JP4342649B2 - 中空管内の断面形状測定方法 - Google Patents

中空管内の断面形状測定方法 Download PDF

Info

Publication number
JP4342649B2
JP4342649B2 JP25004399A JP25004399A JP4342649B2 JP 4342649 B2 JP4342649 B2 JP 4342649B2 JP 25004399 A JP25004399 A JP 25004399A JP 25004399 A JP25004399 A JP 25004399A JP 4342649 B2 JP4342649 B2 JP 4342649B2
Authority
JP
Japan
Prior art keywords
distance
points
hollow tube
point
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25004399A
Other languages
English (en)
Other versions
JP2001074448A (ja
Inventor
高弘 近藤
裕道 宮崎
俊実 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP25004399A priority Critical patent/JP4342649B2/ja
Publication of JP2001074448A publication Critical patent/JP2001074448A/ja
Application granted granted Critical
Publication of JP4342649B2 publication Critical patent/JP4342649B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ測距装置をトンネル内に配置し、レーザ測距装置によりトンネル内の断面形状を測定する方法に係り、特に、手間や時間の面で有利に、レーザ測距装置の配置位置やトンネルの中心位置を正確に測定することにより、トンネルの出来形管理を正確かつ効率的に行うのに好適な中空管内の断面形状測定方法に関する。
【0002】
【従来の技術】
従来、トンネル等の地下構造物の断面形状を測定する方法としては、例えば、レーザ測距法により距離を測定するレーザ測距装置を用いて、トンネルの延長方向に対して直交する方向にレーザを照射してトンネルの延長方向に対して直交する断面(以下、単に断面という。)の形状を測定するというものがあった。従来の断面形状測定方法では、断面形状を測定した後に、レーザ測距装置の配置位置を測量により測定し、レーザ測距装置の配置位置とトンネルの設計上のセンターの位置等とを比較しながら出来形管理を行っていた。
【0003】
また、トンネルの断面形状が円形である場合には、トンネルの中心位置を測定し、トンネルの中心位置とトンネルの設計上の中心座標とを比較しながら出来形管理を行うが、トンネルの中心位置を測定するには、所定長の棒材を用意し、この棒材のセンターに目印を付するとともにこの棒材に水準器を沿わせ、棒材が水平になったときの目印の位置を測量することにより行っていた。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の断面形状測定方法にあっては、レーザ測距装置の配置位置を測量により測定していたため、測量に手間や時間がかかるばかりか、測量を人手により行うことから測定ミスが生じる可能性があった。
また、トンネルの中心位置を測定する方法にあっては、トンネルの中心位置を棒材を用いた測量により測定していたため、測量に手間や時間がかかるばかりか、トンネルの水平方向の中心座標しか測定することができず、鉛直方向の中心座標を測定することができなかった。
【0005】
したがって、測定に手間や時間がかかり、しかもレーザ測距装置の配置位置やトンネルの中心位置を正確に得ることができないので、トンネルの出来形管理を正確かつ効率的に行うことが困難であった。
そこで、本発明では、このような従来の技術が有する未解決の課題に着目してなされたものであって、手間や時間の面で有利に、レーザ測距装置の配置位置やトンネルの中心位置を正確に測定することにより、トンネルの出来形管理を正確かつ効率的に行うのに好適な中空管内の断面形状測定方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る請求項1記載の中空間内の断面形状を測定する方法は、レーザ測距法により距離を測定する測定機を前記中空管内に配置し、前記測定機により前記中空管の延長方向に対して直交する方向にレーザを照射し、前記レーザの照射線上に対応する前記中空管の異なる複数の点について、前記測定機の配置位置から前記複数の点の各点までの測定距離及び前記測定機の配置位置と前記複数の点の各点とを結ぶ線が基準線に対してなす測定角度を測定し、前記測定機の配置位置から前記複数の点のうちの任意の点までの測定距離及び前記測定機の配置位置と前記任意の点とを結ぶ線が基準線に対してなす測定角度に基づいて、前記任意の点の直交座標を算出することで、前記複数の点の各点の直交座標を算出し、前記複数の点の各点の直交座標に基づいて前記中空管の中心座標を算出することを特徴とする。
【0007】
ここで、レーザ照射点とは、中空管内におけるレーザの反射点をいい、この場合、測定機と中空管との間に障害物が存在しなければ、中空管内の壁面でレーザが反射するのでその点がレーザ照射点となり、測定機と中空管との間に障害物が存在すれば、中空管内のその障害物でレーザが反射するのでその点がレーザ照射点となる。以下、請求項2記載の中空管内の断面形状測定方法において同じである。
【0008】
さらに本発明に係る請求項2記載の中空間内の断面形状を測定する方法は、前記複数の
点はn個の点(nは自然数)であるとし、前記複数の点のうちの任意の点について算出された直交座標を(Xi,Yi:iは任意の自然数)とした場合、前記中空管の中心座標(Xc,Yc)は、下記の数式
【数2】
Figure 0004342649
により算出される。
【0009】
さらに本発明に係る請求項3記載の中空間内の断面形状を測定する方法は、前記測定距離および測定角度に基づいて前記中空管の暫定的な中心座標を算出し、
前記複数の点のうちから選択した任意の点についての前記測定角度、前記中空管の設計上の半径および前記暫定中心座標に基づいて算出される当該選択した任意の点についての前記測定距離の理論値を、前記選択した任意の点についての前記測定角度で微分してその微分値を算出し、
前記複数の点のうち前記選択した任意の点と隣り合う点についての前記測定距離と前記選択した任意の点についての前記測定距離との差分である距離差を算出し、
前記微分値と前記距離差との差分が所定以上であるときは、前記選択した任意の点についての前記測定距離を、前記隣り合う点についての前記測定距離に前記微分値を加算したものとして補正することを特徴とする。
【0010】
さらに本発明に係る請求項4記載の中空間内の断面形状を測定する方法は、前記微分値の算出、前記距離差の算出および前記測定距離の補正を、前記複数の点すべてについて行うことを特徴とする。
【0019】
【発明の実施の形態】
以下、本発明の第1の実施の形態を図面を参照しながら説明する。図1ないし図4は、本発明に係る中空管内の断面形状測定方法の第1の実施の形態を示す図である。
この第1の実施の形態は、本発明に係る中空管内の断面形状測定方法を、図1に示すように、レーザ測距装置100をトンネル200内に配置し、レーザ測距装置100によりトンネル200の延長方向に対して直交する方向にレーザを照射し、トンネル200内におけるレーザ測距装置100の配置位置を測定する場合について適用したものである。
【0020】
まず、レーザ測距装置100の構成を図2およb図3を参照しながら説明する。図2は、レーザ測距装置100の構成を示すブロック図であり、図3は、レーザヘッドの回転位置と受光エリアの向きとの関係を示す概念図である。
レーザ測距装置100は、図2に示すように、対象物に向けてパルスレーザ光を放射する発光部9および対象物を介して反射されるパルスレーザ光を受光して受光パルス信号を出力する受光部10を有するレーザレーダヘッド1と、受光部10から出力される受光パルス信号のレベルが所定の基準レベルを越えた時点を反射レーザ光の到達時刻と判定して発光部9のレーザ光放射時刻からその到達時刻までの所要時間を測定する時間測定ユニット20と、時間測定ユニット20で測定された所要時間に基いて発光部9または受光部10から対象物までの距離を算出する信号処理ユニット30と、で構成されており、レーザレーダヘッド1を、本装置を中心とする円周方向にスキャニングすることにより、図1に示すように、本装置を中心とする円周方向全周にわたってその円周方向に存在する対象物までの距離を測定可能となっている。
【0021】
レーザーレーダヘッド1は、LD(レーザーダイオード)からなる1つの発光素子2と、PD(ピンフォトダイオード)からなる第1、第2の2つの受光素子3,4と、を有し、発光素子2の前側には、発光用レンズ(集光レンズ)5が配置され、第1、第2の受光素子3,4の前側には、それぞれ格子状のメカニカルフィルタ8を備えた受光用レンズ(集光レンズ)6,7が配置されている。
【0022】
発光素子2と第1、第2の受光素子3,4は、図3に示すように、ターンテーブル14上に載置され、それらに属するレンズ5,6,7およびメカニカルフィルタ8もターンテーブル14上に搭載されている。なお、発光素子2およびそのレンズ5は、図2ではレーザーレーダヘッド1の片側に描いてあるが、実際には、図3に示すように、第1、第2の受光素子3,4およびそのレンズ6,7の中間に位置するようになっている。
【0023】
さらに、レーザーレーダヘッド1は、ターンテーブル14を回転させて、第1、第2の受光素子3,4の受光エリア43,44および発光素子2の発光エリア(図示せず)を図3(a)から(b)のように偏向させるためのサーボ機構11と、その駆動モータ12と、を備えている。なお、サーボ機構11の現在回転角度は、駆動モータ12と連動するポテンショメータ13により検出するようになっている。
【0024】
時間測定ユニット20は、発光部9に対してスタートパルスを発生するパルス発生部21と、スタートパルスにより計時を開始し受光部10からのスタートパルスで計時を終了する時間測定部22と、を有している。
信号処理ユニット30は、時間測定部22で得られた時間データに基づいて対象物までの距離を算出する距離測定部31と、サーボ機構11の駆動モータ12に対し適切な指令を与えるサーボ制御部33と、制御プログラムに基づいて演算およびシステム全体を制御するCPU34と、所定領域にあらかじめCPU34の制御プログラム等を格納しているROM35と、ROM35等から読み出したデータやCPU34の演算過程で必要な演算結果を格納するためのRAM36と、表示装置32と、で構成されている。
【0025】
CPU34は、マイクロプロセッシングユニットMPU等からなり、トンネル200内におけるレーザ測距装置100の配置位置を測定するときは、ROM35の所定領域に格納されている所定のプログラムを起動させ、図4のフローチャートに示す配置位置測定処理を実行するようになっている。図4は、配置位置測定処理を示すフローチャートである。
【0026】
次に、CPU34において実行される配置位置測定処理を説明しつつ、上記第1の実施の形態の動作を説明する。
まず、図1に示すように、トンネル200の延長方向に対して直交する方向にレーザを照射可能となるように、レーザ測距装置100をトンネル200内に配置し、CPU34において配置位置測定処理を実行することにより、トンネル200内におけるレーザ測距装置100の配置位置の測定を開始すると、図4に示すように、ステップS100に移行するようになっている。
【0027】
ステップS100では、角度データとして0度をサーボ機構制御部33に出力する。これにより、ターンテーブル14が回転し、図1に示すように、レーザ測距装置100の右側であって水平線に対して0度の方向にあるトンネル200内の壁面P1までの距離LRが測定される。
次いで、ステップS102に移行して、こうして測定された距離データを距離測定部31から入力し、ステップS104に移行して、角度データとして180度をサーボ機構制御部33に出力する。これにより、ターンテーブル14が回転し、図1に示すように、レーザ測距装置100の左側であって水平線に対して180度の方向にあるトンネル200内の壁面P2までの距離LLが測定される。
【0028】
次いで、ステップS106に移行して、こうして測定された距離データを距離測定部31から入力し、ステップS108に移行して、角度データとして270度をサーボ機構制御部33に出力する。これにより、ターンテーブル14が回転し、図1に示すように、レーザ測距装置100の下側であって水平線に対して270度の方向にあるトンネル200内の床面P3までの距離LDが測定される。
【0029】
次いで、ステップS110に移行して、こうして測定された距離データを距離測定部31から入力し、ステップS112に移行して、入力した距離データLR,LL,LDおよび出力した角度データに基づいて、トンネル200内におけるレーザ測距装置100の配置座標を算出し、ステップS114に移行して、算出した配置座標を表示装置32で表示する。
【0030】
表示装置32において、算出されたレーザ測距装置100の配置座標は、例えば、トンネル200内の所定位置P0の座標からの相対座標として直交座標系で表示される。
このようにして、本実施の形態では、トンネル200内におけるレーザ照射点の軌跡であるレーザ照射線上の異なる複数の点P1,P2,P3について、レーザ測距装置100の配置位置からこれら点P1,P2,P3までの距離およびレーザ測距装置100の配置位置とこれら点P1,P2,P3とを結ぶ線が水平線に対してなす角度を測定し、測定した測定距離および測定角度に基づいてレーザ測距装置100の配置座標を算出するようにした。
【0031】
これにより、配置座標の測定が容易となるとともに、測定を人手により行わなくてすむので配置座標に生じる誤差が少なくなる。したがって、従来に比して、手間や時間の面で有利に、レーザ測距装置100の配置位置を比較的正確に測定することができる。
次に、本発明の第2の実施の形態を図面を参照しながら説明する。図5および図6は、本発明に係る中空管内の断面形状測定方法の第2の実施の形態を示す図である。
【0032】
この第2の実施の形態は、本発明に係る中空管内の断面形状測定方法を、図5に示すように、レーザ測距装置100を円筒形のトンネル300内に配置し、レーザ測距装置100によりトンネル300の延長方向に対して直交する方向にレーザを照射し、トンネル300の中心位置を測定する場合について適用したものである。なお、以下、上記第1の実施の形態と異なる部分についてのみ説明し、同一の部分については同一の符号を付して説明を省略する。
【0033】
レーザ測距装置100は、図2および図3に示すように、レーザレーダヘッド1と、時間測定ユニット20と、信号処理ユニット30と、で構成されており、CPU34で実行される処理を除いては、上記第1の実施の形態と同一の構成である。
CPU34は、マイクロプロセッシングユニットMPU等からなり、トンネル300の中心位置を測定するときは、ROM35の所定領域に格納されている所定のプログラムを起動させ、図6のフローチャートに示す中心位置測定処理を実行するようになっている。図6は、中心位置測定処理を示すフローチャートである。
【0034】
次に、CPU34において実行される中心位置測定処理を説明しつつ、上記第2の実施の形態の動作を説明する。
まず、図5に示すように、トンネル300の延長方向に対して直交する方向にレーザを照射可能となるように、レーザ測距装置100をトンネル300内に配置し、CPU34において中心位置測定処理を実行することにより、トンネル300の中心位置の測定を開始すると、図6に示すように、ステップS200に移行するようになっている。
【0035】
ステップS200では、図5に示すように、レーザ測距装置100を中心とする円周方向全周にわたってレーザを等角でスキャンしながら、トンネル300内におけるレーザ照射点の軌跡であるレーザ照射線上の異なるn個の点P1〜Pnについて、レーザ測距装置100の配置位置からこれら点P1〜Pnまでの距離L1〜Lnおよびレーザ測距装置100の配置位置とこれら点P1〜Pnとを結ぶ線が水平線に対してなす角度θ1〜θnを測定する。
【0036】
具体的には、初めに角度データとして0度をサーボ制御部33に出力し、その後角度データが360度を超えるまで、角度データを所定角度Δθごと加算して出力することにより、ターンテーブル14が回転し、図5に示すように、レーザ測距装置100を中心とする円周方向全周にわたってトンネル300内の壁面および床面P1〜Pnまでの距離L1〜Lnが測定される。そして、ステップS200では、こうして測定された距離データL1〜Lnを距離測定部31から入力する。したがって、ステップS200においては、一連の測定により、距離データL1〜Lnおよび角度データθ1〜θnが得られる。
【0037】
次いで、ステップS202に移行して、距離データL1〜Lnおよび角度データθ1〜θnに基づいて、トンネル300の暫定的な中心座標Mm(Xmc,Ymc)を算出する。暫定中心座標Mm(Xmc,Ymc)は、距離データL1〜Lnおよび角度データθ1〜θnから、各点P1〜Pnの座標(X1,Y1)〜(Xn,Yn)を算出し、これらを下式(1)に代入することにより算出される。なお、各点P1〜Pnの座標(X1,Y1)〜(Xn,Yn)および暫定中心座標Mmは、例えば、レーザ測距装置100の配置座標からの相対座標として算出される。
【0038】
【数1】
Figure 0004342649
【0039】
次いで、ステップS204に移行して、各点P1〜Pnのうちi番目の点Piについての角度データθi、トンネル300の設計上の半径Rおよび暫定中心座標Mmに基づいて算出される点Piについての距離データLiの理論値L(θi)を、点Piについての角度データθiで微分してその微分値ΔL(θi)を算出する。微分値ΔL(θi)は、角度θ、半径Rおよび暫定中心座標Mmの関数である下式(2)により理論値L(θi)を算出し、これを下式(3)に代入することにより算出される。
【0040】
【数2】
Figure 0004342649
【0041】
【数3】
Figure 0004342649
【0042】
次いで、ステップS206に移行して、各点P1〜Pnのうち点Piと隣り合う点Pi-1についての距離データLi-1と点Piについての距離データLiとの差分である距離差ΔLmiを算出する。距離差ΔLmiは、下式(4)により算出される。
【0043】
【数4】
Figure 0004342649
【0044】
次いで、ステップS208に移行して、微分値L(θi)と距離差ΔLmiとの差分(絶対値)が所定値H以上であるか否かを判定し、微分値L(θi)と距離差ΔLmiとの差分が所定値H以上であると判定されたとき(Yes)は、ステップS210に移行して、微分値L(θi)を用いて、Piについての距離データLiを補正する。距離データLiは、下式(5)により補正される。
【0045】
【数5】
Figure 0004342649
【0046】
次いで、ステップS212に移行して、すべての点P1〜Pnについて、ステップS204からS210までの処理が終了したか否かを判定し、すべての点P1〜Pnについて処理が終了したと判定されたとき(Yes)は、ステップS214に移行して、距離データL1〜Lnおよび角度データθ1〜θnに基づいて、トンネル300の中心座標M(Xc,Yc)を算出する。中心座標M(Xc,Yc)は、距離データL1〜Lnおよび角度データθ1〜θnから、各点P1〜Pnの座標(X1,Y1)〜(Xn,Yn)を算出し、これらを下式(6)に代入することにより算出される。なお、各点P1〜Pnの座標(X1,Y1)〜(Xn,Yn)および中心座標Mは、例えば、レーザ測距装置100の配置座標からの相対座標として算出される。
【0047】
【数6】
Figure 0004342649
【0048】
そして、ステップS216に移行して、算出した中心座標Mを表示装置32で表示する。
一方、ステップS212で、すべての点P1〜Pnについて、ステップS204からS210までの処理が終了していないと判定されたとき(No)は、ステップS204に移行する。
【0049】
一方、ステップS208で、微分値L(θi)と距離差ΔLmiとの差分が所定値H以上ではないと判定されたとき(No)は、ステップS212に移行する。
このようにして、本実施の形態では、トンネル300内におけるレーザ照射点の軌跡であるレーザ照射線上の異なるn個の点P1〜Pnについて、レーザ測距装置100の配置位置からこれら点P1〜Pnまでの距離L1〜Lnおよびレーザ測距装置100の配置位置とこれら点P1〜Pnとを結ぶ線が水平線に対してなす角度θ1〜θnを測定し、距離データL1〜Lnおよび角度データθ1〜θnに基づいてトンネル300の中心座標Mを算出するようにした。
【0050】
これにより、中心座標の測定が容易となるとともに、測定を人手により行わなくてすむので中心座標に生じる誤差が少なくなる。したがって、従来に比して、手間や時間の面で有利に、円筒形のトンネル300の中心位置を比較的正確に測定することができる。
さらに、本実施の形態では、距離データL1〜Lnおよび角度データθ1〜θnに基づいてトンネル300の暫定的な中心座標Mmを算出し、点Piについての角度データθi、トンネル300の設計上の半径Rおよび暫定中心座標Mmに基づいて算出される点Piについての距離データLiの理論値L(θ)を、点Piについての角度データθiで微分してその微分値ΔL(θ)を算出し、点Pi-1についての距離データLi-1と点Piについての距離データLiとの差分である距離差ΔLmiを算出し、微分値ΔL(θ)と距離差ΔLmiとの差分が所定値H以上であるときは、点Piついての距離データLiを、点Pi-1についての距離データLi-1に微分値ΔL(θ)を加算したものとして補正するようにした。
【0051】
これにより、例えば、トンネル300内に仮設資材等の障害物があり、照射したレーザがその障害物で反射してしまうようなことがあっても、測定距離と理論値とを比較しながら測定距離が補正されるので、トンネル300の中心座標を比較的正確に測定することができる。
さらに、本実施の形態では、すべての点P1〜Pnについて、ステップS204からS210までの処理を実行するようにした。
【0052】
これにより、測定距離と理論値とを比較しながら、すべての点P1〜Pnについての測定距離が補正されるので、トンネル300の中心座標をさらに正確に測定することができる。
なお、上記第1の実施の形態においては、レーザ測距装置100の右側であって水平線に対して0度、180度および270度の方向にあるトンネル200内の壁面および床面P1,P2,P3までの距離LR,LL,LDを測定するように構成したが、これに限らず、トンネル200内の異なる壁面または床面であれば、任意の点までの距離を測定するように構成してもよい。
【0053】
また、上記第2の実施の形態においては、上式(1)または上式(6)により中心座標Mm,Mを算出するように構成したが、これに限らず、例えば、円の方程式により中心座標Mm,Mを算出するように構成してもよい。
また、上記第2の実施の形態においては、上式(5)により距離データを補正するように構成したが、これに限らず、点Pi-1についての距離データLi-1と点Piについての距離データLiとの差分である距離差ΔLmiを、3次以上のn次関数を用いた最小二乗法で論理関数化することにより、距離データを補正するように構成してもよい。
【0054】
また、上記第1および第2の実施の形態において、図4および図6のフローチャートに示す処理を実行するにあたっては、ROM35にあらかじめ格納されているプログラムを実行する場合について説明したが、これに限らず、これらの手順を示したプログラムが記録された記録媒体から、そのプログラムをRAM36に読み込んで実行するようにしてもよい。
【0055】
ここで、記録媒体とは、RAM、ROM等の半導体記憶媒体、FD、HD等の磁気記憶型記憶媒体、CD、CDV、LD、DVD等の光学的読取方式記憶媒体、MO等の磁気記憶型/光学的読取方式記憶媒体であって、電子的、磁気的、光学的等の読み取り方法のいかんにかかわらず、コンピュータで読み取り可能な記録媒体であれば、あらゆる記録媒体を含むものである。
【0056】
上記第1の実施の形態において、ステップS100〜ステップS110は、請求項1記載の測定ステップに対応し、ステップS112は、請求項1記載の配置座標算出ステップに対応している。
また、上記第2の実施の形態において、ステップS200は、請求項2記載の測定ステップに対応し、ステップ214は、請求項2記載の中心座標算出ステップに対応している。
【0057】
【発明の効果】
以上説明したように、本発明に係る請求項1記載の中空管内の断面形状測定方法によれば、測定機の配置座標の測定が容易となるとともに、配置座標に生じる誤差が少なくなるので、従来に比して、手間や時間の面で有利に、測定機の配置位置を比較的正確に測定することができるという効果が得られる。
【0058】
さらに、本発明に係る請求項2記載の中空管内の断面形状測定方法によれば、中心座標の測定が容易となるとともに、中心座標に生じる誤差が少なくなるので、従来に比して、手間や時間の面で有利に、円筒形の中空管の中心位置を比較的正確に測定することができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明に係る第1の実施の形態を示す図である。
【図2】レーザ測距装置100の構成を示すブロック図であり、
【図3】レーザヘッドの回転位置と受光エリアの向きとの関係を示す概念図である。
【図4】配置位置測定処理を示すフローチャートである。
【図5】本発明に係る第1の実施の形態を示す図である。
【図6】中心位置測定処理を示すフローチャートである。
【符号の説明】
100 レーザ測距装置
200,300 トンネル
1 レーザレーダヘッド
9 発光部
10 受光部
14 ターンテーブル
20 時間測定ユニット
22 時間測定部
30 信号処理ユニット
31 距離測定部
33 サーボ制御部
32 表示装置
34 CPU
35 ROM
36 RAM

Claims (4)

  1. 中空管内の断面形状を測定する方法であって、
    レーザ測距法により距離を測定する測定機を前記中空管内に配置し、
    前記測定機により前記中空管の延長方向に対して直交する方向にレーザを照射し、
    前記レーザの照射線上に対応する前記中空管の異なる複数の点について、前記測定機の配置位置から前記複数の点の各点までの測定距離及び前記測定機の配置位置と前記複数の点の各点とを結ぶ線が基準線に対してなす測定角度を測定し、
    前記測定機の配置位置から前記複数の点のうちの任意の点までの測定距離及び前記測定機の配置位置と前記任意の点とを結ぶ線が基準線に対してなす測定角度に基づいて、前記任意の点の直交座標を算出することで、前記複数の点の各点の直交座標を算出し、
    前記複数の点の各点の直交座標に基づいて前記中空管の中心座標を算出することを特徴とする中空管内の断面形状測定方法。
  2. 前記複数の点はn個の点(nは自然数)であるとし、前記複数の点のうちの任意の点について算出された直交座標を(Xi,Yi:iは任意の自然数)とした場合、前記中空管の中心座標(Xc,Yc)は、下記の数式
    Figure 0004342649
    により算出されることを特徴とする請求項1に記載の中空管内の断面形状測定方法。
  3. 前記測定距離および測定角度に基づいて前記中空管の暫定的な中心座標を算出し、
    前記複数の点のうちから選択した任意の点についての前記測定角度、前記中空管の設計上の半径および前記暫定的な中心座標に基づいて算出される当該選択した任意の点についての前記測定距離の理論値を、前記選択した任意の点についての前記測定角度で微分してその微分値を算出し、
    前記複数の点のうち前記選択した任意の点と隣り合う点についての前記測定距離と前記選択した任意の点についての前記測定距離との差分である距離差を算出し、
    前記微分値と前記距離差との差分が所定以上であるときは、前記選択した任意の点についての前記測定距離を、前記隣り合う点についての前記測定距離に前記微分値を加算したものとして補正することを特徴とする請求項1あるいは2に記載の中空管内の断面形状測定方法。
  4. 前記微分値の算出、前記距離差の算出および前記測定距離の補正を、前記複数の点すべてについて行うことを特徴とする請求項3記載の中空管内の断面形状測定方法。
JP25004399A 1999-09-03 1999-09-03 中空管内の断面形状測定方法 Expired - Fee Related JP4342649B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25004399A JP4342649B2 (ja) 1999-09-03 1999-09-03 中空管内の断面形状測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25004399A JP4342649B2 (ja) 1999-09-03 1999-09-03 中空管内の断面形状測定方法

Publications (2)

Publication Number Publication Date
JP2001074448A JP2001074448A (ja) 2001-03-23
JP4342649B2 true JP4342649B2 (ja) 2009-10-14

Family

ID=17201977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25004399A Expired - Fee Related JP4342649B2 (ja) 1999-09-03 1999-09-03 中空管内の断面形状測定方法

Country Status (1)

Country Link
JP (1) JP4342649B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297661A (zh) * 2011-07-25 2011-12-28 中国科学院武汉岩土力学研究所 一种激光式收敛计装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758568B2 (ja) * 2001-06-18 2011-08-31 大成建設株式会社 トンネル形状の三次元測定装置及び三次元測定方法
JP2004101190A (ja) * 2002-09-04 2004-04-02 Hitachi Ltd 管渠内面形状測定装置及び測定方法
CN101846507B (zh) * 2010-03-23 2012-07-04 江汉大学 巷道断面自动测定方法
JP6289422B2 (ja) * 2015-08-20 2018-03-07 株式会社興和 排水処理坑の変位計測装置並びに土塊移動監視方法及び排水処理坑監視方法
CN107063035B (zh) * 2016-12-29 2023-05-16 中国一冶集团有限公司 确定管道中心截面的装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297661A (zh) * 2011-07-25 2011-12-28 中国科学院武汉岩土力学研究所 一种激光式收敛计装置
CN102297661B (zh) * 2011-07-25 2012-12-12 中国科学院武汉岩土力学研究所 一种激光式收敛计装置

Also Published As

Publication number Publication date
JP2001074448A (ja) 2001-03-23

Similar Documents

Publication Publication Date Title
JP6906569B2 (ja) 点群における非地面点のフィルタリング方法、装置、記憶媒体、及びプログラム
JP5681715B2 (ja) 環境を光学的に走査および測定する方法
JP4894360B2 (ja) レーダ装置
US11143505B2 (en) Surveying instrument
JP2007225342A (ja) 3次元測定装置及び3次元測定装置を搭載した自律移動装置
JP2013190272A (ja) 3次元レーザ測量装置及び3次元レーザ測量方法
JP4087515B2 (ja) 建設作業機械の自動コントロールシステム
JP2019020209A (ja) 測量システム
JP6722876B2 (ja) 三次元レーザー光走査装置
JP4342649B2 (ja) 中空管内の断面形状測定方法
JP2020056614A5 (ja) 測量システム、スキャナ装置、ターゲットユニット、および測量方法
US20230280451A1 (en) Apparatus and method for calibrating three-dimensional scanner and refining point cloud data
JP2021043155A (ja) 3次元測量装置、3次元測量方法および3次元測量プログラム
JP3940619B2 (ja) トンネル掘削機の位置計測装置
JP3324809B2 (ja) 三次元測定用測定点指示具
CN113671461B (zh) 检测激光雷达发射光束指向的方法、***及激光雷达装置
JP7223238B2 (ja) 計測装置、及び計測方法
CN113375638A (zh) 一种建筑工程垂直度测量仪及使用方法
CN206556597U (zh) 对称光桥式自稳激光测径***
JPH08327337A (ja) 3次元形状測定装置
JP7417750B2 (ja) 固体lidar装置の較正
JP3511474B2 (ja) 2次元走査型レンジセンサ投光器走査方法及びシステム装置並びに2次元走査型レンジセンサ投光器走査プログラムを記録したコンピュータで読取り可能な記録媒体
JP2000331924A (ja) 露光装置におけるマスクあるいはウエハのレベリング用計測方法及び計測制御装置
JPH08304040A (ja) 3次元形状測定装置
KR102284196B1 (ko) 라이다 데이터를 이용한 실내 맵 생성 방법 및 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees