JP4333879B2 - Non-contact suction jig and non-contact chuck device - Google Patents

Non-contact suction jig and non-contact chuck device Download PDF

Info

Publication number
JP4333879B2
JP4333879B2 JP2004301493A JP2004301493A JP4333879B2 JP 4333879 B2 JP4333879 B2 JP 4333879B2 JP 2004301493 A JP2004301493 A JP 2004301493A JP 2004301493 A JP2004301493 A JP 2004301493A JP 4333879 B2 JP4333879 B2 JP 4333879B2
Authority
JP
Japan
Prior art keywords
contact
wafer
recess
fluid
suction jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004301493A
Other languages
Japanese (ja)
Other versions
JP2006114748A (en
Inventor
竜児 塚本
守 石井
弘徳 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004301493A priority Critical patent/JP4333879B2/en
Publication of JP2006114748A publication Critical patent/JP2006114748A/en
Application granted granted Critical
Publication of JP4333879B2 publication Critical patent/JP4333879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、吸着対象物を非接触で運搬、保持および位置決めする装置に関するものである。   The present invention relates to an apparatus for transporting, holding and positioning an object to be attracted in a non-contact manner.

半導体チップの素材に用いられるウエハは、その製造段階において次工程や同一工程内において多数の移動を必要とする。近年の半導体製品の多様化によるウエハ径の大型化やウエハ厚の薄型化はそのようなウエハ移動工程においてウエハを機械的にチャッキングもしくは吸着させることを困難にしている。つまり、機械的なチャッキングや吸着はウエハに歪の発生や塵の付着を引き起こしやすく、大型かつ薄型のウエハの運搬方式として必ずしも適しているとはいえない。   A wafer used as a material for a semiconductor chip requires many movements in the next process or the same process in the manufacturing stage. With the recent diversification of semiconductor products, an increase in wafer diameter and a reduction in wafer thickness make it difficult to mechanically chuck or attract the wafer in such a wafer moving process. In other words, mechanical chucking and adsorption are liable to cause distortion and adhesion of dust to the wafer, and are not necessarily suitable as a method for transporting large and thin wafers.

そのため、近年、機械的なチャッキングおよび吸着ではなく、非接触式のチャック装置が実用化されつつある。例えば、特許文献1には、負圧を利用してウエハを吸着させる装置が開示されている。かかる装置では、チャックに円形の凹部を形成し、その凹部内周面に空気の噴出孔を設ける。そして、空気を円周方向に沿って吐出させ、旋回流が引き起こす負圧を利用してウエハを非接触状態で吸着させていた。
特開2002−64130号公報
Therefore, in recent years, a non-contact type chuck device is being put into practical use instead of mechanical chucking and adsorption. For example, Patent Document 1 discloses an apparatus for adsorbing a wafer using negative pressure. In such an apparatus, a circular recess is formed in the chuck, and an air ejection hole is provided on the inner peripheral surface of the recess. Then, air is discharged along the circumferential direction, and the wafer is adsorbed in a non-contact state by using the negative pressure caused by the swirling flow.
JP 2002-64130 A

しかしながら、上述した従来の非接触式チャック装置では、負圧を利用して被運搬物を保持しているため、運搬すべきウエハの重量が大きい場合には、空気の流量を増加させずに運搬する事が困難であった。その一方で、空気の流量を増加させると、静電気の発生により半導体デバイス不良率が著しく高くなり、製造コストが高くなってしまう問題が生じる。   However, in the conventional non-contact type chuck device described above, since the object to be conveyed is held using negative pressure, if the weight of the wafer to be conveyed is large, it is conveyed without increasing the air flow rate. It was difficult to do. On the other hand, when the flow rate of air is increased, there is a problem that the rate of semiconductor device failure is significantly increased due to the generation of static electricity, and the manufacturing cost is increased.

また、負圧を用いて吸着する場合、ウエハの重心がチャック中心からずれているとウエハが回転してしまい、ウエハを正確に位置決めできなくなるということがある。   Further, when attracting using negative pressure, if the center of gravity of the wafer is deviated from the center of the chuck, the wafer may rotate and the wafer cannot be positioned accurately.

本発明は、このような問題に鑑みてなされたものであり、空気流量に対して効率よく負圧を発生させることができる非接触吸着治具及び非接触チャック装置を提供することである。   This invention is made | formed in view of such a problem, and is providing the non-contact adsorption jig and non-contact chuck apparatus which can generate | occur | produce a negative pressure efficiently with respect to an air flow rate.

上述した課題を解決するため、本発明は、吸着対象物を非接触状態で保持する非接触吸着治具であって、吸着面に開口する円柱状の凹部と、該凹部に流体を噴射する流体通路とを有し、前記流体通路の幅Hと前記凹部の半径Rとは、0.1≦H/R≦0.5を満たすように設定されており、前記流体通路の軸心CLは前記凹部の径線Dと直交するように設けられており、軸心CL及び径線Dの交点Pに関する、該凹部の中心Oを原点とする座標Sは、0.25R≦S≦0.80Rを満たすように設定されている、ことを特徴とする。好適には、前記座標S=0.5Rである。   In order to solve the above-described problem, the present invention is a non-contact suction jig for holding a suction target object in a non-contact state, and includes a cylindrical recess opening on a suction surface and a fluid ejecting fluid to the recess. And the width H of the fluid passage and the radius R of the recess are set to satisfy 0.1 ≦ H / R ≦ 0.5, and the axis CL of the fluid passage is The coordinates S, which is provided so as to be orthogonal to the diameter line D of the concave portion and the origin O is the center O of the concave portion with respect to the intersection P of the axis CL and the diameter line D, satisfies 0.25R ≦ S ≦ 0.80R. It is set so that it may satisfy | fill. Preferably, the coordinate S = 0.5R.

また、本発明は、同課題を解決するための非接触チャック装置も提供する。   The present invention also provides a non-contact chuck device for solving the same problem.

本発明に係る非接触チャック装置は、少なくとも3つの非接触吸着治具と、前記非接触吸着治具毎に流体の噴射流量を制御する流量個別制御手段とを備え、それら非接触吸着治具は、上述した構成を備える。   The non-contact chuck apparatus according to the present invention includes at least three non-contact suction jigs and flow rate individual control means for controlling the fluid injection flow rate for each of the non-contact suction jigs. The configuration described above is provided.

本発明に係る非接触チャック装置によれば、空気流量に対して効率よく負圧を発生させることができるため、静電気による不良デバイス発生率を著しく抑制することができ、且つ、従来よりも省エネ化、小型化を図ることができる。   According to the non-contact chuck apparatus according to the present invention, negative pressure can be efficiently generated with respect to the air flow rate, so that the occurrence rate of defective devices due to static electricity can be remarkably suppressed and energy saving can be achieved as compared with the prior art. Therefore, the size can be reduced.

同様に、本発明に係る非接触チャック装置によれば、空気流量に対して効率よく負圧を発生させることができるため、静電気による不良デバイス発生率を著しく抑制しながら、ウエハの回転および位置を制御することができる。さらに、一つ一つの非接触吸着治具が従来よりも省エネ化、小型化できるため、非接触チャック装置全体として大幅に省エネ化、小型化を達成することができる。   Similarly, according to the non-contact chuck apparatus according to the present invention, since negative pressure can be efficiently generated with respect to the air flow rate, the rotation and position of the wafer can be adjusted while significantly suppressing the defective device occurrence rate due to static electricity. Can be controlled. Furthermore, since each non-contact suction jig can save energy and be smaller than before, the entire non-contact chuck device can achieve significant energy saving and downsizing.

なお、本発明の他の特徴及びそれによる作用効果は、添付図面を参照し、実施の形態によって更に詳しく説明する。   The other features of the present invention and the operational effects thereof will be described in more detail with reference to the accompanying drawings.

以下、本発明に係る実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。   Embodiments according to the present invention will be described below with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.

図1は、本実施の形態に係る非接触吸着治具の下方からの斜視図であり、図2及び図3はそれぞれ、図1及び図2のII−II線及びIII−III線に沿う断面図である。非接触吸着治具1は、中央に凹部3を備えた有底円筒状部材により構成されている。凹部3は、円柱状に形成されており、非接触吸着治具1の下面(吸着面)1aに開口している。   FIG. 1 is a perspective view from below of a non-contact suction jig according to the present embodiment, and FIGS. 2 and 3 are cross sections taken along lines II-II and III-III of FIGS. 1 and 2, respectively. FIG. The non-contact suction jig 1 is composed of a bottomed cylindrical member having a recess 3 at the center. The recess 3 is formed in a columnar shape, and is open to the lower surface (suction surface) 1a of the non-contact suction jig 1.

非接触吸着治具1には吸着面とほぼ平行に延長する一対の流体通路5が形成されている。一対の流体通路5は、矩形の流路を有している。さらに、一対の流体通路5は、相互に軸心CLが平行関係に設けられており、それぞれ軸心CLが凹部3(非接触吸着治具1)の径線Dと直交している。   The non-contact suction jig 1 is formed with a pair of fluid passages 5 extending substantially parallel to the suction surface. The pair of fluid passages 5 have rectangular flow paths. Further, the pair of fluid passages 5 are provided so that the axes CL are parallel to each other, and the axes CL are orthogonal to the radial line D of the recess 3 (non-contact suction jig 1).

一対の流体通路5の流体導入孔7はそれぞれ、非接触吸着治具1の外周面に開口している。また、流体通路5の流体流入孔9はそれぞれ、凹部3を画定する非接触吸着治具1の内周面に開口している。   The fluid introduction holes 7 of the pair of fluid passages 5 are opened on the outer peripheral surface of the non-contact suction jig 1. In addition, each of the fluid inflow holes 9 of the fluid passage 5 opens on the inner peripheral surface of the non-contact suction jig 1 that defines the recess 3.

流体通路5はそれぞれ、その軸心CLに亘って流路面積が一定な通路である。流体通路5における流路の幅Hは、凹部3の半径を符号Rとするとき、0.1≦H/R≦0.5の条件式を満たすように設定されている。   Each of the fluid passages 5 is a passage having a constant passage area over the axis CL. The width H of the flow path in the fluid passage 5 is set so as to satisfy the conditional expression of 0.1 ≦ H / R ≦ 0.5, where R is the radius of the recess 3.

さらに、図4をもとに流体通路5の形成位置について説明する。図4に示されるように、凹部3(非接触吸着治具1)の中心Oを原点として相互に直行するようにX軸及びY軸をとる。また、Y軸は、流体通路5の軸心CLと平行となるようにとり、X軸は、軸心CLと直交するようにとる。   Furthermore, the formation position of the fluid passage 5 is demonstrated based on FIG. As shown in FIG. 4, the X axis and the Y axis are taken so as to be orthogonal to each other with the center O of the recess 3 (non-contact suction jig 1) as the origin. Further, the Y axis is set to be parallel to the axis CL of the fluid passage 5, and the X axis is set to be orthogonal to the axis CL.

このような座標において、流体通路5の軸心CLとX軸とが交差する点Pの位置は、そのX座標を符号Sとしたとき、0.25R≦S≦0.80Rの条件式を満たすように設定されている。   In such coordinates, the position of the point P where the axis CL of the fluid passage 5 intersects the X axis satisfies the conditional expression of 0.25R ≦ S ≦ 0.80R, where the X coordinate is a symbol S. Is set to

次に、以上のような構成を有する非接触吸着治具の作用について説明する。図5において矢印11で示されるように、所定の空気供給装置から流体導入孔7へ空気が供給されると、その空気は流体通路5を介して流体流入孔9から凹部3に噴出される。凹部3内においては、上記のような条件・構成で設けられた一対の流体通路5から空気が噴射されることで、交互に強められ同一方向に旋回する旋回流13が生じる。かかる旋回流13によって凹部3内にはエゼクタ効果に基づく負圧が発生し、図5に示されるように、非接触吸着治具1の下面1aにウエハ(吸着対象物)15が吸引され保持される。   Next, the operation of the non-contact suction jig having the above configuration will be described. As indicated by an arrow 11 in FIG. 5, when air is supplied from a predetermined air supply device to the fluid introduction hole 7, the air is jetted from the fluid inflow hole 9 to the recess 3 through the fluid passage 5. In the recess 3, air is jetted from the pair of fluid passages 5 provided under the above-described conditions and configuration, so that a swirl flow 13 that is alternately strengthened and swirls in the same direction is generated. Due to the swirling flow 13, a negative pressure based on the ejector effect is generated in the recess 3, and as shown in FIG. 5, the wafer (suction target) 15 is sucked and held on the lower surface 1 a of the non-contact suction jig 1. The

さらに、凹部3内の旋回流13は、非接触吸着治具1の平坦状且つ環状の下面1aと、それに対向するウエハ15の上面との間から高速の噴流17となって流出するので、ベルヌーイ効果によって非接触吸着治具1の下面1aとウエハ15の間は負圧になる。   Further, since the swirling flow 13 in the recess 3 flows out as a high-speed jet 17 from between the flat and annular lower surface 1a of the non-contact suction jig 1 and the upper surface of the wafer 15 opposed thereto, Bernoulli. Due to the effect, a negative pressure is generated between the lower surface 1 a of the non-contact suction jig 1 and the wafer 15.

エゼクタ効果やベルヌーイ効果により凹部3内や非接触吸着治具1の下面1aとウエハ15との間が負圧になると、ウエハ15は相対的に高圧となる周囲の大気圧に押されて非接触吸着治具1の下面1a側に吸引され、それと同時に、その非接触吸着治具1の下面1aとウエハ15の間に介在する空気の圧力により反発力を受け、それらのバランスによってウエハ15は非接触吸着治具1の下面1aと微細な間隔をもって対向した状態で、すなわち非接触状態で保持される。   When the negative pressure is generated in the recess 3 or between the lower surface 1a of the non-contact suction jig 1 and the wafer 15 due to the ejector effect or the Bernoulli effect, the wafer 15 is pushed by the surrounding atmospheric pressure, which is a relatively high pressure, and is not in contact. At the same time, it is attracted to the lower surface 1a side of the suction jig 1, and at the same time, a repulsive force is received by the pressure of the air interposed between the lower surface 1a of the non-contact suction jig 1 and the wafer 15, and the wafer 15 is not non-balanced by their balance It is held in a state facing the lower surface 1a of the contact suction jig 1 with a fine interval, that is, in a non-contact state.

ここで、従来であれば、運搬すべきウエハの重量が大きい場合には、空気の流量を増加せざるを得ない一方、空気の流量を増加させると、静電気の発生により半導体デバイス不良率が著しく高くなり、製造コストが高くなってしまう問題があった。しかしながら、本発明においては、以下に説明するように空気流量に対して効率よく負圧を発生させることで上記問題を解決している。   Here, conventionally, when the weight of the wafer to be transported is large, the air flow rate must be increased. On the other hand, if the air flow rate is increased, the semiconductor device failure rate is significantly increased due to the generation of static electricity. There is a problem that the manufacturing cost becomes high. However, in the present invention, the above problem is solved by efficiently generating a negative pressure with respect to the air flow rate as described below.

図6に、吸着力を一定にしたときの本発明の比H/Rと不良率との関係を示す。H/Rが0.1未満のときは吸着力を保持するために空気の流量を上げなくてはならず、それにより静電気が発生するために不良率が上がる。不良品発生率はH/Rが0.3付近のときに最小値を示す。逆に、H/Rが0.5を超える場合は、凹部3で旋回流がきれいに整流されず、0.1未満のときと同様に空気の流量を上げることとなり、不良率が上がる。   FIG. 6 shows the relationship between the ratio H / R of the present invention and the defect rate when the suction force is constant. When H / R is less than 0.1, the flow rate of air must be increased in order to maintain the attractive force, thereby increasing the defect rate because static electricity is generated. The defective product occurrence rate shows the minimum value when H / R is around 0.3. Conversely, when H / R exceeds 0.5, the swirl flow is not rectified cleanly in the recess 3, and the air flow rate is increased as in the case of less than 0.1, and the defect rate increases.

大型ウエハの運搬における半導体デバイス不良率が3%を超えると、同じ径のウエハを一般的な接触型チャックで運搬したときよりも不良発生率が大きくなってしまい、非接触型チャックの優位性が保てなくなる。   If the semiconductor device failure rate in transporting large wafers exceeds 3%, the failure rate will be greater than when a wafer with the same diameter is transported with a general contact chuck, and the superiority of non-contact chucks I can't keep it.

つまり、大型ウエハ運搬において半導体デバイスの不良率を接触型チャックと同じもしくはそれ以下にしたまま、非接触チャックの非接触であることの優位性を保つためには0.1≦H/R≦0.5という条件を満たさなくてはいけない。   In other words, 0.1 ≦ H / R ≦ 0 in order to maintain the superiority of non-contact chuck non-contact while keeping the defect rate of the semiconductor device the same as or lower than that of the contact chuck in transporting large wafers. .5 must be met.

本出願人の鋭意検討によれば、不良発生率は負圧比に関連していることが分かった。図7に、図6と同条件で得られた負圧比と比H/Rとの関係を示す。ウエハ15に作用する負圧はH/Rの値が0.3付近にあるとき最も大きくなる。つまり、前述のように、H/Rの関係は旋回流の流れに影響を与え、H/Rの値を調整することでウエハを吸着させるための空気量を減少させることができ、ウエハへの静電気発生抑制による不良率の低下だけでなく、装置の小型化および省エネ化を達成することができる。これは、換言するならば、図7において負圧比が0.6に達しない場合には、大型ウエハの運搬における半導体デバイス不良率が3%を超え、前述した従来の問題を解消することが困難になることを意味する。   According to the earnest study by the present applicant, it has been found that the defect occurrence rate is related to the negative pressure ratio. FIG. 7 shows the relationship between the negative pressure ratio and the ratio H / R obtained under the same conditions as in FIG. The negative pressure acting on the wafer 15 is greatest when the value of H / R is around 0.3. That is, as described above, the H / R relationship affects the flow of the swirling flow, and the amount of air for adsorbing the wafer can be reduced by adjusting the value of H / R. Not only can the failure rate be reduced by suppressing the generation of static electricity, but also miniaturization and energy saving of the device can be achieved. In other words, if the negative pressure ratio does not reach 0.6 in FIG. 7, the semiconductor device failure rate in transporting large wafers exceeds 3%, and it is difficult to solve the above-described conventional problems. It means to become.

さらに、上記の比H/R=0.3で固定したときの、点Pの位置とデバイス不良発生率との関係を図8に示す。図8から分かるように、ウエハの不良発生率は点Pの位置が、凹部3の中心と径上の点の中間地点にあるとき、つまりX座標Sが0.5Rの位置にあるときに最も小さくなる。つまり、径と質量が同じウエハであれば、点Pの位置をR/2付近にすることによりウエハを吸着させるための空気流量を減少させることができ、ウエハへの静電気発生による不良を抑制できる。   Further, FIG. 8 shows the relationship between the position of the point P and the device defect occurrence rate when the ratio H / R is fixed at 0.3. As can be seen from FIG. 8, the wafer defect rate is highest when the position of the point P is at the midpoint between the center of the recess 3 and the point on the diameter, that is, when the X coordinate S is at the position of 0.5R. Get smaller. That is, if the wafer has the same diameter and mass, the air flow rate for adsorbing the wafer can be reduced by setting the position of the point P near R / 2, and defects due to the generation of static electricity on the wafer can be suppressed. .

また、半導体デバイス不良率が3%を超えないためには、流体通路5に関する点Pの位置は、X座標Sが少なくとも0.25R≦S≦0.80Rである条件式を満たすように設定する必要がある。   In order to prevent the semiconductor device defect rate from exceeding 3%, the position of the point P with respect to the fluid passage 5 is set so as to satisfy the conditional expression in which the X coordinate S is at least 0.25R ≦ S ≦ 0.80R. There is a need.

さらに、X座標Sが少なくとも0.25R≦S≦0.80Rである場合、半導体デバイス不良率が3%を超えないことは、図4に示す点Pの位置と負圧比との関係によっても現れている。すなわち、図4において、点Pの位置が凹部3の中心から0.5Rまでは外周方向に向かうほど大きくなり、0.5R以降は外周へ向かうほど小さくなる。そして、X座標Sが少なくとも0.25R≦S≦0.80Rである場合には、常に負圧比0.6以上の状態を維持している。すなわち、図6及び図7の双方の結果からも分かるように、0.25R≦S≦0.80Rである場合には、負圧比が0.6以上であり半導体デバイス不良率が3%以下であることが理解できる。これに対して、前述した特許文献1に記載の構成では、流体通路が凹部の外周にほぼ接するような位置にあり、本願の負圧スケールでいうと負圧比0.6を割り込むこととなり、大型のウエハを非接触吸着するための十分な負圧を得られない。   Further, when the X coordinate S is at least 0.25R ≦ S ≦ 0.80R, the fact that the semiconductor device defect rate does not exceed 3% also appears due to the relationship between the position of the point P and the negative pressure ratio shown in FIG. ing. That is, in FIG. 4, the position of the point P increases from the center of the recess 3 to 0.5R toward the outer periphery, and decreases from 0.5R toward the outer periphery. When the X coordinate S is at least 0.25R ≦ S ≦ 0.80R, the negative pressure ratio of 0.6 or more is always maintained. That is, as can be seen from the results of both FIG. 6 and FIG. 7, when 0.25R ≦ S ≦ 0.80R, the negative pressure ratio is 0.6 or more and the semiconductor device failure rate is 3% or less. I can understand. On the other hand, in the configuration described in Patent Document 1 described above, the fluid passage is at a position almost in contact with the outer periphery of the recess, and the negative pressure ratio of the present application is 0.6, which is a large size. It is not possible to obtain a sufficient negative pressure for non-contact adsorption of the wafer.

このように、比H/Rの調整によって著しく減少できる不良品発生率は、点PのX座標Sによっても調整することができ、点Pの位置も非接触という利点を持ちながら接触型チャックの不良品発生率をより低い値にできるかどうかを決める重要な因子である。   In this way, the defective product generation rate that can be significantly reduced by adjusting the ratio H / R can be adjusted by the X coordinate S of the point P. This is an important factor that determines whether or not the defect rate can be lowered.

以上のように、本実施の形態では、流体通路5に関する比H/R及び座標Sを特定の条件にすることによって、ウエハ15を従来よりも少ない空気流量で保持することができるため、静電気による不良デバイス発生率を著しく抑制できる。また、従来の非接触運搬装置に比べてチャック装置の省エネ化、小型化が達成できる。   As described above, in the present embodiment, by setting the ratio H / R and the coordinate S relating to the fluid passage 5 to specific conditions, the wafer 15 can be held at a lower air flow rate than in the past, and therefore, due to static electricity. The defective device occurrence rate can be remarkably suppressed. Further, energy saving and downsizing of the chuck device can be achieved as compared with the conventional non-contact conveyance device.

次に、本発明を、非接触チャック装置として実施した場合の実施の形態について図9に基づいて説明する。非接触チャック装置101は、図中一点鎖線で示すように、ウエハ115を吸着して支持し、また、ウエハを並進運動や回転運動させることで位置決めする。   Next, an embodiment in which the present invention is implemented as a non-contact chuck device will be described with reference to FIG. The non-contact chuck device 101 adsorbs and supports the wafer 115 as shown by a one-dot chain line in the drawing, and positions the wafer by translational movement or rotational movement.

本実施の形態に係る非接触チャック装置101は、空気供給源121、空気切替え制御弁123、空気流量を制御する流量制御回路125及び非接触吸着板127を備えている。非接触吸着板127には、上述した実施の形態に係る非接触吸着治具1が4つ設けられている。非接触吸着板127は平面視四角形状に構成されており、非接触吸着治具1はそれぞれ非接触吸着板127の対応する角部に配置されている。空気切替え制御弁123及び流量制御回路125は、非接触吸着治具1毎に空気(流体)の流量を制御することができる流量個別制御手段として機能する。   The non-contact chuck device 101 according to the present embodiment includes an air supply source 121, an air switching control valve 123, a flow rate control circuit 125 for controlling the air flow rate, and a non-contact adsorption plate 127. The non-contact suction plate 127 is provided with four non-contact suction jigs 1 according to the above-described embodiments. The non-contact suction plate 127 is formed in a square shape in plan view, and the non-contact suction jig 1 is disposed at a corresponding corner of the non-contact suction plate 127, respectively. The air switching control valve 123 and the flow rate control circuit 125 function as individual flow rate control means that can control the flow rate of air (fluid) for each non-contact adsorption jig 1.

続いて、非接触チャック装置101の作用について説明する。空気供給源121から空気切替え制御弁123を通じて非接触吸着板127に供給された空気は、4つの非接触吸着治具1から放出されてウエハ115との間に負圧を生じ、ウエハ115を吸着する。このとき、非接触吸着板127に設置されている非接触吸着治具1の少なくとも1つの空気供給をOFFあるいは流量を変える事でウエハ115を僅かに傾かせ、ウエハ115における静止釣合状態を崩すことにより、ウエハ115を非接触吸着板12に沿って並進的に移動させることができる。また、そのような制御を行う対象となる非接触吸着治具1をローテーションさせることによって、ウエハ115を回転的に移動させ、ウエハ115の角度位置決めもすることができる。   Next, the operation of the non-contact chuck device 101 will be described. The air supplied from the air supply source 121 to the non-contact suction plate 127 through the air switching control valve 123 is discharged from the four non-contact suction jigs 1 and generates a negative pressure between the wafer 115 and sucks the wafer 115. To do. At this time, the wafer 115 is slightly tilted by turning off at least one air supply of the non-contact suction jig 1 installed on the non-contact suction plate 127 or changing the flow rate, and the stationary balance state in the wafer 115 is destroyed. Accordingly, the wafer 115 can be translated along the non-contact suction plate 12. Further, by rotating the non-contact suction jig 1 to be subjected to such control, the wafer 115 can be rotationally moved and the wafer 115 can be positioned at an angle.

このように、本実施の形態では、複数の非接触吸着治具1に空気切替え制御弁および制御回路を設けるだけで、ウエハの回転および位置を制御することができ、従来の非接触チャック装置にない特徴を持っている。さらに、空気流量に対して効率よく負圧を発生させることができるため、静電気による不良デバイス発生率を著しく抑制しながら、ウエハの回転および位置を制御することができる。さらに、一つ一つの非接触吸着治具1が従来よりも省エネ化、小型化できるため、非接触チャック装置101全体として大幅に省エネ化、小型化を達成することができる。また、非接触状態でウエハを回転および位置決めさせることができるため、発塵や振動をほとんど発生させないでウエハを所望の位置に設置することができる。   As described above, in the present embodiment, the rotation and position of the wafer can be controlled only by providing the plurality of non-contact suction jigs 1 with the air switching control valve and the control circuit. Has no features. Further, since the negative pressure can be efficiently generated with respect to the air flow rate, the rotation and position of the wafer can be controlled while significantly suppressing the defective device occurrence rate due to static electricity. Furthermore, since each non-contact suction jig 1 can save energy and be smaller than the conventional one, the entire non-contact chuck device 101 can achieve significant energy saving and downsizing. Further, since the wafer can be rotated and positioned in a non-contact state, the wafer can be placed at a desired position with little dust generation or vibration.

以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。   Although the contents of the present invention have been specifically described with reference to the preferred embodiments, various modifications can be made by those skilled in the art based on the basic technical idea and teachings of the present invention. It is self-explanatory.

例えば、非接触吸着治具に設けられた流体通路の流路形状は、矩形に限らず円形状や多角形状などであってもよい。また、1つの非接触吸着治具に形成される流体通路の数は、1つであってもよく、あるいは、3つ以上であってもよい。また、非接触チャック装置において設けられる非接触吸着治具は、4つに限定されず、少なくとも3つ以上であれば適宜改変することができる。さらに、非接触吸着治具の凹部内に噴射される流体は空気に限定されるものではない。   For example, the flow path shape of the fluid passage provided in the non-contact suction jig is not limited to a rectangular shape, and may be a circular shape or a polygonal shape. Further, the number of fluid passages formed in one non-contact suction jig may be one, or may be three or more. Further, the number of non-contact suction jigs provided in the non-contact chuck device is not limited to four, and can be appropriately modified as long as it is at least three. Furthermore, the fluid injected into the recess of the non-contact suction jig is not limited to air.

本発明の実施の形態に係る非接触吸着治具の下方からの斜視図である。It is a perspective view from the lower part of the non-contact adsorption jig concerning an embodiment of the invention. 図2は、図1のII−II線に沿う断面図である。2 is a cross-sectional view taken along line II-II in FIG. 図3は、図2のIII−III線に沿う断面図である。3 is a cross-sectional view taken along line III-III in FIG. 比H/R=0.3における流体通路の形成位置、及びそれと負圧比との関係を示す図である。It is a figure which shows the formation position of the fluid channel in ratio H / R = 0.3, and the relationship with it and a negative pressure ratio. 非接触吸着治具によるウエハの吸着状態を示す図である。It is a figure which shows the adsorption state of the wafer by a non-contact adsorption jig. 吸着力を一定として、S=0.5Rにおける流体通路に関する比H/Rと不良率との関係を示す図である。It is a figure which shows the relationship between ratio H / R regarding the fluid path in S = 0.5R, and a defect rate, making adsorption | suction power constant. S=0.5Rにおける流体通路に関する比H/Rと負圧比との関係を示す図である。It is a figure which shows the relationship between ratio H / R regarding a fluid channel in S = 0.5R, and negative pressure ratio. 吸着力を一定として、比H/R=0.3における流体通路の形成位置と不良率との関係を示す図である。It is a figure which shows the relationship between the formation position of a fluid channel | path, and a defect rate in ratio H / R = 0.3, making adsorption power constant. 本発明の実施の形態に係る非接触チャック装置の構成を示す図である。It is a figure showing composition of a non-contact chuck device concerning an embodiment of the invention.

符号の説明Explanation of symbols

1 非接触吸着治具
3 凹部
5 流体通路
15、115 ウエハ(吸着対象物)
101 非接触チャック装置
123 空気切替え制御弁(流量個別制御手段)
125 流量制御回路(流量個別制御手段)
DESCRIPTION OF SYMBOLS 1 Non-contact adsorption jig 3 Recessed part 5 Fluid path 15, 115 Wafer (object to be adsorbed)
101 Non-contact chuck device 123 Air switching control valve (flow rate individual control means)
125 Flow control circuit (individual flow control means)

Claims (3)

吸着対象物を非接触状態で保持する非接触吸着治具であって、
吸着面に開口する円柱状の凹部と、該凹部に流体を噴射する流体通路とを有し、
前記流体通路の幅Hと前記凹部の半径Rとは、
0.1≦H/R≦0.5を満たすように設定されており、
前記流体通路の軸心CLは前記凹部の径線Dと直交するように設けられており、軸心CL及び径線Dの交点Pに関する、該凹部の中心Oを原点とする座標Sは、
0.25R≦S≦0.80Rを満たすように設定されている、
ことを特徴とする非接触吸着治具。
A non-contact suction jig for holding a suction object in a non-contact state,
A cylindrical recess opening in the suction surface, and a fluid passage for injecting fluid into the recess,
The width H of the fluid passage and the radius R of the recess are:
It is set to satisfy 0.1 ≦ H / R ≦ 0.5,
The axis CL of the fluid passage is provided so as to be orthogonal to the radial line D of the recess, and the coordinate S with respect to the intersection P of the axis CL and the radial line D with the center O of the recess as the origin is
Set to satisfy 0.25R ≦ S ≦ 0.80R,
A non-contact suction jig characterized by that.
前記座標S=0.5Rであることを特徴とする請求項1に記載の非接触吸着治具。   The non-contact suction jig according to claim 1, wherein the coordinates S = 0.5R. 請求項1又は2に記載の非接触吸着治具を少なくとも3つ備え、
前記非接触吸着治具毎に流体の噴射流量を制御する流量個別制御手段を備えた、
ことを特徴とする非接触チャック装置。
Comprising at least three non-contact suction jigs according to claim 1 or 2,
Provided with individual flow rate control means for controlling the ejection flow rate of the fluid for each non-contact adsorption jig,
A non-contact chuck device.
JP2004301493A 2004-10-15 2004-10-15 Non-contact suction jig and non-contact chuck device Expired - Fee Related JP4333879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301493A JP4333879B2 (en) 2004-10-15 2004-10-15 Non-contact suction jig and non-contact chuck device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301493A JP4333879B2 (en) 2004-10-15 2004-10-15 Non-contact suction jig and non-contact chuck device

Publications (2)

Publication Number Publication Date
JP2006114748A JP2006114748A (en) 2006-04-27
JP4333879B2 true JP4333879B2 (en) 2009-09-16

Family

ID=36383008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301493A Expired - Fee Related JP4333879B2 (en) 2004-10-15 2004-10-15 Non-contact suction jig and non-contact chuck device

Country Status (1)

Country Link
JP (1) JP4333879B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176637A (en) * 2005-12-27 2007-07-12 Harmotec Corp Non-contact conveying device
JP2010533970A (en) * 2007-07-19 2010-10-28 セントロターム・サーマル・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Non-contact transfer device for planar substrates
JP2009028862A (en) * 2007-07-27 2009-02-12 Ihi Corp Non-contact carrier
JP2009119562A (en) * 2007-11-15 2009-06-04 Izumi Akiyama Noncontact type conveying holding tool, and noncontact type conveying holding device
JP4982875B2 (en) * 2008-07-03 2012-07-25 Smc株式会社 Non-contact pad for sheet-like article
JP2013179137A (en) * 2012-02-28 2013-09-09 Tokyo Institute Of Technology Force generator
JP2017052056A (en) * 2015-09-10 2017-03-16 学校法人幾徳学園 Adsorption structure
BR112020011453A2 (en) 2017-12-26 2020-11-24 Kuraray Co., Ltd molded body formed from curable composition

Also Published As

Publication number Publication date
JP2006114748A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP4669252B2 (en) Swirl flow forming body and non-contact transfer device
JP3981241B2 (en) Swirl flow forming body and non-contact transfer device
US9539589B2 (en) Substrate processing apparatus, and nozzle
CN101393850B (en) Method of processing a substrate, spin unit for supplying processing materials to a substrate, and apparatus for processing a substrate
WO2015083615A1 (en) Holding device, holding system, control method, and conveyance device
US9892955B2 (en) Substrate holding/rotating device, substrate processing apparatus including the same, and substrate processing method
JP6292842B2 (en) Substrate holding device
JP4333879B2 (en) Non-contact suction jig and non-contact chuck device
WO2005076342A1 (en) Non-contact carrier device
WO2017056971A1 (en) Substrate processing method and substrate processing device
JP2010258129A (en) Suction and holding device and method and carrying device and method
JP2018058139A (en) Robot hand and transfer robot
US7360322B2 (en) Non-contacting conveyance equipment
CN115424974B (en) Chuck structure of semiconductor cleaning device, semiconductor cleaning device and method
JP2004140058A (en) Wafer conveying device and wafer processing apparatus
JPH0750336A (en) Differential suction type vacuum chuck
JPH0717628A (en) Method and device for conveying thin plate
KR102012605B1 (en) Substrate treatment method and substrate treatment device
JP2010264579A (en) Substrate sucking device
JP2010093190A (en) Substrate processing device
KR100630360B1 (en) Non contact transfer unit
TW202226437A (en) Substrate support device capable of preventing processing fluid from reaching lower surface and edge of substrate
JP2020155590A (en) Substrate processing device
JP2017069264A (en) Substrate holding device
JP3971282B2 (en) Substrate holding mechanism, substrate processing apparatus, and substrate processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees