JP4341861B2 - Method for producing Fe-Cr-Al ferritic stainless steel with excellent thermal fatigue properties and high-temperature oxidation properties - Google Patents

Method for producing Fe-Cr-Al ferritic stainless steel with excellent thermal fatigue properties and high-temperature oxidation properties Download PDF

Info

Publication number
JP4341861B2
JP4341861B2 JP12366099A JP12366099A JP4341861B2 JP 4341861 B2 JP4341861 B2 JP 4341861B2 JP 12366099 A JP12366099 A JP 12366099A JP 12366099 A JP12366099 A JP 12366099A JP 4341861 B2 JP4341861 B2 JP 4341861B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
temperature
temperature oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12366099A
Other languages
Japanese (ja)
Other versions
JP2000319729A (en
Inventor
芳明 堀
学 奥
敏郎 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP12366099A priority Critical patent/JP4341861B2/en
Publication of JP2000319729A publication Critical patent/JP2000319729A/en
Application granted granted Critical
Publication of JP4341861B2 publication Critical patent/JP4341861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電熱器やストーブ等の高温機器の高温に曝される部位で使用される熱疲労特性および耐高温変形性に優れたFe−Cr−Alフェライト系ステンレス鋼に関する。
【0002】
【従来の技術】
Fe−Cr−Alフェライト系ステンレス鋼は、非常に優れた耐高温酸化性を有しており、電熱器の発熱体やストーブの燃焼筒等、高温に曝される部位の材料に使用されている。Fe−Cr−Alフェライト系ステンレス鋼が優れた耐高温酸化性を示すのは、高温下で材料表面に主にAl酸化物からなる強固で緻密な酸化皮膜を形成し、これが酸化に対して保護層の役割をするからである。
【0003】
【発明が解決しようとする課題】
近年、燃焼の高効率化、低公害化、あるいは、熱容量の増大に伴い、燃焼機器の高温部位の温度が上昇する傾向にある。また、部品によっては複雑な形状が要求される高温部位では、耐高温酸化性に優れた従来のFe−Cr−Alフェライト系ステンレス鋼でも、要求特性を十分満たすものとは言えなくなってきた。
【0004】
すなわち、材料の使用温度が高くなるにつれて、高温酸化の問題だけでなく、「材料の変形」の問題が顕在化してくる。つまり、高温に曝されたのち、常温に戻され、再び高温に曝されるといった、加熱・冷却のサイクルが繰り返されるうちに材料は次第に変形し、常温における初期の形状が維持できなくなる。このような変形は、高温では一般に材料強度が低下するうえに、酸化皮膜の成長によって材料表面に不均一な応力が生じるために起こるものと考えられる。
【0005】
さらに、部品の形状が複雑であり、なおかつその一部が局所的に加熱される部材では、部品の加熱・冷却の繰り返しによって、加熱部周辺の比較的温度の低い部分においても熱疲労破壊をおこしてしまうことがある。これは、部品が局所的に加熱されることにより、構造によっては、温度の低い部分にもひずみが集中するためと考えられる。このような材料の変形が大きくなると、外観上の見栄えを劣化させるだけではなく、機能上のトラブルを誘発させることにもなる。
【0006】
「材料の変形の問題」に対しては、材料強度が低下し、酸化特性が重視される温度域(フェライト系ステンレス鋼では、概略700℃以上であり、以下高温域と称す)においては、高温強度を改善する元素の添加が有効であると考えられる。したがって、「高温域」での「材料の変形の問題」に対しては、耐高温酸化性に有害とならない合金元素を適量添加すれば良いことになる。しかしながら、単に合金元素の添加を行うだけでは、、加熱部周辺の比較的温度の低い領域(700℃未満であり、以下中温域と称す)での「材料の変形の問題」は解消されていない。これは、中温域の高温強度を顕著に改善するためには合金元素の微量添加では不十分なこと、合金元素を多量に添加すると、Fe−Cr−Alフェライト系ステンレス鋼の耐高温酸化性および靭性を損なうことなどの理由による。
【0007】
本発明は、従来のFe−Cr−Alフェライト系ステンレス鋼の中温域および高温域の両方の高温強度を改善し、繰り返し加熱・冷却環境に曝される部位で使用されても「材料の変形の問題」を起こしにくく、かつ、耐高温酸化性にも優れたFe−Cr−Alフェライト系ステンレス鋼の製造性を提供するものである。
【0008】
【問題を解決するための手段】
本発明は以下のような知見に基づいて達成されたものである。
▲1▼Fe−Cr−Alフェライト系ステンレス鋼において、Nbを合金元素として特定量含有させると「高温域」での材料の変形が抑制される。
▲2▼材料に特定量の加工ひずみを付与すると、「中温域」での材料の変形が抑制される。
▲3▼材料の加工性を大きく損なわず「中温域」および「高温域」での材料の変形が抑制できる。
【0009】
すなわち、上記目的は、重量%で、
C:0.03%以下、
Si:0.5%未満、
Mn:0.5%以下、
P:0.04%以下、
S:0.003%以下、
Cr:15〜20%、
N:0.03%以下、
Al:3〜5%、
Nb:0.1〜0.3%以下、
Ti:0.1〜0.3%以下、
および希土類元素の1種もしくは2種以上を合計で0.01〜0.2%を含有し、残部がFeおよび不可避的不純物からなるFe−Cr−Alフェライト系ステンレス鋼において、冷間圧延および焼鈍を施した鋼帯に、圧延率0.3%以上1.0%以下に相当する加工ひずみを付与することを特徴とする熱疲労特性および耐高温酸化性に優れたFe−Cr−Alフェライト系ステンレス鋼の製造方法によって構成される。
【0010】
【発明の実施の形態】
以下、本発明を特定する事項について説明する。
【0011】
本発明において、Nbは欠くことのできない添加元素である。適量のNbは、鋼中のCやNと結合して鋼の靭性を改善し、また、鋼の高温強度を向上させる作用を呈することは周知のとおりである。本発明においてもNbのこのような作用は有益である。しかし、本発明では、それらの作用は副次的なものであり、むしろ別の観点からNbの含有を必要とする。すなわち、NbにはFe−Cr−Al系鋼の高温での材料の変形を防止する働きがあることが明らかになり、本発明ではその作用を利用する。この高温での変形を防止する作用が現れる理由は、Nbは酸化皮膜の生成過程において、鋼素地に対して垂直方向の酸化物成長を促すこと、換言すれば鋼素地に対して水平方向への酸化物成長を抑制することにより、鋼素地と酸化皮膜の界面で生じる応力が緩和されるためであると推測される。また、Nbを添加すると高温強度が向上し、酸化皮膜の成長過程での材料の変形が抑えられることも一因であると考えられる。このようなNb添加の効果を得るためには、0.1%を越えて含有させる必要がある。しかし、多量のNbは却って耐高温酸化性や靭性を劣化させるが、後述のようにSi,MnおよびNの含有量を低減することによって、本発明では0.3%までのNbの含有を許容することができる。
【0012】
また、Ti添加鋼においてNbを添加すると、材料表面でのTi酸化物の生成が抑えられるので、Ti添加鋼で問題となる酸化皮膜の***が少なくなり、その結果、発生するひずみが抑制され、Ti無添加鋼の場合とほぼ同様に材料の変形を防止することが可能になる。
【0013】
Siは、高Al含有フェライト系ステンレス鋼においては、酸化皮膜中にSi酸化物を生成させ、緻密なAl酸化物層の形成を阻害する要因になる。このため、耐高温酸化性を劣化させる方向に作用する。また、Siは、フェライト系ステンレス鋼の靭性を劣化させる元素でもある。本発明では、熱疲労を防止する観点からNbの比較的多量の含有を必要とし、それによって生じる耐高温酸化性や靭性への悪影響を何らかの方法で解消しなくてはならない。種々検討の結果、これらの特性を劣化させるSiの含有量を後述のMn,Nとともに低減することで、Nbによる耐高温酸化性・靭性への悪影響が電熱器やストーブ等の耐熱用途で使用するうえで十分回避できることが明らかになった。そのために、Si含有量は0.5%未満に規制する必要がある。
【0014】
Mnは、高Al含有フェライト系ステンレス鋼の酸化皮膜中にMn酸化物を生成させて、緻密なAl酸化物層の形成を阻害し、Siと同様、耐高温酸化特性を劣化させる方向に作用する。Nbによる耐高温酸化性への悪影響を回避するためには、Siおよび後述のNの低減とともに、Mn含有量を0.5%以下に低減しなくてはならない。
【0015】
Nは、鋼中のAlと結合してAlNを形成してAlを消費し、このAlNが高温使用時における異常酸化の起点になり、耐高温酸化性に悪影響を及ぼすことになる。Nbによる耐高温酸化性への悪影響を回避するためには、SiおよびMnの低減とともに、N含有量を0.03%以下に低減する必要がある。
【0016】
Cは、含有量が多くなると高温使用時の異常酸化を起こしやすくする。また、多量のC含有は高Al含有フェライト系ステンレス鋼のスラブやホットコイルの靭性を劣化させ、製造性の低下を招く。このため、C含有量は0.03%以下に抑えることが望ましい。
【0017】
Pは、耐高温酸化性および熱延板の靭性に悪影響を及ぼすので、その含有量を0.04%以下に抑えるのがよい。
【0018】
Sは、耐食性劣化等の原因になるため、できるだけ低減することが望ましい。本発明の耐熱用途では0.01%以下に制限する必要があるが、希土類元素を含有する場合には特に注意を要する。すなわち、Sは鋼中の希土類元素と結合して非金属介在物を生成し、耐高温酸化性に有効な希土類元素の実質的有効量を低下させる。しかも、その非金属介在物は鋼板の表面性状を劣化させる原因になる。したがって、S含有量は0.03%以下に制限する必要がある。
【0019】
Crは、耐高温酸化性を向上させる元素として基本的かつ重要な元素であり、良好な耐高温酸化性を得るためには15%以上の添加が必要である。しかし、過剰の添加はスラブやホットコイルの靭性を劣化させる。したがって、Cr含有量は15〜20%に制限する必要がある。
【0020】
AlはCrと同様、耐高温酸化性を得るのに極めて重要な元素である。優れた耐高温酸化性は、鋼板表面に形成される緻密なAl酸化物層によって得られ、この層を形成させるには少なくとも2%以上のAl含有が必要であり、できれば3%以上の含有が望ましい。しかし、Alを過剰に含有させるとスラブやホットコイルの靭性が劣化するので、上限を5%に制限する必要がある。
【0021】
Tiは、熱延板の靱性を向上させる。また、材料表面に形成された酸化皮膜の密着性を高めるのに非常に有効である。これらの作用を本発明で対象とする耐熱用途において十分発揮させるためには0.1%を超えるTi添加が望ましい。しかし、Tiを過剰に添加すると、酸化皮膜最表層部にTi酸化物が濃化し、酸化皮膜が***してひずみが発生して高温での鋼の変形の原因となる。本発明では、このようなTiの弊害は、前述のようにNb添加によって解消されるのであるが、そのNbの効果は、Ti含有量が0.3%以下の範囲で発現される。
【0022】
La,Ce,Y等の希土類元素は、鋼板表面に形成されるAl酸化皮膜を安定化させ、また、鋼素地と酸化皮膜との密着性を改善することにより、鋼板の耐高温酸化性を向上させる。このような効果は、希土類元素の1種または2種以上を合計で0.01%以上含有させることによって有効に現れる。しかし、過剰に含有させると、熱間加工性や靭性が劣化するだけでなく、異常酸化の起点になる介在物が生成し易くなり、却って耐高温酸化性が低下することにもなる。このため、希土類元素の含有量は合計で0.2%以下に抑えることが望ましい。本発明においては、希土類元素の種類を特に区別する必要はなく、合計量が規定範囲にあればよい。したがって、希土類元素の原料としてはミッシュメタルが利用できる。
【0023】
本発明において、加工ひずみ量は、中温域での高温強度の改善に必要不可欠な要素である。素材に加工ひずみを付与することで、常温〜700℃未満の中温域での耐力を向上させることができる。しかし、過剰の加工ひずみの導入は、材料本来の伸びすなわち加工性を低下させることになる。したがって、加工性を損なわずに、中温強度を保つ必要がある。そこで、適正な加工ひずみ量を明確にするために、圧延率を種々変化させた鋼を用い、中温域での高温強度と加工性(室温での延性)を調査した。
【0024】
図1は、Fe-18Cr-4Al-0.15Ti-0.15Nb鋼の冷延焼鈍板を用い、種々の圧延率で冷間圧延を行った後の500℃の0.2%耐力と、室温の伸びを示している。なお、板の製造方法および試験方法は、後述する実施例と同様である。図1の結果から、圧延率の増加にともない、500℃の0.2%耐力は上昇し、室温の伸びは低下する傾向にある。しかもその傾向は、前者は圧延率が0.3%以上から、また後者は圧延率が1.0%を超えるとそれぞれ顕著になる。したがって、圧延率が0.3%〜1.0%の範囲の加工ひずみを付与すると、中温域(500℃)での高温強度を改善し、なおかつ室温の延性(伸び)を損なわないことがわかる。
【0025】
以上の検討結果から、焼鈍後の加工ひずみは、圧延率に換算して0.3%〜0.8%とした。なお、ここでの加工ひずみは、圧延率で記載しているが、加工方法が制約されるわけでなく、圧延、引張り、曲げおよびこれらの複合などのいずれによって付与してもよい。
【0026】
【実施例】
表1に示す鋼を真空溶解し、鍛造、切削、熱間圧延を施した後、焼鈍および冷間圧延を繰り返して、研磨仕上げをした後、調質圧延を施し、板厚1mmの板材を製造した。なお、希土類添加は、ミッシュメタルで行った。得られた板材から、JISG0567に準拠して高温引張り試験片を作製し、室温、500℃および700℃にて、0.2%耐力までの引張り速度0.3%/min、破断までの速度を3mm/minの条件で高温引張り試験を実施した。
【0027】
また、板の両面が、Ra≦0.4μmかつRz≦2.0μmとなるよう平滑にしたのち、25×35mmの高温酸化試験片を作製した。ここで、RaとはJIS B 0601に規定される中心線平均粗さ、Rzとは各試験片のJIS B 0601に規定される10点平均粗さを意味する。酸化試験は、炉内加熱1000℃×30分、炉外放冷10分を1サイクルして、加熱・冷却の繰り返しを1000サイクル実施した。酸化試験後に、酸化増量および変形量の測定を行った。なお、次のようにして求めた。すなわち、試験片を定盤の上に置き、最大高さを求めて、最大高さ−板厚(1mm)の値を平坦度とし、「酸化試験前の平坦度」−「酸化試験後の平坦度」の値を変形量(mm)とした。
これらの結果を表2にあわせて示す。
【0028】
【表1】

Figure 0004341861
【0029】
【表2】
Figure 0004341861
【0030】
化学組成が本発明で規定した範囲にある鋼(表1の発明鋼)において、加工ひずみ量が規定範囲内になるように付与したもの(表2の発明例)は、いずれも室温での加工性、中温域および高温域での高温強度および高温酸化特性が良好である。
【0031】
これに対し、例No.13、15、17に見られるように圧延率が小さい場合には中温域での高温強度が、例No.14、16、18に見られるように圧延率が大きい場合には室温での加工性が劣っている。とくに、例No.13〜16のように発明鋼であっても、圧延率が本発明で規定する範囲を外れると目標とする中温強度や加工性が得られないことから、加工ひずみの付与は非常に重要であることが分かる。一方、例No.17、18は、Nbの含有量が本発明規定範囲を外れて大きいものであるため、高温域(700℃)での強度は良好であるものの、高温酸化特性に劣っている。さらに、例19〜23に示すように、圧延率は本発明に規定する範囲であっても、Nb含有量が規定範囲から外れるため、高温域での強度および高温酸化特性に劣っている。
【0032】
【発明の効果】
以上説明したように、本発明のFe−Cr−Alフェライト系ステンレス鋼は、優れた耐酸化性を有し、なおかつ、広い温度範囲での加熱・冷却の繰り返しによる材料の熱疲労特性にも優れるものである。したがって、本発明方法を使用すれば、耐熱機器の耐久性が向上し、さらに製品の外観上の見栄えも長期にわたって初期の優れた状態が維持される。
【図面の簡単な説明】
【図1】鋼板の500℃の0.2%耐力および室温伸びに及ぼす圧延率の影響。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Fe—Cr—Al ferritic stainless steel excellent in thermal fatigue characteristics and high temperature deformation resistance used in a portion exposed to high temperatures of high temperature equipment such as an electric heater and a stove.
[0002]
[Prior art]
Fe-Cr-Al ferritic stainless steel has excellent high-temperature oxidation resistance and is used in materials exposed to high temperatures such as heating elements of electric heaters and combustion tubes of stoves. . Fe-Cr-Al ferritic stainless steel exhibits excellent high-temperature oxidation resistance because it forms a strong and dense oxide film consisting mainly of Al oxide on the material surface at high temperatures, which protects against oxidation. This is because it acts as a layer.
[0003]
[Problems to be solved by the invention]
In recent years, as the efficiency of combustion increases, the pollution becomes lower, or the heat capacity increases, the temperature of the high temperature portion of the combustion equipment tends to increase. Further, in a high-temperature region where a complicated shape is required depending on the part, it cannot be said that conventional Fe—Cr—Al ferritic stainless steel excellent in high-temperature oxidation resistance sufficiently satisfies the required characteristics.
[0004]
That is, as the use temperature of the material increases, not only the problem of high-temperature oxidation but also the problem of “material deformation” becomes obvious. In other words, the material gradually deforms during repeated heating / cooling cycles such as exposure to high temperature, return to normal temperature, and exposure to high temperature again, and the initial shape at normal temperature cannot be maintained. Such deformation is considered to occur because the material strength generally decreases at a high temperature and nonuniform stress is generated on the material surface due to the growth of the oxide film.
[0005]
Furthermore, in the case of a member with a complicated part shape and a part of which is locally heated, thermal fatigue failure is caused even at a relatively low temperature around the heated part by repeated heating and cooling of the part. May end up. This is considered to be because strain is concentrated on a low temperature part depending on the structure by locally heating the part. When such deformation of the material becomes large, not only the appearance of the material is deteriorated but also a functional trouble is induced.
[0006]
For the “material deformation problem”, in a temperature range where the material strength is reduced and oxidation characteristics are important (in the case of ferritic stainless steel, approximately 700 ° C. or higher, hereinafter referred to as a high temperature range), the temperature is high. The addition of an element that improves the strength is considered effective. Therefore, for the “problem of material deformation” in the “high temperature region”, an appropriate amount of an alloy element that does not become harmful to high temperature oxidation resistance may be added. However, simply adding an alloy element does not solve the “problem of material deformation” in a relatively low temperature region (below 700 ° C., hereinafter referred to as an intermediate temperature region) around the heating portion. . This is because the addition of a small amount of alloy element is not sufficient to significantly improve the high temperature strength in the middle temperature range, and when a large amount of alloy element is added, the high temperature oxidation resistance of Fe-Cr-Al ferritic stainless steel and For reasons such as loss of toughness.
[0007]
The present invention improves the high temperature strength of both the medium temperature range and the high temperature range of the conventional Fe-Cr-Al ferritic stainless steel, and even if it is used in a site exposed to repeated heating / cooling environments, The present invention provides the manufacturability of Fe—Cr—Al ferritic stainless steels that are less prone to “problems” and are excellent in high-temperature oxidation resistance.
[0008]
[Means for solving problems]
The present invention has been achieved based on the following findings.
{Circle around (1)} In Fe—Cr—Al ferritic stainless steel, when a specific amount of Nb is contained as an alloy element, deformation of the material in the “high temperature region” is suppressed.
(2) When a specific amount of processing strain is applied to the material, deformation of the material in the “medium temperature region” is suppressed.
(3) Deformation of the material in the “medium temperature region” and “high temperature region” can be suppressed without significantly impairing the workability of the material.
[0009]
That is, the purpose is weight percent,
C: 0.03% or less,
Si: less than 0.5%,
Mn: 0.5% or less,
P: 0.04% or less,
S: 0.003% or less,
Cr: 15-20%,
N: 0.03% or less,
Al: 3 to 5%,
Nb: 0.1 to 0.3% or less,
Ti: 0.1 to 0.3% or less,
And Fe—Cr—Al ferritic stainless steel containing a total of 0.01 to 0.2% of one or more rare earth elements with the balance being Fe and inevitable impurities, cold rolling and annealing Fe-Cr-Al ferrite system excellent in thermal fatigue characteristics and high-temperature oxidation resistance, characterized by imparting a working strain corresponding to a rolling rate of 0.3% to 1.0% to a steel strip subjected to Constructed by a stainless steel manufacturing method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the matter which specifies this invention is demonstrated.
[0011]
In the present invention, Nb is an indispensable additive element. It is well known that an appropriate amount of Nb combines with C and N in the steel to improve the toughness of the steel and also to increase the high temperature strength of the steel. In the present invention, such an action of Nb is beneficial. However, in the present invention, these actions are secondary and rather require the inclusion of Nb from another point of view. That is, it becomes clear that Nb has a function of preventing deformation of the material of Fe—Cr—Al steel at a high temperature, and this function is used in the present invention. The reason for the effect of preventing deformation at this high temperature is that Nb promotes oxide growth in the direction perpendicular to the steel substrate in the process of forming the oxide film, in other words, in the horizontal direction with respect to the steel substrate. It is presumed that the stress generated at the interface between the steel substrate and the oxide film is alleviated by suppressing the oxide growth. In addition, it is considered that the addition of Nb improves the high-temperature strength and suppresses deformation of the material during the growth process of the oxide film. In order to obtain such an effect of Nb addition, it is necessary to contain more than 0.1%. However, a large amount of Nb, on the other hand, deteriorates high-temperature oxidation resistance and toughness. However, by reducing the contents of Si, Mn and N as described later, the present invention allows Nb content up to 0.3%. can do.
[0012]
Further, when Nb is added to the Ti-added steel, the formation of Ti oxide on the material surface is suppressed, so that there is less bulging of the oxide film, which is a problem with the Ti-added steel, and as a result, the generated strain is suppressed, The deformation of the material can be prevented in substantially the same manner as in the case of Ti-free steel.
[0013]
Si, in a high Al content ferritic stainless steel, generates Si oxide in the oxide film and becomes a factor that inhibits formation of a dense Al oxide layer. For this reason, it acts in the direction which degrades high temperature oxidation resistance. Si is also an element that deteriorates the toughness of ferritic stainless steel. In the present invention, it is necessary to contain a relatively large amount of Nb from the viewpoint of preventing thermal fatigue, and the adverse effects on high-temperature oxidation resistance and toughness caused thereby must be eliminated by some method. As a result of various studies, the content of Si that degrades these properties is reduced together with Mn and N, which will be described later, so that the adverse effect of Nb on high-temperature oxidation resistance and toughness is used in heat-resistant applications such as electric heaters and stoves. It has become clear that this can be avoided sufficiently. Therefore, it is necessary to regulate the Si content to less than 0.5%.
[0014]
Mn generates Mn oxide in the oxide film of high Al-containing ferritic stainless steel, inhibits the formation of a dense Al oxide layer, and acts in the direction of deteriorating the high-temperature oxidation resistance, similar to Si. . In order to avoid the adverse effect of Nb on high-temperature oxidation resistance, the Mn content must be reduced to 0.5% or less along with the reduction of Si and N described later.
[0015]
N combines with Al in the steel to form AlN to consume Al, and this AlN becomes a starting point for abnormal oxidation when used at high temperatures, which adversely affects high-temperature oxidation resistance. In order to avoid the adverse effect of high temperature oxidation resistance due to Nb, it is necessary to reduce the N content to 0.03% or less along with the reduction of Si and Mn.
[0016]
C makes it easy to cause abnormal oxidation when used at a high temperature when the content is increased. Further, a large amount of C content deteriorates the toughness of the slab or hot coil of the high Al content ferritic stainless steel, resulting in a decrease in manufacturability. For this reason, it is desirable to suppress the C content to 0.03% or less.
[0017]
P adversely affects high-temperature oxidation resistance and toughness of hot-rolled sheets, so the content is preferably suppressed to 0.04% or less.
[0018]
Since S causes corrosion resistance deterioration and the like, it is desirable to reduce S as much as possible. In the heat-resistant use of the present invention, it is necessary to limit it to 0.01% or less, but special attention is required when a rare earth element is contained. That is, S combines with rare earth elements in steel to form non-metallic inclusions, and reduces the substantially effective amount of rare earth elements effective for high-temperature oxidation resistance. In addition, the non-metallic inclusions cause the surface properties of the steel sheet to deteriorate. Therefore, the S content needs to be limited to 0.03% or less.
[0019]
Cr is a basic and important element for improving high-temperature oxidation resistance, and 15% or more must be added to obtain good high-temperature oxidation resistance. However, excessive addition degrades the toughness of slabs and hot coils. Therefore, the Cr content needs to be limited to 15 to 20%.
[0020]
Al, like Cr, is an extremely important element for obtaining high-temperature oxidation resistance. Excellent high-temperature oxidation resistance is obtained by a dense Al oxide layer formed on the surface of the steel sheet. In order to form this layer, it is necessary to contain at least 2% Al, and preferably contain 3% or more. desirable. However, if Al is contained excessively, the toughness of the slab or hot coil deteriorates, so the upper limit must be limited to 5%.
[0021]
Ti improves the toughness of the hot-rolled sheet. Moreover, it is very effective for improving the adhesion of the oxide film formed on the material surface. In order to sufficiently exhibit these effects in the heat-resistant applications targeted by the present invention, it is desirable to add Ti exceeding 0.1%. However, when Ti is added excessively, the Ti oxide is concentrated on the outermost layer portion of the oxide film, and the oxide film is raised to cause distortion, which causes deformation of the steel at a high temperature. In the present invention, such an adverse effect of Ti is eliminated by adding Nb as described above, but the effect of Nb is manifested when the Ti content is 0.3% or less.
[0022]
Rare earth elements such as La, Ce, and Y improve the high-temperature oxidation resistance of the steel sheet by stabilizing the Al oxide film formed on the steel sheet surface and improving the adhesion between the steel substrate and the oxide film. Let Such an effect appears effectively by containing one or more rare earth elements in a total of 0.01% or more. However, if it is contained excessively, not only hot workability and toughness deteriorate, but also inclusions that become the starting point of abnormal oxidation are likely to be generated, and on the contrary, high-temperature oxidation resistance is also lowered. For this reason, it is desirable to suppress the content of rare earth elements to 0.2% or less in total. In the present invention, it is not necessary to particularly distinguish the type of rare earth element, and the total amount only needs to be within a specified range. Therefore, misch metal can be used as a raw material for rare earth elements.
[0023]
In the present invention, the amount of processing strain is an indispensable element for improving the high-temperature strength in the middle temperature range. By imparting processing strain to the material, it is possible to improve the yield strength in the middle temperature range from room temperature to less than 700 ° C. However, the introduction of excessive processing strain reduces the original elongation of the material, that is, the workability. Therefore, it is necessary to maintain medium temperature strength without impairing workability. Therefore, in order to clarify the proper amount of work strain, steels with various rolling ratios were used, and the high temperature strength and workability (ductility at room temperature) in the middle temperature range were investigated.
[0024]
Figure 1 shows the 0.2% yield strength at 500 ° C and room temperature elongation after cold rolling at various rolling rates using cold rolled annealed sheet of Fe-18Cr-4Al-0.15Ti-0.15Nb steel. ing. In addition, the manufacturing method and test method of a board are the same as the Example mentioned later. From the results shown in FIG. 1, the 0.2% yield strength at 500 ° C. increases and the elongation at room temperature tends to decrease as the rolling rate increases. In addition, the tendency becomes remarkable when the rolling ratio is 0.3% or more in the former and when the rolling ratio exceeds 1.0% in the latter. Therefore, it can be seen that when a working strain in the range of 0.3% to 1.0% is applied, the high temperature strength in the intermediate temperature range (500 ° C.) is improved and the ductility (elongation) at room temperature is not impaired.
[0025]
From the above examination results, the processing strain after annealing was 0.3% to 0.8% in terms of the rolling rate. In addition, although the process distortion here is described by the rolling rate, a processing method is not necessarily restricted and you may provide by any of rolling, tension | pulling, bending, these composites, etc.
[0026]
【Example】
The steel shown in Table 1 is melted in vacuum, and after forging, cutting, and hot rolling, annealing and cold rolling are repeated, polishing finish is performed, temper rolling is performed, and a plate material having a thickness of 1 mm is manufactured. did. The rare earth addition was performed with misch metal. From the obtained plate material, a high-temperature tensile test piece was prepared according to JISG0567, and at room temperature, 500 ° C and 700 ° C, a tensile rate of 0.3% / min up to 0.2% proof stress, and a rate of up to fracture of 3 mm / min. A high temperature tensile test was performed under the conditions.
[0027]
Moreover, after smoothing both surfaces of the plate so that Ra ≦ 0.4 μm and Rz ≦ 2.0 μm, a high-temperature oxidation test piece of 25 × 35 mm was produced. Here, Ra means center line average roughness specified in JIS B 0601, and Rz means 10-point average roughness specified in JIS B 0601 of each test piece. In the oxidation test, in-furnace heating 1000 ° C. × 30 minutes and out-of-furnace cooling for 10 minutes were performed in one cycle, and heating and cooling were repeated 1000 cycles. After the oxidation test, the increase in oxidation and the amount of deformation were measured. In addition, it calculated | required as follows. In other words, place the test piece on the surface plate, find the maximum height, and set the maximum height-plate thickness (1mm) as the flatness, and "flatness before oxidation test"-"flatness after oxidation test" The value of “degree” was defined as the deformation (mm).
These results are also shown in Table 2.
[0028]
[Table 1]
Figure 0004341861
[0029]
[Table 2]
Figure 0004341861
[0030]
Steels having a chemical composition within the range specified in the present invention (invention steels in Table 1) and imparted so that the processing strain is within the specified range (invention examples in Table 2) are all processed at room temperature. Property, high temperature strength in high temperature range and high temperature strength and high temperature oxidation property.
[0031]
On the other hand, when the rolling rate is small as seen in Examples No. 13, 15, and 17, the high temperature strength in the middle temperature range is large, as seen in Examples No. 14, 16, and 18 Has poor processability at room temperature. In particular, even in the case of the invention steels as in Examples Nos. 13 to 16, if the rolling rate is outside the range specified in the present invention, the target intermediate temperature strength and workability cannot be obtained, so the processing strain is applied. It turns out to be very important. On the other hand, in Examples No. 17 and 18, the Nb content is large outside the scope of the present invention, so the strength in the high temperature range (700 ° C.) is good, but the high temperature oxidation characteristics are inferior. . Furthermore, as shown in Examples 19 to 23, even if the rolling rate is in the range specified in the present invention, the Nb content is out of the specified range, so that the strength in the high temperature range and the high temperature oxidation characteristics are inferior.
[0032]
【The invention's effect】
As described above, the Fe—Cr—Al ferritic stainless steel of the present invention has excellent oxidation resistance, and is also excellent in thermal fatigue characteristics of the material by repeated heating and cooling in a wide temperature range. Is. Therefore, if the method of the present invention is used, the durability of the heat-resistant equipment is improved, and the appearance of the product is maintained in the initial excellent state over a long period of time.
[Brief description of the drawings]
FIG. 1 shows the effect of rolling ratio on 0.2% proof stress at 500 ° C. and room temperature elongation of steel sheets.

Claims (3)

重量%で、C:0.03%以下、Si:0.5%未満、Mn:0.5%以下、P:0.04%以下、S:0.003%以下、Cr:15〜20%、N:0.03%以下、Al:3〜5%、Nb:0.1%超え0.3%以下、Ti:0.1%超え0.3%以下を含有し、残部がFeおよび不可避的不純物からなるFe−Cr−Alフェライト系ステンレス鋼において、冷間圧延および焼鈍を施した鋼帯に圧延率0.3%以上1.0%以下に相当する加工ひずみを付与することを特徴とする熱疲労特性および耐高温酸化性に優れたFe−Cr−Alフェライト系ステンレス鋼の製造方法。% By weight: C: 0.03% or less, Si: less than 0.5%, Mn: 0.5% or less, P: 0.04% or less, S: 0.003% or less, Cr: 15-20% N: 0.03% or less, Al: 3-5%, Nb: 0.1% to 0.3%, Ti: 0.1% to 0.3%, the balance being Fe and inevitable Fe-Cr-Al ferritic stainless steel made of mechanical impurities is characterized by imparting a working strain corresponding to a rolling rate of 0.3% to 1.0% to a steel strip subjected to cold rolling and annealing. Of producing Fe-Cr-Al ferritic stainless steel having excellent thermal fatigue properties and high-temperature oxidation resistance. 重量%で、C:0.03%以下、Si:0.5%未満、Mn:0.5%以下、P:0.04%以下、S:0.003%以下、Cr:15〜20%、N:0.03%以下、Al:3〜5%、Nb:0.1%超え0.3%以下、Ti:0.1%超え0.3%以下を含有し、希土類元素を1種又は2種以上合計で0.01〜0.2%を含有し、残部がFeおよび不可避的不純物からなるFe−Cr−Alフェライト系ステンレス鋼において、冷間圧延および焼鈍を施した鋼帯に圧延率0.3%以上1.0%以下に相当する加工ひずみを付与することを特徴とする熱疲労特性および耐高温酸化性に優れたFe−Cr−Alフェライト系ステンレス鋼の製造方法。% By weight: C: 0.03% or less, Si: less than 0.5%, Mn: 0.5% or less, P: 0.04% or less, S: 0.003% or less, Cr: 15-20% N: 0.03% or less, Al: 3-5%, Nb: 0.1% to 0.3% or less, Ti: 0.1% to 0.3% or less, one kind of rare earth element Or, a Fe-Cr-Al ferritic stainless steel containing 0.01 to 0.2% in total and the balance being Fe and unavoidable impurities, rolled into a steel strip subjected to cold rolling and annealing A process for producing Fe-Cr-Al ferritic stainless steel excellent in thermal fatigue characteristics and high-temperature oxidation resistance, characterized by imparting a working strain corresponding to a rate of 0.3% to 1.0%. 請求項1または2に記載のFe−Cr−Alフェライト系ステンレス鋼を、冷間圧延および焼鈍を施した鋼帯に圧延率0.3%以上1.0%以下で調質圧延して加工ひずみを付与することを特徴とする熱疲労特性および耐高温酸化性に優れたFe−Cr−Alフェライト系ステンレス鋼の製造方法。The Fe-Cr-Al ferritic stainless steel according to claim 1 or 2 is temper-rolled to a steel strip subjected to cold rolling and annealing at a rolling rate of 0.3% or more and 1.0% or less to obtain a processing strain. A method for producing Fe-Cr-Al ferritic stainless steel excellent in thermal fatigue characteristics and high-temperature oxidation resistance, characterized by imparting.
JP12366099A 1999-04-30 1999-04-30 Method for producing Fe-Cr-Al ferritic stainless steel with excellent thermal fatigue properties and high-temperature oxidation properties Expired - Fee Related JP4341861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12366099A JP4341861B2 (en) 1999-04-30 1999-04-30 Method for producing Fe-Cr-Al ferritic stainless steel with excellent thermal fatigue properties and high-temperature oxidation properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12366099A JP4341861B2 (en) 1999-04-30 1999-04-30 Method for producing Fe-Cr-Al ferritic stainless steel with excellent thermal fatigue properties and high-temperature oxidation properties

Publications (2)

Publication Number Publication Date
JP2000319729A JP2000319729A (en) 2000-11-21
JP4341861B2 true JP4341861B2 (en) 2009-10-14

Family

ID=14866137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12366099A Expired - Fee Related JP4341861B2 (en) 1999-04-30 1999-04-30 Method for producing Fe-Cr-Al ferritic stainless steel with excellent thermal fatigue properties and high-temperature oxidation properties

Country Status (1)

Country Link
JP (1) JP4341861B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3958280B2 (en) * 2003-02-28 2007-08-15 新日鐵住金ステンレス株式会社 High Al content ferritic stainless steel sheet for weight detection sensor substrate, manufacturing method thereof, and weight detection sensor
JP5401039B2 (en) * 2008-01-11 2014-01-29 日新製鋼株式会社 Ferritic stainless steel and manufacturing method thereof
US20190078183A1 (en) * 2016-03-24 2019-03-14 Nisshin Steel Co., Ltd. Ti-CONTAINING FERRITIC STAINLESS STEEL SHEET HAVING GOOD TOUGHNESS, AND FLANGE
CN111922082A (en) * 2020-06-28 2020-11-13 中北大学 Twenty high rolling mill cold rolling method for iron-aluminum-chromium hot coil

Also Published As

Publication number Publication date
JP2000319729A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
US6458221B1 (en) Ferritic stainless steel plate
US20120014830A1 (en) Ferritic stainless steel excellent in heat resistance and workability sheet
JP5388577B2 (en) Steel plate for galvanization excellent in workability and manufacturing method thereof
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
US4484956A (en) Process for producing heat-resistant ferritic stainless steel sheet
EP2036994B1 (en) Cr-CONTAINING STEEL EXCELLENT IN THERMAL FATIGUE CHARACTERISTICS
JP4341861B2 (en) Method for producing Fe-Cr-Al ferritic stainless steel with excellent thermal fatigue properties and high-temperature oxidation properties
US5792285A (en) Hot-rolled ferritic steel for motor vehicle exhaust members
JP3042788B2 (en) Ferritic stainless steel with excellent oxidation resistance
JP3232120B2 (en) Low Yield Ratio Hot Rolled Steel Strip for Buildings Excellent in Fire Resistance and Toughness and Method for Producing the Strip
JP3865452B2 (en) Fe-Cr-Al ferrite stainless steel with excellent high-temperature oxidation resistance and high-temperature deformation resistance
JP3420373B2 (en) Chrome steel sheet with excellent formability
JPH0570897A (en) Ferritic stainless steel having high toughness and high strength at high temperature
JPH04147945A (en) High al-containing ferritic stainless steel excellent in high temperature oxidation resistance and toughness
JP3938246B2 (en) Heat-resistant Fe-Cr-Al ferritic stainless steel sheet with high temperature deformation resistance
JP2942073B2 (en) Ferritic stainless steel for exhaust manifold with excellent high-temperature strength
JP3705391B2 (en) Nb-containing ferritic stainless steel with excellent low temperature toughness of hot-rolled sheet
JP7251996B2 (en) Al-containing ferritic stainless steel sheet and method for producing the same
JP2021505775A (en) Ferritic stainless steel with improved tube expansion workability and its manufacturing method
JP2000248335A (en) Low yield ratio type fire resistant hot rolled steel sheet and steel pipe excellent in toughness and their production
JP3760587B2 (en) Manufacturing method of refractory ERW welded square steel pipe with excellent hot-dip galvanizing crack resistance
JP7284587B2 (en) Al-containing ferritic stainless steel sheet and method for producing the same
JP3364322B2 (en) Stainless steel for automotive exhaust manifolds with excellent manufacturability, workability and high-temperature strength after long-term aging at high temperatures
JP7022633B2 (en) Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts
JPH055129A (en) Production of hot rolled multilayer steel plate having surface layer composed of austenitic stainless steel and excellent in corrosion resistance and deep drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140717

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees