JP4334106B2 - 原子炉構造材料の光触媒付着方法 - Google Patents

原子炉構造材料の光触媒付着方法 Download PDF

Info

Publication number
JP4334106B2
JP4334106B2 JP2000098027A JP2000098027A JP4334106B2 JP 4334106 B2 JP4334106 B2 JP 4334106B2 JP 2000098027 A JP2000098027 A JP 2000098027A JP 2000098027 A JP2000098027 A JP 2000098027A JP 4334106 B2 JP4334106 B2 JP 4334106B2
Authority
JP
Japan
Prior art keywords
photocatalyst
noble metal
reactor
nuclear reactor
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000098027A
Other languages
English (en)
Other versions
JP2001276628A (ja
Inventor
哲夫 大里
行基 布施
長佳 市川
一男 村上
幸雄 逸見
純一 高木
端 四柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000098027A priority Critical patent/JP4334106B2/ja
Publication of JP2001276628A publication Critical patent/JP2001276628A/ja
Application granted granted Critical
Publication of JP4334106B2 publication Critical patent/JP4334106B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電プラントにおける原子炉構造材料に対して、光触媒に貴金属を付与した高機能光触媒を付着させる光触媒付着方法に関する。
【0002】
【従来の技術】
BWR(沸騰水型軽水炉)発電所においては、放射線場で水の放射線分解により生成した酸素、過酸化水素が原子炉水中に存在する。この酸素、過酸化水素が原子炉水中に存在することで、高温環境下にある原子炉構造材であるステンレス鋼やニッケル基金属は、応力腐食割れ(粒界応力腐食割れ)を起こすことが知られている。
【0003】
この応力腐食割れを防ぐ方法として、給水系から水素を注入して原子炉水中の酸素、過酸化水素を低減させる水素注入技術が国内外のいくつかの原子力プラントで行われている。
【0004】
このように給水系に水素を注入することにより、給水系内の酸素、過酸化水素が低減されることから、原子炉構造材に発生する腐食電位が低下し、これに伴なって応力腐食割れの発生や割れ亀裂の進展が抑制される。
【0005】
水素注入技術はこのような背景により実施されているが、次のような弊害がある。この第1の弊害としてタービン系の線量率の上昇がある。これは核反応で生成したN−16が水素と反応して揮発性のアンモニアとなり、蒸気系へ移行しやすくなるためである。また、第2の弊害は水素注入においても、注入した水素により生ずるオフガス系の過剰水素を少なくするため、例えば酸素を注入して過剰水素を再結合させる等の様々な設備が必要となってくる。
【0006】
このような弊害を極力少なくし、なおかつ構造材の腐食電位を低下させるために近年、貴金属を原子炉水へ添加し、構造材へ貴金属を付着させ少量の水素注入で腐食電位を低下させる方法が提案されている。
【0007】
これは白金等の貴金属は電位の低い水素の可逆反応を選択的に捕らえる性質を利用したもので、貴金属を原子炉構造材に付着させることにより、少量の水素注入で腐食電位の低下を図るものである。
【0008】
【発明が解決しようとする課題】
しかしながら、原子炉構造材に貴金属を付着させる方法を実プラントで実施する場合、燃料のジルコニウム酸化皮膜上にも付着するため、燃料材料の酸化および水素化が増大することがわかった。
【0009】
また、N−16のタービン系への移行増加による線量率の上昇などの問題を抱えている。不純物を含む貴金属薬剤を高濃度に使用するための水質悪化による燃料材料の健全性に与える影響も問題となる。
【0010】
これらの影響、すなわち、現行の貴金属注入技術は、水質保全および放射能の移行低減および燃料の高燃焼度化に対し負の作用を及ぼすため、貴金属の注入量を少なくするとともに、高価な貴金属の使用量を少なくする方法か、あるいは貴金属に代わる他の物質の開発が望まれている。
【0011】
本発明は、このような要望を満足させることができるように、応力腐食割れ防止のための水素の注入量及び貴金属の注入量を少なくし、原子炉構造材の長寿命化を図ることができ、原子炉の安定運転に寄与する原子炉構造材の腐食低減方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
前記目的を達成するため、請求項1に対応する発明は、原子炉の冷却水の循環経路に、光触媒を構成する成分ないしは化学反応により光触媒を生成する粒子と、この粒子表面に付与した防食効果を高める貴金属と、粒子の周りを取り囲み原子炉の冷却水の熱、放射線、光量子、炉水中に含まれる酸化剤、水素によって反応分解する分散剤からなる薬液を注入することにより、前記原子炉内で得られる該光触媒に該金属を付与した高機能光触媒を、前記原子炉の構造材料に付着させる光触媒付着方法である。
【0016】
前記目的を達成するため、請求項に対応する発明は、次のようにしたものである。すなわち、前記化学反応させるために、前記光触媒を液体中に安定に懸濁し続けることを目的に混合されている分散剤を用いることを特徴とする請求項1に記載の光触媒付着方法である。
【0017】
前記目的を達成するため、請求項に対応する発明は、前記原子炉の冷却水の循環経路に、前記光触媒と前記貴金属を混合して注入するか、あるいは前記原子炉の冷却水の循環経路に注入する直前に混合することを特徴とする請求項1に記載の光触媒付着方法である。
【0018】
前記目的を達成するため、請求項に対応する発明は、前記原子炉の冷却水の循環経路に、前記光触媒と前記貴金属のそれぞれの単体、あるいは前記光触媒と前記貴金属の混合物を前記原子炉の冷却水の循環経路の異なる点から注入する請求項1に記載の光触媒付着方法である。
【0019】
前記目的を達成するため、請求項に対応する発明は、前記原子炉の冷却水の循環経路に、前記光触媒と前記貴金属を時間的にずらしてあるいはそれぞれを断続的に注入する請求項1に記載の光触媒付着方法である。
【0021】
前記目的を達成するため、請求項10に対応する発明は、前記原子炉の冷却水の循環経路に、前記光触媒を構成する元素と前記貴金属の化合物を注入し、原子炉内で反応、分解させて光触媒と貴金属にして付着させる請求項1に記載の光触媒付着方法である。
【0023】
前記目的を達成するため、請求項11に対応する発明は、前記原子炉の冷却水の循環経路に注入時の炉水中のpH、溶存酸素、溶存水素、過酸化水素制御するようにしたことを特徴とする請求項1に記載の光触媒付着方法である。
【0028】
請求項1〜11のいずれかに記載の発明によれば、原子炉の構造材料表面に、光触媒に貴金属を付与した高機能光触媒を付着させることができ、炉心で発生するチェレンコフ光の光の効果によって構造材料の応力腐食割れ等の腐食を防止することができ、もって、原子力プラントの長寿命化、安定運転などを測ることができる原子炉構造材料の光触媒付着方法を提供できる。
【0029】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明するが、始めに本発明の概要について説明する。最近、腐食電位を低減させる方法として光触媒の反応を利用することが注目されている。材料表面に光触媒を配し、そこに紫外線近傍の波長を持つ光を照射すると、光励起反応によって活性化した電子の作用によって腐食電位が低減することがわかっている。この反応は光触媒近傍に貴金属があることによって効率よく進み、腐食電位が下がる。この反応を利用することによって構造材料表面にあらかじめ光触媒ないし貴金属を付与させた高機能光触媒を付着させ、炉心で発生するチェレンコフ光の光を利用して運転中の腐食電位を低減することができる。
【0030】
本発明者等は、TiO2単独に比べてPt、RhおよびPd等の貴金属を付着させたTiO2光触媒では、腐食電位の低減傾向が大きいことを実験結果から明らかになった。この要因は、貴金属を付着させた場合、量子効率が39%とTiO2単独に比べてに比べて約10倍大きいことを確認した。
【0031】
しかし、貴金属を付着させたTiO2の場合でも製法によりかなりバラツキがありまた電位の低減傾向が高温水中で減少することがわかった。また、TiO2を基質とする光触媒を材料表面に化学的および機械的に安定化させることが重要であることがわかった。
【0032】
上記の効果を得るためには材料表面にほぼ均一に光触媒と貴金属を付着させることが必要となる。さらに炉心で発生するチェレンコフ光による光触媒反応によって十分に腐食電位を低減するためには、ある程度(1μm)の厚さで付着させる必要がある。
【0033】
原子炉全体にこれらの物質を均一につけるためには炉水中にこれらを含む液体を注入することが最も効率的である。しかし光触媒は水に溶解しづらい形態のものが多いため、小さな粒子にして懸濁して注入する必要がある。このため注入する以前には液体に安定に分散し、注入後には液体に存在するのは不安定になり、構造材料に付着するようにすることが求められる。光触媒の効果を高める貴金属は光触媒粒子の近傍に付着している必要がある。また光触媒や貴金属は容易に表面に付着し、1年以上の持続性も求められている。
【0034】
原子炉の構造材料表面に光触媒を配する方法としては、塗布や溶射などによって機械的に行う方法と、原子炉の炉水中に光触媒を注入して化学的に付着させる方法とがある。このうち、機械的に行う方法では必要な部位にのみ付着させることができることから、プラントに影響を与えずに済む。
【0035】
しかし、広範囲に行う場合や手や機械が届きにくい所に適応する場合には、炉水中に光触媒を注入する方法をとれば一度に接液部全てに付着させることが可能である。このため既設プラントに対して原子炉全体に光触媒を塗布する方法としては注入方法を、溶接部など限られた部位に適応するのは機械的な付着方法をとるのが最も適当である。
【0036】
水冷却プラントなどで発生するステンレス鋼やインコネルなどの耐食性材料で発生する粒界応力腐食割れ防止であり、粒界応力腐食割れ防止を抑制するためにはこれら材料の電位が−230mV以下となれば発生しないことがわかっている。
【0037】
本発明者等の着目しているn型半導体の光触媒を用いた防食技術では、n型半導体の光電気化学特性(日鉄技術センター 佐藤教男著 電気化学(下)p.205 図69−2参照)を利用してn型半導体を付着させた材料(一般的には、腐食が進行し皮膜が形成される)の電位を−230mV以下にする技術である。
【0038】
この場合、アノード反応およびカソード反応はそれぞれ下式の(1)、(2)式で示される。
【0039】
O + 2h = 0.5O + 2H (1)
2H + 2e = H(2)
このため貴金属を光触媒に均一に付着させることによって全体の光触媒の性能を上げることができる。
【0040】
次に、本発明の実施形態について説明する。図1は、本発明に係る第1の実施形態を説明するためのBWR型原子力プラントの原子炉圧力容器38、給水ライン1、PLR(原子炉冷却材再循環系)ライン2、CUW(原子炉冷却材浄化系)ライン3、RHR(残留熱除去設備)ライン4の配置関係を概略的に示す図である。
【0041】
給水ライン1には給水ポンプ31を有しており、又PLRライン2にはPLRポンプ32を有しており、更にCUWライン3にはろ過脱塩器33と熱交換器34とCUWポンプ35を有しており、またRHRライン4にはRHRポンプ36と熱交換器37を有している。
【0042】
以上述べた各ライン(原子炉の冷却水の循環経路)1,2,3,4のうちの少なくとも一つの所望の位置には、原子炉炉内で高機能光触媒を形成するための物質、又は予め原子炉炉外で形成された高機能光触媒を注入するための複数の注入点5が形成されている。
【0043】
原子炉炉内で高機能光触媒を形成するための物質としては、光触媒を構成する成分ないし光触媒の元となる化合物(以下、前駆体と称する)及び防食効果を高める貴金属を含む薬液のことである。
【0044】
該光触媒を構成する成分としては、TiO2、 ZrO2、PbO、BaTiO3、Bi2O3、ZnO、WO3、SrTiO3、Fe2O3、FeTiO3、KTaO3、MnTiO3、SnO2 から選ばれた1種又2種類以上の組み合わせからなる化合物、あるいはこれら光触媒を構成する成分となる金属ないし水酸化物および化合物のいずれかを使用する。
【0045】
防食効果を高める貴金属としては、Pt、Rh、 Ru、 Pd、Ir、Osから選ばれた1種を使用する。
【0046】
このように構成されたものにおいて、注入点5から注入される光触媒や貴金属は原子炉炉水中を移行し、原子炉圧力容器38内に達する。圧力容器38内では運転中や起動時・停止時、定検中などの注入した条件下で反応がおこり、光触媒や貴金属が付着した高性能光触媒が原子炉構造材料の表面に付着する。同様な反応がそれぞれのラインで起これば、炉水が流れる系統のラインの表面にも光触媒や貴金属が付着した高性能光触媒が付着する。
【0047】
以上述べた実施形態によれば、高機能光触媒が原子炉の冷却水の循環経路となる原子炉構造材料に付着するので、炉心で発生するチェレンコフ光の光を利用して運転中の腐食電位を低減することができる。
【0048】
以下、このことについて説明する。従来原子炉構造材料表面に光触媒を配し、そこに紫外線近傍の波長を持つ光を照射すると、光励起反応によって活性化した電子の作用によって腐食電位が低減することがわかっている。この反応は光触媒近傍に貴金属があることによって効率よく進み、腐食電位が下がる。この反応を利用することによって、構造材料表面にあらかじめ光触媒ないし貴金属を付着させた高機能光触媒を付着させ、炉心で発生するチェレンコフ光の光を利用して運転中の腐食電位を低減することができる。
【0049】
このような効果を得るためには、材料表面にほぼ均一に光触媒と貴金属を付着させることが必要となり、さらに炉心で発生するチェレンコフ光による光触媒反応によって十分に腐食電位を低減するためには、ある程度(1μm)の厚さで付着させる必要がある。
【0050】
原子炉全体にこれらの物質を均一につけるためには炉水中にこれらを含む液体を注入することが最も効率的である。しかし光触媒は水に溶解しづらい形態のものが多いため、小さな粒子にして懸濁して注入する必要がある。このため注入する以前には液体に安定に分散し、注入後には液体に存在するのは不安定になり、構造材料に付着するようにすることが求められる。光触媒の効果を高める貴金属は光触媒粒子の近傍に付着している必要がある。また光触媒や貴金属は容易に表面に付着し、1年以上の持続性も求められている。以上述べた実施形態は、光触媒に貴金属を原子炉に十分な効果を期待できるように付着させることができる。
【0051】
以上述べた第1の実施形態は、注入点5に光触媒と貴金属からなる薬液を注入して原子炉構造材内部に高機能光触媒を形成するようにしたものであるが、原子炉外部に予め高機能光触媒を形成したものを注入するようにしても、前述の説明と同様な作用効果が得られる。
【0052】
光触媒や貴金属の両者が原子炉内で反応・分解して付着する場合、それぞれの分解速度が異なることが考えられるので、図1に示すように注入点5は数カ所存在する。分解速度を考えてそれぞれ別の注入点5から注入することによって、原子炉構造材内に効率的に付着させることができる。
【0053】
またあらかじめ光触媒の粒子の表面に貴金属を付与させておき、それを溶媒に分散して炉水中に注入すれば光触媒と貴金属の分解速度等の問題を回避できる。更に、光触媒の構成元素と貴金属の化合物が存在し、炉内で分解すれば、光触媒の構成元素と炉水に存在する酸素/過酸化水素が反応して酸化物となり、光触媒を形成すると考えられる。これによっても分解速度の違いは問題とならない。
【0054】
図2は原子炉内での光触媒や貴金属の反応、分解並びに付着を説明するための模式図である。原子炉が運転中あるいは起動時、停止時でも構造材料39の表面は、エネルギー線例えばγ線6、高温、酸素/過酸化水素7が発生しており、高温状態にさらされている。これらと注入タンク12からの光触媒8の成分を含む前駆体及び貴金属9が反応を起こすと、前駆体や貴金属9が単離し、水中を浮遊し始める。この光触媒や貴金属9が着した高性能光触媒の溶解度が低いため構造材料39の表面に化学的、物理的に付着する。この吸着した光触媒及び貴金属9が付着した高性能光触媒の一部は酸化皮膜に取り込まれる。
【0055】
図3は構造材料39の表面に直接機械的に高性能光触媒皮膜を形成するためのシステムを説明するための図であり、ここではその一例であるプラズマ溶射装置を示している。陰極40と陽極ノズル41の内面の間に直流アーク42を生ぜしめると、後方から送給される作動ガス43が、これによって熱せられて膨張し、陽極ノズル41からプラズマジェット44となって噴出する。触媒粉末8と貴金属粉末9の混合材料粉末45はガスに乗せてプラズマジェット44中に供給される。この結果、金属材料39の表面には高機能光触媒層46が形成される。
【0056】
このようにして得られた高機能光触媒層46は、光触媒8の粉末と貴金属9の粉末を質量比で100:1程度の割合で混合して用いることによって最も効率的に腐食を低減させることができる。
【0057】
以上述べたプラズマ溶射装置は、光触媒8の粉末と貴金属9の粉末の混合材料を材料表面に直接溶射するものであるが、これ以外に直接、塗布、噴霧、PVD(物理的蒸着)、CVD(化学的蒸着)、ショットなどで高機能光触媒層46の皮膜を生成させるようにしてもよく、また塗布、噴霧については溶液、あるいは微粒子を懸濁させた液を用いる。これらの工程は原子炉の建設時、あるいは定検時に水位が低くなったときに水と接していない箇所に行うか、定検時等に原子炉から完全に水を抜き去って行う。
【0058】
図4は、注入タンク12内で光触媒8の成分を含む物質と、貴金属9が分散している場合の注入方法を説明するための図である。これは、注入タンク12内に分散剤10が注入された場合の原子炉圧力容器38内における模式図である。酸化チタンなどの非常に水に溶解しづらい光触媒8は1つが1〜数nmという非常に小さい粒子にして、溶媒中に分散させて注入する。
【0059】
このように分散剤10を注入タンク12内に注入するのは、次のような理由に基づく。すなわち、薬液をためる注入タンク12内では数十時間から長いと数ヶ月間、薬液は安定である必要がある。特に懸濁液の場合には粒子の光触媒が溶液内に均一に分散し続けるために分散剤10と呼ばれる成分を混入する。この分散剤10は光触媒粒子の周りを取り囲み、お互いがくっつき合うことや容器壁面などに付着するのを防止する機能がある。このため、炉水中に注入した後にこの分散剤10を反応・分解により効果を失することにより、光触媒は構造材料の表面に付着しやすくなる。例えば100℃以上の熱やエネルギー線或いは酸素/過酸化水素7で分解する分散剤10としてはアミン系化合物、ポリアクリル酸アンモニウム、メチルエチルケトンが挙げられる。
【0060】
このように、光触媒8の粒子の周りには分散剤10が存在しているので、注入タンク12内では析出して沈殿したり、壁面に付着しない。この分散剤10が注入ポンプ11により注入点5を介して原子炉圧力容器38内に入り、エネルギー線や熱、酸素/過酸化水素7などと反応して分解、変性すると、光触媒8は液中に分散できなくなり、壁面に付着する。
【0061】
図5及び図6は、光触媒と貴金属を混合して注入するシステムを説明するための図であって、具体的には図5は予め一つの注入タンク12内に光触媒8と貴金属9を混合した状態で、注入ポンプ11により注入点5を介して母管47に注入する場合である。図5において、光触媒を炉水中に注入して構造材料に付着させるためには示すように室温において水などの溶媒に溶解させて注入タンク12に貯め、それを炉内に注入ポンプ11で注入したときに溶解度の低下などによって析出する条件となる必要がある。あるいは反応・分解すると上記の光触媒となる化合物を水などの溶媒に溶解させて炉水に注入し、原子炉に特有の条件である熱、γ線などの放射線、光量子、酸素/過酸化水素などによって光触媒の形となる必要がある。特に光触媒のうちTi、W、Zrを含む酸化物は水に不溶あるいは難溶なものについては1〜10nmの非常に小さな粒子を水などの溶媒に分散・懸濁させて注入し、それらが表面に達すると付着する。
【0062】
図6はそれぞれ異なる注入タンク12a,12b内に注入されている光触媒8と貴金属9を、それぞれ注入ポンプ11a,11bにより混合して一つの注入点5を介して母管47に注入する場合である。光触媒8の溶液と貴金属9の溶液を混合しても問題がおこらない場合には、図5のようにあらかじめ両者を混合しておいてから注入すれば光触媒8の表面に貴金属9が均一に付着しやすくなる。
【0063】
しかし、光触媒8の溶液と貴金属9の溶液を混合すると問題がある場合がある。例えば酸化チタンの分散溶液は酸性で安定であり、白金の溶液はアルカリ側で安定である場合がある。これらの二つを混合した場合、両者共に安定に存在し得なくなる。
【0064】
そこで図6のように注入ポンプ11a,11bと注入タンク12a,12bを光触媒8と貴金属9で別々に設け、薬液注入点5の寸前で両者を混合して、例えば母管47に注入することによって両者が混じり合っている時間を短くすることが可能である。これによって注入前に光触媒8や貴金属9が析出したり反応したりして注入できなくなることを防ぐことができる。
【0065】
図6の変形例として次のようにすることもできる。すなわち、図6において、光触媒溶液8と貴金属溶液9が反応するために両者を混合して注入するのが困難な場合には、光触媒溶液8と貴金属溶液9の注入点5をそれぞれ別に設けて注入することによっても注入溶液同士を反応させることなく注入することが可能である。
【0066】
また、光触媒8と貴金属9では炉水中に入ってからの分解速度が異なることが考えられる。このような場合には、図1で示したように原子炉には複数の注入点5a,5bが存在するので、反応速度の遅いものを炉心に到達する時間が長いCUWライン3から注入し、反応速度の速いものを到達時間の短いPLRライン2から注入することによって光触媒と貴金属が炉心で適切な付着量を得ることが可能となる。さらにいくつかの点から注入することによって原子炉全体に付着することが容易となる。
【0067】
図7は光触媒と貴金属を切り替えながら注入するシステムを説明するための図である。これは、光触媒8の溶液と貴金属9の溶液が反応するために両者を混合して注入するのが困難な場合には、三方バルブ13を用いて異なる注入タンク12a,12bにそれぞれ注入されている光触媒8と貴金属9のラインを切り替えながら時間的に混じり合わないようにして注入することによっても注入溶液同士を反応させることなく注入することが可能である。また起動時、停止時などに注入する場合には時間によって原子炉内の温度、エネルギー線の強度、酸素/過酸化水素の濃度が変化する。光触媒8と貴金属9の炉水中に入ってからの反応速度が大きく異なる場合、それらのパラメーターが変化するうちの最も効率の良い部分でそれぞれを注入することによって少ない量で付着させることが可能となる。別々に入れた場合には貴金属9が物質内を拡散することが期待できる。
【0068】
図8はあらかじめ貴金属を付着させておいた光触媒を注入するシステムを説明するための図である。酸化チタンをはじめとする難溶性の光触媒は溶媒中に非常に小さい粒子で分散させて液体の形で用いるのが一般的である。光触媒の固体粒子に貴金属を付着させ、それを溶媒中に分散させたものを注入することができる。この方法をとると光触媒の付着のみを考えれば、適切な付着が可能である。さらに量子効率の向上させるためには、TiO2の表面にできるだけ均質に付着させる必要がある。このためには、TiO2溶液と貴金属溶液をできる限り速やかに混合し均一分散させることが必要となる。また、TiO2表面に貴金属コロイドやイオンをしっかりと付着させる必要がある。この反応にも光触媒反応を利用することができる。原子炉の場合チェレンコフ光また炉外の場合紫外線またはX線やガンマ線およびベータ線を照射して電気化学的に付着させることができる。
【0069】
図8において、光触媒8を小さい粒子の形で分散させて注入する時には、分散させる前の光触媒8に貴金属9を付着させた後、分散させて注入させることができる。これによって光触媒8の粒子それぞれの表面に貴金属9を付着することができ、光触媒8と貴金属9の炉水中での反応速度の違いによる場所場所の付着割合の違いが出にくくなる。また光触媒8の溶液と貴金属9の溶液との反応も防ぐことができる。
【0070】
図9は光触媒の構成元素と貴金属との化合物を注入するシステムを説明するための図である。貴金属9と光触媒を構成する元素14が化合物を作り、これを注水ポンプ11及び母管47を介して原子炉圧力容器38内で温度、エネルギー線の強度、酸素/過酸化水素7によって分解する場合には酸素/過酸化水素7と反応して光触媒を構成する元素14は光触媒となり、原子炉圧力容器38に付着する。
【0071】
図10は燃料棒にあらかじめ光触媒と貴金属を付着させておいたときに再配置によって構造材料に付着することを説明するための図である。原子炉の構造材料や燃料棒15の表面に付着した酸化物等の付着物、すなわち光触媒8に貴金属9を付与させた高機能光触媒皮膜20は、炉水に乗って移動する、いわゆる再配置がおこる燃料棒15のため構造材料や燃料棒表面に光触媒8や貴金属9を付着あるいはその構成材料の一部にしておき、それが再配置によって移動して構造材料の表面に付着させることができる。このように原子炉内に光触媒や貴金属をバルクなどの形で大量に入れていれば、運転中に再配置によって表面に付着することが期待できる。
【0072】
図11は水質制御によって付着特性を改善させるためのシステムを説明するための図である。同一の注入タンク12内にある光触媒8や貴金属9は原子炉中の熱、放射線、光量子、酸化剤等で反応させ構造材料表面に付着しやすく、かつ持続性がよい皮膜を生成する必要がある。このためには、注入タンク12と注入ポンプ11bのラインとは別のラインであって、水質調整タンク16と注入ポンプ11aからなるラインを設置し、水質調整タンク16によって注入時の炉水の水質例えばpH、溶存酸素、溶存水素の濃度を制御することによって付着を促進させたり、光触媒8や貴金属9の凝集状態や付着材料の皮膜の性状を制御できる。
【0073】
このため水質調整タンク16から炉水中にこれらのパラメーターを適切なものとするように、pH調整薬液を調整したり、あるいは溶存酸素、溶存水素を制御するために酸素、水素を含むガスを炉水中に注入するように構成する。
【0074】
また分散して付着させる場合には金属面への付着特性があまり良くないことがしられている。このため付着を促進し、生成した皮膜が堅固にすることを目的として、付着時の水質の制御を行う。付着に影響を与える水質としては、pH、溶存酸素、溶存水素濃度がある。例えばTiO2溶液などは酸性において安定に溶媒中に分散して存在するため、炉水中をアルカリ側にしておけば析出が促進され、付着量が多くなる。また溶存酸素、溶存水素濃度を制御することによって生成する光触媒と貴金属を含む酸化皮膜の性状を制御することができる。
【0075】
図12は材料表面温度を上げるためのシステムの説明図であり、図3のプラズマ溶射装置に、新たに構造材料39の温度を調整するためのヒータ17並びにこの温度を制御するための温度制御装置(図示せず)を設けたものである。
【0076】
このような構成のシステムを使用することで、以下のような作用効果を得ることができる。光触媒8と貴金属9の皮膜ないし貴金属を付与した高機能光触媒を生成させるとき、皮膜生成後、該システムにより材料表面の温度を室温から100℃あるいは運転温度の288℃、もしくは500℃程度まであげる。すると、生成した皮膜の焼結が進んだり、溶媒が完全に蒸発することによってより堅固な皮膜ができる。このため、原子炉が起動し、高温高圧水に接しても剥離しづらい持続性の高い皮膜が得られる。
【0077】
以上述べた構造材料39の温度を調整するための構成は、プラズマ溶射装置以外の材料表面に塗布、噴霧、PVD、CVD、ショットを行う装置に適用しても、前述と同様な作用効果が得られる。又、材料表面を加熱するためのヒータ17の代りに、電磁気などによる材料母材全体の加熱のほか、光照射による材料表面のみを加熱する手段を使用してもよい。更に、材料表面の温度の調整のみならず、材料表面と塗布、溶射、噴霧、PVD、CVD、ショットの噴射体の間に電磁場を作用させてもよい。
【0078】
このように機械的に付着後に材料表面での温度を高めることあるいは材料に電界を付与することにより、噴霧、溶射、PVD、CVD、ショットのいずれかの機械的方法により付着させた光触媒を基質とした光触媒の付着強度を増加させた。これにより、皮膜の乾燥固化や電気的な付着により皮膜安定性が増加する。この方法は注入によって付着させた皮膜に対しても効果が期待される。
【0079】
図13は光触媒皮膜の安定性向上を目指すための手法を説明するための模式図である。運転中原子炉の金属母相18には、通常酸化皮膜19が存在する。この酸化皮膜19はルースに付着しているものもあり、その上から光触媒に貴金属を付与した皮膜20が付着しても、下の酸化皮膜19が運転中に剥離することによって一緒に剥離してしまう。このため、酸化皮膜19を図のようにあらかじめ取り除いておけば、このようなことは防げる。原子炉においては、このような作業は酸化皮膜19に含まれる放射性物質を取り除く除染処理により実現できる。この除染処理を行った後に付着を行うと、光触媒に貴金属を付与した皮膜20の持続性が増加する。
【0080】
なお、除染処理の考え方として、機械除染により剥離しやすいルースな酸化物のみを除去する場合、化学除染によりステンレス鋼やインコネル材などの防食皮膜のうち外層のn型半導体のみを除去し、光触媒のn型と残存する防食皮膜のp型の半導体の特性を生かしたpn接合を利用することにより電気化学特性を改善し材料の電位を低下させる場合、防食皮膜全体を化学除染し、貴金属を含む高機能触媒や高機能触媒の前駆体の粒子をショットなどにより機械的に付着させるなどの方法がある。
【0081】
図14は、酸化チタンなどの光触媒は金属表面への付着性があまりよくない点を改善できる実施形態を説明するための図である。具体的には、金属母相18と光触媒に貴金属を付与した皮膜20と両方に付着性の良い、表面改質剤と呼ばれるプライマー21例えば水ガラスをあらかじめ金属母相18に付着させておき、該皮膜20を注入して付着させればよい。
【0082】
このようにすることによって、プライマー21によって金属と光触媒との仲立ちをして、また金属との付着特性を改善するためには、付着性と持続性を向上させることができる。また、光触媒や貴金属を炉内に注入する前にプライマー21を一定時間注入することによって、原子炉構造材料の表面に光触媒が付着しやすく持続しやすい改質を加えることが可能である。
【0083】
図15は光触媒のうち、原子炉構造材料の表面に対する付着性があまりよくない場合に有効な実施形態を説明するための図である。原子炉構造材料の表面に対する付着性があまりよくない場合には、図15に示すように光触媒8の溶液の中に、バインダー22を混合する。このようにすることにより、バインダー22は金属母相18と光触媒、光触媒同士の付着特性を向上するものであり、付着性と持続性が向上する。
【0084】
このようなバインダー22の例としては、水ガラス、ポリアクリル酸アンモニウムがある。
【0085】
以上述べた実施形態によれば、光触媒の溶媒の中にバインダーと言われる金属と光触媒、または光触媒同士を付着させる効果のある成分を混合することによっても、光触媒の付着特性を向上させることができる。
【0086】
図16は、光触媒性能を高めるための実施形態を説明するための図であり、微粒子半導体によるエネルギー準位図を示している。価電子帯24および伝導帯25がそれぞれ量子化し得るため、大粒子におけるエネルギーギャップ(大粒子のエネルギーギャップ23)Egより大きくなる。これにより、光触媒性能を増大できる。また、高温水中で熱力学的に安定なアナターゼ型は、微粒子化と同様の励起バンドギャップを大きくすることができる。
【0087】
【発明の効果】
本発明によれば、原子炉の構造材料表面に、光触媒に貴金属を付与した高機能光触媒を付着させることができ、炉心で発生するチェレンコフ光の光の効果によって構造材料の応力腐食割れ等の腐食を防止することができ、注入点では壁面で付着せず、原子炉の冷却水の環境によって光触媒と貴金属は壁面に付着するので効率よく、また均一に光触媒と貴金属を原子炉の冷却水の環境における壁面に付着させることができ、
もって、原子力プラントの長寿命化、安定運転などを測ることができる原子炉構造材料の光触媒付着方法を提供できる。
【図面の簡単な説明】
【図1】本発明に関わる第1の実施形態を説明するための図であって、原子炉と炉水が通る配管のシステムと注入点を示す図。
【図2】図1の実施形態の作用を説明するための図であって、光触媒や貴金属の炉内での反応、分解を示す模式図。
【図3】本発明に関わる第2の実施形態を説明するための図であって、材料表面に直接機械的に皮膜を生成するシステム図。
【図4】本発明に関わる第3の実施形態を説明するための図であって、分散剤が原子炉内で分解する状態を示す模式図。
【図5】本発明に関わる第4の実施形態を説明するための図であって、光触媒と貴金属を混合して注入するシステムの構成図。
【図6】本発明に関わる第5の実施形態を説明するための図であって、光触媒と貴金属を注入点直前にて混合して注入するシステムの構成図。
【図7】本発明に関わる第6の実施形態を説明するための図であって、光触媒と貴金属を切り替えながら注入するシステムの構成図。
【図8】本発明に関わる第7の実施形態を説明するための図であって、予め原子炉炉外で光触媒に貴金属を付与させておいた高機能光触媒を注入するシステムの構成図。
【図9】本発明に関わる第8の実施形態を説明するための図であって、光触媒の構成元素と貴金属との化合物を注入するシステムの構成図。
【図10】本発明に関わる第9の実施形態を説明するための図であって、燃料棒にあらかじめ光触媒と貴金属を付着させておいたときに再配置によって構造材料に付着することを示した模式図。
【図11】本発明に関わる第10の実施形態を説明するための図であって、水質制御によって付着特性を改善させるためのシステム図。
【図12】本発明に関わる第11の実施形態を説明するための図であって、材料表面温度を上げることによって付着特性を改善させるためのシステム図。
【図13】本発明に関わる第12の実施形態を説明するための図であって、除染を行うことによる光触媒皮膜の安定性向上を表す模式図。
【図14】本発明に関わる第13の実施形態を説明するための図であって、プライマーの効果を示す模式図。
【図15】本発明に関わる第14の実施形態を説明するための図であって、バインダーの効果を示す模式図。
【図16】本発明に関わる第15の実施形態を説明するための図であって、光触媒を小粒径にした効果を示す模式図。
【符号の説明】
1…給水ライン、2…PLRライン、3…CUWライン、4…RHRライン、5…注入点、6…γ線、7…酸素/過酸化水素、8…光触媒、9…貴金属、10…分散剤、11…注入ポンプ、12…注入タンク、13…三方バルブ、14…光触媒を構成する元素、15…燃料棒、16…水質調整タンク、17…ヒーター、18…金属母相、19…酸化皮膜、20…光触媒+貴金属皮膜、21…プライマー、22…バインダー、23…大粒子のバンドギャップ。

Claims (11)

  1. 原子炉の冷却水の循環経路に、光触媒を構成する成分ないしは化学反応により光触媒を生成する粒子と、この粒子表面に付与した防食効果を高める貴金属と、粒子の周りを取り囲み原子炉の冷却水の熱、放射線、光量子、炉水中に含まれる酸化剤、水素によって反応分解する分散剤からなる薬液を注入することにより、前記原子炉内で得られる該光触媒に該金属を付与した高機能光触媒を、前記原子炉の構造材料に付着させることを特徴とする光触媒付着方法。
  2. 光触媒を構成する成分は、TiO2、 ZrO2、PbO、BaTiO3、Bi2O3、ZnO、WO3、SrTiO3、Fe2O3、FeTiO3、KTaO3、MnTiO3、SnO2 の選択された1種類または選択された2種類以上の組み合わせたもの、あるいはこれら光触媒を構成する成分となる金属ないし水酸化物および化合物であるのいずれかであることを特徴とする請求項1に記載の光触媒付着方法。
  3. 前記光触媒を構成する成分は、10nm以下の微粒子を用いることを特徴とする請求項1に記載の光触媒付着方法。
  4. 前記光触媒は、TiO2の結晶形態がアナターゼ型としたことを特徴とする請求項1に記載の光触媒付着方法。
  5. 前記貴金属は、Pt、Rh、Ru、Pd、Ir、Osの選択された1種類であることを特徴とする請求項1に記載の光触媒付着方法。
  6. 前記化学反応させるために、前記光触媒を液体中に安定に懸濁し続けることを目的に混合されている分散剤を用いることを特徴とする請求項1に記載の光触媒付着方法。
  7. 前記原子炉の冷却水の循環経路に、前記光触媒と前記貴金属を混合して注入するか、あるいは前記原子炉の冷却水の循環経路に注入する直前に混合することを特徴とする請求項1に記載の光触媒付着方法。
  8. 前記原子炉の冷却水の循環経路に、前記光触媒と前記貴金属のそれぞれの単体、あるいは前記光触媒と前記貴金属の混合物を前記原子炉の冷却水の循環経路の異なる点から注入することを特徴とする請求項1に記載の光触媒付着方法。
  9. 前記原子炉の冷却水の循環経路に、前記光触媒と前記貴金属を時間的にずらしてあるいはそれぞれを断続的に注入することを特徴とする請求項1に記載の光触媒付着方法。
  10. 前記原子炉の冷却水の循環経路に、前記光触媒を構成する元素と前記貴金属の化合物を注入し、原子炉内で反応、分解させて光触媒と貴金属にして付着させることを特徴とする請求項1に記載の光触媒付着方法。
  11. 前記原子炉の冷却水の循環経路に注入時の炉水中のpH溶存酸素、溶存水素、過酸化水素制御するようにしたことを特徴とする請求項1に記載の光触媒付着方法。
JP2000098027A 2000-03-31 2000-03-31 原子炉構造材料の光触媒付着方法 Expired - Fee Related JP4334106B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098027A JP4334106B2 (ja) 2000-03-31 2000-03-31 原子炉構造材料の光触媒付着方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098027A JP4334106B2 (ja) 2000-03-31 2000-03-31 原子炉構造材料の光触媒付着方法

Publications (2)

Publication Number Publication Date
JP2001276628A JP2001276628A (ja) 2001-10-09
JP4334106B2 true JP4334106B2 (ja) 2009-09-30

Family

ID=18612569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098027A Expired - Fee Related JP4334106B2 (ja) 2000-03-31 2000-03-31 原子炉構造材料の光触媒付着方法

Country Status (1)

Country Link
JP (1) JP4334106B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295426B1 (en) 2003-06-13 2012-10-23 Kabushiki Kaisha Toshiba Method of reducing corrosion of nuclear reactor structural material
JP4528499B2 (ja) * 2003-06-13 2010-08-18 株式会社東芝 原子炉構造材料の腐食低減方法
JP4634709B2 (ja) * 2003-12-26 2011-02-16 株式会社東芝 原子炉構造材の腐食低減方法
US6724854B1 (en) * 2003-06-16 2004-04-20 General Electric Company Process to mitigate stress corrosion cracking of structural materials in high temperature water
JP4557511B2 (ja) * 2003-06-30 2010-10-06 株式会社東芝 原子炉構造部材の腐食抑制方法および装置
US8023609B2 (en) 2004-12-30 2011-09-20 General Electric Company Dielectric coating for surfaces exposed to high temperature water
JP2007232432A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd 自然循環式沸騰水型原子炉のチムニ
JP4612590B2 (ja) * 2006-07-12 2011-01-12 株式会社東芝 燃料被覆管表面からの放射能放出抑制方法
US8976920B2 (en) * 2007-03-02 2015-03-10 Areva Np Nuclear power plant using nanoparticles in emergency systems and related method
US20080219395A1 (en) * 2007-03-06 2008-09-11 Areva Np Nuclear power plant using nanoparticles in emergency situations and related method
US8160197B2 (en) * 2007-03-06 2012-04-17 Areva Np Nuclear power plant using nanoparticies in closed circuits of emergency systems and related method
JP2009222584A (ja) * 2008-03-17 2009-10-01 Hitachi-Ge Nuclear Energy Ltd 沸騰水型原子力プラントの放射線被ばく低減方法及び沸騰水型原子力プラント
KR101278231B1 (ko) 2009-05-29 2013-06-24 가부시끼가이샤 도시바 방사성 물질 부착 억제 방법 및 시스템
JP5676888B2 (ja) * 2010-02-05 2015-02-25 株式会社東芝 薬剤注入システムおよび薬剤注入方法
JP2011095280A (ja) * 2011-02-18 2011-05-12 Hitachi-Ge Nuclear Energy Ltd 沸騰水型原子力プラント
JP5649541B2 (ja) 2011-09-15 2015-01-07 株式会社東芝 腐食抑制剤注入方法
JP6049384B2 (ja) * 2012-10-03 2016-12-21 株式会社東芝 光触媒注入方法および光触媒注入システム
CN102989446B (zh) * 2012-11-08 2015-06-03 浙江理工大学 F-MnTiO3的制备方法
KR101467212B1 (ko) * 2013-03-29 2014-12-01 한국원자력연구원 격납건물의 냉각수 스프레이 시스템

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205977A (ja) * 1992-09-01 1994-07-26 Toto Ltd 光触媒組成物の製造方法及び光触媒組成物
JPH09324253A (ja) * 1996-06-04 1997-12-16 Ishikawajima Harima Heavy Ind Co Ltd 構造材の防食方法及び防食に使用される材料
JP3709623B2 (ja) * 1996-09-19 2005-10-26 石川島播磨重工業株式会社 原子力発電プラント内部構造物の防食方法
JP3582259B2 (ja) * 1996-10-25 2004-10-27 石川島播磨重工業株式会社 防食用チタン酸化膜の作製方法
JP3605969B2 (ja) * 1996-10-31 2004-12-22 石川島播磨重工業株式会社 防食用チタン酸化膜の作製方法および防食用チタン酸化膜
JPH10186085A (ja) * 1996-12-20 1998-07-14 Toshiba Corp 原子炉構造材への貴金属付着装置およびその方法
JPH10339793A (ja) * 1997-06-06 1998-12-22 Toshiba Corp 水質制御システムおよび水質制御方法
JPH11295480A (ja) * 1998-04-13 1999-10-29 Hitachi Ltd 触媒表面の形成方法
JPH11323192A (ja) * 1998-05-15 1999-11-26 Mitsubishi Materials Corp 帯電防止効果のある光触媒膜とその形成用の光触媒塗料
JP4043647B2 (ja) * 1999-06-23 2008-02-06 株式会社東芝 原子炉構造材及び原子炉構造材の腐食低減方法

Also Published As

Publication number Publication date
JP2001276628A (ja) 2001-10-09

Similar Documents

Publication Publication Date Title
JP4334106B2 (ja) 原子炉構造材料の光触媒付着方法
JP4043647B2 (ja) 原子炉構造材及び原子炉構造材の腐食低減方法
US5768330A (en) Co-deposition of palladium during oxide film growth in high-temperature water to mitigate stress corrosion cracking
JP5047535B2 (ja) 高温水にさらされる構造材料の応力腐食割れを軽減する方法
TWI273608B (en) Nuclear power plant, method of forming corrosion-resistant coating therefor, and method of operating nuclear power plant
JP3280036B2 (ja) ステンレス鋼表面の現場パラジウムドーピング又はコーティング
JPH10197684A (ja) 高温水中で低腐食電位を保つための酸化物皮膜導電率の調整方法
JP4094275B2 (ja) 原子炉構造材料の光触媒皮膜形成方法
JP2001124891A (ja) 原子力プラント構造物の表面処理方法および原子力プラント
JP2003232886A (ja) 金属材料の腐食低減方法
JP6619717B2 (ja) 原子力プラントの炭素鋼部材への貴金属の付着方法及び原子力プラントの炭素鋼部材への放射性核種の付着抑制方法
JP2002323596A (ja) 加圧水型原子炉及び付随する高温水環境での腐食、浸食及び応力腐食割れを低減する貴金属触媒
JP4528499B2 (ja) 原子炉構造材料の腐食低減方法
US20060153983A1 (en) Hydrothermal deposition of thin and adherent metal oxide coatings for high temperature corrosion protection
JP3749731B2 (ja) 高温水中で低腐食電位を保つための酸化物皮膜導電率の調整
WO1999017302A1 (fr) Centrale nucleaire et procede de regulation de la qualite de l'eau dans cette derniere
JP2006226898A (ja) 防食性に優れた機能性被覆の形成法
TWI277102B (en) Method of reducing corrosion of nuclear reactor structural material
JP3550544B2 (ja) 腐食及び応力腐食割れを減少するために金属酸化物表面に加える金属の量を制御する温度に基づく方法
JP2022169271A (ja) 原子炉構造材の応力腐食割れ抑制方法
JP4309105B2 (ja) タービン系の線量低減方法
JP4343092B2 (ja) 原子炉材料表面の改質方法及びその装置
JP2012145378A (ja) 放射性物質付着抑制方法
JP2015161664A (ja) 原子力プラントの構造部材の表面処理方法、原子力プラントの構造部材、原子力プラント、原子力プラントの防食材料注入装置、及び原子力プラントの構造部材の表面処理装置
MXPA00005257A (en) Temperature based method for controlling the amount of metal applied to metal oxide surfaces to reduce corrosion and stress corrosion cracking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees