4をオフとして(S144)、S147に移行する。
そして、S143においては、マイコン14は、EEPROM15に格納されている感度許容範囲の上限値(D3)から下限値(D2)までに対して、現在の感度のデータがD2とD3との間のいずれの段の感度レベルに属しているかを判断する。そして、例えば現在の感度のデータがD3に一致していれば、図16の(a)に示されるように、1msのパルス間隔Twの発光出力を出力する。また、現在の感度のデータがD2に一致していれば、図16の(b)に示されるように、40msのパルス間隔Twの発光出力を出力する。そして、EEPROM15に格納されている30段の感度レベルに対応するパルス間隔Twから、現在の感度のデータが属する段の感度レベルに対応するパルス間隔Twを選択し、選択されたパルス間隔Twの発光出力を出力する。
また、S143において、現在の感度のデータが感度許容範囲より下回っていると、パルス間隔Tw1を選択し、パルス間隔Tw1の発光出力を出力する。また、現在の感度のデータが感度許容範囲を上回っていると、パルス間隔Tw2を選択し、パルス間隔Tw2の発光出力を出力する。
この感度のデータに対応した発光出力は、図15に示されるように、特定の周波数fc、例えば38kHzで変調されて、感度データ送信用発光素子20に出力される。これにより、感度データ送信用発光素子20から発光される光が白熱電球や蛍光灯などのノイズ光源から光と区別される。
また、S141において、送信フラグF4がオフされていると判別されると、S145に移行して係数C1が0であるかを判別する。S145において、C1≠0であると判別されると、S150に移行する。また、S145において、C1=0であると判別されると、S146に移行して断線フラグF1がオンしているかを判別する。
そして、S146において、断線フラグF1がオンしていると判別されると、マイコン14はブリンキング用トランジスタ17の消灯を維持させ、S150に移行する。そして、火災表示灯16は、図30の(d)に示されるように、消灯し、断線不良の発生、あるいは電源オフが視覚的に報知される。
また、S146において、断線フラグF1がオフしていると判別されると、S147に移行して異常フラグF2がオンしているかを判別する。
そして、S147において、異常フラグF2がオフしていると判別されると、S148に移行し、マイコン14はブリンキング用トランジスタ17に通常のパルス点灯出力を出力した後、S150に移行する。このパルス点灯出力により、ブリンキング用トランジスタ17がパルス的にオンし、火災表示灯16はパルス点灯し、火災感知器1Aが正常に動作していることが視覚的に報知される。この火災表示灯16のパルス点灯は、係数C1が0、断線フラグF1がオフ、かつ、異常フラグF2がオフの場合に行われ、図30の(b)に示されるように、10.5秒に1回の割合で、周期的にパルス点灯するブリンキング動作となる。
また、S147において、異常フラグF2がオンしていると判別されると、S149に移行してブリンキング用トランジスタ17にパルス点灯出力を2回出力した後、S150に移行する。そして、パルス点灯出力がブリンキング用トランジスタ17に2回出力されると、火災表示灯16が、図30の(e)に示されるように、2回続けてパルス点灯するダブルブリンキングを行い、通常のブリンキングと明確に区別でき、火災感知器1Aが感度異常であることが視覚的に報知される。
ついで、S150において、起動フラグF3がオンしているか否かを判別する。そして、起動フラグF3がオンしていると判別されると、S151に移行して送信フラグF4をオンし、ついでS152に移行して起動フラグF3をオフとした後、初期に戻って、タイムアップ(S103)を待つ。また、S150において、起動フラグF3がオフしていると判別されると、初期に戻って、タイムアップ(S103)を待つ。
これにより、起動パルスを受信した場合(起動フラグF3がオンしている場合)、次のタイムアップ後(3.5秒後)、現在の感度のデータを表すパルス間隔Twの2パルスが感度データ送信用発光素子20から発光される。そして、この感度のデータの送信は、計数C1にかかわらず行われ、同時に、火災表示灯16のパルス点灯が同じタイミングで行われ、感度データが送信されていることが目視確認できる。
ここで、S135〜S140およびS147〜S149が状態情報判定・出力手段23の動作に相当し、S142〜S143が状態情報送信手段24の動作に相当する。
つぎに、感度テスター3Aの動作について図29および図17を参照しつつ説明する。なお、図29に示されるフローチャートは、感度テスター3A全体の動作を制御するマイコン37の動作である。
感度テスター3Aは、まず電源スイッチ35の長押しにより電源が投入されてスタートする。そこで、マイコン37はイニシャル処理(S161)を行った後、スイッチ操作を監視する。
そして、S162において、電源スイッチ35が通常操作されると、モード切替が行われ(S163)、感度測定される火災感知器1が光電式かイオン化式かが選択され、電源兼切換表示灯31が選択されたモードに応じて点灯する。
ついで、S164において、起動パルス送信・測定開始スイッチ46がオンされたか否かを判別する。起動パルス送信・測定開始スイッチ46がオンされたと判別されると、S165に移行してタイマーT4がスタートされ、ついでS166に移行して起動パルス送信用発光素子45を発光させ、起動パルスを送信させる。そして、S167に移行して応答パルスP0の有無を判別する。このタイマーT4は、10秒に設定されている。そこで、タイマーT4がタイムアップするまで、起動パルスを連続して送信する。そして、応答パルスP0が受信されることなくタイマーT4がタイムアップすると(S168)、S186に移行してエラー表示灯32を点灯させ、エラー表示する。
また、タイマーT4がタイムアップするまでに応答パルスP0が受信されると、S169に移行してタイマーT4をクリアし、S170に移行してタイマーT1をスタートさせた後、S171に移行して感度データを示す1回目のパルスP1を待つ。この時、タイマーT1は例えば30秒に設定され、タイマーT1がタイムアップするまで1回目のパルスP1を待つ(S172)。そして、タイマーT1がタイムアップすると、エラーと判断し、S186に移行してエラー表示灯32を点灯させ、エラー表示する。
そして、S171において1回目のパルスP1が受信されると、カウンタがスタートされ(S173)、タイマーT1がクリアされる(S174)。ついで、タイマーT2がスタートされ(S175)、感度データを示す2回目のパルスP2を待つ(S176)。この時、タイマーT2は例えば0.5秒に設定され、タイマーT2がタイムアップするまで2回目のパルスP2を待つ(S177)。そして、タイマーT2がタイムアップすると、エラーと判断し、S186に移行してエラー表示灯32を点灯させ、エラー表示する。
そして、S176において2回目のパルスP2が受信されると、カウンタがストップされ(S178)、タイマーT2がクリアされる(S179)。ついで、タイマーT3がスタートされ(S180)、パルスを待つ(S181)。この時、タイマーT3は例えば3.0秒に設定されている。そして、タイマーT3がタイムアップするまでに3回目のパルスが受信されると、ノイズによるエラーと判断し、タイマーT3がクリアされ(S182)、S186に移行してエラー表示灯32を点灯させ、エラー表示する。つまり、必要のないパルスを検出していることであり、図17の(b)に示されるように、3回目のパルスがノイズパルスPnと認識され、エラー表示されることになる。
また、図17の(a)に示されるように、3回目のパルスが受信されることなくタイマーT3がタイムアップする(S183)と、S184に移行する。そこで、マイコン37は、カウンタがスタートしてストップするまでのカウント値から現在の感度を換算し、現在の感度の数値(単位:%/ft)を表示器33に表示する(S185)。また、カウント値から換算された現在の感度が感度許容範囲を下回っていると、「00」を表示器33に表示し、上回っていると、「88」を表示器33に表示する。これにより、点検者が感度の異常を認識できる。この時、マイコン37は、取得した現在の感度をメモリ39に保持し、表示器33への表示を維持する。
このように、感度テスター3Aは、起動パルス送信・測定開始スイッチ46の操作に基づいて火災感知器1Aからの感度データの受信動作を行い、表示器33に受信した現在の感度を表示(S185)し、あるいは、エラー表示灯32にエラー表示する(S186)。その後、マイコン37は、イニシャル処理を行った後のスイッチ操作の監視に戻る。そして、起動パルス送信・測定開始スイッチ46の操作があるたびに、上述の動作を繰り返す。なお、起動パルス送信・測定開始スイッチ46の操作時には、表示器33またはエラー表示灯32の表示はクリアされ、メモリ39に格納されている現在の感度もクリアされる。
また、タイマーT1、T2、T4がタイムアップしてしまった場合(S168、S172、S177)、或いはタイマーT3がタイムアップする前に3つめのパルスが受信された場合(S181)には、応答パルスP0または感度データを示す2つのパルスP1、P2が正常に受信されなかったとし、マイコン37は、エラー表示灯32を点灯し、エラー表示を行う。そこで、点検者は、起動パルス送信・測定開始スイッチ46を操作して、感度測定を再度実行することになる。
また、火災感知器1Aの近傍に設置されている照明機器から照明光として赤外光が照射されることがある。この照明機器からの赤外光が感度テスター3Aに受信されると、タイマーT3がタイムアップする前に3つめのパルス、即ちノイズが受信されたことになる。この場合、エラー表示灯32が点灯し、点検者が視覚的にエラーを認識できる。そこで、点検者は、感度テスター3Aを火災感知器1に近づけて感度測定を再度実行することができ、ノイズを確実に排除することができる。
このように、この実施の形態2によれば、マイコン14が、起動パルス受信用受光素子27の起動パルスの受信の有無を周期的(3.5秒毎)に確認して起動パルスの受信時に状態情報判定・出力手段23および状態情報送信手段24等の動作を実行している。そして、感度テスター3Aが、起動パルス送信用発光素子45から起動パルスを上記周期以上(10秒)の期間、連続的に発生している。そこで、火災感知器1Aは、例えばマイコン14の起動するタイミングで起動パルスの受信の有無を確認でき、起動パルスの受信時に状態情報判定・出力手段23および状態情報送信手段24等の動作を実行できるので、消費電力を低減することができる。
また、火災感知器1Aは、起動パルスの受信がある時に、状態情報判定・出力手段23および状態情報送信手段24等の動作の実行に先だって応答パルスP0を送信し、感度テスター3Aは、応答パルスP0を受信すると、起動パルスの送信を停止し、感度データの信号の受信を開始している。そこで、感度テスター3Aによる感度データの受信動作が火災感知器1Aによる感度データの送信動作に同期して行われ、より消費電力を低減することができる。
また、感度データ送信用発光素子20および起動パルス受信用受光素子27の送受信角度範囲が広角度範囲に設定され、感度データ受信用受光素子34および起動パルス送信用発光素子45の送受信角度範囲が狭角度範囲に設定されている。そこで、感度テスター3Aの作業位置が限定されず、感度テスター3Aの送受信方向を火災感知器1Aに向けることで、ノイズ成分を拾わずに確実な信号の送受信を行うことができる。
また、現在の感度が感度許容範囲内であるか否かを判別し、感度許容範囲外である(感度異常)と判別したときに、パルス間隔Tw1、Tw2で2パルスを感度データ送信用発光素子20から発光させるとともに、火災表示灯16をダブルブリンキングさせている。そこで、点検者が、火災感知器1Aの点検作業時に、感度テスター3Aの表示器33の「00」又は「88」の表示から感度異常を認識できるとともに、火災表示灯16のダブルブリンキングから感度異常を認識できるので、感度異常が実際に発生していることを明確に判断できる。
また、感度許容範囲内に入っている感度情報と感度許容範囲内に入っていない異常情報とが単一の感度データ送信用発光素子20を用いて送信されているので、部品点数が削減され、火災感知器1の低コスト化、小型化が図られる。
また、現在の感度が感度許容範囲内のいずれの段の感度レベルに入っているかを判断し、現在の感度が入っている段の感度レベルに適合するパルス間隔Twを設定し、設定されたパルス間隔Twで感度データ送信用発光素子20に2パルスを所定のタイミングで発信させるようにしている。そこで、感度データをコード化した伝送データに基づいて発光素子を発光させて感度データを送信する従来技術に比べて、感度データ送信用発光素子20の発光回数が極めて低減され、低消費電力化が図られる。
また、感度許容範囲の上限領域および下限領域を密に分割し、感度許容範囲の中央領域を粗に分割して、30段の感度レベルを得ているので、感度許容範囲の上限領域および下限領域の分解能が高くなり、感度許容範囲の上限領域または下限領域に到達した時の現在の感度を高精度に検知できる。そこで、現在の感度が感度許容範囲外となる前に、火災感知器1Aの検出部を交換することができ、安定した火災検知を実現できる。
また、感度データ送信用発光素子20から感度データを送信するパルスに同期して、火災表示灯16をブリンキングさせているので、点検者が火災感知器1から感度データが送信されていることを目視確認でき、感度データの点検作業が容易となる。
また、感度テスター3Aが、所定のタイミングに3つ以上のパルスを受信したときに、又は、所定のタイミング外でパルスを受信したときに、エラー表示灯32にエラー表示するようにしているので、ノイズによる感度データの誤検出を防止できる。そこで、エラー表示32にエラー表示されたら、再度測定をし直すことで、ノイズの影響を排除して、正確な感度データを得ることができる。
なお、上記各実施の形態では、感度許容範囲の上限領域および下限領域を密に分割し、感度許容範囲の中央領域を粗に分割して、30段の感度レベルを得るものとして説明しているが、感度許容範囲を均一に30段に分割して感度レベルを得るようにしてもよい。
また、上記各実施の形態では、感度レベルの段数は30段に限定されるものではなく、火災感知器1の仕様に基づいて適宜設定されるものである。
また、上記各実施の形態では、現在の感度を表すための30段の感度レベルに対応するパルス間隔TwをEEPROM15に予め格納するものとして説明しているが、マイコン14が、現在の感度が30段の感度レベルのいずれの段の感度レベルに対応するかを判別した後、該当する段の感度レベルに対応するパルス間隔Twを演算処理して算出するようにしてもよい。この場合、マイコン14が、EEPROM15に格納されている感度許容範囲の上限値(D3)および下限値(D2)を読み出し、読み出された上限値(D3)および下限値(D2)に基づいて30段の感度レベルを演算処理して算出するようにしてもよい。
また、上記各実施の形態では、現在の感度(感度レベル)を2パルスのパルス間隔で表すものとして説明しているが、感度レベルを表すパルスの時間的要素はパルス間隔に限定されるものではなく、例えばパルス幅で表すようにしてもよい。
また、上記各実施の形態では、表示器33を用いて感度表示を行い、エラー表示灯32を用いてエラー表示を行うものとしているが、表示器33を用いて感度表示とエラー表示を行うようにしてもよい。
また、上記各実施の形態では、火災感知器として煙感知器を用いるものとして説明しているが、火災感知器は煙感知器に限定されるものではなく、例えば熱感知器などを用いてもよい。
また、上記各実施の形態では、感度異常を火災表示灯16のダブルブリンキングにより報知するものとしているが、感度異常の報知は火災表示灯16のダブルブリンキングに限定されるものではなく、正常な感度情報の送信時と感度異常の送信時とを区別できればよく、両者のブリンキング回数が異なればよい。
また、上記実施の形態では、検出部の状態に応じた状態情報として感度を用いるものとして説明しているが、検出部の状態に応じた状態情報は感度に限定されるものではなく、例えば、自動試験機能を有するときの正常または異常を示す結果、設定されているアドレスやシリアル番号、火災感知器としての種別、動作の履歴などを用いることができる。
この発明の実施の形態1に係る火災感知器の状態情報取得システムを模式的に示すシステム図である。 この発明の実施の形態1に係る火災感知器を示す正面図である。 この発明の実施の形態1に係る火災感知器の構成を模式的に示すブロック図である。 この発明の実施の形態1に係る火災感知器の回路構成を模式的に示すブロック回路図である。 この発明の実施の形態1に係る感度テスターを示す正面図である。 この発明の実施の形態1に係る感度テスターの構成を模式的に示すブロック図である。 この発明の実施の形態1に係る感度テスターの回路構成を模式的に示すブロック回路図である。 この発明の実施の形態1に係る火災感知器の全体動作を説明するフロー図である。 この発明の実施の形態1に係る火災感知器における火災判別動作を説明するフロー図である。 この発明の実施の形態1に係る火災感知器における感度測定動作を説明するフロー図である。 この発明の実施の形態1に係る火災感知器におけるブリンキング動作を説明するフロー図である。 この発明の実施の形態1に係る感度テスターの動作を説明するフロー図である。 この発明の実施の形態1に係る火災感知器における感度とA/D値との関係を説明する図である。 この発明の実施の形態1に係る火災感知器における火災表示灯および感度データ送信用発光素子の動作を説明するタイミングチャートである。 この発明の実施の形態1に係る火災感知器における感度データ送信用発光素子への出力パルスを示す図である。 この発明の実施の形態1に係る火災感知器における感度レベルに対応するパルス間隔の設定状態を説明するタイミングチャートである。 この発明の実施の形態1に係る感度テスターにおける動作を説明するタイミングチャートである。 この発明の実施の形態2に係る火災感知器の状態情報取得システムを模式的に示すシステム図である。 この発明の実施の形態2に係る火災感知器を示す正面図である。 この発明の実施の形態2に係る火災感知器の構成を模式的に示すブロック図である。 この発明の実施の形態2に係る火災感知器の回路構成を模式的に示すブロック回路図である。 この発明の実施の形態2に係る感度テスターを示す正面図である。 この発明の実施の形態2に係る感度テスターの構成を模式的に示すブロック図である。 この発明の実施の形態2に係る感度テスターの回路構成を模式的に示すブロック回路図である。 この発明の実施の形態2に係る火災感知器の全体動作を説明するフロー図である。 この発明の実施の形態2に係る火災感知器における火災判別動作を説明するフロー図である。 この発明の実施の形態2に係る火災感知器における感度測定動作を説明するフロー図である。 この発明の実施の形態2に係る火災感知器におけるブリンキング動作を説明するフロー図である。 この発明の実施の形態2に係る感度テスターの動作を説明するフロー図である。 この発明の実施の形態2に係る火災感知器における火災表示灯および感度データ送信用発光素子の動作を説明するタイミングチャートである。
符号の説明
1、1A 火災感知器、3、3A 感度テスター(受信装置)、11 煙検出用発光素子(検出部)、12 煙検出用受光素子(検出部)、16 火災表示灯、20 感度データ発信用発光素子(発信素子)、23 状態情報判定・出力手段、24 状態情報送信手段、32 エラー表示灯(表示器)、33 表示器。

Claims (4)

  1. 火災を検出する検出部と、
    上記検出部の状態に応じた状態情報を判定・出力する状態情報判定・出力手段と、
    外部に向けてパルスを発して上記状態情報を送信する発信素子と、
    上記状態情報に基づいて上記パルスの時間的要素を設定し、設定された時間的要素に基づいて上記発信素子から上記パルスを発せさせる状態情報送信手段と、を備え、
    上記状態情報判定・出力手段は、上記状態情報としての感度が感度許容範囲に入っているか否かを判定するとともに現在の感度を出力し、
    上記状態情報送信手段は、上記現在の感度が上記感度許容範囲を所定段数に分割してなる感度レベルのいずれの段の感度レベルに入っているかを判断し、上記現在の感度が入っている上記段の感度レベルに適合する上記時間的要素としてパルス間隔を設定し、設定されたパルス間隔で上記発信素子に2パルスを所定のタイミングで発信させることを特徴とする火災感知器。
  2. 所定段数の上記感度レベルは、上記感度許容範囲の上限領域および下限領域を、該感度許容範囲の中央領域に対して密に分割しているものである請求項1記載の火災感知器。
  3. 火災を検出する検出部、上記検出部の状態に応じた状態情報を判定・出力する状態情報判定・出力手段、外部に向けてパルスを発して上記状態情報を送信する発信素子、および、上記状態情報に基づいて上記発信素子から上記パルスを発せさせる状態情報送信手段を有する火災感知器と、
    上記発信素子からの上記パルスを受信して上記状態情報を取得する状態情報取得手段および取得した上記状態情報を表示する表示器を有する受信装置と、を備え、
    上記状態情報判定・出力手段は、上記状態情報としての感度が感度許容範囲に入っているか否かを判定するとともに現在の感度を出力し、
    上記状態情報送信手段は、上記現在の感度が上記感度許容範囲を所定段数に分割してなる感度レベルのいずれの段の感度レベルに入っているかを判断し、上記現在の感度が入っている上記段の感度レベルに適合する上記時間的要素としてパルス間隔を設定し、設定されたパルス間隔で2つのパルスを所定のタイミングで上記発信素子から発信させ、
    上記受信装置は、上記所定のタイミングに上記2つのパルスのみ受信したときに、該パルス間隔から導き出した上記状態情報を上記表示器に表示するとともに、上記所定のタイミングに3つ以上のパルスを受信したときに、上記表示器にエラー表示するようになっていることを特徴とする火災感知器の状態情報取得システム。
  4. 所定段数の上記感度レベルは、上記感度許容範囲の上限領域および下限領域を、該感度許容範囲の中央領域に対して密に分割しているものである請求項3記載の火災感知器の状態情報取得システム。
JP2004100358A 2004-03-30 2004-03-30 火災感知器およびその状態情報取得システム Expired - Fee Related JP4344269B2 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2004100358A JP4344269B2 (ja) 2004-03-30 2004-03-30 火災感知器およびその状態情報取得システム
US11/088,803 US7280039B2 (en) 2004-03-30 2005-03-25 Fire sensor and fire sensor status information acquisition system
CA2742626A CA2742626C (en) 2004-03-30 2005-03-29 Fire sensor and fire sensor status information acquisition system
CA2502632A CA2502632C (en) 2004-03-30 2005-03-29 Fire sensor and fire sensor status information acquisition system
CNB2005100637025A CN100501786C (zh) 2004-03-30 2005-03-30 火灾传感器及其状态信息取得***
EP05251959A EP1583055B1 (en) 2004-03-30 2005-03-30 Fire sensor and fire sensor status information acquisition system
CN200910001831XA CN101483004B (zh) 2004-03-30 2005-03-30 火灾传感器的状态信息取得***
EP10007413A EP2234080B1 (en) 2004-03-30 2005-03-30 Fire sensor and fire sensor status information acquisition system
EP10007412A EP2234079B1 (en) 2004-03-30 2005-03-30 Fire sensor and fire sensor status information acquisition system
US11/649,287 US7498949B2 (en) 2004-03-30 2007-01-04 Fire sensor and fire sensor status information acquisition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004100358A JP4344269B2 (ja) 2004-03-30 2004-03-30 火災感知器およびその状態情報取得システム

Publications (2)

Publication Number Publication Date
JP2005284911A JP2005284911A (ja) 2005-10-13
JP4344269B2 true JP4344269B2 (ja) 2009-10-14

Family

ID=34879987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100358A Expired - Fee Related JP4344269B2 (ja) 2004-03-30 2004-03-30 火災感知器およびその状態情報取得システム

Country Status (5)

Country Link
US (2) US7280039B2 (ja)
EP (3) EP1583055B1 (ja)
JP (1) JP4344269B2 (ja)
CN (2) CN100501786C (ja)
CA (2) CA2742626C (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766807B2 (en) * 2008-10-03 2014-07-01 Universal Security Instruments, Inc. Dynamic alarm sensitivity adjustment and auto-calibrating smoke detection
US8284065B2 (en) * 2008-10-03 2012-10-09 Universal Security Instruments, Inc. Dynamic alarm sensitivity adjustment and auto-calibrating smoke detection
CN101719299B (zh) * 2009-11-10 2012-03-28 天津市浦海新技术有限公司 一种火灾、可燃气体报警***及方法
CN101832990A (zh) * 2010-05-12 2010-09-15 中国科学技术大学 一种移动在线式火灾态势等级探测评估***和方法
GB2484458A (en) * 2010-10-04 2012-04-18 Thorn Security Commissioning detector units of an alarm system by means of a remote infrared based communication tool
US8624735B2 (en) 2010-11-18 2014-01-07 Yael Debra Kellen Alarm system having an indicator light that is external to an enclosed space for indicating the specific location of an intrusion into the enclosed space and a method for installing the alarm system
US8599018B2 (en) 2010-11-18 2013-12-03 Yael Debra Kellen Alarm system having an indicator light that is external to an enclosed space for indicating the time elapsed since an intrusion into the enclosed space and method for installing the alarm system
US8395501B2 (en) 2010-11-23 2013-03-12 Universal Security Instruments, Inc. Dynamic alarm sensitivity adjustment and auto-calibrating smoke detection for reduced resource microprocessors
CN102231220B (zh) * 2011-05-31 2012-11-28 王建雄 火灾等级检测方法
US8797157B2 (en) * 2011-06-30 2014-08-05 Tyco Fire & Security Gmbh System and method for monitoring usage and predicting failure of visual notification appliances
DE102011108389A1 (de) 2011-07-22 2013-01-24 PPP "KB Pribor" Ltd. Rauchdetektor
DE102011108390B4 (de) 2011-07-22 2019-07-11 PPP "KB Pribor" Ltd. Verfahren zur Herstellung eines Rauchdetektors vom offenen Typ
US10588173B2 (en) * 2012-06-22 2020-03-10 Honeywell International Inc. Wi-Fi mesh fire detection system
CN104104961B (zh) 2013-04-10 2018-09-21 华为技术有限公司 一种视频编码方法、解码方法和装置
US9706267B2 (en) * 2013-04-22 2017-07-11 Aginova Inc. iCelsius wireless: wireless monitoring with smart phones and tablets
US10243724B2 (en) * 2014-02-12 2019-03-26 Infineon Technologies Ag Sensor subassembly and method for sending a data signal
EP3091517B1 (de) 2015-05-06 2017-06-28 Siemens Schweiz AG Offener streulichtrauchmelder sowie prüfgerät für einen derartigen offenen streulichtrauchmelder
US10467874B2 (en) * 2016-05-13 2019-11-05 Siemens Schweiz Ag Fire detector having a photodiode for sensing ambient light
JP6936020B2 (ja) * 2017-02-23 2021-09-15 能美防災株式会社 火災感知器
EP3404928B1 (en) * 2017-05-19 2020-11-25 Safco Engineering S.p.A. Improved electronic unit for controlling fire sensors
US10282975B2 (en) * 2017-08-08 2019-05-07 Microchip Technology Incorporated Carbon monoxide alarm supervision
CN113674497B (zh) * 2021-07-31 2022-11-15 中国华能集团清洁能源技术研究院有限公司 一种带动态关联系数的火灾预警方法、***和计算机设备
CN113689655B (zh) * 2021-08-24 2022-06-03 营口天成消防设备有限公司 一种低功耗智慧无线火灾报警***
CN115206050B (zh) * 2022-07-15 2023-08-01 江苏稻源科技集团有限公司 一种烟雾报警装置
US11790765B1 (en) * 2022-08-01 2023-10-17 Honeywell International Inc. Smoke detector device with secondary detection chamber and filter
CN118097913A (zh) * 2024-04-23 2024-05-28 中天引控科技股份有限公司 预警探测装置的灵敏度检测方法及装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248957A1 (en) 1986-06-12 1987-12-16 Pittway Corporation Self-testing combustion products detector
US4622540A (en) * 1984-03-05 1986-11-11 American District Telegraph Company Security system status reporting
US5148158A (en) * 1988-03-24 1992-09-15 Teledyne Industries, Inc. Emergency lighting unit having remote test capability
JP3205801B2 (ja) 1992-02-12 2001-09-04 能美防災株式会社 防災設備の端末のリモコン操作方法及び装置
GB9309115D0 (en) * 1993-05-04 1993-06-16 No Climb Prod Ltd Smoke testing detector sensitivity testing apparatus
US5552765A (en) * 1993-07-12 1996-09-03 Detection Systems, Inc. Smoke detector with individually stored range of acceptable sensitivity
JP3243115B2 (ja) 1993-10-29 2002-01-07 ホーチキ株式会社 光電式感知器及び火災感知システム
JPH07262467A (ja) 1994-03-24 1995-10-13 Hochiki Corp 防災監視用端末装置及びその試験装置
US5751216A (en) * 1994-09-27 1998-05-12 Hochiki Kabushiki Kaisha Projected beam-type smoke detector and receiving unit
EP0733894B1 (en) * 1995-03-24 2003-05-07 Nohmi Bosai Ltd. Sensor for detecting fine particles such as smoke
US5691699A (en) * 1996-02-08 1997-11-25 Detection Systems, Inc. Security detector with optical data transmitter
CZ300492B6 (cs) * 1998-09-09 2009-06-03 Siemens Aktiengesellschaft Zpusob detekce alespon jedné charakteristické veliciny požáru a vyvolávání poplachu, požární hlásic a požární signalizacní zarízení
US6326880B1 (en) * 1998-09-30 2001-12-04 Pittway Corporation Detector with control switch
US6420973B2 (en) * 1999-01-23 2002-07-16 James Acevedo Wireless smoke detection system
JP2002135856A (ja) 2000-10-27 2002-05-10 Sharp Corp リモコン装置
GB2370903A (en) 2001-01-08 2002-07-10 Thorn Security A fire detector
US6469623B2 (en) * 2001-01-26 2002-10-22 Gentex Corporation Smoke detector maintenance and verification tool
US20020126016A1 (en) * 2001-03-06 2002-09-12 Sipp Corey Bouche?Apos; Remotely controlled smoke alarm assembly
US6577242B2 (en) * 2001-05-04 2003-06-10 Pittway Corporation Wireless transfer of data from a detector
JP3979586B2 (ja) 2002-07-04 2007-09-19 能美防災株式会社 火災感知器および火災報知設備
US7109879B2 (en) * 2003-01-17 2006-09-19 Smart Safety Systems, Inc. Remotely activated, multiple stage alarm system
CA2427320C (en) * 2003-04-30 2009-07-21 Digital Security Controls Ltd. Smoke detector with performance reporting

Also Published As

Publication number Publication date
US7280039B2 (en) 2007-10-09
CA2502632C (en) 2013-06-18
EP2234079A2 (en) 2010-09-29
EP2234079A3 (en) 2011-02-02
EP2234080B1 (en) 2012-11-14
EP2234080A2 (en) 2010-09-29
US20070115110A1 (en) 2007-05-24
CN1677447A (zh) 2005-10-05
CN101483004A (zh) 2009-07-15
CA2742626A1 (en) 2005-09-30
EP1583055B1 (en) 2011-06-01
CN100501786C (zh) 2009-06-17
CN101483004B (zh) 2012-01-18
CA2742626C (en) 2014-07-15
EP1583055A2 (en) 2005-10-05
EP2234079B1 (en) 2012-11-21
JP2005284911A (ja) 2005-10-13
EP1583055A3 (en) 2006-01-11
US7498949B2 (en) 2009-03-03
EP2234080A3 (en) 2011-02-02
US20050219045A1 (en) 2005-10-06
CA2502632A1 (en) 2005-09-30

Similar Documents

Publication Publication Date Title
JP4344269B2 (ja) 火災感知器およびその状態情報取得システム
EP2264681A1 (en) Alarm
EP2204787A1 (en) Communication system and alarm
JP6013027B2 (ja) 火災報知システム、火災報知システムの火災判断方法、及び火災報知システムの火災判断プログラム
JP4690669B2 (ja) 警報器
JP4359526B2 (ja) 火災感知器
JP2006065545A (ja) 火災感知器の状態表示器
JP2008277163A (ja) 多光軸光電センサ
JP4323360B2 (ja) 火災感知器の状態情報取得システム
JP4391046B2 (ja) 火災感知器
JP6936020B2 (ja) 火災感知器
JP3945756B2 (ja) 火災感知器
JP2003109138A (ja) 火災報知設備
JP2012078189A (ja) 検出センサシステム、検出センサ、判別装置及び検出センサの異常検出方法
JP6523401B2 (ja) 発信機
JP2005122496A (ja) 火災報知設備および火災感知器
EP3806060A1 (en) Abnormality alarm device
EP1369834B1 (en) Fire detectors with external power supply indication means
JP2005175817A (ja) テレコントロール装置
JPH056489A (ja) 光電式煙感知器
JP2003109140A (ja) 火災感知器
JPH0896266A (ja) 光電式分離型煙感知器および受信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees