JP4336426B2 - Manufacturing method of substrate for flexible printed wiring board using ultra-thin copper foil - Google Patents

Manufacturing method of substrate for flexible printed wiring board using ultra-thin copper foil Download PDF

Info

Publication number
JP4336426B2
JP4336426B2 JP27838799A JP27838799A JP4336426B2 JP 4336426 B2 JP4336426 B2 JP 4336426B2 JP 27838799 A JP27838799 A JP 27838799A JP 27838799 A JP27838799 A JP 27838799A JP 4336426 B2 JP4336426 B2 JP 4336426B2
Authority
JP
Japan
Prior art keywords
copper foil
substrate
flexible printed
printed wiring
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27838799A
Other languages
Japanese (ja)
Other versions
JP2001102693A5 (en
JP2001102693A (en
Inventor
卓 三輪
和英 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arisawa Manufacturing Co Ltd
Original Assignee
Arisawa Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arisawa Manufacturing Co Ltd filed Critical Arisawa Manufacturing Co Ltd
Priority to JP27838799A priority Critical patent/JP4336426B2/en
Publication of JP2001102693A publication Critical patent/JP2001102693A/en
Publication of JP2001102693A5 publication Critical patent/JP2001102693A5/ja
Application granted granted Critical
Publication of JP4336426B2 publication Critical patent/JP4336426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、極薄銅箔を用いたフレキシブルプリント配線板用基板の製造方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
樹脂フィルムなどの基材に印刷回路付きの銅層が設けられて成るフレキシブルプリント配線板用基板(以下、FPCという。)は、エレクトロニクス製品のコンパクト化に伴って高密度化の要望が年々高まってきており、特に印刷回路をファインパターンとする為、極薄銅箔を銅層として用いたFPCが求められている。
【0003】
また、摺動屈曲性を上げるために、ピンホールがない極薄銅箔を銅層として用いたFPCが求められている。
【0004】
ところで、基材に銅層を設ける方法は種々あるが、下記の通り従来法では様々な問題点が発生する為、銅層として厚さ5μm以下の極薄銅箔が採用されたFPCを製造することができなかった。
【0005】
(1) ラミネート方式、即ち、基材に接着剤層を介して銅箔を貼合(ラミネート)する方法では、厚さ9μm未満の銅箔を使用すると、銅箔が薄い為、取り扱いが困難となり、貼合時に銅箔にシワが発生してしまうなど、銅箔の貼合を均一に行うことができない。
【0006】
(2) エッチング方式、即ち、基材に厚さ9μm以上の銅箔を貼合し、この銅箔をSUEP法などのエッチング方法によりゆっくりと削って厚さ7μm未満の銅層を形成する方法では、エッチング液の液成分管理や温度管理や時間管理などを厳密に行う必要があり、均一なエッチングが厄介である。また、エッチングが不均一であると銅層にピンホールが発生し易く、通電不良などの印刷回路不良のおそれが高い。更に、このようなエッチング方法では、製造コストが高いという問題点もある。
【0007】
(3) ラミネート方式の一種として、厚さ5μm程度の極薄銅箔にキャリア材としてアルミニウムを張り合わせた貼合部材を使用し、この貼合部材を基材に貼合した後、アルミニウムをエッチングして除去することにより、基材に厚さ5μm程度の極薄銅箔を設ける方法もあるが、この場合、必須となるアルミニウムのエッチングが厄介である。
【0008】
(4) アディティブ方式、即ち、基材上にスパッタリングや無電解メッキや蒸着などの方法で1μm以下程度の極薄い銅層を設け、この銅層上に更に電解メッキにより銅を付着せしめて極薄銅層を設ける方法では、スパッタリングや無電解メッキや蒸着などを行う為に基材に特殊な前処理が必要で製造コストが極めて高くなってしまう。また、メッキ厚(銅層厚)のコントロールが難しく、更に、基材と銅層との接着力が低いという欠点もある。また、スパッタリングや蒸着を行う場合、大型真空装置が必要となる。
【0009】
本発明は、上記問題点を解決するもので、簡単な方法でありながら、極めて薄い銅層を基材に設けることができ、しかも、この銅層はピンホールがなく、該銅層にファインパターンを形成することができる極めて実用性に秀れた技術を提供するものである。
【0010】
【課題を解決するための手段】
添付図面を参照して本発明の要旨を説明する。
【0011】
極薄銅箔を用いたフレキシブルプリント配線板用基板Aの製造方法であって、厚さ35〜70μmの金属箔4に剥離層5を介して厚さ1〜μmの極薄銅箔1が設けられた貼合部材6と、エポキシ・ニトリルゴム系接着剤から成る接着剤層3が設けられたポリイミドフィルム2とを用意し、続いて、この接着剤層3上に前記極薄銅箔1を当接させるよう前記貼合部材6を重合して該接着剤層3と該極薄銅箔1とを接着し、続いて、前記極薄銅箔1上から前記金属箔4を剥離し、前記極薄銅箔1と前記ポリイミドフィルム2とが前記接着剤層3を介して貼合されているピンホールのないフレキシブルプリント配線板用基板Aを製造することを特徴とする極薄銅箔を用いたフレキシブルプリント配線板用基板の製造方法に係るものである。
【0012】
また、請求項1記載の極薄銅箔を用いたフレキシブルプリント配線板用基板の製造方法において、前記金属箔4として銅箔が採用されていることを特徴とする極薄銅箔を用いたフレキシブルプリント配線板用基板の製造方法に係るものである。
【0013】
【発明の作用及び効果】
本発明のフレキシブルプリント配線用基板Aは、厚さ1〜5μmの極薄銅箔1をフィルム2上に貼合したものであり、該極薄銅箔1は厚さ1〜5μmと極めて薄く且つピンホールがなく、よって、該極薄銅箔1にエッチング処理などを施してファインな印刷回路を形成することができる。
【0014】
また、極薄銅箔1が厚さ1〜5μmと極めて薄い為、変形に対応し易くなり、摺動屈曲特性が高まり、フレキシブルプリント配線用基板Aとして秀れた特性を発揮することになる。
【0015】
また、この厚さ1〜5μmの極薄銅箔1は、該極薄銅箔1を支持材4に剥離層5を介して設けた貼合部材6を用意し、この貼合部材6をフィルム2に接着し、続いて、支持材4を剥がすという方法により、簡単にフィルム2上に設けることができる。
【0016】
本発明は上述のようにするから、簡単な方法でありながら極めて薄い銅箔をフィルムに設けることができ、しかも、銅箔が薄く且つピンホールがなく、該銅箔にファインな印刷回路を形成することができ、更に、銅箔が薄い為、摺動屈曲特性にも秀れた特性を有する極めて実用性に秀れた極薄銅箔を用いたフレキシブルプリント配線板用基板の製造方法となる。
【0017】
【発明の実施の形態】
図面は本発明の一実施例を図示したものであり、以下に説明する。
【0018】
本実施例は、厚さ1乃至5μmの極薄銅箔1とフィルム2とが接着剤層3を介して貼合されている極薄銅箔を用いたフレキシブルプリント配線板用基板Aに係るものである。
【0019】
このフレキシブルプリント配線板用基板Aは以下の方法により製造される。
【0020】
極薄銅箔1はシワになり易いなど取り扱いが厄介な為、該極薄銅箔1を金属箔4に剥離層5を介して設けた貼合部材6の状態で取り扱う。
【0021】
本実施例では、貼合部材6としてMicroThin(商品名、三井金属鉱業(株)製)を採用した。
【0022】
このMicroThinは、金属箔4として厚さ35乃至70μmの銅箔が採用されており、この金属箔4には厚さ数10オングストロームの剥離層5が設けられ、この剥離層5には厚さ1乃至5μmの極薄銅箔1が設けられ、この極薄銅箔1の接着剤層3と当接する側にはアンカー処理が施されている。
【0023】
尚、極薄銅箔1は、ファインな印刷回路を形成する為には、厚さ3μmの極薄銅箔1を採用することが望ましい。
【0024】
一方、フィルム2に接着剤層3を設ける。
【0025】
フィルム2としては、公知のフレキシブルプリント配線板用基板に採用されているフィルムを使用すれば良いが、本実施例では秀れた摺動屈曲性及び耐熱性を発揮させる為、ポリイミドフィルムを採用した。
【0026】
接着剤層3を形成する接着剤としては、ラミネート方式などの公知のフレキシブルプリント配線板用基板の製造の際に採用されている接着剤を使用すれば良いが、本実施例ではエポキシ・ニトリルゴム系の接着剤を採用した。
【0027】
続いて、上面に接着剤層3が設けられたフィルム2上に、前記極薄銅箔1を当接させるよう前記貼合部材6を重合する。
【0028】
続いて、加熱等の適宜な手段により接着剤層3を硬化させてフィルム2上に接着剤層3を介して極薄銅箔1を接着する。
【0029】
続いて、極薄銅箔1から前記金属箔4を剥離することにより、厚さ1〜5μmの極薄銅箔1とフィルム2とが接着剤層3を介して貼合されている極薄銅箔を用いたフレキシブルプリント配線板用基板Aを得る。
【0030】
以下、本実施例の効果を確認した実験結果について詳述する。
【0031】
実施例
厚さ12.5μmのポリイミドフィルム(東レデュポン製品、商品名:カプトン)の片面に接着剤(エポキシ・ニトリルゴム系)を乾燥後10μmとなるように塗布して接着剤層3を形成し、続いて、該接着剤層3上に、MicroThin(極薄銅箔1の厚さ3μm、銅箔4の厚さ35μm)を加熱ロール方式を用いて連続的にラミネートし、接着剤層3の硬化後、銅箔4を剥離してフレキシブルプリント配線板用基板Aを得た。
【0032】
比較例1
前記実施例と同様の方法により、厚さ9μm銅箔が設けられたフレキシブルプリント配線板用基板を得た。
【0033】
比較例2
比較例1により得られたフレキシブルプリント配線板用基板の銅箔をSUEP法によりエッチングして削り、厚さ4μmの極薄銅箔が設けられたフレキシブルプリント配線板用基板を得た。
【0034】
実験方法1(摺動屈曲特性)
極薄銅箔1層にJIS C 6471の回路パターンを作成し、この極薄銅箔1層が外側となるように、曲率2.5mmR、1500往復/分、ストローク15mm、室温で繰り返し屈曲を行い(試験機は、信越エンジニアリング製 SEK−31B4Sを使用。)、回路の抵抗値が20%上昇する回数を測定した。
【0035】
実験方法2(ピンホールの有無)
暗室でポリイミドフィルム面より光を当て、40倍の拡大鏡によりピンホールの有無を観察した。
【0036】
実験結果を下記表1に示す。
【0037】
【表1】

Figure 0004336426
【0038】
この実験結果から、本実施例は、摺動屈曲特性に秀れ、且つ、ピンホールもなく、フレキシブルプリント配線板用基板として秀れた特性を発揮することが判明した。
【0039】
実施例と比較例1との摺動回数の差は、回路を形成する銅箔の厚さの差に起因するものと考えられる。
【0040】
また、比較例2の摺動回数が非常に少ないのは、エッチングの際に銅箔が不均一に削られたからではないかと考えられる。更に、銅箔が不均一に削られたことによってピンホールが発生したのではないかと考えられる。
【0041】
尚、比較例3として厚さ7μmの極薄銅箔をフィルムに貼合(ラミネート)する方法も試みたが、この方法では貼合が極めて厄介で極薄銅箔にシワが発生してしまい、その後の回路形成に支障が生じるなど、実用性に乏しいフレキシブルプリント配線板用基板が得られた。
【0042】
本実施例は上述のように構成したから、ピンホールが存在せず、摺動屈曲特性に秀れた実用性に秀れたフレキシブルプリント配線板用基板となる。
【0043】
また、極薄銅箔1は貼合部材6の状態で取り扱うから、該極薄銅箔1を良好にフィルム2に貼合することができる実用性,生産性に秀れたフレキシブルプリント配線板用基板の製造方法となる。
【0044】
また、極薄銅箔1は単にフィルム2に貼合されただけであるから、従来のようにエッチングを必要とする方法と違い、該極薄銅箔1にピンホールが発生したりするおそれがなく、ファインな印刷回路を良好に形成することができる実用性,生産性に秀れたフレキシブルプリント配線板用基板の製造方法となる。
【0045】
また、フィルム2に貼合部材6を貼合する工程は、従来のラミネート方式と同様の工程であるから、既存の製造装置を使用して該貼合を行うことができる実用性,生産性に秀れたフレキシブルプリント配線板用基板の製造方法となる。
【0046】
また、フィルム2に貼合部材6を重合した後、該フィルム2上に極薄銅箔1のみを残す工程は、貼合部材6の金属箔4を剥離するだけで良いから、それだけ生産性に秀れたフレキシブルプリント配線板用基板の製造方法となる。
【0047】
尚、図面はフィルム2の片面に極薄銅箔1を設ける場合を図示したが、フィルム2の両面に極薄銅箔1を設ける場合も同様である。
【図面の簡単な説明】
【図1】 本実施例の説明図である。
【図2】 本実施例の説明図である。
【図3】 本実施例のフレキシブルプリント配線板用基板Aの説明図である。
【符号の説明】
A フレキシブルプリント配線板用基板
1 極薄銅箔
2 フィルム
3 接着剤層
4 金属箔
5 剥離層
6 貼合部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of a flexible printed circuit board for board using ultrathin copper foil.
[0002]
[Prior art and problems to be solved by the invention]
The demand for high-density printed circuit boards (hereinafter referred to as FPCs), in which a copper layer with a printed circuit is provided on a substrate such as a resin film, is increasing year by year as electronic products become more compact. In particular, in order to make a printed circuit a fine pattern, an FPC using an ultrathin copper foil as a copper layer is required.
[0003]
In addition, in order to improve sliding flexibility, there is a demand for FPC using an ultrathin copper foil without a pinhole as a copper layer.
[0004]
By the way, there are various methods for providing a copper layer on a base material. However, since various problems occur in the conventional method as described below, an FPC in which an ultrathin copper foil having a thickness of 5 μm or less is employed as a copper layer is manufactured. I couldn't.
[0005]
(1) In the laminating method, that is, the method of laminating (lamination) copper foil via an adhesive layer on the base material, if copper foil with a thickness of less than 9 μm is used, it becomes difficult to handle because the copper foil is thin. The copper foil cannot be uniformly bonded, for example, wrinkles are generated in the copper foil during the bonding.
[0006]
(2) In an etching method, that is, a method in which a copper foil having a thickness of 9 μm or more is bonded to a base material and this copper foil is slowly scraped by an etching method such as SUEP method to form a copper layer having a thickness of less than 7 μm. Further, it is necessary to strictly manage the liquid component of the etching liquid, temperature management, time management, etc., and uniform etching is troublesome. Further, if etching is not uniform, pinholes are likely to occur in the copper layer, and there is a high risk of printed circuit defects such as poor energization. Further, such an etching method has a problem that the manufacturing cost is high.
[0007]
(3) As a kind of laminating method, a bonding member in which aluminum is bonded as a carrier material to an ultrathin copper foil having a thickness of about 5 μm is used. After bonding this bonding member to a substrate, the aluminum is etched. There is also a method of providing an ultra-thin copper foil having a thickness of about 5 μm on the substrate by removing them, but in this case, essential etching of aluminum is troublesome.
[0008]
(4) An ultra-thin copper layer of about 1 μm or less is formed on the substrate by sputtering, electroless plating or vapor deposition, and copper is further deposited on this copper layer by electrolytic plating. In the method of providing a copper layer, a special pretreatment is required for the base material in order to perform sputtering, electroless plating, vapor deposition, etc., and the manufacturing cost becomes extremely high. In addition, it is difficult to control the plating thickness (copper layer thickness), and there are also disadvantages in that the adhesive force between the substrate and the copper layer is low. Further, when performing sputtering or vapor deposition, a large vacuum device is required.
[0009]
The present invention solves the above-mentioned problems, and it is a simple method, but an extremely thin copper layer can be provided on a substrate, and this copper layer has no pinholes, and the copper layer has a fine pattern. The present invention provides a technique that is extremely practical and capable of forming.
[0010]
[Means for Solving the Problems]
The gist of the present invention will be described with reference to the accompanying drawings.
[0011]
It is a manufacturing method of the board | substrate A for flexible printed wiring boards using an ultra-thin copper foil, Comprising: The ultra-thin copper foil 1 with a thickness of 1-3 micrometers is provided through the peeling layer 5 to the metal foil 4 with a thickness of 35-70 micrometers. A provided bonding member 6 and a polyimide film 2 provided with an adhesive layer 3 made of an epoxy / nitrile rubber adhesive are prepared, and then the ultrathin copper foil 1 is formed on the adhesive layer 3. The adhesive member 3 and the ultrathin copper foil 1 are bonded by polymerizing the bonding member 6 so that the metal foil 4 is contacted, and then the metal foil 4 is peeled off from the ultrathin copper foil 1. An ultrathin copper foil characterized by producing a substrate A for a flexible printed wiring board having no pinhole in which the ultrathin copper foil 1 and the polyimide film 2 are bonded via the adhesive layer 3 The present invention relates to a method for manufacturing the substrate for a flexible printed wiring board used.
[0012]
In the manufacturing method of a substrate for a flexible printed wiring board using the ultra-thin copper foil of claim 1, wherein, using the ultra-thin copper foil, characterized in that the copper foil as the said metal foil 4 is employed The present invention relates to a method for manufacturing a flexible printed wiring board substrate.
[0013]
[Action and effect of the invention]
The substrate A for flexible printed wiring of the present invention is obtained by bonding an ultrathin copper foil 1 having a thickness of 1 to 5 μm on a film 2, and the ultrathin copper foil 1 is extremely thin and has a thickness of 1 to 5 μm. There are no pinholes. Therefore, a fine printed circuit can be formed by etching the ultrathin copper foil 1.
[0014]
In addition, since the ultrathin copper foil 1 is extremely thin with a thickness of 1 to 5 μm, it is easy to cope with deformation, the sliding and bending characteristics are enhanced, and the flexible printed wiring board A exhibits excellent characteristics.
[0015]
Moreover, this ultra-thin copper foil 1 of 1-5 micrometers in thickness prepares the bonding member 6 which provided this ultra-thin copper foil 1 in the support material 4 via the peeling layer 5, and this bonding member 6 is made into a film. It can be easily provided on the film 2 by the method of adhering to 2 and subsequently peeling off the support material 4.
[0016]
Since the present invention is as described above, an extremely thin copper foil can be provided on the film in a simple manner, and the copper foil is thin and has no pinholes, thereby forming a fine printed circuit on the copper foil. it can be further, since the copper foil is thin, the manufacturing method of a flexible printed circuit board for board with extremely ultrathin copper foil Xiu been practicality with Xiu characteristics in sliding bending properties Become.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The drawings illustrate one embodiment of the present invention and are described below.
[0018]
This example relates to a flexible printed wiring board substrate A using an ultrathin copper foil in which an ultrathin copper foil 1 having a thickness of 1 to 5 μm and a film 2 are bonded via an adhesive layer 3. It is.
[0019]
This flexible printed wiring board substrate A is manufactured by the following method.
[0020]
Since the ultra-thin copper foil 1 is difficult to handle because it tends to be wrinkled, the ultra-thin copper foil 1 is handled in the state of a bonding member 6 provided on the metal foil 4 via the release layer 5.
[0021]
In this example, MicroThin (trade name, manufactured by Mitsui Mining & Smelting Co., Ltd.) was employed as the bonding member 6.
[0022]
In this MicroThin, a copper foil having a thickness of 35 to 70 μm is adopted as the metal foil 4, and a release layer 5 having a thickness of several tens of angstroms is provided on the metal foil 4, and the release layer 5 has a thickness of 1 An ultrathin copper foil 1 having a thickness of 5 to 5 μm is provided, and an anchoring process is performed on the side of the ultrathin copper foil 1 that contacts the adhesive layer 3.
[0023]
The ultrathin copper foil 1 desirably employs an ultrathin copper foil 1 having a thickness of 3 μm in order to form a fine printed circuit.
[0024]
On the other hand, the adhesive layer 3 is provided on the film 2.
[0025]
As the film 2, a film employed for a known flexible printed wiring board substrate may be used. In this example, a polyimide film is employed in order to exhibit excellent sliding flexibility and heat resistance. .
[0026]
As an adhesive for forming the adhesive layer 3, an adhesive employed in the manufacture of a substrate for a flexible printed wiring board such as a laminate method may be used. In this embodiment, an epoxy nitrile rubber is used. Adhesive of the system was adopted.
[0027]
Then, the said bonding member 6 is superposed | polymerized so that the said ultra-thin copper foil 1 may be contact | abutted on the film 2 with which the adhesive bond layer 3 was provided in the upper surface.
[0028]
Subsequently, the adhesive layer 3 is cured by an appropriate means such as heating, and the ultrathin copper foil 1 is bonded onto the film 2 via the adhesive layer 3.
[0029]
Subsequently, the metal foil 4 is peeled from the ultrathin copper foil 1 so that the ultrathin copper foil 1 having a thickness of 1 to 5 μm and the film 2 are bonded via the adhesive layer 3. A flexible printed wiring board substrate A using a foil is obtained.
[0030]
Hereinafter, the experimental result which confirmed the effect of a present Example is explained in full detail.
[0031]
Example An adhesive layer 3 is formed by applying an adhesive (epoxy / nitrile rubber) on one side of a polyimide film (Toray DuPont product, trade name: Kapton) having a thickness of 12.5 μm to a thickness of 10 μm after drying. Subsequently, MicroThin (thickness 3 μm of the ultrathin copper foil 1 and thickness 35 μm of the copper foil 4) is continuously laminated on the adhesive layer 3 by using a heating roll method. After curing, the copper foil 4 was peeled off to obtain a flexible printed wiring board substrate A.
[0032]
Comparative Example 1
By the method similar to the said Example, the board | substrate for flexible printed wiring boards provided with 9-micrometer-thick copper foil was obtained.
[0033]
Comparative Example 2
The flexible printed wiring board substrate obtained in Comparative Example 1 was etched and scraped by the SUEP method to obtain a flexible printed wiring board substrate provided with an ultrathin copper foil having a thickness of 4 μm.
[0034]
Experimental method 1 (sliding and bending characteristics)
A circuit pattern of JIS C 6471 is created on one layer of ultrathin copper foil, and bending is repeated at room temperature with a curvature of 2.5 mmR, 1500 reciprocations per minute, and 15 mm, so that this one layer of ultrathin copper foil is on the outside. (The tester uses SEK-31B4S manufactured by Shin-Etsu Engineering Co., Ltd.), and the number of times the resistance value of the circuit is increased by 20% was measured.
[0035]
Experiment method 2 (with or without pinholes)
Light was applied from the surface of the polyimide film in a dark room, and the presence or absence of pinholes was observed with a 40 × magnifier.
[0036]
The experimental results are shown in Table 1 below.
[0037]
[Table 1]
Figure 0004336426
[0038]
From this experimental result, it was found that the present example was excellent in sliding and bending characteristics, had no pinholes, and exhibited excellent characteristics as a flexible printed wiring board substrate.
[0039]
The difference in the number of sliding times between the example and the comparative example 1 is considered to be caused by the difference in the thickness of the copper foil forming the circuit.
[0040]
Moreover, it is thought that the sliding frequency of Comparative Example 2 is very small because the copper foil was shaved unevenly during etching. Furthermore, it is considered that pinholes were generated due to uneven cutting of the copper foil.
[0041]
In addition, although the method of laminating (laminate) an ultra-thin copper foil having a thickness of 7 μm as a comparative example 3 was also attempted, the laminating was extremely troublesome and wrinkles occurred in the ultra-thin copper foil. A flexible printed wiring board substrate having poor practicality, such as subsequent circuit formation, was obtained.
[0042]
Since the present embodiment is configured as described above, there is no pinhole and a flexible printed wiring board substrate excellent in practicality having excellent sliding and bending characteristics is obtained.
[0043]
Moreover, since the ultra-thin copper foil 1 is handled in the state of the bonding member 6, the ultra-thin copper foil 1 can be satisfactorily bonded to the film 2, and the flexible printed wiring board has excellent practicality and productivity. It becomes the manufacturing method of a board | substrate.
[0044]
In addition, since the ultrathin copper foil 1 is simply bonded to the film 2, unlike conventional methods that require etching, there is a risk that pinholes may occur in the ultrathin copper foil 1. Thus, a method for producing a substrate for a flexible printed wiring board excellent in practicality and productivity capable of satisfactorily forming a fine printed circuit is provided.
[0045]
Moreover, since the process of bonding the bonding member 6 to the film 2 is the same process as the conventional laminating method, practicality and productivity that can perform the bonding using an existing manufacturing apparatus. It becomes the manufacturing method of the board | substrate for flexible printed wiring boards which was excellent.
[0046]
Moreover, after superposing | polymerizing the bonding member 6 on the film 2, the process of leaving only the ultra-thin copper foil 1 on the film 2 only needs to peel off the metal foil 4 of the bonding member 6, so that productivity is increased accordingly. It becomes the manufacturing method of the board | substrate for flexible printed wiring boards which was excellent.
[0047]
The drawing illustrates the case where the ultrathin copper foil 1 is provided on one side of the film 2, but the same applies to the case where the ultrathin copper foil 1 is provided on both sides of the film 2.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of this embodiment.
FIG. 2 is an explanatory diagram of this embodiment.
FIG. 3 is an explanatory diagram of a flexible printed wiring board A according to the present embodiment.
[Explanation of symbols]
A. Substrate for flexible printed wiring board 1 Ultra-thin copper foil 2 Film 3 Adhesive layer 4 Metal foil 5 Peeling layer 6 Bonding member

Claims (2)

極薄銅箔を用いたフレキシブルプリント配線板用基板の製造方法であって、厚さ35〜70μmの金属箔に剥離層を介して厚さ1〜μmの極薄銅箔が設けられた貼合部材と、エポキシ・ニトリルゴム系接着剤から成る接着剤層が設けられたポリイミドフィルムとを用意し、続いて、この接着剤層上に前記極薄銅箔を当接させるよう前記貼合部材を重合して該接着剤層と該極薄銅箔とを接着し、続いて、前記極薄銅箔上から前記金属箔を剥離し、前記極薄銅箔と前記ポリイミドフィルムとが前記接着剤層を介して貼合されているピンホールのないフレキシブルプリント配線板用基板を製造することを特徴とする極薄銅箔を用いたフレキシブルプリント配線板用基板の製造方法。A method for producing a substrate for a flexible printed wiring board using an ultrathin copper foil, wherein an ultrathin copper foil having a thickness of 1 to 3 μm is provided on a metal foil having a thickness of 35 to 70 μm via a release layer A bonding member and a polyimide film provided with an adhesive layer made of an epoxy / nitrile rubber adhesive are prepared, and then the bonding member is brought into contact with the ultrathin copper foil on the adhesive layer. And the adhesive layer and the ultrathin copper foil are bonded to each other. Subsequently, the metal foil is peeled off from the ultrathin copper foil, and the ultrathin copper foil and the polyimide film are bonded to the adhesive. The manufacturing method of the board | substrate for flexible printed wiring boards using the ultra-thin copper foil characterized by manufacturing the board | substrate for flexible printed wiring boards without the pinhole bonded through the layer. 請求項1記載の極薄銅箔を用いたフレキシブルプリント配線板用基板の製造方法において、前記金属箔として銅箔が採用されていることを特徴とする極薄銅箔を用いたフレキシブルプリント配線板用基板の製造方法。The method of manufacturing a substrate for a flexible printed wiring board using the ultra-thin copper foil of claim 1 wherein a flexible printed circuit with ultra-thin copper foil, characterized in that the copper foil as the said metal foil is employed A method of manufacturing a board substrate.
JP27838799A 1999-09-30 1999-09-30 Manufacturing method of substrate for flexible printed wiring board using ultra-thin copper foil Expired - Lifetime JP4336426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27838799A JP4336426B2 (en) 1999-09-30 1999-09-30 Manufacturing method of substrate for flexible printed wiring board using ultra-thin copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27838799A JP4336426B2 (en) 1999-09-30 1999-09-30 Manufacturing method of substrate for flexible printed wiring board using ultra-thin copper foil

Publications (3)

Publication Number Publication Date
JP2001102693A JP2001102693A (en) 2001-04-13
JP2001102693A5 JP2001102693A5 (en) 2006-08-03
JP4336426B2 true JP4336426B2 (en) 2009-09-30

Family

ID=17596643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27838799A Expired - Lifetime JP4336426B2 (en) 1999-09-30 1999-09-30 Manufacturing method of substrate for flexible printed wiring board using ultra-thin copper foil

Country Status (1)

Country Link
JP (1) JP4336426B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911265B2 (en) 2000-10-27 2005-06-28 Kaneka Corporation Laminate
JP4504602B2 (en) * 2001-09-04 2010-07-14 三井化学株式会社 Polyimide copper clad laminate and method for producing the same
JP2005205731A (en) * 2004-01-22 2005-08-04 Kaneka Corp Flexible laminated sheet and its manufacturing method
JP4516769B2 (en) * 2004-03-11 2010-08-04 株式会社カネカ Method for producing semi-additive metal-clad laminate and semi-additive metal-clad laminate obtained thereby
JP2006068920A (en) 2004-08-31 2006-03-16 Shin Etsu Chem Co Ltd Manufacturing method of flexible copper foil/polyimide laminate
JP2007129208A (en) * 2005-10-05 2007-05-24 Sumitomo Chemical Co Ltd Substrate for flexible printed wiring board and its manufacturing method
JP6321944B2 (en) * 2013-11-15 2018-05-09 三井金属鉱業株式会社 Metal foil for press bonding and electronic component package

Also Published As

Publication number Publication date
JP2001102693A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
JP5190553B1 (en) Metal foil with carrier
GB2122646A (en) Transfer lamination of vapor deposited foils method and product
TW201124027A (en) Carrier for manufacturing substrate and method of manufacturing substrate using the same
JPH1075053A (en) Method for manufacturing flexible metal foil laminated board
JP4336426B2 (en) Manufacturing method of substrate for flexible printed wiring board using ultra-thin copper foil
GB2091634A (en) Transfer lamination of vapour deposited copper thin sheets and films
JP2001102693A5 (en)
JP2010157605A (en) Circuit board and method of manufacturing circuit board
US20200071160A1 (en) Method for forming microstructures
JPS5816592A (en) Printed circuit board and metal-lined laminated board preformed product and method of producing same
JPH0964514A (en) Production of printed wiring board
JP5358785B2 (en) Method for producing double-sided conductive adhesive metal film
JPH10178241A (en) Printed wiring board and method for manufacturing the same
JPH07221435A (en) Flexible printed substrate
JPS5815952B2 (en) Manufacturing method for adhesive coated laminates
JP2007069617A (en) Method for manufacturing flexible metal foil laminated plate
JP2008302696A (en) Method of manufacturing flexible metal foil laminated plate
JPH1110791A (en) Joining material for manufacture of single metal-applied laminated plate
JP2003086922A (en) Method of manufacturing circuit board
JP2004090488A (en) Metal layer transfer sheet
JPS61170091A (en) Manufacture of printed wiring board
JPH11348179A (en) Production of metal membrane substrate
JP2006237323A (en) Production process of film substrate for wiring, film substrate for wiring, and production system of film substrate for wiring
JP2002205356A (en) Manufacturing method for copper leaf with resin
JPH09232704A (en) Flexible printed circuit board having through hole and manufacture thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4336426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term