JP4343471B2 - Magnetostrictive member and manufacturing method thereof - Google Patents

Magnetostrictive member and manufacturing method thereof Download PDF

Info

Publication number
JP4343471B2
JP4343471B2 JP2001381074A JP2001381074A JP4343471B2 JP 4343471 B2 JP4343471 B2 JP 4343471B2 JP 2001381074 A JP2001381074 A JP 2001381074A JP 2001381074 A JP2001381074 A JP 2001381074A JP 4343471 B2 JP4343471 B2 JP 4343471B2
Authority
JP
Japan
Prior art keywords
alloy layer
magnetostrictive
alloy
plastic working
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001381074A
Other languages
Japanese (ja)
Other versions
JP2003188435A (en
Inventor
勝 柳本
哲智 桝田
俊之 澤田
和彦 吉田
孝誌 小池
憲市 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Sanyo Special Steel Co Ltd
Original Assignee
NTN Corp
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Sanyo Special Steel Co Ltd filed Critical NTN Corp
Priority to JP2001381074A priority Critical patent/JP4343471B2/en
Publication of JP2003188435A publication Critical patent/JP2003188435A/en
Application granted granted Critical
Publication of JP4343471B2 publication Critical patent/JP4343471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、磁歪部材およびその製造方法に関し、より具体的には、非接触式トルクセンサに用いる高感度で信頼性の高い磁歪部材およびその製造方法に関するものである。
【0002】
【従来の技術】
機械構造用鋼にFe(鉄)−Al(アルミニウム)合金などの高磁歪材料を溶射、肉盛り溶接などすることにより、トルク検出部品として使用することで検出感度の高いトルクセンサを得る方法が知られているが、Fe−Al合金は脆い性質を持っているため、溶射、肉盛り溶接時に割れや剥離が生じるという問題点があった。このような問題の解決策として、特許第2601787号公報に記載された技術がある。この技術によると、Fe−Al合金の肉盛り溶接層の厚みは、割れを防ぐために3mm以下とされている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記公報に記載された技術でも、Fe−Al合金層は肉盛り溶接により作製されているため、このFe−Al合金層には小孔および酸化物などの介在物が多く存在している。この小孔や介在物は繰返しトルクがかかると割れの起点になる。また、小孔は磁歪特性を持たず、介在物は磁歪特性が小さいため、小孔および介在物が多く分布すると、磁歪特性が著しく低下する。
【0004】
また磁歪効果を必要とする場合には、より厚いFe−Al合金層が必要となるため、肉盛り溶接や溶射法などの従来法での作製には限界がある。
【0005】
また肉盛り溶接では、母材径がφ30mm以下のものに適用すると母材の熱容量が小さいために、急激な温度上昇が起こりやすく取扱いが難しかった。
【0006】
それゆえ本発明の目的は、繰返しトルクによる割れを抑制でき、良好な磁歪特性を得ることができ、かつ取扱いも容易な磁歪部材およびその製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明の磁歪部材は、所定量のアルミニウムを含み、かつ残部に鉄および不可避不純物を有する合金層を、鋼製部材の表面に熱間塑性加工により一体に形成することにより、鋼製部材と合金層とが相互拡散した構成を有し、合金層の小孔および介在物の合計面積率が10%未満であることを特徴とするものである。
【0008】
本発明の磁歪部材によれば、熱間塑性加工により鋼製部材と合金層とを相互拡散させるため界面密着性を改善することができる。また、熱間塑性加工を伴なうため、溶射、肉盛り溶接、焼結などの熱間塑性加工を伴なわない製造方法と比較して、小孔を低減でき、界面の密着性を改善し実用に耐え得るトルク検出用のクラッド材を製造することができる。
【0009】
このように鉄とアルミニウムとを含む合金層を鋼製部材の表面に熱間塑性加工により一体に形成することによって、該合金層の小孔および介在物の合計面積率を10%未満にすることができる。これにより、熱処理時の焼き割れや繰返しトルクがかかった際の割れ、界面の剥離を抑制することができる。また、小孔部は磁歪特性を持たず、介在物は磁歪特性が小さいため、合計面積率が10%以上の小孔および介在物が磁歪合金層に存在すると磁歪効果が著しく低下する。
【0010】
また熱処理時の焼き割れや繰返しトルクがかかった際の割れ、界面の剥離を抑制することができるため、良好な磁歪特性を維持したまま合金層の厚みを容易に厚くすることができる。また、熱間塑性加工では肉盛り溶接ほど熱容量を気にする必要がないため、取扱いが容易である。
【0011】
上記の磁歪部材において好ましくは、合金層は、アルミニウムを5質量%以上17質量%以下含んでいる。
【0012】
これにより、良好な磁歪特性を得ることができる。
上記の磁歪部材において好ましくは、合金層の厚みが、0.1mm以上10mm以下である。
【0013】
合金層の厚みが0.1mm未満の場合には十分な磁歪効果が得られず、10mmを超える場合にはトルク検出部品そのものの体積が大きくなり実用的ではなくなる。
【0014】
本発明の磁歪部材の製造方法は、所定量のアルミニウムを含み、かつ残部に鉄および不可避不純物を有する合金粉末をガスアトマイズ法により生成する工程と、合金粉末を所定の大きさに分級する工程と、鋼製部材と分級された合金粉末とを容器に充填する工程と、鋼製部材と分級された合金粉末とを熱間塑性加工により一体に形成して、小孔および介在物の合計面積率が10%未満の合金層を合金粉末から形成する工程とを備えている。
【0015】
本発明の磁歪部材の製造方法によれば、熱間塑性加工により鋼製部材と合金層とを相互拡散させるため界面密着性を改善することができる。また、熱間塑性加工を伴なうため、溶射、肉盛り溶接、焼結などの熱間塑性加工を伴なわない製造方法と比較して、小孔を低減でき、界面の密着性を改善し実用に耐え得るトルク検出用のクラッド材を製造することができる。
【0016】
このように鉄とアルミニウムとを含む合金層を鋼製部材の表面に熱間塑性加工により一体に形成することによって、該合金層の小孔および介在物の合計面積率を10%未満にすることができる。これにより、熱処理時の焼き割れや繰返しトルクがかかった際の割れ、界面の剥離を抑制することができる。また、小孔部は磁歪特性を持たず、介在物は磁歪特性が小さいため、合計面積率が10%以上の小孔および介在物が磁歪合金層に存在すると磁歪効果が著しく低下する。
【0017】
また熱処理時の焼き割れや繰返しトルクがかかった際の割れ、界面の剥離を抑制することができるため、良好な磁歪特性を維持したまま合金層の厚みを容易に厚くすることができる。また、熱間塑性加工では肉盛り溶接ほど熱容量を気にする必要がないため、取扱いが容易である。
本発明の他の磁歪部材の製造方法は、所定量のアルミニウムを含み、かつ残部に鉄および不可避不純物を有する合金層を、鋼製部材の表面に熱間塑性加工により一体に形成して、合金層の小孔および介在物の合計面積率を10%未満にすることを特徴とするものである。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について図に基づいて説明する。
【0019】
本実施の形態の磁歪部材は、所定量のAlを含み、かつ残部にFeおよび不可避不純物を有する合金層を、鋼製部材の表面に熱間塑性加工により一体に形成したものである。またこの合金層は、Alを5質量%以上17質量%以下含んでいることが好ましい。このようにAlを所定量含ませるとともに、合金層を鋼製部材の表面に熱間塑性加工により一体に形成することによって、合金層の小孔および介在物の合計面積率を10%未満にすることができる。またこの合金層の厚みは、0.1mm以上10mm以下であることが好ましい。
【0020】
このような磁歪部材は、たとえば非接触式トルクセンサに用いられる。この非接触式トルクセンサは、たとえば図1に示す構成を有している。
【0021】
図1を参照して、非接触式トルクセンサ1は、回転軸4の表面に形成された磁歪材パターン2と、磁歪材パターン2を周回するように巻回されたコイル3とを含んでいる。磁歪材パターン2は、複数の帯状の磁歪材膜を回転軸4の表面に所定のピッチおよび角度で形成したものである。
【0022】
回転軸4に捩りトルクが発生すると、磁歪材パターン2の透磁率が変化し、コイル3のインダクタンスが変化する。したがって、コイル3のインダクタンスの変化を検出することにより、回転軸4のトルクを非接触で検出することができる。
【0023】
次に、本実施の形態の磁歪部材の製造方法について説明する。
図2は、本発明の一実施の形態における磁歪部材の製造方法を示すフロー図である。図2を参照して、まず所定量のアルミニウムと所定量の鉄とが配合され(ステップS1)、その後に溶解される(ステップS2)。この溶解された溶湯は、たとえばAr(アルゴン)ガスアトマイズにより合金粉末とされる(ステップS3)。
【0024】
このガスアトマイズは、たとえば図3に示す装置により行なわれる。つまり、真空誘導溶解炉21で溶解された溶湯を、タンディッシュ22に流し込み、そのタンディッシュ22から所望量ずつ落下させ、アルゴンガスなどの噴霧ガスの高圧吹付けによって急速に凝固させることにより、噴霧器23内に球状の粉末が得られる。
【0025】
この後、噴霧後の合金粉末は、サイクロン24により捕集され、コンテナー25に蓄えられる。そして振動式のふるい(図示せず)で分級される(ステップS4)。
【0026】
分級された合金粉末は、たとえば図4に示すように中心に鋼製部材を配置したステンレス容器26内に充填(キャニング(canning))される(ステップS5)。この状態で、ステンレス容器26内においては、図5に示すようにたとえばS45Cよりなる鋼製部材11の外表面を覆うように、たとえばFe−13質量%Alの合金粉末12が覆っている。
【0027】
この状態で熱間塑性加工が施される(ステップS6)。この熱間塑性加工は、図6に示すようにビレット10を加熱した状態で、図7に示すように押出により縮径することによって行なわれる。
【0028】
この後、合金粉末から形成された合金層にパターニングなどの所定の処理を施すことにより図1に示すような磁歪材パターン2を有する回転軸4が形成される。
【0029】
【実施例】
以下、実施例について説明する。
【0030】
本実施例のクラッド材の熱間加工による製造条件を以下に示す。
本方式では、図2に示すようにArガスアトマイズ→分級→キャニング→熱間押出(または熱間鍛造)の手順を取るものとし、出発原料である磁歪合金粉末の組成には比較のため以下の5水準(Fe−3質量%Al、Fe−5質量%Al、Fe−13質量%Al、Fe−17質量%Al、Fe−20質量%Al)を評価した。Arガスアトマイズは、真空誘導溶解炉にて溶解した後、出湯温度1650℃、噴霧圧4MPaの条件下で実施した。出来上がった粉末は500μm以下の粒径に分級した。
【0031】
熱間押出を実施する場合は、φ150×400L(mm)のステンレス容器の中心に軸材としてφ90(mm)のS45Cを配置し、その周りにガスアトマイズにより作製したFe−Al合金粉末を充填し真空引き封入した後、1150℃に加熱しφ150(mm)のステンレス容器をφ25(mm)に縮径させた。
【0032】
他方、熱間鍛造を実施する場合は、φ80×200L(mm)のステンレス容器の中心に軸材としてφ60(mm)のS45Cを配置し、その周りにガスアトマイズにより作製したFe−Al合金粉末を充填し封入した後、1150℃に加熱し、φ80(mm)のステンレス容器をφ20(mm)に縮径させた。
【0033】
本実施例との比較のために実施した溶射による製造方法を以下に示す。
溶射は、S45C製でφ15(mm)の軸材を回転させながら、ガスフレーム溶射により、その軸材の表面に厚さ2.5mmの磁歪合金を形成することにより行なった。
【0034】
以上の方法で作製した磁歪軸について、小孔および介在物の合計面積率に対して、繰返しトルクがかかった際の軸材と磁歪合金層との剥離性、および磁歪特性の2つについて評価を行なった。
【0035】
ここで、小孔および介在物の合計面積率の評価は、S45C/Fe−Alクラッド材料のFe−Al合金層から採取したテストピース(10×10×5mm)を研磨し光学顕微鏡で観察し、画像解析により面積率から算出する方法により行なった。
【0036】
トルクがかかった際の軸材と磁歪合金層との剥離性の評価については、S45C/Fe−Alクラッド材料をφ17×10L(mm)に加工し、径方向15%冷間プレスした後、界面の割れを実体顕微鏡で観察し、割れの有無を確認する方法により行なった。
【0037】
磁歪特性の評価は、S45C/Fe−Alクラッド材料のFe−Al合金層から採取したテストピース(2×2×25mm)により飽和磁歪を測定する方法により行なった。そのときの測定条件は一般的な静電容量法で、印加磁場を8×105A/m、測定長を10mmとして行なった。
【0038】
それらの評価結果を表1に示す。
【0039】
【表1】

Figure 0004343471
【0040】
この結果より、熱間押出や熱間鍛造などの熱間塑性加工を行なうことにより、小孔および介在物の面積率を10%未満、より好ましくは1%未満にできることがわかった。また、Fe−5〜17質量%Al組成のときに、20以上の飽和磁歪となり良好な磁歪特性が得られることも判明した。
【0041】
また、フレーム溶射を実施したものは、冷間プレスにより界面の剥離が見られたのに対し、熱間押出や熱間鍛造などの熱間塑性加工で製造したクラッド鋼は、剥離が見られない良好な結果が得られた。
【0042】
次に、Fe−Al合金層の厚みの影響を調べた。その結果を表2に示す。
【0043】
【表2】
Figure 0004343471
【0044】
この結果より、溶射したものは、Fe−Al合金層の厚みにかかわらず、冷間プレスによる界面の剥離が見られる他、飽和磁歪も低いことがわかった。他方、熱間押出で製作したクラッド鋼は、Fe−Al合金層の厚みにかかわらず、冷間プレスによる界面の剥離は見られないが、合金層の厚みが0.05mmのものは、それ以上のものに比べ飽和磁歪が低い結果となった。
【0045】
次に、これらの磁歪材を熱処理したときの焼き割れの有無を調査した。
評価方法としては、上記方法で製造した磁歪材を100L(mm)に切断し、800℃で1時間加熱保持した後に水冷して焼入れを行なった後、25L(mm)間隔に切断し、湿式研磨し光学顕微鏡にて焼き割れの有無を観察した。
【0046】
その結果を表3に示す。
【0047】
【表3】
Figure 0004343471
【0048】
この結果より、クラッド鋼では、焼き割れが生じていないことがわかる。
なお、本実施例では、軸材にS45Cを用いたが、使用温度範囲で線膨張係数がS45Cと同じものであるならば、S45Cに限られず、他の材質が用いられてもよい。また、熱間塑性加工は、上述した熱間押出し、熱間鍛造以外に熱間圧延であっても構わない。また、磁歪部材をS45C材の外側に配置する例を示したが、内側であっても構わない。
【0049】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0050】
【発明の効果】
以上説明したように本発明の磁歪部材およびその製造方法によれば、熱間塑性加工により鋼製部材と合金層とを相互拡散させるため界面密着性を改善することができる。また、熱間塑性加工を伴なうため、溶射、肉盛り溶接、焼結などの熱間塑性加工を伴なわない製造方法と比較して、小孔を低減でき、界面の密着性を改善し実用に耐え得るトルク検出用のクラッド材を製造することができる。
【0051】
このように鉄とアルミニウムとを含む合金層を鋼製部材の表面に熱間塑性加工により一体に形成することによって、該合金層の小孔および介在物の合計面積率を10%未満にすることができる。これにより、熱処理時の焼き割れや繰返しトルクがかかった際の割れ、界面の剥離を抑制することができる。
【0052】
また熱処理時の焼き割れや繰返しトルクがかかった際の割れ、界面の剥離を抑制することができるため、良好な磁歪特性を維持したまま合金層の厚みを容易に厚くすることができる。また、熱間塑性加工では肉盛り溶接ほど熱容量を気にする必要がないため、取扱いが容易である。
【図面の簡単な説明】
【図1】 一般的な非接触式トルクセンサに本発明の一実施の形態における磁歪部材を適用した構成を示す図である。
【図2】 本発明の一実施の形態における磁歪部材の製造方法を示すフロー図である。
【図3】 アトマイズおよび分級の工程を説明するための図である。
【図4】 粉末充填(キャニング)の工程を説明するための図である。
【図5】 粉末充填により鋼製部材の表面に合金粉末が覆った様子を示す図である。
【図6】 ビレット加熱の様子を示す図である。
【図7】 押出の様子を示す図である。
【符号の説明】
1 非接触式トルクセンサ、2 磁歪材パターン、3 コイル、4 回転軸、10 ビレット、11 鋼製部材、12 合金粉末、21 真空誘導溶解炉、22 タンディッシュ、23 噴霧器、24 サイクロン、25 コンテナー、26 ステンレス容器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetostrictive member and a manufacturing method thereof, and more specifically, to a highly sensitive and reliable magnetostrictive member used for a non-contact torque sensor and a manufacturing method thereof.
[0002]
[Prior art]
It is known how to obtain a torque sensor with high detection sensitivity by using a high magnetostrictive material such as Fe (iron) -Al (aluminum) alloy on the machine structural steel by thermal spraying or overlay welding. However, since the Fe—Al alloy has a brittle nature, there is a problem that cracking and peeling occur during thermal spraying and overlay welding. As a solution to such a problem, there is a technique described in Japanese Patent No. 2601787. According to this technique, the thickness of the build-up weld layer of Fe—Al alloy is set to 3 mm or less in order to prevent cracking.
[0003]
[Problems to be solved by the invention]
However, even in the technique described in the above publication, since the Fe—Al alloy layer is produced by overlay welding, there are many inclusions such as small holes and oxides in the Fe—Al alloy layer. . These small holes and inclusions become the starting point of cracking when repeated torque is applied. In addition, the small holes do not have magnetostriction characteristics, and the inclusions have small magnetostriction characteristics. Therefore, if many small holes and inclusions are distributed, the magnetostriction characteristics are remarkably deteriorated.
[0004]
Further, when the magnetostrictive effect is required, a thicker Fe—Al alloy layer is required, so that there is a limit to the production by conventional methods such as overlay welding and thermal spraying.
[0005]
In addition, in overlay welding, when the base metal diameter is applied to φ30 mm or less, the heat capacity of the base material is small, so that a rapid temperature rise easily occurs and handling is difficult.
[0006]
Therefore, an object of the present invention is to provide a magnetostrictive member that can suppress cracking due to repetitive torque, obtain good magnetostrictive characteristics, and is easy to handle, and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
The magnetostrictive member of the present invention includes a steel member and an alloy by integrally forming an alloy layer containing a predetermined amount of aluminum and having iron and inevitable impurities in the balance on the surface of the steel member by hot plastic working. It has a structure in which a layer to interdiffusion, in which the total area ratio of pores and inclusions of the alloy layer is equal to or less than 10%.
[0008]
According to the magnetostrictive member of the present invention, the interfacial adhesion can be improved because the steel member and the alloy layer are mutually diffused by hot plastic working. In addition, since it involves hot plastic working, it can reduce small holes and improve interfacial adhesion compared to manufacturing methods that do not involve hot plastic working such as thermal spraying, overlay welding, and sintering. A clad material for torque detection that can withstand practical use can be manufactured.
[0009]
Thus, by forming the alloy layer containing iron and aluminum integrally on the surface of the steel member by hot plastic working, the total area ratio of small holes and inclusions in the alloy layer is made less than 10%. Can do. Thereby, the crack at the time of heat processing, the crack at the time of applying a repeated torque, and peeling of an interface can be suppressed. In addition, since the small hole portion does not have magnetostriction characteristics and the inclusions have small magnetostriction characteristics, the presence of small holes and inclusions having a total area ratio of 10% or more in the magnetostrictive alloy layer significantly reduces the magnetostriction effect.
[0010]
In addition, since cracks during heat treatment, cracks when repeated torque is applied, and interface peeling can be suppressed, the thickness of the alloy layer can be easily increased while maintaining good magnetostriction characteristics. In addition, the hot plastic working is easy to handle because it is not necessary to worry about the heat capacity as in the case of overlay welding.
[0011]
In the magnetostrictive member described above, the alloy layer preferably contains 5% by mass to 17% by mass of aluminum.
[0012]
Thereby, a favorable magnetostriction characteristic can be obtained.
In the above magnetostrictive member, preferably, the thickness of the alloy layer is 0.1 mm or more and 10 mm or less.
[0013]
When the thickness of the alloy layer is less than 0.1 mm, a sufficient magnetostriction effect cannot be obtained, and when it exceeds 10 mm, the volume of the torque detection component itself becomes large and is not practical.
[0014]
The method for producing a magnetostrictive member of the present invention includes a step of producing an alloy powder containing a predetermined amount of aluminum and having iron and inevitable impurities in the balance by a gas atomization method, a step of classifying the alloy powder into a predetermined size, The step of filling the steel member and the classified alloy powder into the container, and the steel member and the classified alloy powder are integrally formed by hot plastic working so that the total area ratio of the small holes and inclusions is Forming an alloy layer of less than 10% from the alloy powder .
[0015]
According to the method for producing a magnetostrictive member of the present invention, the interfacial adhesion can be improved because the steel member and the alloy layer are interdiffused by hot plastic working. In addition, since it involves hot plastic working, it can reduce small holes and improve interfacial adhesion compared to manufacturing methods that do not involve hot plastic working such as thermal spraying, overlay welding, and sintering. A clad material for torque detection that can withstand practical use can be manufactured.
[0016]
Thus, by forming the alloy layer containing iron and aluminum integrally on the surface of the steel member by hot plastic working, the total area ratio of small holes and inclusions in the alloy layer is made less than 10%. Can do. Thereby, the crack at the time of heat processing, the crack at the time of applying a repeated torque, and peeling of an interface can be suppressed. Further, since the small hole portion does not have magnetostriction characteristics and the inclusions have small magnetostriction characteristics, the presence of small holes and inclusions having a total area ratio of 10% or more in the magnetostrictive alloy layer significantly reduces the magnetostriction effect.
[0017]
Further, since it is possible to suppress baking cracks during heat treatment, cracking when repeated torque is applied, and peeling at the interface, the thickness of the alloy layer can be easily increased while maintaining good magnetostriction characteristics. In addition, the hot plastic working is easy to handle because it is not necessary to worry about the heat capacity as in the case of overlay welding.
According to another method of manufacturing a magnetostrictive member of the present invention, an alloy layer containing a predetermined amount of aluminum and having a balance of iron and inevitable impurities is integrally formed on the surface of a steel member by hot plastic working , The total area ratio of the pores and inclusions in the layer is less than 10% .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
In the magnetostrictive member of the present embodiment, an alloy layer containing a predetermined amount of Al and having Fe and inevitable impurities in the balance is integrally formed on the surface of the steel member by hot plastic working. Moreover, it is preferable that this alloy layer contains 5 mass% or more and 17 mass% or less of Al. In this way, a predetermined amount of Al is contained, and the alloy layer is integrally formed on the surface of the steel member by hot plastic working, so that the total area ratio of small holes and inclusions in the alloy layer is less than 10%. be able to. Moreover, it is preferable that the thickness of this alloy layer is 0.1 mm or more and 10 mm or less.
[0020]
Such a magnetostrictive member is used for, for example, a non-contact torque sensor. This non-contact torque sensor has a configuration shown in FIG. 1, for example.
[0021]
Referring to FIG. 1, a non-contact torque sensor 1 includes a magnetostrictive material pattern 2 formed on the surface of a rotating shaft 4 and a coil 3 wound around the magnetostrictive material pattern 2. . The magnetostrictive material pattern 2 is formed by forming a plurality of strip-like magnetostrictive material films on the surface of the rotating shaft 4 at a predetermined pitch and angle.
[0022]
When torsional torque is generated on the rotating shaft 4, the magnetic permeability of the magnetostrictive material pattern 2 changes and the inductance of the coil 3 changes. Therefore, the torque of the rotating shaft 4 can be detected in a non-contact manner by detecting a change in the inductance of the coil 3.
[0023]
Next, the manufacturing method of the magnetostrictive member of this Embodiment is demonstrated.
FIG. 2 is a flowchart showing a method of manufacturing a magnetostrictive member in one embodiment of the present invention. Referring to FIG. 2, first, a predetermined amount of aluminum and a predetermined amount of iron are blended (step S1) and then dissolved (step S2). This molten metal is made into alloy powder by Ar (argon) gas atomization, for example (step S3).
[0024]
This gas atomization is performed, for example, by the apparatus shown in FIG. That is, the molten metal melted in the vacuum induction melting furnace 21 is poured into the tundish 22, dropped from the tundish 22 by a desired amount, and rapidly solidified by high-pressure spraying of a spray gas such as argon gas. A spherical powder is obtained in 23.
[0025]
Thereafter, the sprayed alloy powder is collected by the cyclone 24 and stored in the container 25. Then, classification is performed with a vibrating sieve (not shown) (step S4).
[0026]
The classified alloy powder is filled (canning) in a stainless steel container 26 having a steel member disposed at the center as shown in FIG. 4 (step S5). In this state, in the stainless steel container 26, as shown in FIG. 5, the alloy powder 12 of Fe-13 mass% Al, for example, covers the outer surface of the steel member 11 made of, for example, S45C.
[0027]
In this state, hot plastic working is performed (step S6). This hot plastic working is performed by reducing the diameter by extrusion as shown in FIG. 7 while the billet 10 is heated as shown in FIG.
[0028]
Thereafter, the rotating shaft 4 having the magnetostrictive material pattern 2 as shown in FIG. 1 is formed by performing a predetermined process such as patterning on the alloy layer formed from the alloy powder.
[0029]
【Example】
Examples will be described below.
[0030]
Manufacturing conditions by hot working of the clad material of this example are shown below.
In this method, as shown in FIG. 2, the procedure of Ar gas atomization → classification → canning → hot extrusion (or hot forging) is taken, and the composition of the magnetostrictive alloy powder as a starting material is as follows. The levels (Fe-3 mass% Al, Fe-5 mass% Al, Fe-13 mass% Al, Fe-17 mass% Al, Fe-20 mass% Al) were evaluated. Ar gas atomization was carried out under the conditions of a tapping temperature of 1650 ° C. and a spray pressure of 4 MPa after melting in a vacuum induction melting furnace. The finished powder was classified to a particle size of 500 μm or less.
[0031]
When carrying out hot extrusion, S45C of φ90 (mm) is placed as a shaft material in the center of a stainless steel container of φ150 × 400L (mm), and a Fe—Al alloy powder produced by gas atomization is filled around the vacuum. After being sealed, the container was heated to 1150 ° C. and a stainless steel container of φ150 (mm) was reduced in diameter to φ25 (mm).
[0032]
On the other hand, when hot forging is carried out, S45C of φ60 (mm) is arranged as a shaft material in the center of a stainless steel container of φ80 × 200L (mm), and the Fe—Al alloy powder produced by gas atomization is filled around it. After being sealed, it was heated to 1150 ° C. to reduce the diameter of a stainless steel container of φ80 (mm) to φ20 (mm).
[0033]
A manufacturing method by thermal spraying performed for comparison with the present example will be described below.
Thermal spraying was performed by forming a magnetostrictive alloy having a thickness of 2.5 mm on the surface of the shaft member by gas flame spraying while rotating a shaft member made of S45C and having a diameter of 15 mm.
[0034]
With respect to the magnetostrictive shaft produced by the above method, the peelability between the shaft member and the magnetostrictive alloy layer when repetitive torque is applied to the total area ratio of the small holes and inclusions, and the magnetostrictive characteristics are evaluated. I did it.
[0035]
Here, the evaluation of the total area ratio of small holes and inclusions was performed by polishing a test piece (10 × 10 × 5 mm) collected from the Fe—Al alloy layer of the S45C / Fe—Al cladding material and observing with an optical microscope, This was performed by a method of calculating from the area ratio by image analysis.
[0036]
Regarding the evaluation of peelability between the shaft member and the magnetostrictive alloy layer when torque was applied, the S45C / Fe-Al clad material was processed into φ17 × 10 L (mm) and cold-pressed 15% in the radial direction, and then the interface The cracks were observed with a stereomicroscope and the presence or absence of cracks was confirmed.
[0037]
The magnetostriction characteristics were evaluated by a method of measuring the saturation magnetostriction using a test piece (2 × 2 × 25 mm) taken from the Fe—Al alloy layer of the S45C / Fe—Al cladding material. The measurement conditions at that time were a general capacitance method, and the applied magnetic field was 8 × 10 5 A / m and the measurement length was 10 mm.
[0038]
The evaluation results are shown in Table 1.
[0039]
[Table 1]
Figure 0004343471
[0040]
From this result, it was found that the area ratio of small holes and inclusions can be made less than 10%, more preferably less than 1% by performing hot plastic working such as hot extrusion and hot forging. It has also been found that when the composition is Fe-5 to 17% by mass Al, a saturation magnetostriction of 20 or more is obtained and good magnetostriction characteristics are obtained.
[0041]
Also, in the case of flame spraying, peeling of the interface was observed by cold pressing, whereas the clad steel manufactured by hot plastic processing such as hot extrusion or hot forging did not show peeling. Good results were obtained.
[0042]
Next, the influence of the thickness of the Fe—Al alloy layer was examined. The results are shown in Table 2.
[0043]
[Table 2]
Figure 0004343471
[0044]
From this result, it was found that the thermal sprayed material showed the peeling of the interface due to the cold press regardless of the thickness of the Fe—Al alloy layer, and the saturation magnetostriction was low. On the other hand, the clad steel manufactured by hot extrusion does not show any peeling at the interface due to cold pressing regardless of the thickness of the Fe-Al alloy layer, but the thickness of the alloy layer is 0.05 mm or more. As a result, the saturation magnetostriction was lower than that of the sample.
[0045]
Next, the presence or absence of burning cracks when these magnetostrictive materials were heat-treated was investigated.
As an evaluation method, the magnetostrictive material produced by the above method is cut to 100 L (mm), heated and held at 800 ° C. for 1 hour, then water-cooled and quenched, and then cut at intervals of 25 L (mm) and wet-polished. The presence or absence of burning cracks was observed with an optical microscope.
[0046]
The results are shown in Table 3.
[0047]
[Table 3]
Figure 0004343471
[0048]
From this result, it can be seen that no cracking occurred in the clad steel.
In this embodiment, S45C is used for the shaft member. However, as long as the linear expansion coefficient is the same as that of S45C in the operating temperature range, the material is not limited to S45C, and other materials may be used. Further, the hot plastic working may be hot rolling in addition to the above-described hot extrusion and hot forging. Moreover, although the example which has arrange | positioned a magnetostriction member in the outer side of S45C material was shown, you may be inside.
[0049]
It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0050]
【The invention's effect】
As described above, according to the magnetostrictive member and the manufacturing method thereof of the present invention, the interfacial adhesion can be improved because the steel member and the alloy layer are interdiffused by hot plastic working. In addition, since it involves hot plastic working, it can reduce small holes and improve interfacial adhesion compared to manufacturing methods that do not involve hot plastic working such as thermal spraying, overlay welding, and sintering. A clad material for torque detection that can withstand practical use can be manufactured.
[0051]
Thus, by forming the alloy layer containing iron and aluminum integrally on the surface of the steel member by hot plastic working, the total area ratio of small holes and inclusions in the alloy layer is made less than 10%. Can do. Thereby, the crack at the time of heat processing, the crack at the time of applying a repeated torque, and peeling of an interface can be suppressed.
[0052]
Further, since it is possible to suppress baking cracks during heat treatment, cracking when repeated torque is applied, and peeling at the interface, the thickness of the alloy layer can be easily increased while maintaining good magnetostriction characteristics. In addition, the hot plastic working is easy to handle because it is not necessary to worry about the heat capacity as in the case of overlay welding.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration in which a magnetostrictive member according to an embodiment of the present invention is applied to a general non-contact torque sensor.
FIG. 2 is a flowchart showing a method of manufacturing a magnetostrictive member in one embodiment of the present invention.
FIG. 3 is a diagram for explaining the steps of atomization and classification.
FIG. 4 is a view for explaining a powder filling (canning) step.
FIG. 5 is a view showing a state in which an alloy powder covers the surface of a steel member by powder filling.
FIG. 6 is a view showing a state of billet heating.
FIG. 7 is a view showing a state of extrusion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Non-contact torque sensor, 2 Magnetostrictive material pattern, 3 Coil, 4 Rotating shaft, 10 Billet, 11 Steel member, 12 Alloy powder, 21 Vacuum induction melting furnace, 22 Tundish, 23 Sprayer, 24 Cyclone, 25 Container, 26 Stainless steel container.

Claims (5)

所定量のアルミニウムを含み、かつ残部に鉄および不可避不純物を有する合金層を、鋼製部材の表面に熱間塑性加工により一体に形成することにより、前記鋼製部材と前記合金層とが相互拡散した構成を有し、前記合金層の小孔および介在物の合計面積率が10%未満である、磁歪部材。An alloy layer containing a predetermined amount of aluminum and having iron and inevitable impurities in the balance is integrally formed on the surface of the steel member by hot plastic working, whereby the steel member and the alloy layer are interdiffused. the have a configuration, the total area ratio of pores and inclusions of the alloy layer is less than 10%, the magnetostriction member. 前記合金層は、アルミニウムを5質量%以上17質量%以下含むことを特徴とする、請求項1に記載の磁歪部材。  The magnetostrictive member according to claim 1, wherein the alloy layer contains aluminum in an amount of 5% by mass to 17% by mass. 前記合金層の厚みが、0.1mm以上10mm以下であることを特徴とする、請求項1または2に記載の磁歪部材。  The magnetostrictive member according to claim 1 or 2, wherein the alloy layer has a thickness of 0.1 mm or more and 10 mm or less. 所定量のアルミニウムを含み、かつ残部に鉄および不可避不純物を有する合金層を、鋼製部材の表面に熱間塑性加工により一体に形成して、前記合金層の小孔および介在物の合計面積率を10%未満にすることを特徴とする、磁歪部材の製造方法。An alloy layer containing a predetermined amount of aluminum and having iron and inevitable impurities in the balance is integrally formed on the surface of the steel member by hot plastic working , and the total area ratio of small holes and inclusions in the alloy layer The manufacturing method of the magnetostrictive member characterized by making less than 10% . 所定量のアルミニウムを含み、かつ残部が鉄および不可避不純物を有する合金粉末をガスアトマイズ法により生成する工程と、
前記合金粉末を所定の大きさに分級する工程と、
鋼製部材と分級された前記合金粉末とを容器に充填する工程と、
前記鋼製部材と分級された前記合金粉末とを熱間塑性加工により一体に形成して、小孔および介在物の合計面積率が10%未満の合金層を前記合金粉末から形成する工程とを備えた、磁歪部材の製造方法。
A step of producing an alloy powder containing a predetermined amount of aluminum and the balance having iron and inevitable impurities by a gas atomization method;
Classifying the alloy powder into a predetermined size;
Filling a container with a steel member and the classified alloy powder;
Forming the steel member and the classified alloy powder integrally by hot plastic working, and forming an alloy layer having a total area ratio of small holes and inclusions of less than 10% from the alloy powder; A method of manufacturing a magnetostrictive member.
JP2001381074A 2001-12-14 2001-12-14 Magnetostrictive member and manufacturing method thereof Expired - Fee Related JP4343471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381074A JP4343471B2 (en) 2001-12-14 2001-12-14 Magnetostrictive member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381074A JP4343471B2 (en) 2001-12-14 2001-12-14 Magnetostrictive member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003188435A JP2003188435A (en) 2003-07-04
JP4343471B2 true JP4343471B2 (en) 2009-10-14

Family

ID=27591875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381074A Expired - Fee Related JP4343471B2 (en) 2001-12-14 2001-12-14 Magnetostrictive member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4343471B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663084B2 (en) 2005-06-17 2010-02-16 Panasonic Corporation Solid-state imager and solid-state imaging apparatus having a modulated effective refractive index distribution and manufacturing method thereof
US7851837B2 (en) 2003-12-18 2010-12-14 Panasonic Corporation Light-collecting device and solid-state imaging apparatus
US8018508B2 (en) 2004-04-13 2011-09-13 Panasonic Corporation Light-collecting device and solid-state imaging apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851837B2 (en) 2003-12-18 2010-12-14 Panasonic Corporation Light-collecting device and solid-state imaging apparatus
US8018508B2 (en) 2004-04-13 2011-09-13 Panasonic Corporation Light-collecting device and solid-state imaging apparatus
US7663084B2 (en) 2005-06-17 2010-02-16 Panasonic Corporation Solid-state imager and solid-state imaging apparatus having a modulated effective refractive index distribution and manufacturing method thereof
US7692129B2 (en) 2005-06-17 2010-04-06 Panasonic Corporation Solid-state imaging device with light-collecting device having sub-wavelength periodic structure, solid-state imaging apparatus and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003188435A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP6409960B2 (en) Oriented electrical steel sheet
JP2021514423A (en) Manufacturing method of aluminum / chrome alloy parts
JP6389557B1 (en) Copper alloy powder, manufacturing method of layered object, and layered object
JP4343471B2 (en) Magnetostrictive member and manufacturing method thereof
JP4264755B2 (en) Hot working tool steel, hot working tool and plug for seamless pipe manufacturing
JPWO2017018514A1 (en) Titanium composite and titanium material for hot rolling
US20080100991A1 (en) First-wall component for a fusion reactor with a heat sink of a copper alloy
US8974614B2 (en) Powder metallurgical article and process
EP3833496A1 (en) Method for the manufacture multimaterial roll and the multimaterial roll
JP2019141910A (en) Titanium material for hot rolling
JP2521940B2 (en) Seamless steel pipe manufacturing plug
JPH02270944A (en) Roll stock having wear resistance and resistance to surface roughness and its production
JPH10156473A (en) Hot working method of tial base intermetallic compound
EP0255382B1 (en) A method of manufacturing a clad bar
EP0636445A1 (en) Brazing
Saewe et al. Influence of preheating temperature on hardness and microstructure of high-speed steel HS6-5-3-8 manufactured by laser powder bed fusion
Surreddi et al. In-situ micro-tensile testing of additive manufactured maraging steels in the SEM: Influence of build orientation, thickness and roughness on the resulting mechanical properties
EP2111933A1 (en) Process for producing plug for use in piercing/rolling raw metallic material, process for producing metallic tube, and plug for use in piercing/rolling raw metallic material
JP6137423B1 (en) Titanium composite and titanium material for hot rolling
DellaCorte Improved Processing Techniques for Inclusion-Free Steel for Bearing and Mechanical Component Applications
TWI603851B (en) Hot rolled titanium
TW402537B (en) Process for manufacturing a flux-cored wire with recrystallization annealing
JP2004045207A (en) Clad material for magnetostrictive torque sensor, and its manufacturing method
Strobl et al. Forging of copper and iron plates by the Damascus technique
JP3245477B2 (en) Thick plate clad material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees