JP4338238B2 - High load transmission for transmission - Google Patents

High load transmission for transmission Download PDF

Info

Publication number
JP4338238B2
JP4338238B2 JP25744898A JP25744898A JP4338238B2 JP 4338238 B2 JP4338238 B2 JP 4338238B2 JP 25744898 A JP25744898 A JP 25744898A JP 25744898 A JP25744898 A JP 25744898A JP 4338238 B2 JP4338238 B2 JP 4338238B2
Authority
JP
Japan
Prior art keywords
elastic
transmission
pressure receiving
pressure
transmission body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25744898A
Other languages
Japanese (ja)
Other versions
JP2000055135A (en
JP2000055135A5 (en
Inventor
謙吉 小野木
Original Assignee
東京自動機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京自動機工株式会社 filed Critical 東京自動機工株式会社
Priority to JP25744898A priority Critical patent/JP4338238B2/en
Publication of JP2000055135A publication Critical patent/JP2000055135A/en
Publication of JP2000055135A5 publication Critical patent/JP2000055135A5/ja
Application granted granted Critical
Publication of JP4338238B2 publication Critical patent/JP4338238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、動力伝動用のベルト伝達体であって、例えばプーリ車からの耐側圧性に優れた高負荷伝動用の無端伝達体に関する。特に、工作機械などの産業機械、車両、モータ等に設置される無段変速機で定馬力の動力伝達に最適な伝達体に関する。
【0002】
【従来の技術】
無端伝達体として、無端ストラップに多数のリンクまたはブロックを配列支持する構造の先行技術は、既に数多く考案されている。日本特許出願の特開昭2−275145号(本田技研工業)は無端ストラップに形状記憶合金を用いて多数の金属ブロックの組付方法を改良した思想である。また日本特許出願の特開昭6−109077号(リケン)は隣接する各ブロック間の動きを抑制してスチールのストラップとブロックとの干渉を抑制したものである。更に日本特許出願の特開昭4−219548号(仏国カウチユ社)は、無端コアの合成ゴム・ベルトに多数のU字型リンクを組込んだ無端伝達体が開示されている。
【0003】
これ等のベルト伝達体は、その幅(X)方向にプーリ挾持圧を受ける位置として左右端のそれぞれに受圧部が施されている点で共通するが、この受圧部で受ける幅(X)方向のプーリ挾持圧に対する圧力吸収方法がいずれも不完全かつ不充分である。特に無段変速機に適用する場合には外部からプーリ車を経てベルト伝達体に印加され、プーリ挾持圧は、負荷動力の大きさ、変速信号の有無および速度など各種の外的要因でその大きさおよび速度が大きく変動する。このため或る時には挾持圧は緩やかに印加されるが、他の或る時には、瞬時にしかも極度に大きな力で印加される。この場合に、いかなる大きさおよびいかなる速度のプーリ挾持圧が印加されても、ベルト伝達体がこれを瞬時に吸収しかつプーリ車の摩擦面およびベルト伝達体の双方に損傷を与えることがなく、安定な動力伝達状態に復帰させる必要がある。
【0004】
従来技術のうち初めの二つの先行技術では、ブロック自体が金属等の剛体であってプーリ挾持圧が印加される幅(X)方向の荷重に対して全く弾性が存在しない。従ってその荷重に対する弾性吸収能力も全く存在しない。カウチユ社の開示思想は、U字型リンクの開放端部分が僅かに幅(X)方向に可撓性を有し、多少の弾性吸収力の存在が認められる。しかし無端コアに合成ゴム・ベルトが使われているため、充分な大きさのプーリ挾持圧に耐えられない。しかもその印加時に各リンクの位置決め状態が不安定になり、各リンクの配列状態の抑制力が働かないため、瞬時に過大圧力に対して伝動動作が不安定である。
【0005】
【発明が解決しようとする課題】
本発明の変速機の高負荷伝達体は、如何なる大きさでかつ如何なる速度のプーリ挾持圧がプーリ車を介してベルト伝達体に印加される場合であっても、ベルト伝達体自体が、その幅(X)方向に充分な弾性力による荷重吸収能力を保証するため、単に各ブロック自体が個別に充分な弾性吸収能力を持つ構造にすることである。更にまた幅(X)方向の荷重を長手(Y)方向の荷重に変換する機能を持たせることによって、長手(Y)方向に隣接する他の複数のブロックに順次その荷重の分散吸収機能を達成させることである。
【0006】
即ち、本発明の第一解決課題は、各ブロックが、プーリ挾持圧の非印加時には隣接ブロックと面接触しながら動力伝達するが、プーリ挾持圧の印加時には幅(X)方向の荷重を長手(Y)方向の荷重に変換させるため隣接ブロックと共働してクサビ効果を達成するような弾性突出部を保持する高負荷伝達体を提供する。更にまた、各ブロックが、プーリ挾持圧の非印加時にも、また印加時にも長手(Y)方向に突出成形した弾性突出部のクサビ効果によって動力伝動中に過大荷重を受圧しながら安定支持状態を保証する高負荷伝達体を提供することである。
【0007】
本発明の第二解決課題は、各ブロックの弾性突出部が単に長手(Y)方向のクサビ効果による弾性吸収性だけでなく、合成樹脂製のベルトがもつ弾性屈曲性と同等の特性を持たせるため、プーリ回転中心C0を中心とした正転時とC0を中心としない逆転の屈曲方向の屈曲性に対しても充分な弾性吸収性を保証する高負荷伝達体の思想を提供している。
【0008】
本発明の第三解決課題は、特にプーリ挾持圧の印加時には、各ブロックが隣接ブロックとの間でクサビ効果を働かせながら、二つの受圧部A1,A2と弾性突出部の先端当接部Cとの間で実質的な三点支持構造を維持するので、安定伝動状態を維持したまま更に大きなプーリ挾持圧にも充分に耐性をもつ高負荷伝達体を提供する。
【0009】
本発明の第四解決課題は、各ブロックが弾性突出部で挾持圧を幅方向の伸縮変位を長手方向に伸縮変位に応力変換すると共に長手方向に印加される直進押込荷重を後方から弾性突出部に供給する事で両受圧部への充分な摩擦圧力の供給を保証する事である。
【00010】
【課題を解決するための手段】
本発明の第一解決手段の高負荷伝達体は、長手方向と垂直な平面で直進押込荷重を受けるため平板状に成形した平面部の左右端にプーリ挾持圧を受けるために二つの受圧部を構成したブロックの多数個を無端保持体に支持させて無端伝達体を形成してなる変速機の高負荷伝達体において、上記ブロックは、該プーリ挾持圧の大きさに応じて幅(X)方向に伸縮自在に配置された上記受圧部と、この受圧部に連なり幅(X)方向に該狭持圧を伝えかつ長手(Y)直進方向に垂直の平面に配置され隣接ブロックと互に密接当接し該直進押込荷重を受けて動力伝達するための上記平面部と、さらに上記両受圧部の間に配置され該両受圧部間を結ぶ幅方向と垂直の長手(Y)方向に向け断面形状がクサビ状または舌状に突出成形されて上記両受圧部間が幅方向の弾性力をもって撓むことを保証する為の弾性屈曲性を持つ弾性突出部とを有すると共に、直進押込伝動時には前後の隣接ブロックと上記平面部および上記弾性突出部で夫々面接触および上記ブロックの位置決めをして動力伝達しプーリ加圧摩擦伝動時には該プーリ挟持圧を上記弾性突出部の長手方向の弾性傾斜部の弾性応力に変換して弾性吸収したものである。
【0011】
本発明の第二解決手段の高負荷伝達体は、長手方向と垂直な平面で直進押込荷重を受けるため平板状に成形した平面部の左右端にプーリ挾持圧を受けるために二つの受圧部を構成したブロックの多数個を無端保持体に支持させて無端伝達体を形成してなる変速機の高負荷伝達体において、上記ブロックは、該プーリ挾持圧の大きさに応じて幅(X)方向に伸縮自在に配置された上記受圧部と、この受圧部に連なり幅(X)方向に該狭持圧を伝えかつ長手(Y)直進方向に垂直の平面に配置され隣接ブロックと互に密接当接し該直進押込荷重を受けて動力伝達するための上記平面部と、さらに上記両受圧部の間に配置され該両受圧部間を結ぶ幅方向と垂直の長手(Y)方向およびラジアル(Z)方向に向け突出成形されて上記両受圧部間に幅方向の弾性屈曲性を保証する弾性突出部とを有すると共に、上記弾性突出部はXYおよびXZ平面の各断面形状がクサビ状または舌状で長手方向およびラジアル方向に立体的な弾性傾斜部を形成してプーリ挾持圧を長手方向およびラジアル方向の弾性応力に変換して弾性吸収したものである。
【0012】
本発明の第三解決手段の高負荷伝達体は、長手方向と垂直な平面で直進押込荷重を受けるため平板状に成形した平面部の左右端にプーリ挾持圧を受けるために二つの受圧部を構成したブロックの多数個を無端保持体に支持させて無端伝達体を形成してなる変速機の高負荷伝達体において上記各ブロックは、該挾持圧により幅方向に伸縮変位可能な上記両受圧部と、該挾持圧を上記両受圧部から弾性突出部に伝える二つの上記平面部と、更に上記両受圧部間に配される上記平面部から幅方向と垂直の長手方向に断面形状がクサビ状又は舌状に突出成形された単一または複数の上記弾性突出部とを有すると共に、該挾持圧による上記両受圧部の幅方向の伸縮変位を長手方向の伸縮変位に応力変換して後方の隣接ブロックに当接加圧される上記弾性突出部の先端当接部と上記両受圧部との間の三点支持構造で安定保持する事で上記各ブロックの上記平面部がプーリ回転軸芯を中心に速比に応じてラジアル方向に等角度で常時正規の配列を維持して安定伝動させたものである。
【0013】
本発明の第四解決手段の高負荷伝達体は、長手方向と垂直な平面で直進押込荷重を受けるため平板状に成形した平面部の左右端にプーリ挾持圧を受けるために二つの受圧部を構成したブロックの多数個を無端保持体に支持させて無端伝達体を形成してなる変速機の高負荷伝達体において上記各ブロックは、該挾持圧により幅方向に伸縮変位可能な上記両受圧部と、該挟持圧を上記両受圧部から弾性突出部に伝える二つの上記平面部と、更に上記両受圧部間に配される上記平面部から幅方向と垂直の長手方向に断面形状がクサビ状又は舌状に突出成形され且つ上記弾性突出部の突出成形の方向を上記伝達体の長手進行方向の後方に向って突出成形された単一または複数の上記弾性突出部とを有すると共に該挟持圧による上記両受圧部の幅方向の伸縮変位を長手方向の伸縮変位に応力変換された上記弾性突出部の先端当接部を更に後方で当接する隣接ブロックからの長手方向の直進押込荷重によって逆方向から押込加圧する事で動力伝動したものである。
【001
【発明の実施の形態】
変速機では、ベルト伝達体の動作は、図1に示す通り定速比運転時にはプーリ車とベルト伝達体との摩擦接触面の全体に分布してプーリ挾持圧を受け接触点Aで離れているが、変速動作の開始時にはベルト伝達体の接触半径rが一端から変動し始めるため、その時の終点で最短接触半径r minの接触点A′がA″に瞬時に移動しプーリ挾持圧の全圧がそこに集中しベルトとプーリに機械的損傷を招来する。その瞬間だけベルトの屈曲状態は図1の破線の軌道M″の様に正転から逆転状態に変わりこの現象はプーリ車に変速指令が供給される度ごとに招来する。
【001
この時に伝達体が、プーリ挾持圧を完全に吸収するだけの充分な弾性力による荷重吸収機能を持つためには、単一ないし数個のブロックだけでは充分な荷重吸収能力に欠けるため、弾性突出部が幅(X)方向の伸縮変位を長手(Y)方向の伸縮変位に変換して、それ等のブロックに隣接する近隣ブロックに順次集中荷重を長手(Y)方向にも分散させたものである。従って、この事は、変速比を急速に短時間で変化させる時にプーリ車および伝達体に集中荷重が一箇所に集中することが無く、瞬時に多数ブロックに分散することになるので、変形、外傷、その他の伝達不良を招くことなく、高速応答性、制御性の変速比の移行が可能になる。
【001
本明細書では、主に油層内で使う湿式変速機用として記述したが、空気中で使う乾式の場合にも適用できる。従って本実施例では無端ストラップおよびブロックも主に金属剛体を前提としているが、これに限られず、ブロックを金属製と樹脂製とで交互配列しても良く、或いは金属材の表面に樹脂コーティング又は金属材の積層に成形しても良く、更には全てを樹脂材のみで加工しても良い。
【001
また更に本明細書に示した各ブロックに施している弾性突出部の突出成形の方向は、いずれもベルト伝達体の進行方向(回転方向)の後方に向って突出成形し変換した分散吸収荷重が直進押込荷重と互に逆方向に向った例を開示したが、逆に進行方向の前方に向って突出させても良い。また、クサビ状突出部の突出形状に関しても、本実施例では、V形、台形ないし三角形或いは円弧状又は楕円錐状のものを示したが、クサビ効果により幅(X)方向荷重が長手(Y)方向荷重に変換し、隣接ブロックの内外壁が弾性力を保持しながら互に食込み侵入してかつ押圧するならば、立体形の錐状、平板を成形したU形や舌状等の如何なる形状でも良い。
【001
【第1実施例】
図1は本発明の第1実施例の変速機用の無端高負荷伝達体の一部分の装着状態を示す部分側面図である。同図中では伝達体の左側プーリ挾持圧非印加時に後方から直進押込荷重を受ける直進押込伝動状態Pを、また右側が伝達車1からプーリ挾持圧が印加され回転中心C0を中心に半径R0の角度(θ)の正転方向に折曲したプーリ加圧摩擦伝動状態Qをそれぞれ示し、両者は連なったまま単一の無端伝達体10を形成する。なお作図の便宜上、無端伝達体10の全体は省略し、一部分のみを描写する。
【001
伝達体10は、帯状をした無端保持体11と、この保持体11上を長手(Y)方向に摺動可能に懸垂状態に吊下げられた多数のブロック12とを無端の円環状に配列して構成される。伝達体10は、伝達車1の矢印Sで示す回転方向に回動する。このとき、各ブロック12は、伝達体1により伝達体10の幅(X)方向すなわち回転軸芯方向にプーリ挾持圧を受ける受圧部13,14と、長手(Y)直進方向Pと垂直の平面を前後に配置され隣接ブロックと互いに密接当接して連結状態を維持して動力伝達する平面部13a,13c;14a,14c;20f,20dと、更に後面側にも同じく各ブロック相互間の連結状態により確実な位置決めを施すと同時に幅(X)方向の弾性力を長手(Y)方向の応力に変換する弾性突出部20と、で構成される。この時各ブロック12は弾性突出部20の上端腕曲切欠部を無端保持体11で包囲された状態で、ラジアル(Z)方向の遠心力に抗しながら伝動に寄与する。
【0020
伝達体10がプーリ車1の軌道Mで等速比伝達中は、摩擦点A,B,C,D,Eの半径RA,RB,RC,RD,REは全てR0でプーリ車1から伝達体10に印加されるプーリ挾持圧は接触面の全周で略均等に分散加圧されている。しかし変速指令或いは変速機の外部より外乱が侵入したときには、この挾持圧の均等分散状態は次の等速状態に至るまでの一瞬間の間だけ乱れる。伝達体10が、速比ε0の等速軌道Mから次の速比ε1の変速軌道M′に変更する変速指令が外部から供給された瞬間の伝動状態を分析してみる。この時伝達体10は引張側の接触点Aから順にBないしEに向って移動し始める。従って移行時の一瞬間の間の接触径rは同図の様にrA<rB<rC…rEの関係に到る。
【0021
この事は一瞬間だけ接触点A′の1点に伝動に必要なプーリ挾持圧の全荷重が集中することを意味する。本発明はこの集中荷重を受けても、各ブロック12は、幅(X)方向に充分な弾性屈曲性を付与することによって、この瞬時に印加される極度に大きな集中荷重を、これまた瞬時にA′点のブロック12のみが引き受けることなく、順次他の隣接ブロック12で構成されるB′点、C′点、D′点、E′点に荷重分散させて弾性吸収する構造の剛体製伝達体10を実現したものである。望ましくは、A′点を始点として終点Eまでの角度θ0が約45度乃至170度程度まで分散すべきである。
【0022
図2は図1に示す第1実施例の高負荷伝達体10に用いたブロック単体の構成を示し、図2Aは左側係止具付ブロック12Lの背面図、図2Bは同ブロック12Lの上面図さらに図2Cは同ブロック12Lの側面図をそれぞれ示す。更に図2Dは無端保持体11に保持された右側係止具付ブロック12Rの背面図を示す。図2Aにおいて、左側係止具付ブロック12Lは、左側平面部13aの上方に無端保持体11からの脱落を阻止する係止具17Lを施されかつその近傍には平面部13aの長手(Y)方向に厚味lmの貫通孔15が施される。また図2Bに示す通り、右側平面部14aは平面部14aの同じ高さの位置に長手(Y)方向の厚味lmと略同等の長さlmの係合突起16が施される。一方、図2Dに示す通り、ブロック12Lとは逆に、係止具17Rおよび貫通孔15が平面部14aに、また係合突起16が平面部13aにそれぞれ施された右側係止具付ブロック12Rも、予め用意される。なお、図2Dでは、二つの車1a,1bからなるプーリ車1と無端保持体11を同時に示してある。
【0023
本実施例では、各ブロック12L,12Rは、いずれも二つの受圧部13,14の間に平面部13a,14aを経て弾性突出部20が配置され、かつ全体が単一の金属弾性材をもって一体加工されて単一のブロック12を形成する。また、この例では、弾性突出部20は、図2Bのように弾性材の平板傾斜部20a,20aがほぼ直角θ=90度に交互するように、伝達体10の長手(Y)方向に突出し、先端当接部20bを台形に成形される。しかも、図2Eに示す通り、受圧部13,14の長手(Y)方向の厚味lmは、弾性傾斜部20aの厚味lmとの間で傾斜角θの大きさに応じてln=lm×sinθ1で決る厚味に選定される。これによって図1で示した直進押込伝動時には、前後に隣接するブロック12の相互間で受圧部13,14の正面および背面の各平面部13a,13cおよび14a,14cが互に密接当接し後方からの直進押込荷重を受けて動力伝動するだけでなく、弾性突出部20の傾斜部20a,台形部20bの各傾斜平面部20i,20cおよび台形平面部20f,20dもこの時、同時に各ブロック間で密接当接状態を確保し、特に台形部20bはもう一つ別の平面部として平面部13a,13c;14a,14cと同様の直進押込荷重を受けている。
【002
図2Cの様に、平面部13c,14cおよび弾性突出部20の傾斜部20a並びに台形部20bの正面側は、すべて平面状態だが、背面側は、図2Aに示したU−U線より上方側を平面部13a,14a,台形平面部20f,傾斜平面部20iに対して下方側は折曲部13b,14b,台形折曲部20g,傾斜折曲部20hが施されている。これによって、図1で示した伝達体10が接触半径R0の加圧摩擦位置に入ったとき、各ブロック12が伝達車1の回転中心C0 に対して変速比εに応じて決るラジアル(Z)方向に略等角度θ1で位置決め配列できるように構成してある。折曲部は、直線状の傾斜平面としても、また円弧状の腕曲面即ち腕曲部にしてもよく、前者は図4Cに示す通り速比εが変化しても同じ折曲点Fで当接するが、後者では当接点の位置が速比に応じて変化する。本実施例では折曲部13b,14bを直線状に、折曲部20a,20bを腕曲状または腕曲部にしてある。この加圧摩擦伝動状態Qでは、各ブロック12の弾性突出部20が傾斜状態のまま無端ストラップ11によって安定状態に位置決めされ、速比εに応じて当接させるための腕曲切欠部20e が弾性突出部20の上端に施される。
【002
図3は、上述した二種類の左側係止具付ブロック12Lと右側係止具付ブロック12Rとを無端ストラップ保持体11に組立てる様子を示すブロック組立図である。二つの受圧部13,14にそれぞれ貫通穴15および係合突起16とが交互に施されているため、隣接ブロックの間では互に係合突起16が貫通穴15に挿入された状態で組立てられる。同時に係止具17L,17Rも同様に各受圧部13,14より交互に突出され、両者の間には挿入空間19が残される。この挿入空間19を介して保持隙間18はストラップ11の組付空間として使用される。この時、無端保持体11の全周にブロック12L,12Rが配列され、各ブロック12が保持体11上を押圧移動できるように、ブロック12Lと12Rとの間に僅かな隙間が残される程度に設置される。
【002
図4Aおよび4Bは、本実施例の高負荷伝達体の図2Bの上面図によりその動作を説明するためのブロックの動作説明図であり、同図4Aはプーリ挾持圧の弾性吸収力の変換原理図であり、同図4Bは同挾持圧を受ける前後の弾性突出部20の変形状態を示す動作図である。説明の便合上、図4Aに示す様に、二つの受圧部13,14を結ぶ、伝達体10の幅Wの方向をX軸と、また伝達体10の長手方向をY軸と、さらに図1に示すラジアル方向をZ軸と、仮定する。
【002
無段変速機では、二つの円錐車1a,1bの相対距離を変化させ、摩擦圧力を変えて所定の伝達動力を確保するため、伝達体10には大きさおよび速さが自在に変動するプーリ挾持圧が加えられる。図4Aのようにこれに応じて各ブロック12には、受圧部13,14の摩擦面a1,a2にプーリ挾持圧が矢印A,A′の両面から印加され、平面部13a,14aを経て伝達され台形クサビ状又錐形クサビ状に成形された弾性突出部20の端部a′1,a′2より所定距離Lの位置に板バネ傾斜部B,B′を介して先端当接部Cの仮想連結点a0に向って加圧される。本実施例のブロック12は、或る程度の移動性を確保するため先端当接部Cは台形部20bを施してあるがV字形でもよく、実質的な原理動作は同図に示す通り、三つの端部a0,a1,a3によってXY平面上で安定支持状態に維持可能であることを示す。しかもZ軸方向には無端ストラップ11で位置決めされているため、実体的にはX,YおよびZ軸のいずれの方向に対しても、個々のブロック12は円錐車1a,1b間で傾斜状態のまま伝動することもなく伝動中ほぼ完全な安定位置状態が確保される。
【002
特に本発明の最大の特徴は、二つ存在する。第1の特徴は、伝達車1から加わるプーリ挾持圧が、小さな荷重でかつ緩やかに印加される場合でも、また逆に著しく過大な荷重でかつ瞬時に印加される場合であっても、これを速やかに弾性吸収するだけの充分な弾性吸収力を伝達体10自体が内在しているため、最高速比εmaxから最小速比εminに至るまでの変速時間を著しく短期制御できることである。第2の特徴は、仮に少数のブロック12のみに極度に大きな瞬間荷重が加わっても、この荷重を隣接の他の複数のブロック郡に瞬時に順次分散されることによって、伝達車1及び伝達体10への機械的損傷を皆無にできることである。
【002
次に図4Bによって、本発明によるこれ等の集中荷重を分散する特徴の根拠を説明する。同図において右図(i)は、図4Aの受圧点a1,a2からプーリ挾持圧を受けてない状態を示し、左図(ii)はプーリ挾持圧を受けて、受圧部a1,a2がb1,b2に幅(X)方向に距離βだけ弾性収縮した状態をそれぞれ示す。
【0030
図4B−(i)では、この時弾性突出部20の板バネ傾斜部20a,20bの角度θは図2Bに示す通り略90°のままの状態である。しかし一担、伝達車1のプーリ挾持圧を受け始めると、受圧部13,14は移動し始め、図4B−(ii)に示すように弾性傾斜部20a,20bの双方が応力変形しながら、先端当接点もa0からb0に前進し始め、その移動距離αはl0(=l02−l01)になる。本実施例の先端は実際には台形部20bを形成しているため、本ブロック12の折曲点a01,a02 の部分が隣接後方の後ブロック12に対し、錐状の弾性傾斜部20a,20bのクサビ効果とともに強固な圧力で当接する結果、本ブロック12はその受圧部13,14の受圧点b1,b2と先端当接部b01,b02の実質的な先端当接部b0との三点支持効果によって応力変形し強固に支持され弾性吸収されることになる。後ブロック12も本ブロック12の先端当接部の圧力とプーリ挟持圧を受け本ブロック12の圧力分散と略同等の動作を順次行い更に後ブロックに分散する。
【0031
更に、図4Cは、複数ブロック12の弾性突出部20が、挟持圧をベルト内で順次に圧力分散ないし変換機能を達成していることを図示している。即ち、本ブロック12−1の弾性突出部20の受圧部13,14を経て加わったX軸方向のプーリ挾持圧は、クサビ状傾斜部20a,20bの応力変形によって前後に隣接する他のブロック12-0,12−1への圧力を変化させるので、ブロック12−2は折曲点F2を中心に傾き始めて当接点Eを介してY軸方向の弾性応力に変換されていることになる。本実施例の伝達体10が全て金属剛体で製造された場合であっても、合成ゴムなどの樹脂材で製造した可撓性のベルト伝達体とほぼ同等の圧力分散機能を提供していることを意味する。このことは、幅(X)方向のプーリ挾持圧の大きさが小さく緩やかである場合は、変換後の長手(Y)方向の複数のブロック12だけでその弾性応力として弾性吸収する。しかし急瞬でかつ過大圧の場合にも、幅(X)方向の収縮が大きい分だけ瞬時に長手(Y)方向の多数のブロック12に分散されるので、一部のブロックやプーリ摩擦面が損傷することはない。結果的に最低から最高速比に至る変速時間を短縮しても安定伝動が可能となる。
【0032
なお、本実施例の傾斜部20a の傾斜角度θおよびθ2は必要に応じて変更可能であり、また台形部20b の形状も実質的に三点支持機能を果たす限り任意に変更可能である。更に上述した本発明の弾性突出部の積層による急峻衝撃荷重による荷重分散に関する技術思想は、次に記述している第2実施例で示す通り、弾性突出部が単一に限らず複数の弾性突出部を有しても良い。
【0033
【第2実施例】
図5は本発明の第2実施例の変速機の無端高負荷伝達体を示す。図5Aは同伝達体のブロック12を示す正面断面図、図5Bは保持体11とブロック12を示す側面断面図、図5Cは図5Bの上面図、さらに図5Dはブロック12に施した保持体11の挿入用の切開部を示す部分構成図である。本例でも、上述した第1実施例の「幅(X)方向のプーリ挾持圧を長手(Y)方向の弾性力に変換する」ことで弾性吸収する基本思想を複数でかつ立体的に利用している。しかし更に幾つかの新たな技術思想を開示しているので、その新たな技術思想のみを、第1実施例と比較して項目ごとに説明する。
【003
(1)第一に無端保持体は、帯状ストラップではなく、単線の繊維・鋼線等を円環状にたばねたワイヤロープ状の無端保持体11で構成した思想である。断面形状は円形でブロック12の中心に施した貫通孔18を通じて各ブロック12が個別に保持体11上を摺動可能に支持される。(2)第二にブロック12に施した弾性突出部20の断面形状が、単なる弾性の平板材による折曲成形体ではなく、包囲部20j,20kを施すことにより三次元の立体構造として円形またはほぼ半楕円形状に突出している円錐ないし錐状構造の思想である。即ち、図5A,5Cの様にX―X線の断面形は、第1実施例の図2Bと略同等のV字またはU字状のクサビ形状を保持し、受圧部A1,A2と仮想連結点a0に向う当接部Cとの三点支持構およびクサビ効果による挾持圧分散機構は同一構成である。しかし本例では更にZ軸方向にも仮想の先端当接点Dを想定し、二つの弾性傾斜部20a,20aはZ軸の下方(伝達体内周側)に向って傾斜角度θ3のV字またはU字状の第二のクサビ形状又は舌状突出部を第二のクサビ状突出部として有する。これによって図1に示すように各ブロックは、長手(Y)方向だけでなく、プーリ回転軸芯C0を中心とした屈曲角度(θ0)方向の屈曲性についても第二のクサビ効果による所定の弾性吸収力を付与したものである。即ち伝達体10の曲率半径Rが小さくなるのに応じて内部弾性力を増大させ、結果的には変速機の外部からプーリ車を介して印加される突発的な外乱衝撃力による伝達体10の変則的な動きを長手(Y)方向だけでなく、ラジアル(Z)方向にも複数の隣接ブロックにて抑制させることを目的としたものである。
【003
(3)弾性突出部20はその先端貫通孔18にワイヤロープ11を挿入するため、立体包囲構造の一部に切開部21が施される。図5Cに示す通りブロック12は、Y−Y線を境に右側切開部21Rを施した第一ブロック12R′と、左側切開部21Lを施した第二ブロック12L′とが予め個別に用意される。貫通孔15と係合突起16の付設と同様に、保持体11には第一および第二ブロック12R′,12L′が交互に配列され、これによって貫通孔18からのブロックの脱落を阻止している。図5Dは、切開部21の状態を示し、各接合片22,23には、それぞれ凸部22a,23aと凹部22b,23bとを互に連結し、互の係止部22cおよび23cによって図中の矢印VおよびW方向の加圧に対しても連結状態を維持する。しかし無端保持体11の組込時は切開部21を点線で示す接合片23′に開放して、空間19より挿入する。
(4)更に、切開部21による弾性突出部20の幅(X)方向の弾性力の強度が低下するのを補償強化するため、V字型に突出した弾性材26を二つの平面部13a,14aの上方部の間に介在させ二枚の弾性強化板材25a,25bを設置し平面部13a,14aにスポット溶接27で保持させ弾性力を強化させたものである。
【003
(5)また図5A,5Bに示すように仮想当接点Dとは対称の位置にもう1つ別の仮想の先端当接点D′を新たに設定し、点線24で示す新たな弾性傾斜部20a′,20a′を角度θ4のV字型にして第三のクサビ状突出部又は閉環状傾斜部を成形してもよい。これによって無端伝達体10が回転中心C0を中心とした伝達体内周側の弾性屈曲部24aだけでなく、その反対の側に屈曲する場合の伝達体外周側の弾性逆屈曲部24bを確保するためのものである。特に図1で述べた通り、変速指令を受けた瞬間の最小接触点A′にプーリ荷重が集中し、次の回動に伴ってプーリ車1が伝達体10をA′点を挟み込んだままA″点で移動する。更にその次の瞬間に、M″方向に引張られるためA″点では、伝達体10は正規の屈曲性とは逆にθ0が180°以上に逆転する。この時に少数ブロック12のみに逆屈曲衝撃力がA″点に集中するのを阻止し、この仮想当接点D′による弾性吸収力で集中荷重を吸収する逆クサビ効果をもたせたのである。この構成により伝達体10は、弾性突出部20を立体的な舌状円錐形に成形L、長手(Y)方向、正転屈曲角度(θ0)方向、更に逆転屈曲角度(θ0′)方向の三方向に夫々クサビ効果を働かせて、合成ゴム・ベルトと略同等の弾性屈曲性ならびに挟持圧分散機能を保持出来る。
【003
【他の実施例】
上述の第1、第2実施例は、各ブロック12として受圧部13,14と平面部13a,14bと弾性突出部20が所定の弾性材から成る単一金属材で屈曲成形した湿式変速機用の伝達体の例を開示したが、単一金属材に限定されず、強化繊維を混合した樹脂材で全体を成形しても良く、また金属弾性材にこの樹脂材や金属材をラミネートした積層材の構成にしても良い。また、更に弾性突出部20の形状は、受圧部から加わるプーリ挾持圧を幅(X)方向又は、半径Rの折曲(θ0、θ0′)方向の方向に充分な弾性が確保されるならば、第二ないし第三の突出部等複数突出部を成形しまた如何なる形状でも良い。更に、本発明の思想は、乾式変速機用の伝達体にも適用でき、例えば受圧部13,14をオイルレス・メタルのような含油金属を用い弾性突出部を弾性金属で構成しても良い。以上のように、本発明は、記述の実施態様だけに限定されず、特許請求の範囲内に於いて如何なる形態に変更しても、本権利範囲に含まれる。
【003
【発明の効果】
この発明の高負荷伝達体は、主には金属材だけ、或いは金属と樹脂・繊維との複合材などの剛性素材を用いながら、従来樹脂製伝達体のもつ弾性可撓性、弾性吸収性および屈曲性と同様の原理にもとづき、高負荷用に適用できる充分な弾性可撓性と充分な耐久性と共に弾性吸収性及び屈曲性を実現したものである。この剛性素材を用いながらプーリ車又はベルト伝達体の一箇所に集中荷重が集中する事無く瞬時に多数ブロックに応力変換して分散ししかも充分な弾性可撓性を保証することによって従来の樹脂製伝達体では数十馬力〔HP〕以下の動力しか伝動能力を持ちえなかったのに対し、数十馬力乃至数百馬力〔HP〕以上の動力を小型にしてかつ高速の変速応答ができる伝達体を実現した。
【003
本発明の伝達体は、プーリ挾持圧を受けて各ブロックの受圧部が幅(X)方向に受圧収縮した時に、長手(Y)方向に突出成形した弾性材からなる弾性突出部の先端当接点の位置が長手(Y)方向の伸縮動作に変換している。これにより隣接ブロック相互間で長手(Y)方向に強固に連結しながら、プーリ挾持圧のもつ幅(X)方向荷重を瞬時に伝達体の長手(Y)方向に分散すると同時に各ブロックが二つの受圧部A1、A2と弾性突出部の先端当接部Cとの間で三点支持構造を維持するので傾斜状態のまま伝動することなく位置決めの安定化を図る作用効果を、伝動中に常に機能させたものである。弾性突出部の突出成形方向がベルト伝達体の進行方向の後方に向くので先端当接部が後方から前方に向って長手方向の直進押込荷重を受け、結果的に各受圧部に摩擦圧力を与えて所定の伝達動力を確保する効果がある。
【0040
特に高負荷伝達体の受圧分散機能は、無段変速機に適用すると二つの大きな効果を生む。その一つは、伝達体が充分な弾性力による荷重吸収機能をもち安定伝動状態を維持するので最低速Vminから最高速Vmaxに至る変速時間を短縮できる。即ち変速制御の速度を急峻に行っても伝達体がそのプーリ挾持圧の急激な変化に応答する高速応答能力を持つことである。もう一つは、変速機の外部の入出力機器から内部に向って変則的又は衝撃的なプーリ挾持圧が印加されることがあっても、ベルト伝達体自体が各ブロックのもつ多軸方向の充分な弾性可撓性によって、この衝撃を少数のブロックに集中させず、瞬時に長手(Y)方向またはラジアル(Z)方向の多数のブロックに分散させることによる衝撃吸収能力をもつことである。この二つの能力によって剛性素材でありながらゴム・ベルトと同等の弾性吸収機能を保持し、しかも樹脂ベルトとは比較にならない程の高負荷動力を小型かつ高速度の変速制御で伝動できる効果を奏する。
【図面の簡単な説明】
【図1】 本発明の第1実施例変速機の高負荷伝達体の一部分を示す部分構成図である。
【図2】 同上実施例の高負荷伝達体に使われるブロック単体の構成を示し、図2Aは左側係止具付ブロックの背面図で、図2Bは同ブロックの上面図で、図2Cは同ブロックの側面図で、図2Dは右側係止具付ブロックの背面状態図で、さらに図2Eは同ブロック部材の厚さを示す部分断面図である。
【図3】 同上実施例の高負荷伝達体のブロックの組立手順を示す部分組立図である。
【図4】 同上実施例の高負荷伝達体のブロックの動作説明図であり、図4Aは受圧変換機能を示す動作説明図で、図4Bは同ブロックの分散変形状態を示す動作説明図で、さらに図4Cは同上各ブロックの連鎖状態を示す動作説明図である。さらに
【図5】 本発明の第2実施例変速機の高負荷伝達体のブロックを示し、図5Aは同ブロックの正面断面図で、図5Bは同ブロックの側面断面組立図で、図5Cは同ブロックの側面組立図で、さらに図5Dは同ブロックに施した切開部の部分構成図である。
【符号の説明】
1,1aおよび1b 伝達車またはプーリ車
2 回転軸
10 高負荷伝達体、ベルト伝達体または伝達体
11 無端保持体、ストラップまたはワイヤロープ
12 ブロックまたはリンク
12L 左側(係止具付)ブロックまたは第二ブロック
12R 右側(係止具付)ブロックまたは第一ブロック
13,14 受圧部
13a,14a 平面部
13b,14b 折曲部または腕曲部
13c,14c 平面部
15 貫通孔
16 係合突起
16a 凹部
17 係止具
18 保持隙間または貫通孔
19 挿入空間
20 弾性突出部
20a 傾斜部、板バネ傾斜部またはクサビ状部
20b 台形部または当接部
20c 傾斜平面部または内壁
20d 台形平面部、内壁または別の平面部
20e 腕曲切欠部または切欠部
20f,20i 平面部
20g,20h 腕曲部または折曲部
20j,20k 包囲部
21,21R,21L 切開部
22,23 接合片
22a,23a 凸部
22b,23b 凹部
22c,23c 係止部
24a 弾性屈曲部
24b 弾性逆屈曲部
25 弾性板材
26 弾性材
27 溶接部
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a power transmission belt transmission body, for example, an endless transmission body for high load transmission having excellent side pressure resistance from a pulley wheel. In particular, the present invention relates to a transmission body that is optimal for power transmission of constant horsepower in a continuously variable transmission installed in industrial machines such as machine tools, vehicles, and motors.
[0002]
[Prior art]
  As the endless transmission body, many prior arts having a structure in which a large number of links or blocks are arranged and supported on an endless strap have already been devised. Japanese Patent Application Laid-Open No. 2-275145 (Honda Motor Co., Ltd.) is an idea in which a shape memory alloy is used for an endless strap and a method for assembling a large number of metal blocks is improved. Japanese Patent Application No. 6-109077 (Riken) suppresses the movement between adjacent blocks to suppress interference between the steel strap and the block. Further, Japanese Patent Application No. SHO 4-219548 (Couchille, France) discloses an endless transmission body in which a large number of U-shaped links are incorporated in an endless core synthetic rubber belt.
[0003]
  These belt transmission bodies are common in that a pressure receiving portion is provided at each of the left and right ends as a position for receiving the pulley holding pressure in the width (X) direction, but the width (X) direction received by the pressure receiving portion. The pressure absorption method for the pulley holding pressure is incomplete and insufficient. In particular, when applied to a continuously variable transmission, it is applied to the belt transmission body from the outside through a pulley wheel, and the pulley holding pressure is increased due to various external factors such as the load power, the presence / absence of a shift signal, and the speed. The height and speed vary greatly. For this reason, the holding pressure is gently applied at a certain time, but is applied instantaneously and with an extremely large force at other times. In this case, no matter how large and what speed pulley holding pressure is applied, the belt transmission body absorbs it instantly and does not damage both the friction surface of the pulley wheel and the belt transmission body, It is necessary to return to a stable power transmission state.
[0004]
  In the first two prior arts among the prior arts, the block itself is a rigid body such as metal, and there is no elasticity at all with respect to the load in the width (X) direction to which the pulley holding pressure is applied. Therefore, there is no elastic absorption capacity for the load. According to the disclosure concept of Couchille, the open end portion of the U-shaped link is slightly flexible in the width (X) direction, and the presence of some elastic absorption force is recognized. However, since a synthetic rubber belt is used for the endless core, it cannot withstand a sufficiently large pulley holding pressure. In addition, the positioning state of each link becomes unstable at the time of application, and the restraining force of the arrangement state of each link does not work, so that the transmission operation is instantaneously unstable against excessive pressure.
[0005]
[Problems to be solved by the invention]
  The high load transmission body of the transmission according to the present invention has a belt transmission body itself having a width of whatever size and speed at which a pulley holding pressure is applied to the belt transmission body via a pulley wheel. In order to guarantee the load absorption capability by a sufficient elastic force in the (X) direction, each block itself has a structure having a sufficient elastic absorption capability individually. Furthermore, by providing the function of converting the load in the width (X) direction into the load in the longitudinal (Y) direction, a function of sequentially dispersing and absorbing the load is achieved in other blocks adjacent in the longitudinal (Y) direction. It is to let you.
[0006]
  That is, the first of the present inventionSolution issuesEach block transmits power while being in surface contact with an adjacent block when no pulley holding pressure is applied, but when a pulley holding pressure is applied, the load in the width (X) direction is converted into a load in the longitudinal (Y) direction. Provided is a high load transmission body that holds an elastic protrusion that cooperates with an adjacent block to achieve a wedge effect. Furthermore, each block has a stable support state while receiving an excessive load during power transmission due to the wedge effect of the elastic protruding portion that is formed by protruding in the longitudinal (Y) direction even when no pulley holding pressure is applied. It is to provide a high load transmission body that guarantees.
[0007]
  Second of the present inventionSolution issuesSince the elastic protrusions of each block have not only the elastic absorbability due to the wedge effect in the longitudinal (Y) direction but also the characteristics equivalent to the elastic flexibility of the synthetic resin belt, the pulley rotation center C0 is Forward rotation centered and reverse rotation not centered on C0TimeThe idea of a high-load transmission body that guarantees sufficient elastic absorbability with respect to the flexibility in the bending direction is provided.
[0008]
  The third problem to be solved by the present invention is that, particularly when a pulley holding pressure is applied, each block exerts a wedge effect between adjacent blocks, while the two pressure receiving portions A1 and A2 and the tip contact portion C of the elastic projection portion A substantial three-point support structure is maintained between the two, so that a high load transmission body that is sufficiently resistant to a larger pulley holding pressure while maintaining a stable transmission state is provided.
[0009]
  The fourth problem to be solved by the present invention is that each block is an elastic protrusion, the holding pressure is converted from a stretching displacement in the width direction into a stretching displacement in the longitudinal direction, and a linear push load applied in the longitudinal direction is elastically projected from the rear. This ensures that sufficient friction pressure is supplied to both pressure receiving parts.
[00010]
[Means for Solving the Problems]
  First solution of the present inventionmeansIn order to receive a linear indentation load in a plane perpendicular to the longitudinal direction, the high load transmission body of the present invention has a large number of blocks comprising two pressure receiving parts to receive pulley holding pressure at the left and right ends of the flat part formed into a flat plate shape. In a high load transmission body of a transmission that is supported by an endless holding body to form an endless transmission body, the block is arranged to be extendable and contractible in the width (X) direction according to the magnitude of the pulley holding pressure. the aboveBothA pressure receiving portion, which is connected to the pressure receiving portion, transmits the holding pressure in the width (X) direction, and is arranged in a plane perpendicular to the longitudinal (Y) linear movement direction, in close contact with adjacent blocks, and receives the linear push load The flat part for transmitting power, and further, the cross-sectional shape is formed in a wedge shape or a tongue shape in the longitudinal (Y) direction perpendicular to the width direction connecting between the pressure receiving parts and disposed between the pressure receiving parts. And an elastic projecting portion having elastic flexibility to ensure that the pressure-receiving portion is bent with an elastic force in the width direction, and at the time of linear push transmission, the front and rear adjacent blocks, the flat portion and the elastic portion Each of the protrusions contacts the surface and positions the block to transmit power, and during pulley pressure friction transmission, the pulley clamping pressure is converted into elastic stress of the elastic inclined part in the longitudinal direction of the elastic protrusion and elastically absorbed. It is.
[0011]
  Second solution of the present inventionmeansIn order to receive a linear indentation load in a plane perpendicular to the longitudinal direction, the high load transmission body of the present invention has a large number of blocks comprising two pressure receiving parts to receive pulley holding pressure at the left and right ends of the flat part formed into a flat plate shape. In a high load transmission body of a transmission that is supported by an endless holding body to form an endless transmission body, the block is arranged to be extendable and contractible in the width (X) direction according to the magnitude of the pulley holding pressure. the aboveBothA pressure receiving portion, which is connected to the pressure receiving portion, transmits the holding pressure in the width (X) direction, and is arranged in a plane perpendicular to the longitudinal (Y) linear movement direction, in close contact with adjacent blocks, and receives the linear push load The flat part for transmitting power, and further, formed between the pressure receiving parts and projecting in the longitudinal (Y) direction and radial (Z) direction perpendicular to the width direction connecting the pressure receiving parts. There is an elastic protrusion that guarantees elastic flexibility in the width direction between the pressure receiving parts, and the elastic protrusion has a wedge-like or tongue-like cross-sectional shape in the XY and XZ planes and is three-dimensional in the longitudinal direction and radial direction. In other words, the pulley holding pressure is converted into the elastic stress in the longitudinal direction and the radial direction and elastically absorbed.
[0012]
  Third solution of the present inventionmeansThe high load transmission body ofIn order to receive a linear indentation load in a plane perpendicular to the longitudinal direction, to support the pulley holding pressure at the left and right ends of the flat part formed into a flat plate shape, a number of blocks comprising two pressure receiving parts are supported by an endless holding body. In a high load transmission body of a transmission formed with an endless transmission body,Each of the blocks includes the two pressure receiving portions that can be expanded and contracted in the width direction by the holding pressure, the two planar portions that transmit the holding pressure from the two pressure receiving portions to the elastic protrusions, and the two pressure receiving portions. And having one or a plurality of elastic protrusions whose cross-sectional shape protrudes in a wedge shape or a tongue shape in the longitudinal direction perpendicular to the width direction from the flat surface portion.The stress in the width direction of both the pressure receiving portions due to the holding pressure is converted into the longitudinal direction displacement.BackwardAdjacent blockA tip abutting portion of the elastic protruding portion to be abutted and pressed againstBy holding it stably with a three-point support structure between both pressure receiving partsThe flat portion of each block is always regular at an equal angle in the radial direction according to the speed ratio around the pulley rotation axis.Keep the arrayStable transmission.
[0013]
  Fourth solution of the present inventionmeansThe high load transmission body ofIn order to receive a linear indentation load in a plane perpendicular to the longitudinal direction, to support the pulley holding pressure at the left and right ends of the flat part formed into a flat plate shape, a number of blocks comprising two pressure receiving parts are supported by an endless holding body. In a high load transmission body of a transmission formed with an endless transmission body,Each of the blocks includes the two pressure receiving portions that can be expanded and contracted in the width direction by the holding pressure, the two planar portions that transmit the clamping pressure from the two pressure receiving portions to the elastic protrusions, and the two pressure receiving portions. The cross-sectional shape is formed into a wedge shape or a tongue shape in the longitudinal direction perpendicular to the width direction from the flat portion disposed, and the direction of the projecting molding of the elastic projecting portion is directed backward in the longitudinal direction of the transmission body. And a single or a plurality of the above-described elastic protrusions,Longitudinal rectilinear pushing load from an adjacent block that further abuts the tip abutting portion of the elastic protrusion, which has been subjected to stress conversion from the expansion / contraction displacement in the width direction of the pressure receiving portions to the longitudinal expansion / contraction displacement due to the clamping pressure. The power is transmitted by pushing and pressing from the opposite direction.
0014]
DETAILED DESCRIPTION OF THE INVENTION
  In the transmission, the operation of the belt transmission body is distributed over the entire frictional contact surface between the pulley wheel and the belt transmission body at the constant speed ratio operation as shown in FIG. However, since the contact radius r of the belt transmission body starts to fluctuate from one end at the start of the shifting operation, the contact point A ′ having the shortest contact radius r min immediately moves to A ″ at the end point at that time, and the total pressure of the pulley holding pressure is reached. Concentrate there and cause mechanical damage to the belt and pulley. Only at that moment, the bending state of the belt changes from the forward rotation to the reverse rotation as shown by the broken line M ″ in FIG. Will be invited whenever it is supplied.
0015]
  At this time, in order for the transmission body to have a load absorbing function with sufficient elastic force to completely absorb the pulley holding pressure, a single or a few blocks lack sufficient load absorbing capacity, The part converts the expansion / contraction displacement in the width (X) direction into the expansion / contraction displacement in the longitudinal (Y) direction, and the concentrated loads are sequentially distributed in the longitudinal (Y) direction to neighboring blocks adjacent to those blocks. is there. Therefore, this means that when the gear ratio is rapidly changed in a short time, the concentrated load is not concentrated on one place on the pulley wheel and the transmission body, and is instantaneously distributed to many blocks. Thus, it is possible to shift the speed ratio and controllable speed ratio without causing any other transmission failure.
0016]
  In the present specification, the description has been made mainly for the wet transmission used in the oil reservoir, but the present invention can also be applied to the dry type used in the air. Therefore, in the present embodiment, the endless strap and the block are mainly assumed to be a metal rigid body, but the present invention is not limited to this, and the block may be alternately arranged with metal and resin, or the surface of the metal material may be coated with resin or You may shape | mold into the lamination | stacking of a metal material, Furthermore, you may process all by resin material only.
0017]
  Furthermore, the direction of the protrusion molding of the elastic protrusions applied to each block shown in the present specification is that the dispersed absorption load converted by the protrusion molding toward the rear in the traveling direction (rotation direction) of the belt transmission body is converted. Although the example which turned to the reverse direction mutually with the linear pushing load was disclosed, you may make it protrude toward the front of the advancing direction conversely. Further, regarding the protruding shape of the wedge-shaped protruding portion, in this embodiment, a V shape, a trapezoidal shape, a triangular shape, an arc shape, or an elliptical cone shape is shown, but the load in the width (X) direction is long (Y ) If converted into a directional load, the inner and outer walls of adjacent blocks will bite into each other and press while holding the elastic force, and any shape such as a three-dimensional cone, U-shaped or tongue-shaped plate, etc. But it ’s okay.
0018]
[First embodiment]
  FIG. 1 is a partial side view showing a partly mounted state of an endless high load transmission body for a transmission according to a first embodiment of the present invention. In the figure, the left side of the transmitterButPulley holding pressureofWhen not appliedFrom behindPulling pressure friction in which the straight push transmission state P receives a straight push load, and the right side is applied with pulley holding pressure from the transmission wheel 1 and is bent in the forward rotation direction with an angle (θ) of radius R0 around the rotation center C0. The transmission state Q is shown, respectively, and both form a single endless transmission body 10 while being connected. For convenience of drawing, the entire endless transmission body 10 is omitted and only a part is depicted.
0019]
  The transmission body 10 includes an endless holding body 11 having a belt shape and a large number of blocks 12 suspended in a suspended state so as to be slidable on the holding body 11 in the longitudinal (Y) direction. Configured. The transmission body 10 rotates in the rotation direction indicated by the arrow S of the transmission wheel 1. At this time, each block 12 includes pressure receiving portions 13 and 14 that receive the pulley holding pressure in the width (X) direction of the transmission body 10, that is, the direction of the rotation axis by the transmission body 1, and a plane perpendicular to the longitudinal (Y) linear advance direction P. The flat portions 13a, 13c; 14a, 14c; 20f, 20d that transmit power while maintaining contact with each other in close contact with adjacent blocks are also connected to each other on the rear side. And an elastic protrusion 20 that converts an elastic force in the width (X) direction into a stress in the longitudinal (Y) direction at the same time as performing reliable positioning. At this time, each block 12 contributes to transmission while resisting the centrifugal force in the radial (Z) direction in a state where the upper end arm bending notch of the elastic protrusion 20 is surrounded by the endless holding body 11.
0020]
  While the transmission body 10 is transmitting at the constant speed ratio on the track M of the pulley wheel 1, the radii RA, RB, RC, RD, RE of the friction points A, B, C, D, E are all R0 and the transmission body from the pulley wheel 1. The pulley holding pressure applied to 10 is distributed and pressurized substantially uniformly over the entire circumference of the contact surface. However, when a disturbance enters from the outside of the shift command or the transmission, the uniform dispersion state of the holding pressure is disturbed only for a moment until the next constant speed state is reached. Let us analyze the transmission state at the moment when the transmission body 10 is supplied with a gear change command for changing from the constant speed trajectory M with the speed ratio ε0 to the next speed change trajectory M ′ with the speed ratio ε1. At this time, the transmission body 10 starts to move from B to E in order from the contact point A on the tension side. Therefore, the contact diameter r during the moment of transition reaches the relationship rA <rB <rC... RE as shown in FIG.
0021]
  This means that the entire load of pulley holding pressure necessary for transmission is concentrated at one point of the contact point A ′ for only one moment. Even if the present invention receives this concentrated load, each block 12 gives an extremely large concentrated load applied instantaneously and instantly by providing sufficient elastic flexibility in the width (X) direction. Rigid transmission having a structure in which load is distributed and elastically absorbed by points B ′, C ′, D ′, and E ′, which are successively constituted by other adjacent blocks 12 without being only accepted by the block 12 at point A ′. The body 10 is realized. Desirably, the angle θ0 from the point A ′ to the end point E should be dispersed to about 45 to 170 degrees.
0022]
  2 shows the structure of a single block used in the high load transmission body 10 of the first embodiment shown in FIG. 1, FIG. 2A is a rear view of the block 12L with a left side locking tool, and FIG. 2B is a top view of the block 12L. Further, FIG. 2C shows a side view of the block 12L. Furthermore, FIG. 2D shows a rear view of the block 12R with the right side locking tool held by the endless holding body 11. In FIG. 2A, the block 12L with the left side locking tool is provided with a locking tool 17L that prevents the endless holding body 11 from dropping off above the left side flat part 13a, and in the vicinity thereof, the length (Y) of the flat part 13a. Thick lm through-holes 15 are formed in the direction. Further, as shown in FIG. 2B, the right planar portion 14a is provided with an engaging projection 16 having a length lm substantially equal to the thickness lm in the longitudinal (Y) direction at the same height position of the planar portion 14a. On the other hand, as shown in FIG. 2D, on the contrary to the block 12L, the locking tool 17R and the through hole 15 are provided on the flat surface portion 14a, and the engaging protrusion 16 is provided on the flat surface portion 13a, and the right locking device-attached block 12R. Is also prepared in advance. In FIG. 2D, the pulley wheel 1 including the two wheels 1a and 1b and the endless holding body 11 are shown at the same time.
0023]
  In this embodiment, each of the blocks 12L and 12R has the elastic protrusion 20 disposed between the two pressure receiving portions 13 and 14 through the flat portions 13a and 14a, and the entire block 12L and 12R is integrally formed of a single metal elastic material. Processed to form a single block 12. Further, in this example, the elastic protruding portion 20 protrudes in the longitudinal (Y) direction of the transmission body 10 so that the flat plate inclined portions 20a, 20a of the elastic material alternate at substantially a right angle θ = 90 degrees as shown in FIG. 2B. The tip contact portion 20b is formed into a trapezoid. Moreover, as shown in FIG. 2E, the thickness lm in the longitudinal (Y) direction of the pressure receiving portions 13 and 14 is ln = lm × depending on the magnitude of the inclination angle θ between the thickness lm and the thickness lm of the elastic inclined portion 20a. Thickness determined by sin θ1 is selected. Thus, during the linear push-in transmission shown in FIG. 1, the flat surface portions 13a, 13c and 14a, 14c on the front and rear surfaces of the pressure receiving portions 13, 14 are in close contact with each other between the front and rear adjacent blocks 12.From the backNot only is the power transmitted under a straight indentation load, but also the inclined portions 20a of the elastic protrusion 20 and the inclined flat portions 20i and 20c of the trapezoidal portion 20b and the trapezoid flat portions 20f and 20d are simultaneously in close contact between the blocks. In particular, the trapezoidal portion 20b receives a straight indentation load similar to the flat portions 13a, 13c; 14a, 14c as another flat portion.
0024]
  As shown in FIG. 2C, the front sides of the flat portions 13c and 14c, the inclined portion 20a of the elastic protrusion 20 and the trapezoidal portion 20b are all in a flat state, but the back side is above the line U-U shown in FIG. 2A. The flat portions 13a and 14a, the trapezoidal flat surface portion 20f, and the inclined flat surface portion 20i are provided with bent portions 13b and 14b, a trapezoidal bent portion 20g, and an inclined bent portion 20h. Thus, when the transmission body 10 shown in FIG. 1 enters the pressure friction position with the contact radius R0, each block 12 is radial (Z) determined according to the transmission gear ratio ε with respect to the rotation center C0 of the transmission wheel 1. It is configured so that it can be positioned and arranged at substantially the same angle θ1 in the direction. The bent portion may be a straight inclined plane or an arc-shaped arm curved surface, that is, an arm bent portion. The former is applied at the same bending point F even if the speed ratio ε changes as shown in FIG. 4C. In the latter case, the position of the contact point changes according to the speed ratio. In this embodiment, the bent portions 13b and 14b are linear, and the bent portions 20a and 20b are arm-shaped or arm-shaped portions. In this pressurized friction transmission state Q, the elastic protrusions 20 of the respective blocks 12 are positioned in a stable state by the endless strap 11 in an inclined state, and the arm bend notches 20e for contacting according to the speed ratio ε are elastic. It is applied to the upper end of the protrusion 20.
0025]
  FIG. 3 is a block assembly diagram illustrating how the above-described two types of the left-side engaging block 12L and the right-side engaging block 12R are assembled to the endless strap holder 11. Since the through-holes 15 and the engaging projections 16 are alternately formed on the two pressure receiving portions 13 and 14, the adjacent receiving blocks are assembled with the engaging projections 16 inserted into the through-holes 15. . At the same time, the locking members 17L and 17R are alternately projected from the pressure receiving portions 13 and 14, respectively, and an insertion space 19 is left between them. The holding gap 18 is used as an assembly space for the strap 11 through the insertion space 19. At this time, the blocks 12L and 12R are arranged on the entire circumference of the endless holding body 11, and a slight gap is left between the blocks 12L and 12R so that each block 12 can be pressed and moved on the holding body 11. Installed.
0026]
  4A and 4B are operation explanatory views of blocks for explaining the operation of the high load transmission body of this embodiment by the top view of FIG. 2B. FIG. 4A is a principle of conversion of the elastic absorption force of the pulley holding pressure. FIG. 4B is an operation diagram showing a deformed state of the elastic protrusion 20 before and after receiving the holding pressure. For convenience of explanation, as shown in FIG. 4A, the direction of the width W of the transmission body 10 connecting the two pressure receiving portions 13 and 14 is the X axis, and the longitudinal direction of the transmission body 10 is the Y axis. The radial direction shown in FIG.
0027]
  In the continuously variable transmission, in order to change the relative distance between the two conical wheels 1a and 1b and change the frictional pressure to ensure a predetermined transmission power, the transmission body 10 has a pulley whose size and speed are freely variable. Holding pressure is applied. As shown in FIG. 4A, the pulley holding pressure is applied to the friction surfaces a1 and a2 of the pressure receiving portions 13 and 14 in accordance with this.~ sideThe leaf spring is inclined at a predetermined distance L from the ends a'1 and a'2 of the elastic protrusion 20 applied from the surface and transmitted through the flat portions 13a and 14a and formed into a trapezoidal wedge shape or a cone wedge shape. The pressure is applied toward the virtual connection point a0 of the tip contact portion C via the portions B and B ′. In the block 12 of this embodiment, the tip contact portion C is provided with a trapezoidal portion 20b in order to ensure a certain degree of mobility, but it may be V-shaped. It shows that the two end portions a0, a1, and a3 can maintain a stable support state on the XY plane. Moreover, since the endless strap 11 is positioned in the Z-axis direction, the individual blocks 12 are substantially inclined between the conical wheels 1a and 1b in any of the X, Y, and Z-axis directions. An almost complete stable position is ensured during transmission without transmission.
0028]
  In particular, there are two major features of the present invention. The first feature is that, even when the pulley holding pressure applied from the transmission wheel 1 is applied with a small load and gently, or conversely with a significantly excessive load and applied instantaneously, Since the transmission body 10 itself has a sufficient elastic absorption force to quickly absorb elastically, the shift time from the maximum speed ratio εmax to the minimum speed ratio εmin can be remarkably controlled in a short time. The second feature is that even if an extremely large instantaneous load is applied to only a small number of blocks 12, the transmission vehicle 1 and the transmission body are instantaneously distributed to other adjacent block groups in an instant. 10 with no mechanical damage.
0029]
  Next, FIG. 4B explains the basis of the feature for distributing these concentrated loads according to the present invention. In the same figure, the right figure (i) shows a state where the pulley holding pressure is not received from the pressure receiving points a1 and a2 in FIG. 4A, and the left figure (ii) receives the pulley holding pressure and the pressure receiving parts a1 and a2 are b1. , B2 respectively show a state of elastic contraction by a distance β in the width (X) direction.
0030]
  In FIG. 4B- (i), at this time, the angle θ of the leaf spring inclined portions 20a, 20b of the elastic protrusion 20 remains approximately 90 ° as shown in FIG. 2B. However, when it begins to receive the pulley holding pressure of the transmission wheel 1, the pressure receiving portions 13 and 14 start to move, and both the elastic inclined portions 20a and 20b are subjected to stress deformation as shown in FIG. 4B- (ii). The tip contact point also starts to advance from a0 to b0, and the moving distance α becomes l0 (= l02−l01). Since the tip of the present embodiment actually forms a trapezoidal portion 20b, the bent points a01, a02 of the main block 12 are conical elastic inclined portions 20a, 20b with respect to the rear block 12 adjacent to the rear. As a result of the abutment with a strong pressure along with the wedge effect, the block 12 is supported at three points by the pressure receiving points b1 and b2 of the pressure receiving portions 13 and 14 and the substantial tip contact portions b0 of the tip contact portions b01 and b02. Due to the effect, the stress is deformed and is firmly supported and elastically absorbed. The rear block 12 also receives the pressure at the tip contact portion of the main block 12 and the pulley clamping pressure, and sequentially performs an operation substantially the same as the pressure dispersion of the main block 12 and further distributes to the rear block.
0031]
  Further, FIG. 4C illustrates that the elastic protrusions 20 of the plurality of blocks 12 achieve a function of sequentially dispersing or converting the clamping pressure within the belt. That is, the pulley holding pressure in the X-axis direction applied via the pressure receiving portions 13 and 14 of the elastic protrusion 20 of the main block 12-1 is caused by the stress deformation of the wedge-shaped inclined portions 20a and 20b, and the other blocks 12 adjacent to the front and rear. Since the pressure to −0 and 12-1 is changed, the block 12-2 starts to be inclined around the bending point F2 and is converted into elastic stress in the Y-axis direction via the contact point E. Even when the transmission body 10 of the present embodiment is all made of a metal rigid body, it provides a pressure distribution function almost equivalent to that of a flexible belt transmission body made of a resin material such as synthetic rubber. Means. This means that when the pulley holding pressure in the width (X) direction is small and gentle, the converted longitudinal (Y) directionMultipleThe block 12 alone absorbs elastically as its elastic stress. However, even in the case of a sudden and excessive pressure, since a large amount of contraction in the width (X) direction is instantaneously distributed to the numerous blocks 12 in the longitudinal (Y) direction, some blocks and pulley friction surfaces There is no damage. As a result, stable transmission is possible even if the shift time from the lowest speed to the highest speed ratio is shortened.
0032]
  It should be noted that the inclination angles θ and θ2 of the inclined portion 20a of this embodiment can be changed as necessary, and the shape of the trapezoidal portion 20b can be arbitrarily changed as long as it substantially fulfills the three-point support function. Further, the technical idea regarding the load distribution due to the steep impact load due to the lamination of the elastic protrusions of the present invention described above is not limited to a single elastic protrusion, as shown in the second embodiment described below. It may have a part.
0033]
[Second embodiment]
  FIG. 5 shows an endless high load transmission body of a transmission according to a second embodiment of the present invention. 5A is a front sectional view showing the block 12 of the transmission body, FIG. 5B is a side sectional view showing the holding body 11 and the block 12, FIG. 5C is a top view of FIG. 5B, and FIG. It is a partial block diagram which shows the incision part for 11 insertion. Also in this example, the basic idea of elastic absorption by converting the pulley holding pressure in the width (X) direction into the elastic force in the longitudinal (Y) direction of the first embodiment described above is used in a plurality and three-dimensionally. ing. However, since some new technical ideas are disclosed, only the new technical ideas will be described for each item in comparison with the first embodiment.
0034]
  (1) First, the endless holding body is not a belt-like strap, but is an idea constituted by a wire rope-like endless holding body 11 in which a single fiber or steel wire is spring-formed in an annular shape. The cross-sectional shape is circular, and each block 12 is individually slidably supported on the holding body 11 through a through hole 18 provided in the center of the block 12. (2) Secondly, the cross-sectional shape of the elastic projection 20 applied to the block 12 is not a bent molded body made of a simple elastic flat plate material, but a circular three-dimensional structure by applying the surrounding portions 20j and 20k. The idea is a conical or conical structure projecting in a semi-elliptical shape. That is, as shown in FIGS. 5A and 5C, the cross-sectional shape of the XX line is substantially the same V-shaped or U-shaped wedge shape as FIG. 2B of the first embodiment, and is virtually connected to the pressure receiving portions A1 and A2. The three-point support structure with the abutting portion C toward the point a0 and the holding pressure dispersion mechanism by the wedge effect have the same configuration. However, in this example, a virtual tip contact point D is also assumed in the Z-axis direction, and the two elastic inclined portions 20a, 20a are V-shaped or U-shaped at an inclination angle θ3 toward the lower side of the Z-axis (periphery of the transmitting body). A second wedge-shaped or tongue-shaped protrusion having a letter shape is provided as the second wedge-shaped protrusion. Thus, as shown in FIG. 1, each block has a predetermined elasticity due to the second wedge effect not only in the longitudinal (Y) direction but also in the bending angle (θ0) direction about the pulley rotation axis C0. Absorbing power is given. That is, the internal elastic force is increased as the radius of curvature R of the transmission body 10 decreases, and as a result, the transmission body 10 is caused by a sudden disturbance impact force applied from the outside of the transmission through the pulley wheel. The object is to suppress irregular movement not only in the longitudinal (Y) direction but also in the radial (Z) direction by a plurality of adjacent blocks.
0035]
  (3) Since the elastic protrusion 20 inserts the wire rope 11 into the tip through-hole 18, an incision 21 is made in a part of the three-dimensional surrounding structure. As shown in FIG. 5C, in the block 12, a first block 12R ′ having a right incision 21R and a second block 12L ′ having a left incision 21L are separately prepared in advance from the YY line. . Similarly to the attachment of the through hole 15 and the engagement protrusion 16, the first and second blocks 12R 'and 12L' are alternately arranged on the holding body 11, thereby preventing the block from falling off the through hole 18. Yes. FIG. 5D shows the state of the incision portion 21, and the joining pieces 22 and 23 are connected to the convex portions 22 a and 23 a and the concave portions 22 b and 23 b, respectively. The connected state is maintained even under pressure in the directions of arrows V and W. However, when the endless holding body 11 is assembled, the incision 21 is opened to the joining piece 23 ′ indicated by the dotted line and inserted from the space 19.
(4) Further, in order to compensate for the reduction in the strength of the elastic force in the width (X) direction of the elastic protrusion 20 due to the incision 21, the elastic material 26 protruding in a V shape is provided with two flat portions 13 a, Two elastic reinforcing plate members 25a and 25b are installed between the upper portions of 14a and are held by the spot welds 27 on the flat surface portions 13a and 14a to enhance the elastic force.
0036]
  (5) Further, as shown in FIGS. 5A and 5B, another virtual tip contact point D ′ is newly set at a position symmetrical to the virtual contact point D, and a new elastic inclined portion 20a indicated by a dotted line 24 is formed. ′, 20a ′ may be formed into a V shape with an angle θ4 to form a third wedge-shaped protrusion or a closed annular inclined portion. Accordingly, in order to secure not only the elastic bending portion 24a on the inner circumference side of the transmission body centered on the rotation center C0 but also the elastic reverse bending portion 24b on the outer circumference side of the transmission body when the endless transmission body 10 is bent to the opposite side. belongs to. In particular, as described with reference to FIG. 1, the pulley load is concentrated at the minimum contact point A ′ at the moment of receiving the speed change command, and the pulley wheel 1 holds the transmission body 10 with the point A ′ in the next rotation. At the point “A”, the transmitting body 10 reverses θ0 to 180 ° or more contrary to the normal flexibility. At this time, a small number of blocks Only the number 12 prevents the reverse bending impact force from concentrating on the point A ″, and has the reverse wedge effect of absorbing the concentrated load by the elastic absorption force by the virtual contact point D ′. With this configuration, the transmission body 10 forms the elastic protrusion 20 into a three-dimensional tongue-shaped cone L, three in the longitudinal (Y) direction, the forward bending angle (θ0) direction, and the reverse bending angle (θ0 ′) direction. By using the wedge effect in each direction, it is possible to maintain the elastic bending property and pinching pressure dispersion function substantially equivalent to those of synthetic rubbers and belts.
0037]
[Other embodiments]
  The first and second embodiments described above are for wet transmissions in which the pressure receiving portions 13 and 14, the plane portions 13 a and 14 b, and the elastic protrusions 20 are bent as a single metal material made of a predetermined elastic material as each block 12. However, the present invention is not limited to a single metal material, and may be formed entirely of a resin material mixed with reinforcing fibers, or a laminate in which this resin material or metal material is laminated to a metal elastic material. The material may be configured. Further, the shape of the elastic protrusion 20 is such that the pulley holding pressure applied from the pressure receiving portion can be sufficiently elastic in the width (X) direction or the direction of the radius R (bent (θ0, θ0 ′)). A plurality of projecting portions such as the second to third projecting portions may be formed and may have any shape. Furthermore, the idea of the present invention can also be applied to a transmission for a dry transmission. For example, the pressure receiving portions 13 and 14 may be made of oil-impregnated metal such as oilless metal, and the elastic protrusions may be made of elastic metal. . As described above, the present invention is not limited to the described embodiments, and is included in the scope of the present invention even if it is changed in any form within the scope of the claims.
0038]
【The invention's effect】
  The high load transmission body of the present invention is mainly composed of a metal material or a rigid material such as a composite material of a metal and a resin / fiber. Based on the same principle as bendability, it achieves elastic absorbency and bendability as well as sufficient elastic flexibility and sufficient durability applicable for high loads. While using this rigid materialIt is possible to instantly convert stress into multiple blocks and disperse without concentrated load concentrated on one point of pulley wheel or belt transmission body.By guaranteeing sufficient elasticity and flexibility, the conventional resin transmission body can only have a power of several tens of horsepower [HP] or less, whereas several tens of horsepower or several hundred horsepower [HP] or more. Has realized a transmission body that can reduce the power of the machine and can respond at high speed.
0039]
  The transmission body according to the present invention has a tip contact point of an elastic projecting portion made of an elastic material projecting in the longitudinal (Y) direction when the pressure receiving portion of each block is subjected to pressure shrinkage in the width (X) direction under the pulley holding pressure. Is converted into a stretching operation in the longitudinal (Y) direction. As a result, while firmly connecting the adjacent blocks in the longitudinal (Y) direction, the load in the width (X) direction of the pulley holding pressure is instantaneously dispersed in the longitudinal (Y) direction of the transmission body, and at the same time, each blockSince the three-point support structure is maintained between the two pressure receiving portions A1 and A2 and the tip contact portion C of the elastic protrusion portionThe function and effect of stabilizing the positioning without transmitting in the inclined state are always functioned during transmission.Since the projecting direction of the elastic projecting part is rearward in the direction of travel of the belt transmission body, the tip abutting part receives a longitudinal pushing load from the rear to the front, resulting in frictional pressure being applied to each pressure receiving part. Thus, there is an effect of securing predetermined transmission power.
0040]
  In particular, the pressure distribution function of the high load transmission body produces two significant effects when applied to a continuously variable transmission. One of them isBecause the transmission body has a load absorbing function with sufficient elastic force and maintains a stable transmission stateThe shift time from the lowest speed Vmin to the highest speed Vmax can be shortened. That is, even if the speed of the speed change control is steep, the transmission body has a high-speed response capability that responds to a sudden change in the pulley holding pressure. The other is that even if an irregular or shocking pulley holding pressure is applied to the inside from the input / output device outside the transmission, the belt transmission body itself is in the multiaxial direction of each block. Sufficient elastic flexibility ensures that this impact is not concentrated on a small number of blocks, but instantly in the longitudinal (Y) directionOr radial (Z) directionIt has the ability to absorb shocks by dispersing it in multiple blocks. These two capacities maintain the same elastic absorption function as a rubber belt while being a rigid material, and also have the effect of being able to transmit high-load power that is incomparable to resin belts with small and high-speed shift control. .
[Brief description of the drawings]
FIG. 1 is a partial configuration diagram showing a part of a high load transmission body of a transmission according to a first embodiment of the present invention.
2 shows the structure of a single block used in the high load transmission body of the embodiment, FIG. 2A is a rear view of the block with the left side locking device, FIG. 2B is a top view of the block, and FIG. FIG. 2D is a side view of the block, and FIG. 2E is a partial cross-sectional view showing the thickness of the block member.
FIG. 3 is a partial assembly view showing an assembly procedure of a block of the high load transmission body of the embodiment.
4 is an operation explanatory diagram of a block of the high load transmission body of the embodiment, FIG. 4A is an operation explanatory diagram showing a pressure receiving conversion function, FIG. 4B is an operation explanatory diagram showing a distributed deformation state of the block, Furthermore, FIG. 4C is an operation explanatory view showing the chain state of each block. further
FIG. 5 shows a block of a high load transmission body of a transmission according to a second embodiment of the present invention, FIG. 5A is a front sectional view of the block, FIG. 5B is a side sectional assembly view of the block, and FIG. FIG. 5D is a partial configuration diagram of an incision made in the block.
[Explanation of symbols]
  1, 1a and 1b Transmission wheel or pulley wheel
  2 Rotating shaft
  10 High load transmission body, belt transmission body or transmission body
  11 Endless holder, strap or wire rope
  12 blocks or links
  12L Left side (with lock) block or second block
  12R Right side (with lock) block or first block
  13, 14 Pressure receiving part
  13a, 14a plane part
  13b, 14b Bent part or arm part
  13c, 14c plane part
  15 Through hole
  16 Engagement protrusion
  16a recess
  17 Locking tool
  18 Holding gap or through hole
  19 Insertion space
  20 Elastic protrusion
  20a Inclined part, leaf spring inclined part or wedge-shaped part
  20b Trapezoidal part or contact part
  20c Inclined plane or inner wall
  20d trapezoidal plane, inner wall or another plane
  20e Arm bend notch or notch
  20f, 20i plane part
  20g, 20h Arm or bent part
  20j, 20k enclosure
  21,21R, 21L incision
  22,23 Joining piece
  22a, 23a Convex part
  22b, 23b recess
  22c, 23c Locking part
  24a Elastic bent part
  24b Elastic reverse bend
  25 Elastic plate
  26 Elastic material
  27 Welded part

Claims (10)

長手方向と垂直な平面で直進押込荷重を受けるため平板状に成形した平面部の左右端にプーリ挾持圧を受けるために二つの受圧部を構成したブロックの多数個を無端保持体に支持させて無端伝達体を形成してなる変速機の高負荷伝達体において、
上記ブロックは、該挾持圧の大きさに応じて幅(X)方向に伸縮自在に配置された上記受圧部と、この受圧部に連なり幅方向に該挾持圧を伝えかつ長手(Y)直進方向に垂直の平面に配置され隣接ブロックと互に密接当接し該直進押込荷重を受けて動力伝達するための上記平面部と、さらに上記両受圧部の間に配置され該両受圧部間を結ぶ幅方向と垂直の長手(Y)方向に向け断面形状がクサビ状または舌状に突出成形されて上記両受圧部間が幅方向の弾性力をもって撓むことを保証する為の弾性屈曲性を持つ弾性突出部とを有すると共に、進押込伝動時には前後の隣接ブロックと上記平面部および上記弾性突出部で夫々面接触および上記ブロックの位置決めをして動力伝達しプーリ加圧摩擦伝動時には該挾持圧を上記弾性突出部の長手方向の弾性傾斜部での弾性応力に変換して弾性吸収したことを特徴とする変速機の高負荷伝達体。
In order to receive a linear indentation load in a plane perpendicular to the longitudinal direction, to support the pulley holding pressure at the left and right ends of the flat part formed into a flat plate shape, a number of blocks comprising two pressure receiving parts are supported by an endless holding body. In a high load transmission body of a transmission formed with an endless transmission body,
Each of the blocks includes the pressure receiving portion arranged to be expandable and contractable in the width (X) direction according to the holding pressure, and transmits the holding pressure in the width direction continuously to the pressure receiving portion and travels straight in the longitudinal direction (Y). Arranged on a plane perpendicular to the direction and in close contact with adjacent blocks to receive power from the linearly indented load and to transmit power, and further arranged between the two pressure receiving parts and connecting the two pressure receiving parts The cross-sectional shape is formed into a wedge shape or tongue shape in the longitudinal (Y) direction perpendicular to the width direction, and has an elastic flexibility to ensure that the pressure-receiving portion is bent with an elastic force in the width direction. and having an elastic projecting portion, at the time of straight advance push transmission該挾lifting to be the positioning of the respective surface contact and each block power transmission when the pulley pressure friction transmission before and after the adjacent block and the flat section and the elastic protrusions The length of the elastic protrusion High load transmission body of the transmission, characterized in that the elastically absorbed by converting the elastic stress in the direction of the elastic inclined portion.
長手方向と垂直な平面で直進押込荷重を受けるため平板状に成形した平面部の左右端にプーリ挾持圧を受けるために二つの受圧部を構成したブロックの多数個を無端保持体に支持させて無端伝達体を形成してなる変速機の高負荷伝達体において、
上記ブロックは、該挾持圧の大きさに応じて幅(X)方向に伸縮自在に配置された上記受圧部と、この受圧部に連なり幅方向に該挾持圧を伝えかつ長手(Y)直進方向に垂直の平面に配置され隣接ブロックと互に密接当接し該直進押込荷重を受けて動力伝達するための上記平面部と、さらに上記両受圧部の間に配置され該両受圧部間を結ぶ幅方向と垂直の長手(Y)方向およびラジアル(Z)方向に向け突出成形されて上記両受圧部間に幅方向の弾性屈曲性を保証する弾性突出部とを有すると共に、上記弾性突出部はXYおよびXZ平面の各断面形状がクサビ状または舌状で長手方向およびラジアル方向に立体的な弾性傾斜部を形成して挾持圧を長手方向およびラジアル方向の弾性応力に変換して弾性吸収したことを特徴とする変速機の高負荷伝達体。
In order to receive a linear indentation load in a plane perpendicular to the longitudinal direction, to support the pulley holding pressure at the left and right ends of the flat part formed into a flat plate shape, a number of blocks comprising two pressure receiving parts are supported by an endless holding body. In a high load transmission body of a transmission formed with an endless transmission body,
Each of the blocks includes the pressure receiving portion arranged to be expandable and contractable in the width (X) direction according to the holding pressure, and transmits the holding pressure in the width direction continuously to the pressure receiving portion and travels straight in the longitudinal direction (Y). Arranged on a plane perpendicular to the direction and in close contact with adjacent blocks to receive power from the linearly indented load and to transmit power, and further arranged between the two pressure receiving parts and connecting the two pressure receiving parts An elastic protrusion that is formed in a longitudinal (Y) direction and a radial (Z) direction perpendicular to the width direction to ensure elastic flexibility in the width direction between the two pressure receiving portions; each sectional shape of the XY and XZ plane is in the longitudinal and radial directions to form a three-dimensional elastic inclining portion converts the clamping pressure in the longitudinal direction and radial direction of the elastic stress elastic absorbed by wedge-shaped or tongue Of a transmission characterized by Load transmission body.
請求項1または2において、上記ブロックは、上記弾性突出部を一端で上記平面部に連なる上記弾性傾斜部で形成しまたはこの弾性傾斜部に両側で連なり長手(Y)直進方向に垂直の平面から該直進押込荷重を受けるもう一つの別の平面部と上記弾性傾斜部とで形成したことを特徴とする変速機の高負荷伝達体。According to claim 1 or 2, said block, the spring arms, one end in form with the elastic inclined portion continuous to the flat portion or the contiguous longitudinal (Y) plane perpendicular to the straight direction at both sides in the elastic inclined portion A high load transmission body for a transmission, characterized in that it is formed by another flat portion that receives the linearly pushing load from the elastic slant portion. 請求項3において、上記ブロックは、上記平面部または上記弾性突出部の該弾性傾斜部には該傾斜部背面外壁の上方側または下方側に夫々腕曲切欠部或いは折曲部または腕曲部を施して上記ブロックの上記受圧部をラジアル方向に位置決め配列可能にしたことを特徴とする変速機の高負荷伝達体。In claim 3, said block, the flat portion or the upper side or respectively arms songs notch downward or bent portion or arm curved portion of the inclined portion rear outer wall the elastic inclined portion of the spring arms A high load transmission body for a transmission, characterized in that the pressure receiving portions of the block can be positioned and arranged in a radial direction. 長手方向と垂直な平面で直進押込荷重を受けるため平板状に成形した平面部の左右端にプーリ挾持圧を受けるために二つの受圧部を構成したブロックの多数個を無端保持体に支持させて無端伝達体を形成してなる変速機の高負荷伝達体において
上記各ブロックは、該挾持圧により幅方向に伸縮変位可能な上記両受圧部と、該挾持圧を上記両受圧部から弾性突出部に伝える二つの上記平面部と、更に上記両受圧部間に配される上記平面部から幅方向と垂直の長手方向に断面形状がクサビ状又は舌状に突出成形された単一または複数の上記弾性突出部とを有すると共に、該挾持圧による上記両受圧部の幅方向の伸縮変位を長手方向の伸縮変位に応力変換して後方の隣接ブロックに当接加圧される上記弾性突出部の先端当接部と上記両受圧部との間の三点支持構造で安定保持する事で上記各ブロックの上記平面部がプーリ回転軸芯を中心に速比に応じてラジアル方向に等角度で常時正規の配列を維持して安定伝動させたことを特徴とする変速機の高負荷伝達体。
In order to receive a linear indentation load in a plane perpendicular to the longitudinal direction, to support the pulley holding pressure at the left and right ends of the flat part formed into a flat plate shape, a number of blocks comprising two pressure receiving parts are supported by an endless holding body. In a high load transmission body of a transmission formed with an endless transmission body ,
Each of the blocks includes the two pressure receiving portions that can be expanded and contracted in the width direction by the holding pressure, the two planar portions that transmit the holding pressure from the two pressure receiving portions to the elastic protrusions, and the two pressure receiving portions. And both of the pressure receiving portions by the holding pressure and having one or a plurality of the elastic protruding portions whose cross-sectional shape protrudes in a wedge shape or a tongue shape in the longitudinal direction perpendicular to the width direction from the flat surface portion. A three-point support structure between the tip contact portion of the elastic protrusion and the pressure receiving portions that are subjected to stress conversion from the expansion / contraction displacement in the width direction to the expansion / contraction displacement in the longitudinal direction and pressed against the adjacent block behind The above-mentioned flat portion of each block is stably transmitted by maintaining a regular arrangement at an equal angle in the radial direction according to the speed ratio with the pulley rotating shaft core as a center by stably holding the shaft. High load transmission body of the machine.
長手方向と垂直な平面で直進押込荷重を受けるため平板状に成形した平面部の左右端にプーリ挾持圧を受けるために二つの受圧部を構成したブロックの多数個を無端保持体に支持させて無端伝達体を形成してなる変速機の高負荷伝達体において
上記各ブロックは、該挾持圧により幅方向に伸縮変位可能な上記両受圧部と、該挟持圧を上記両受圧部から弾性突出部に伝える二つの上記平面部と、更に上記両受圧部間に配される上記平面部から幅方向と垂直の長手方向に断面形状がクサビ状又は舌状に突出成形され且つ上記弾性突出部の突出成形の方向を上記伝達体の長手進行方向の後方に向って突出成形された単一または複数の上記弾性突出部とを有すると共に該挟持圧による上記両受圧部の幅方向の伸縮変位を長手方向の伸縮変位に応力変換された上記弾性突出部の先端当接部を更に後方で当接する隣接ブロックからの長手方向の直進押込荷重によって逆方向から押込加圧する事で動力伝動したことを特徴とする変速機の高負荷伝達体。
In order to receive a linear indentation load in a plane perpendicular to the longitudinal direction, to support the pulley holding pressure at the left and right ends of the flat part formed into a flat plate shape, a number of blocks comprising two pressure receiving parts are supported by an endless holding body. In a high load transmission body of a transmission formed with an endless transmission body ,
Each of the blocks includes the two pressure receiving portions that can be expanded and contracted in the width direction by the holding pressure, the two planar portions that transmit the clamping pressure from the two pressure receiving portions to the elastic protrusions, and the two pressure receiving portions. The cross-sectional shape is formed into a wedge shape or a tongue shape in the longitudinal direction perpendicular to the width direction from the flat portion disposed, and the direction of the projecting molding of the elastic projecting portion is directed backward in the longitudinal direction of the transmission body. A single or a plurality of elastic protrusions formed in a protruding manner , and the elastic protrusions at the ends of the elastic protrusions subjected to stress conversion into the longitudinal expansion and contraction displacements in the width direction of the two pressure receiving parts due to the clamping pressure. A high-load transmission body for a transmission, wherein power is transmitted by pressing and pressing in the reverse direction by a linearly pressing load in the longitudinal direction from an adjacent block that abuts the contact portion further rearward .
請求項1、2、または6において、上記ブロックは、帯状またはワイヤロープ状の上記無端保持体が上記弾性突出部の上端に配した腕曲切欠部を包囲しまたは中心に配した貫通孔を通すことで上記無端保持体上を摺動可能に保持されたことを特徴とする変速機の高負荷伝達体。Claim 1, 2, 5 or 6, the block is a through-hole band or wire ropes of the endless carrier is arranged to surround or around the arm piece notched section provided at the upper end of the spring arms A high-load transmission body for a transmission, wherein the high-end transmission body is slidably held on the endless holding body. 請求項7において、上記ブロックは、長手方向またはラジアル方向に複数の上記弾性突出部を有し上記両受圧部を共通させて複数の該三点支持構造を働かせたことを特徴とする変速機の高負荷伝達体。  8. The transmission according to claim 7, wherein the block includes a plurality of the elastic protrusions in a longitudinal direction or a radial direction, and the plurality of three-point support structures are operated by using both the pressure receiving portions in common. High load transmission body. 請求項1、2、またはにおいて、上記ブロックは、上記弾性突出部のXZ平面の断面形状がラジアル方向でかつ上記伝達体の内周側または外周側に向い第二または第三のクサビ状または舌状突出部を夫々突出形成され、上記伝達体の正転屈曲方向または逆転屈曲方向の弾性力を保持したことを特徴とする変速機の高負荷伝達体。Claim 1, 2, 5 or 6, the block is the second or third wedge-shaped cross section in the XZ plane of the elastic protrusion facing an inner peripheral side or the outer peripheral side in the radial direction a and the transmission body Alternatively, a high-load transmission body for a transmission, wherein tongue-shaped projecting portions are formed so as to protrude and retain the elastic force in the forward bending direction or the reverse bending direction of the transmission body. 請求項1、2、またはにおいて、上記ブロックは、上記弾性突出部および上記平面部を弾性材で成る金属材または樹脂と強化繊維との複合材の単一平板材から或いは該単一平板材に別の金属材または樹脂材をラミネートした積層平板から成形したことを特徴とする変速機の高負荷伝達体。Claim 1, 2, 5 or 6, the block is the elastic projection and or the single flat plate from a single flat plate composite with reinforcing fibers and the metal material or a resin consisting of the planar portion of a resilient member high load transmission body of the transmission or another metal material in wood, characterized in that molded from stacked flat plate laminated with the resin material.
JP25744898A 1998-08-08 1998-08-08 High load transmission for transmission Expired - Fee Related JP4338238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25744898A JP4338238B2 (en) 1998-08-08 1998-08-08 High load transmission for transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25744898A JP4338238B2 (en) 1998-08-08 1998-08-08 High load transmission for transmission

Publications (3)

Publication Number Publication Date
JP2000055135A JP2000055135A (en) 2000-02-22
JP2000055135A5 JP2000055135A5 (en) 2005-09-22
JP4338238B2 true JP4338238B2 (en) 2009-10-07

Family

ID=17306495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25744898A Expired - Fee Related JP4338238B2 (en) 1998-08-08 1998-08-08 High load transmission for transmission

Country Status (1)

Country Link
JP (1) JP4338238B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE309486T1 (en) 2000-12-28 2005-11-15 Doornes Transmissie Bv TRANSVERSAL ELEMENTS FOR DRIVE BELT WITH VARIABLE CONTACT LINE

Also Published As

Publication number Publication date
JP2000055135A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
US20070042849A1 (en) Power transmission chain and power transmission device
EP0122064B1 (en) Endless belt member for a continuously variable transmission
CA2365185C (en) Belt for continuously variable transmission
US6565469B1 (en) Belt for continuously variable transmission
WO1999053218A1 (en) Belt for continuously variable transmission
US20070191166A1 (en) Power transmission chain and power transmission device
US8485927B2 (en) Power transmission chain and power transmission device
US6409620B1 (en) Belt for continuosly variable transmission
JP4946050B2 (en) Power transmission chain and power transmission device
US8617017B2 (en) Power transmission chain
JP4338238B2 (en) High load transmission for transmission
WO2007004548A1 (en) Power transmission chain and power transmission device
EP2192326A1 (en) Power transmission chain, and power transmission device
US20100035713A1 (en) Power transmission chain and power transmission device
US5242332A (en) Transmission arrangement with a covered transmission belt
US5236401A (en) Driving belt for stepless speed variation
US5409424A (en) Chain belt with two parallel chains having means for inhibiting relative movements of the chains
US6155405A (en) Power transmission device for transmitting thrusting forces
JP2002039281A (en) V-belt for low loss output transmission
JP4761113B2 (en) Power transmission chain and power transmission device including the same
JPS627418B2 (en)
WO1983004291A1 (en) Chains for continuously variable conical pulley transmissions
US5147253A (en) Variable speed transmission device
JP2010065709A (en) Continuously variable automatic transmission mechanism and self-advancing model vehicle having the same
EP1672245B1 (en) Assembled driving belt

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140710

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees