JPH10156473A - Hot working method of tial base intermetallic compound - Google Patents

Hot working method of tial base intermetallic compound

Info

Publication number
JPH10156473A
JPH10156473A JP31400096A JP31400096A JPH10156473A JP H10156473 A JPH10156473 A JP H10156473A JP 31400096 A JP31400096 A JP 31400096A JP 31400096 A JP31400096 A JP 31400096A JP H10156473 A JPH10156473 A JP H10156473A
Authority
JP
Japan
Prior art keywords
intermetallic compound
tial
sheath
forging
based intermetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31400096A
Other languages
Japanese (ja)
Inventor
Yoji Mizuhara
洋治 水原
Keizo Hashimoto
敬三 橋本
Setsuo Sato
節雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31400096A priority Critical patent/JPH10156473A/en
Publication of JPH10156473A publication Critical patent/JPH10156473A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain complicates shape of products without generating cracks with high producing efficiency by for forging a TiAl base intermetallic compound under the range of a specified temperature and a strain rate. SOLUTION: The TiAl base intermetallic compound is coated with a sheath and hot forged at >=1000 deg.C and at the strain rate of 10<-1> to 50s<-1> . The sheath is made of Ti, a Ti alloy or steel and specified to be >=1mm in thickness. Also, oxide or ceramics where reactivity with the TiAl based intermetallic compound is low and thermally stable is inserted between the TiAl base intermetallic compound and the sheath, and hot forging is executed. The TiAl base intermetallic compound is easily taken out of the sheath after hot forging by inserting oxide or nitride. In order to prevent the reaction between the TiAl base intermetallic compound and the sheath during hot working, oxide of CaO, Al2 O3 , ZrO2 or the like and nitride of BN or the like are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、TiAl基金属
間化合物の熱間加工法に関する。
The present invention relates to a method for hot working a TiAl-based intermetallic compound.

【0002】この発明に係るTiAl基金属間化合物
は、航空機、宇宙往還機、自動車その他において高い比
強度、および耐磨耗性または耐熱性が要求される部材、
たとえばタービンブレード、エンジンバルブなどに用い
られる。
[0002] The TiAl-based intermetallic compound according to the present invention can be used for members requiring high specific strength, abrasion resistance or heat resistance in aircraft, space vehicles, automobiles and the like.
For example, it is used for turbine blades, engine valves and the like.

【0003】[0003]

【従来の技術】高速で運動する部材、たとえばタービン
ブレードやエンジンバルブに用いられる材料は、耐熱性
および比強度が高いことが望ましい。耐熱性および比強
度が高ければ、高温で使用されるこれら部材は軽量とな
り、タービンやエンジンなどの熱効率は向上する。チタ
ンアルミナイドは高い比強度と耐熱性をもっているた
め、これら部材の材料として注目されている。しかし、
室温、高温での変形能の欠如、難切削性が材料製造プロ
セス上の問題となっている。
2. Description of the Related Art Materials used for high-speed moving members such as turbine blades and engine valves desirably have high heat resistance and high specific strength. If the heat resistance and the specific strength are high, these members used at a high temperature become lightweight, and the thermal efficiency of a turbine, an engine, and the like is improved. Titanium aluminide has attracted attention as a material for these members because of its high specific strength and heat resistance. But,
Lack of deformability at room temperature and high temperature, and difficult cutting properties are problems in the material manufacturing process.

【0004】従来、TiAl基金属間化合物の熱間加工
法として特開昭63−171862号公報に開示されて
いる恒温鍛造法が知られている。この方法は試料だけで
なく加工用ダイスも800〜1100℃の高温に保持し
た後、比較的遅い歪速度で加工することにより割れを防
止する方法である。また、特開平2−224803号公
報では、真空(10-2Torr以下)または不活性ガス雰囲
気下で温度900〜1150℃、10-2〜10-4 S-1
低歪速度の条件下で行う恒温圧延法を利用した熱間加工
法が開示されている。いずれの加工法においても高温で
かつ一定温度で加工を行うので、ダイスや圧延ロールの
高温保持、素材の酸化防止、および素材とダイスや圧延
ロールとの反応防止が必要となる。それに付随して雰囲
気制御、温度コントロールのための設備を必要とするの
で、加工装置全体が大型になっていた。
Conventionally, as a hot working method of a TiAl-based intermetallic compound, there has been known a constant temperature forging method disclosed in Japanese Patent Application Laid-Open No. 63-171862. In this method, not only the sample but also the processing die are maintained at a high temperature of 800 to 1100 ° C., and then processed at a relatively low strain rate to prevent cracking. In Japanese Patent Application Laid-Open No. 224803/1990, a temperature of 900 to 1150 ° C. and a low strain rate of 10 −2 to 10 −4 S −1 in a vacuum (10 −2 Torr or less) or an inert gas atmosphere is used. A hot working method using a constant temperature rolling method is disclosed. In any of the processing methods, since the processing is performed at a high temperature and a constant temperature, it is necessary to maintain the die and the rolling roll at a high temperature, to prevent the material from being oxidized, and to prevent the reaction between the material and the die and the rolling roll. Accompanying this, equipment for controlling the atmosphere and temperature is required, so that the entire processing apparatus is large.

【0005】上記問題点を解消する発明として特開昭6
1−213361号公報に素材の周囲を被覆するシース
を用いて熱間加工を行う方法が開示されている。この方
法ではNi系、Co系あるいはFe−Ni系の耐熱合金
をシースとして用い、1000℃以上で加工を行った結
果、加工率50%程度まで素材は酸化されることなく成
形されている。特開平3−197630号公報は、シー
ス材としてTiAlの変形抵抗に近いTi合金を用いた
熱間加工法を開示している。シース材をTi合金にした
結果、TiAlの熱間加工を割れなく前述のシースでは
加工できなかった60%の加工率まで成形が可能になっ
ている。さらに、特開平8−238503号公報では、
TiAl基金属間化合物を鋼のシースで被覆し、900
℃以上、かつ固相線温度以下の温度域、および50 s-1
より遅い歪速度で熱間加工するTiAl基金属間化合物
の熱間加工法が開示されている。同公報での熱間加工
は、熱間圧延となっている。
As an invention for solving the above problems, Japanese Patent Application Laid-Open No.
Japanese Patent Application Laid-Open No. 1-213361 discloses a method of performing hot working using a sheath that covers the periphery of a material. In this method, a Ni-based, Co-based or Fe-Ni-based heat-resistant alloy is used as a sheath, and is processed at 1000 ° C. or higher. As a result, the material is formed without being oxidized up to a processing rate of about 50%. Japanese Patent Application Laid-Open No. 3-197630 discloses a hot working method using a Ti alloy having a deformation resistance close to that of TiAl as a sheath material. As a result of using a Ti alloy for the sheath material, hot working of TiAl can be performed without cracking to a working rate of 60%, which cannot be achieved with the above-described sheath. Further, in Japanese Patent Application Laid-Open No. 8-238503,
Coating a TiAl-based intermetallic compound with a steel sheath,
℃ and below the solidus temperature, and 50 s -1
A hot working method of a TiAl-based intermetallic compound that is hot worked at a lower strain rate is disclosed. The hot working in the publication is hot rolling.

【0006】[0006]

【発明が解決しようとする課題】上記特開平8−238
503号公報の熱間加工法は、シースで被覆したTiA
l基金属間化合物を、900℃以上の温度で熱間圧延す
る。したがって、圧延温度、圧下率、または圧延速度に
よっては、圧延中にTiAl基金属間化合物に割れや表
面しわなどの形状不良が発生することがある。また、圧
延であるために加工品の形状は棒、管、板、形材など長
尺かつ簡単な形状に限られる。さらに、熱間圧延では、
シースにTiAlを封入する際、シース開口部をシール
溶接する必要がある。したがって、生産能率が低い。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 8-238 is disclosed.
No. 503 discloses a hot working method in which a TiA coated with a sheath is used.
The l-base intermetallic compound is hot-rolled at a temperature of 900 ° C or higher. Therefore, depending on the rolling temperature, rolling reduction, or rolling speed, shape defects such as cracks and surface wrinkles may occur in the TiAl-based intermetallic compound during rolling. In addition, because of the rolling, the shape of the processed product is limited to a long and simple shape such as a rod, a tube, a plate, and a shaped material. Furthermore, in hot rolling,
When sealing TiAl in the sheath, it is necessary to seal-weld the sheath opening. Therefore, the production efficiency is low.

【0007】この発明は、複雑な形状の加工品を、割れ
などの欠陥が発生することなく高い生産能率で得ること
ができるTiAl基金属間化合物の熱間加工法を提供す
ることを目的とする。
An object of the present invention is to provide a hot working method of a TiAl-based intermetallic compound which can obtain a processed product having a complicated shape at a high production efficiency without generating defects such as cracks. .

【0008】[0008]

【課題を解決するための手段】この発明のTiAl基金
属間化合物の熱間加工法は、TiAl基金属間化合物を
シースで被覆し、1000℃以上、かつ10-1〜50 s
-1の歪速度で熱間鍛造することを特徴としている。
According to the hot working method for a TiAl-based intermetallic compound of the present invention, a TiAl-based intermetallic compound is covered with a sheath, the temperature is 1000 ° C. or more and 10 −1 to 50 s.
It is characterized by hot forging at a strain rate of -1 .

【0009】鍛造条件は、TiAlの高温変形特性で一
義的に決まる。鍛造時の温度を1000℃以上としたの
は、それより低温ではTiAlの変形能が著しく低下
し、TiAl基金属間化合物に割れが発生するおそれが
あるためである。鍛造温度が固相線温度を超えると、液
相が現れて鍛造ができなくなるので、鍛造温度の上限は
固相線温度である。歪速度が10-1 s-1未満であると、
加工時間が長くなり、材料および金型などの加工具の温
度が低下して割れが発生しやすくなり、また生産能率が
低下する。逆に、歪速度が50 s-1を超えると、加工速
度が高くなり割れが発生しやすく、健全な成形体を作製
することができない。
[0009] The forging conditions are uniquely determined by the high temperature deformation characteristics of TiAl. The temperature during the forging is set to 1000 ° C. or higher because, at lower temperatures, the deformability of TiAl is remarkably reduced, and cracks may occur in the TiAl-based intermetallic compound. If the forging temperature exceeds the solidus temperature, a liquid phase appears and forging cannot be performed, so the upper limit of the forging temperature is the solidus temperature. When the strain rate is less than 10 −1 s −1 ,
The processing time is prolonged, the temperature of the material and the processing tool such as a mold is lowered, cracks are easily generated, and the production efficiency is lowered. Conversely, if the strain rate exceeds 50 s −1 , the processing speed increases and cracks are likely to occur, and a sound molded body cannot be produced.

【0010】この発明によれば、材料の割れなどの欠陥
を発生させることなく、TiAl基金属間化合物を熱間
加工することができる。金型などの加工具を用いること
により、複雑な形状の加工品を高い生産性で得ることが
できる。
According to the present invention, a TiAl-based intermetallic compound can be hot-worked without generating defects such as cracks in the material. By using a processing tool such as a mold, a processed product having a complicated shape can be obtained with high productivity.

【0011】上記TiAl基金属間化合物の熱間加工法
において、この発明の一つの態様は、前記TiAl基金
属間化合物がCrを含むことである。TiAl基金属間
化合物はCrを含むことにより延性が増し、鍛造時に割
れが発生しにくくなる。
In the above-mentioned hot working method for a TiAl-based intermetallic compound, one aspect of the present invention is that the TiAl-based intermetallic compound contains Cr. Since the TiAl-based intermetallic compound contains Cr, ductility is increased, and cracks are less likely to occur during forging.

【0012】この発明の他の態様は、前記シースがT
i、Ti合金または鋼材からなり、厚さが1 mm 以上で
ある。シースの厚さが1 mm 未満であると、TiAl基
金属間化合物のシースを通しての工具への伝熱量が大き
く、TiAl基金属間化合物の温度が低下して割れが発
生しやすくなる。
In another aspect of the present invention, the sheath is T
i, made of Ti alloy or steel, and having a thickness of 1 mm or more. When the thickness of the sheath is less than 1 mm, the amount of heat transferred from the TiAl-based intermetallic compound to the tool through the sheath is large, and the temperature of the TiAl-based intermetallic compound is lowered, so that cracks are likely to occur.

【0013】また、この発明の更に他の態様は、前記T
iAl基金属間化合物とシースとの間に、TiAl基金
属間化合物との反応性が低く、熱的に安定な酸化物また
はセラミックスを挿入して熱間鍛造することである。酸
化物またはセラミックスを挿入することにより、熱間鍛
造後にシースからTiAl基金属間化合物を容易に取り
出すことができる。
Further, still another embodiment of the present invention relates to the aforementioned T
The hot forging is performed by inserting a thermally stable oxide or ceramic having low reactivity with the TiAl-based intermetallic compound between the iAl-based intermetallic compound and the sheath. By inserting an oxide or ceramics, the TiAl-based intermetallic compound can be easily taken out of the sheath after hot forging.

【0014】[0014]

【発明の実施の形態】この発明のTiAl基金属間化合
物の熱間加工法は、TiAl基金属間化合物をシースで
被覆し、1000℃以上、かつ10-1〜50 s-1の歪速
度で熱間鍛造する。
BEST MODE FOR CARRYING OUT THE INVENTION In the hot working method of a TiAl-based intermetallic compound of the present invention, a TiAl-based intermetallic compound is coated with a sheath, at a temperature of 1000 ° C. or more and at a strain rate of 10 -1 to 50 s -1. Hot forging.

【0015】上記熱間加工法において、TiAl基金属
間化合物の化学組成は、Ti47.5〜55at%、Al
38〜51.5at%、残部不可避的不純物である。ま
た、上記化学組成に高温変形能向上効果をもった後述の
元素を加えてもよい。高歪速度、かつ高鍛造比で熱間鍛
造を行うには、TiAlの変形抵抗を下げるために熱間
鍛造の前段として結晶粒の均一微細化のための熱間加工
を行うことが望ましい。上記熱間加工として、たとえば
900℃以上で恒温鍛造を行う。さらに、加工特性を向
上するには、TiAl基金属間化合物の成分系として、
高温変形能向上に効果があるCr、Nb、Mo、Hf、
Ta、W、Vの少なくとも一つのβ相安定化元素を含む
ものにすればよい。鍛造は大気雰囲気中で行うことがで
き、自由鍛造、型鍛造のいずれであってもよい。鍛造を
複数回に分けて行ってもよく、その場合には鍛造中に材
料の温度が低下するので、途中で材料を所定の鍛造温度
に再加熱する。鍛造温度が1000℃以上であると、割
れの発生はほとんどなくなる。鍛造温度を高く(たとえ
ば1200℃以上)して歪速度を大きく(たとえば、1
〜50 s-1)すると、生産性を上げることができる。1
回の加工率については30%以上とすることが好まし
い。その理由は30%未満では材質面において加工変形
組織が残って不均一となることと、生産性が悪くなるた
めである。
In the above hot working method, the chemical composition of the TiAl-based intermetallic compound is Ti 47.5-55 at%, Al
38 to 51.5 at%, with the balance being inevitable impurities. Further, an element described below having an effect of improving high-temperature deformability may be added to the above chemical composition. In order to perform hot forging at a high strain rate and a high forging ratio, it is desirable to perform hot working for uniform refinement of crystal grains as a pre-stage of hot forging in order to reduce the deformation resistance of TiAl. As the above-mentioned hot working, for example, constant temperature forging is performed at 900 ° C. or higher. Further, in order to improve the processing characteristics, as a component system of the TiAl-based intermetallic compound,
Cr, Nb, Mo, Hf, which are effective in improving hot deformability
What is necessary is just to contain at least one beta phase stabilizing element of Ta, W and V. Forging can be performed in an air atmosphere, and may be either free forging or die forging. Forging may be performed in a plurality of times, in which case the temperature of the material decreases during forging, so that the material is reheated to a predetermined forging temperature on the way. When the forging temperature is 1000 ° C. or higher, cracks are hardly generated. The forging temperature is increased (eg, 1200 ° C. or higher) to increase the strain rate (eg, 1
5050 s −1 ), the productivity can be increased. 1
It is preferable that the processing rate per cycle is 30% or more. The reason is that if it is less than 30%, a deformed structure remains on the surface of the material, resulting in non-uniformity and a decrease in productivity.

【0016】TiAl基金属間化合物がCrを含む場
合、その含有量は、1〜5at%であることが望ましい。
Crの含有量が1at%未満であると、割れ防止効果が小
さくなる。また、Crの含有量が5at%を超えると、材
料費が高くなり、割れ防止効果はそれほど上昇しない。
When the TiAl-based intermetallic compound contains Cr, its content is preferably 1 to 5 at%.
When the content of Cr is less than 1 at%, the effect of preventing cracking is reduced. On the other hand, if the content of Cr exceeds 5 at%, the material cost increases, and the effect of preventing cracking does not increase so much.

【0017】シース材として、Ti、Ti合金、または
鋼が用いられる。Ti合金はTi−6Al−4V、Ti
−15V−3Al−3Cr−3Snなどであり、鋼は炭
素鋼、合金鋼、ステンレス鋼などである。シースが鋼材
である場合、鍛造する高温域で従来用いられていた耐熱
合金に比べ、変形抵抗が低いという問題点がある。すな
わち、シースと内部のTiAlが同じ温度条件ではシー
ス材の方が変形抵抗が低いためにシース材の方ばかり変
形することになる。これを解決するには内部のTiAl
と外部のシース材の変形抵抗が等しくなるようにシース
内の温度分布を調節すればよい。シース内の温度分布
は、伝熱計算により求めることができる。伝熱計算のパ
ラメータは、シース材の比熱、密度、熱伝導率の物性
値、鍛造温度、歪速度、シースの厚み、TiAlの厚
み、金型温度などである。それらパラメータを調整し、
シース材の変形抵抗と内部のTiAlの変形抵抗を等し
くするようにシース材内の温度分布を管理することで、
TiAlをシースとともに成形することができる。ま
た、鋼材の種類としては熱間鍛造の環境が大気中である
ため、鋼材の中でも耐酸化性に優れるステンレス鋼を用
いることが望ましい。
As the sheath material, Ti, Ti alloy, or steel is used. Ti alloy is Ti-6Al-4V, Ti
-15V-3Al-3Cr-3Sn, and the steel is carbon steel, alloy steel, stainless steel, or the like. When the sheath is a steel material, there is a problem that the deformation resistance is lower than that of a heat-resistant alloy conventionally used in a high temperature range for forging. That is, when the sheath and the inner TiAl are at the same temperature, the sheath material is deformed only because the sheath material has lower deformation resistance. To solve this, the internal TiAl
The temperature distribution in the sheath may be adjusted so that the deformation resistance of the outer sheath material becomes equal to that of the outer sheath material. The temperature distribution in the sheath can be obtained by heat transfer calculation. The parameters of the heat transfer calculation include specific heat, density, physical properties of thermal conductivity, forging temperature, strain rate, sheath thickness, TiAl thickness, and mold temperature of the sheath material. Adjust those parameters,
By managing the temperature distribution in the sheath material so that the deformation resistance of the sheath material and the deformation resistance of the TiAl inside are equal,
TiAl can be molded with the sheath. In addition, since the environment of hot forging is in the air as a type of steel, it is desirable to use stainless steel having excellent oxidation resistance among steels.

【0018】熱間鍛造に供される素材は、板状、棒状、
またはブロック状など目的の形状に合わせた素材を用い
る。たとえば、板状の場合、板状のTiAl基金属間化
合物の上下面にシース材を挟むだけでよい。また、棒状
の場合、棒状のTiAl基金属間化合物を管状シース材
に挿入し、両端部の金型と当たる面と金型面との間にシ
ース材を挟む。
The material to be subjected to hot forging is a plate, a rod,
Alternatively, a material suitable for a target shape such as a block shape is used. For example, in the case of a plate, it is only necessary to sandwich the sheath material between the upper and lower surfaces of the plate-shaped TiAl-based intermetallic compound. In the case of a rod shape, a rod-shaped TiAl-based intermetallic compound is inserted into a tubular sheath material, and the sheath material is sandwiched between the surfaces of the molds at both ends and the mold surface.

【0019】熱間加工中のTiAl基金属間化合物とシ
ースとの間の反応を防止するため、CaO、Al
2 3 、ZrO2 などの酸化物やBNなどの窒化物が用
いられる。酸化物またはセラミックスを介在させるに
は、これら材料をTiAl基金属間化合物とシースとの
間に挿入するか、またはTiAlの表面に酸化物を形成
する。これら材料はTiAlと反応しにくく、化学的に
安定であるため、熱間鍛造後にシースから容易にTiA
lを取り出すことができる。これら材料は、熱間鍛造後
そのまま残っていても、使用環境上TiAlの特性を阻
害するようなことがない。Al2 3 を用いた場合、耐
酸化特性のための保護膜としての特性を望めるので有益
である。酸化物またはセラミックスは、シースにTiA
lを封入する際にシート状あるいは粉末状で挿入しても
よいが、プラズマ溶射やゾルゲル法等の各種コーティン
グ技術によりTiAlの上に均一に形成しても差し支え
ない。TiAl自身を改質することによっても、TiA
lの表面に酸化物を形成することは可能である。
In order to prevent a reaction between the TiAl-based intermetallic compound and the sheath during hot working, CaO, Al
Oxides such as 2 O 3 and ZrO 2 and nitrides such as BN are used. To interpose an oxide or ceramics, these materials are inserted between the TiAl-based intermetallic compound and the sheath, or an oxide is formed on the surface of TiAl. Since these materials hardly react with TiAl and are chemically stable, TiA can be easily removed from the sheath after hot forging.
l can be taken out. Even if these materials are left as they are after hot forging, they do not impair the characteristics of TiAl in use environment. The use of Al 2 O 3 is advantageous because properties as a protective film for oxidation resistance can be expected. Oxide or ceramic is made of TiO
1 may be inserted in the form of a sheet or a powder at the time of encapsulation, but may be uniformly formed on TiAl by various coating techniques such as plasma spraying and a sol-gel method. By modifying TiAl itself, TiA
It is possible to form an oxide on the surface of l.

【0020】[0020]

【実施例】【Example】

(実施例1)素材としてAl33.4重量%、Cr4.
2重量%、残部Ti、および不可避的不純物からなるT
iAl基金属間化合物をプラズマアーク溶解によりイン
ゴットを鋳造し、高温変形特性を向上する目的で、温度
1200℃、歪速度5×10-4 s-1で恒温鍛造法により
組織制御を行った。そこから供試材として直径18 mm
、高さ22 mm の大きさの円柱材を切り出し、試験に
用いた。シース材としてはTi合金(Ti−6Al−4
V)、およびSUS304を用いた。試料をパイプ状の
シースに挿入したのち、上下面を円盤状のシースで覆っ
てスポット溶接で側面のパイプと固定した。大気雰囲気
の炉で所定の温度まで加熱後、10分保持したのち、表
1に示した条件で鍛造を行った。この時の加工率は70
%に設定した。
(Example 1) As materials, 33.4% by weight of Al, Cr4.
T consisting of 2% by weight, balance Ti and unavoidable impurities
The ingot was cast by plasma arc melting of the iAl-based intermetallic compound, and the structure was controlled by a constant temperature forging method at a temperature of 1200 ° C. and a strain rate of 5 × 10 −4 s −1 in order to improve the high-temperature deformation characteristics. From there, 18 mm in diameter as a test material
A cylindrical material having a height of 22 mm was cut out and used for the test. As a sheath material, a Ti alloy (Ti-6Al-4) is used.
V) and SUS304. After inserting the sample into the pipe-shaped sheath, the upper and lower surfaces were covered with a disk-shaped sheath and fixed to the side pipe by spot welding. After heating to a predetermined temperature in a furnace in an air atmosphere and holding for 10 minutes, forging was performed under the conditions shown in Table 1. The processing rate at this time is 70
%.

【表1】 シースから取り出したTiAl基金属間化合物について
欠陥や割れが発生しているか否かを調べ、その結果を表
1に示す。比較例1に示したような炉の温度が900℃
未満の低温で鍛造を行うと構造材として致命的な欠陥や
割れを含んだ不健全なものであった。また、0.1 mm
厚さのTa箔で包んで鍛造した場合や歪速度が0.01
s-1の鍛造条件では、金型からの抜熱によって試料が冷
えてしまい、内部のTiAl基金属間化合物は割れてし
まった。また、シースなしで鍛造した場合では、表面の
酸化がひどく、加工途中で破壊した。
[Table 1] The TiAl-based intermetallic compound removed from the sheath was examined for defects or cracks, and the results are shown in Table 1. The temperature of the furnace as shown in Comparative Example 1 is 900 ° C.
When forging was performed at a low temperature of less than 1, the structural material was unhealthy including fatal defects and cracks. Also, 0.1 mm
When wrapped in thick Ta foil and forged, or when the strain rate is 0.01
Under the forging condition of s- 1, the sample was cooled by heat removal from the mold, and the internal TiAl-based intermetallic compound was broken. In the case of forging without a sheath, the surface was severely oxidized and broken during processing.

【0021】(実施例2)素材としてAl31.5重量
%、Nb11.5重量%、残部Ti、および不可避的不
純物からなるTiAl基金属間化合物、シースを用い実
施例1と同じ条件で熱間鍛造を行った。本例では、反応
防止材としてAl2 3 のシートを用い、熱間鍛造を行
った。鍛造後、TiAl基金属間化合物とシースの境界
部分を切断し、TiAl基金属間化合物をシースから剥
離できるか否かを評価した。その結果、実施例1の条件
では、何れの鍛造条件においても切断後、容易にシース
より内部のTiAl基金属間化合物を剥離することがで
き、しかも割れが発生せずに健全なものが得られた。得
られたTiAl基金属間化合物についてその表面を分析
した結果、一部Al2 3 が鍛造によって付着していた
がシースからの金属原子の拡散は検出されず、健全な鍛
造材であることが確認された。
(Embodiment 2) Hot forging is performed under the same conditions as in Embodiment 1, using 31.5% by weight of Al, 11.5% by weight of Nb, the remainder Ti, and a TiAl-based intermetallic compound composed of unavoidable impurities. Was done. In this example, hot forging was performed using an Al 2 O 3 sheet as a reaction preventing material. After forging, the boundary between the TiAl-based intermetallic compound and the sheath was cut, and it was evaluated whether the TiAl-based intermetallic compound could be peeled from the sheath. As a result, under the conditions of Example 1, under any forging conditions, the TiAl-based intermetallic compound inside can be easily peeled off from the sheath after cutting, and a sound product without cracking can be obtained. Was. As a result of analyzing the surface of the obtained TiAl-based intermetallic compound, Al 2 O 3 was partially adhered by forging, but diffusion of metal atoms from the sheath was not detected, indicating that the material was a sound forged material. confirmed.

【0022】[0022]

【発明の効果】この発明によるTiAl基金属間化合物
の熱間加工法は、所定の温度範囲および歪速度範囲の下
で、TiAl基金属間化合物を熱間鍛造する。したがっ
て、TiAl基金属間化合物の複雑な形状の加工品を、
割れが発生することなく、高い生産能率で得ることがで
きる。
According to the hot working method for a TiAl-based intermetallic compound according to the present invention, the TiAl-based intermetallic compound is hot-forged under a predetermined temperature range and a strain rate range. Therefore, a processed product having a complicated shape of the TiAl-based intermetallic compound is
It can be obtained with high production efficiency without cracking.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C22F 1/00 651 C22F 1/00 651B 683 683 694 694Z 694B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C22F 1/00 651 C22F 1/00 651B 683 683 694 694 694Z 694B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 TiAl基金属間化合物をシースで被覆
し、1000℃以上、かつ10-1〜50 s-1の歪速度で
熱間鍛造することを特徴とするTiAl基金属間化合物
の熱間加工法。
1. A hot working method of a TiAl-based intermetallic compound, comprising coating a TiAl-based intermetallic compound with a sheath and hot-forging at 1000 ° C. or higher and a strain rate of 10 -1 to 50 s -1. Processing method.
【請求項2】 前記TiAl基金属間化合物がCrを含
む請求項1記載のTiAl基金属間化合物の熱間加工
法。
2. The hot working method for a TiAl-based intermetallic compound according to claim 1, wherein the TiAl-based intermetallic compound contains Cr.
【請求項3】 前記シースがTi、Ti合金、または鋼
材からなり、厚さが1 mm 以上である請求項1または請
求項2記載のTiAl基金属間化合物の熱間加工法。
3. The hot working method for a TiAl-based intermetallic compound according to claim 1, wherein the sheath is made of Ti, Ti alloy, or steel, and has a thickness of 1 mm or more.
【請求項4】 前記TiAl基金属間化合物と前記シー
スとの間に、TiAl基金属間化合物との反応性が低
く、熱的に安定な酸化物またはセラミックスを介在させ
て熱間鍛造する請求項1、2または3記載のTiAl基
金属間化合物の熱間加工法。
4. A hot forging method in which a thermally stable oxide or ceramic having low reactivity with a TiAl-based intermetallic compound is interposed between the TiAl-based intermetallic compound and the sheath. 4. The hot working method for a TiAl-based intermetallic compound according to 1, 2, or 3.
JP31400096A 1996-11-25 1996-11-25 Hot working method of tial base intermetallic compound Withdrawn JPH10156473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31400096A JPH10156473A (en) 1996-11-25 1996-11-25 Hot working method of tial base intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31400096A JPH10156473A (en) 1996-11-25 1996-11-25 Hot working method of tial base intermetallic compound

Publications (1)

Publication Number Publication Date
JPH10156473A true JPH10156473A (en) 1998-06-16

Family

ID=18048018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31400096A Withdrawn JPH10156473A (en) 1996-11-25 1996-11-25 Hot working method of tial base intermetallic compound

Country Status (1)

Country Link
JP (1) JPH10156473A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708615B1 (en) * 2000-08-11 2007-04-18 두산중공업 주식회사 Method for Manufacturing a Large Exhaust Valve Head by Closed Die Forging
US7618504B2 (en) 2000-02-23 2009-11-17 Mitsubishi Heavy Industries, Ltd. TiA1 based alloy, production process therefor, and rotor blade using same
EP2258497A1 (en) * 2009-06-05 2010-12-08 Böhler Schmiedetechnik GmbH & Co KG Method for hot forming a workpiece and equipment for reducing the workpiece's heat emission
JP2010280002A (en) * 2009-06-05 2010-12-16 Boehler Schmiedetechnik Gmbh & Co Kg Method for manufacturing forged piece from gamma titanium-aluminum-based alloy
WO2020235203A1 (en) 2019-05-23 2020-11-26 株式会社Ihi Tial alloy production method and tial alloy
WO2020235202A1 (en) 2019-05-23 2020-11-26 株式会社Ihi Tial alloy material, production method therefor, and hot forging method for tial alloy material
CN113862587A (en) * 2021-08-12 2021-12-31 衢州学院 In-situ dual-phase dual-scale synergistically enhanced TiAl-based composite material and preparation method thereof
CN113913714A (en) * 2020-07-08 2022-01-11 中南大学 Method for refining TC18 titanium alloy beta grains by adopting stepped strain rate forging process
CN114346136A (en) * 2021-12-27 2022-04-15 武汉理工大学 TiAl turbine blade stress-temperature double plastic-increasing near-net forming method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618504B2 (en) 2000-02-23 2009-11-17 Mitsubishi Heavy Industries, Ltd. TiA1 based alloy, production process therefor, and rotor blade using same
KR100708615B1 (en) * 2000-08-11 2007-04-18 두산중공업 주식회사 Method for Manufacturing a Large Exhaust Valve Head by Closed Die Forging
US9440283B2 (en) 2009-06-05 2016-09-13 Boehler Schmiedetechnik Gmbh & Co. Kg Method for hot shaping a workpiece and agent for reducing the heat emission
JP2010280003A (en) * 2009-06-05 2010-12-16 Boehler Schmiedetechnik Gmbh & Co Kg Method for hot forming workpiece, and means for reducing heat emission of workpiece
JP2010280002A (en) * 2009-06-05 2010-12-16 Boehler Schmiedetechnik Gmbh & Co Kg Method for manufacturing forged piece from gamma titanium-aluminum-based alloy
US8685298B2 (en) 2009-06-05 2014-04-01 Boehler Schmiedetechnik Gmbh & Co Kg Method for hot shaping a workpiece and agent for reducing the heat emission
EP2258497A1 (en) * 2009-06-05 2010-12-08 Böhler Schmiedetechnik GmbH & Co KG Method for hot forming a workpiece and equipment for reducing the workpiece's heat emission
WO2020235203A1 (en) 2019-05-23 2020-11-26 株式会社Ihi Tial alloy production method and tial alloy
WO2020235202A1 (en) 2019-05-23 2020-11-26 株式会社Ihi Tial alloy material, production method therefor, and hot forging method for tial alloy material
CN113913714A (en) * 2020-07-08 2022-01-11 中南大学 Method for refining TC18 titanium alloy beta grains by adopting stepped strain rate forging process
CN113913714B (en) * 2020-07-08 2022-06-24 中南大学 Method for refining TC18 titanium alloy beta grains by adopting stepped strain rate forging process
CN113862587A (en) * 2021-08-12 2021-12-31 衢州学院 In-situ dual-phase dual-scale synergistically enhanced TiAl-based composite material and preparation method thereof
CN113862587B (en) * 2021-08-12 2022-09-13 衢州学院 In-situ dual-phase dual-scale synergistically enhanced TiAl-based composite material and preparation method thereof
CN114346136A (en) * 2021-12-27 2022-04-15 武汉理工大学 TiAl turbine blade stress-temperature double plastic-increasing near-net forming method

Similar Documents

Publication Publication Date Title
CN109355530B (en) Preparation method and application of heat-resistant titanium alloy wire
EP1785502A1 (en) Direct rolling of cast gamma titanium aluminide alloys
US11718897B2 (en) Precipitation hardenable cobalt-nickel base superalloy and article made therefrom
JP2007270199A (en) Titanium alloy having excellent high temperature oxidation resistance and engine exhaust pipe
JP2500272B2 (en) Method for manufacturing heat resistant alloy
JPH10156473A (en) Hot working method of tial base intermetallic compound
JP2008229680A (en) PROCESS FOR PRODUCING MOLDED PRODUCT OF TiAl-BASED ALLOY
JPH03174938A (en) Method for hot forging ni base super heat-resistant alloy
EP3199262A1 (en) Method for manufacturing alloy ingot
JP3608546B2 (en) Mold for casting and manufacturing method thereof
JP4492959B2 (en) Heat resistant titanium alloy and engine valve formed thereby
CN108913945B (en) A kind of high-strength titanium alloy and preparation method thereof
JPWO2017018515A1 (en) Titanium material for hot rolling
JP2722628B2 (en) Plastic working method for B-containing Ni-base heat-resistant alloy
JP6344194B2 (en) Titanium member excellent in oxidation resistance and method for producing titanium member excellent in oxidation resistance
JPH0576977A (en) Method and apparatus for high temperature die forging
JPH08238503A (en) Method for hot working tial base intermetallic compound
JP2021028408A (en) Titanium alloy sheet, and exhaust system components for automobile
JPH03197630A (en) Method for hot-working intermetallic compound ti-al base alloy
CN114434102B (en) Double titanium metal ring and preparation method thereof
EP0388892B1 (en) Method for plastic-working ingots of heat-resistant alloy containing boron
JPS61223106A (en) Production of high alloy clad product
Lysenko et al. INFLUENCE OF LONG-TERM SOAKING ON THE STRUCTURE AND PROPERTIES OF IN625 ALLOY SAMPLES MADE BY SELECTIVE LASER MELTING
JPH03193233A (en) Method for performing isothermal forging to intermetallic compound
JPH08238501A (en) Method for sheathing tial base intermetallic compound

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203