JP4333280B2 - Plastic bottle containers - Google Patents

Plastic bottle containers Download PDF

Info

Publication number
JP4333280B2
JP4333280B2 JP2003301683A JP2003301683A JP4333280B2 JP 4333280 B2 JP4333280 B2 JP 4333280B2 JP 2003301683 A JP2003301683 A JP 2003301683A JP 2003301683 A JP2003301683 A JP 2003301683A JP 4333280 B2 JP4333280 B2 JP 4333280B2
Authority
JP
Japan
Prior art keywords
bottle
bottle container
preform
heel
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003301683A
Other languages
Japanese (ja)
Other versions
JP2005067683A (en
Inventor
耕二 前田
秀彦 勝田
正樹 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2003301683A priority Critical patent/JP4333280B2/en
Publication of JP2005067683A publication Critical patent/JP2005067683A/en
Application granted granted Critical
Publication of JP4333280B2 publication Critical patent/JP4333280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、ポリエチレンテレフタレート等からなるプリフォーム(パリソン)を延伸ブロー成形して得られるプラスチックボトル容器に関する。
特に、ボトルヒール部を底部に向かって漸次テーパ状に湾曲する湾曲形状に形成することより、ヒール部の局所的な延伸や過延伸を防止し、これによってプリフォーム全体を均一かつ十分に延伸でき、白化が生じることなくボトル全体が均一に薄肉化され、高温のヒートセットが可能となって耐熱性にも優れるプラスチックボトル容器に関する。
The present invention relates to a plastic bottle container obtained by stretch blow molding a preform (parison) made of polyethylene terephthalate or the like.
In particular, by forming the bottle heel part into a curved shape that gradually tapers toward the bottom part, local stretching and overstretching of the heel part can be prevented, so that the entire preform can be stretched uniformly and sufficiently. The present invention relates to a plastic bottle container in which the entire bottle is uniformly thinned without whitening, and can be heat-set at high temperature and has excellent heat resistance.

一般に、ポリエチレンテレフタレート等のポリエステル,ポリプロピレン,ポリアミド等からなり、延伸ブローによって成形されるプラスチックボトル容器が知られている。この種のプラスチックボトル容器は、一般に、射出成形されたプリフォーム(パリソン)を延伸ブロー成形することにより製造される(例えば、特許文献1−3参照。)。
このように延伸ブロー成形方法により製造されたプラスチックボトル容器は、透明性とガスバリヤー性に優れ、コーラ,サイダー等の炭酸飲料、果汁飲料、ミネラルウォーター、各種お茶類等の飲料用のボトル容器として広く使用されている。
In general, a plastic bottle container made of polyester such as polyethylene terephthalate, polypropylene, polyamide or the like and formed by stretch blow is known. This type of plastic bottle container is generally manufactured by stretch-blow molding an injection-molded preform (parison) (see, for example, Patent Documents 1-3).
Thus, the plastic bottle container manufactured by the stretch blow molding method is excellent in transparency and gas barrier property, and is used as a bottle container for beverages such as carbonated beverages such as cola and cider, fruit juice beverages, mineral water, and various teas. Widely used.

特開2002−240136号公報(第4頁、第4図)JP 2002-240136 A (page 4, FIG. 4) 特許公報第2781810号公報(第5頁、第2−4図)Japanese Patent Publication No. 2781810 (5th page, Fig. 2-4) 特許公報第3011058号公報(第2頁)Japanese Patent Publication No. 3011058 (Page 2)

ところで、近年、プラスチックボトル容器は急速に普及,浸透するようになり、この広範な普及にともない、特に飲料用の容器に対して、容器の薄肉化,軽量化が強く要請されるようになった。例えば、現在、容量2000ml用の容器として使用されているプラスチックボトル容器は平均肉厚が約0.35mm程度あるが、これを更に0.25mm程度に薄肉化したいという要請がある。
ここで、プラスチックボトル容器の肉厚は、プリフォームの樹脂量を削減し、高い延伸倍率で延伸ブロー成形することにより薄肉化が可能である。
By the way, in recent years, plastic bottle containers have rapidly spread and penetrated, and with this wide spread, there has been a strong demand for thinner and lighter containers, especially for beverage containers. . For example, a plastic bottle container currently used as a container for a capacity of 2000 ml has an average thickness of about 0.35 mm, and there is a demand for further reducing the thickness to about 0.25 mm.
Here, the thickness of the plastic bottle container can be reduced by reducing the resin amount of the preform and performing stretch blow molding at a high stretch ratio.

しかし、このように単にプリフォームの樹脂量を減らして延伸倍率を高める方法では、特に扁平ボトル容器の場合、延伸ひずみが生じ、均一な肉厚分布のボトルが得られず、また、白化が起こり易いという問題があった。特に、長方形ボトル容器のヒール部の対角線方向は延伸倍率が局所的に高くなってしまい、過延伸によるひずみや白化,変形等の問題が顕著であった。
また、延伸ひずみが生じたボトル容器では、金型のヒートセット温度が通常肉厚のボトルの場合(例えば約120〜135℃)と同様であると、金型から取り出した際にボトルが収縮してしまうという問題も発生し、特に長方形ボトルのヒール部の過延伸部分には所謂ヒケが生じ易かった。
However, in this method of simply reducing the amount of preform resin and increasing the draw ratio, especially in the case of flat bottle containers, stretch distortion occurs, a bottle with a uniform wall thickness distribution cannot be obtained, and whitening occurs. There was a problem that it was easy. In particular, in the diagonal direction of the heel portion of the rectangular bottle container, the stretch ratio is locally high, and problems such as strain, whitening, and deformation due to overstretching are significant.
Further, in a bottle container in which stretch distortion has occurred, if the heat set temperature of the mold is the same as that of a normally thick bottle (for example, about 120 to 135 ° C.), the bottle shrinks when removed from the mold. In particular, so-called sink marks were easily generated in the overstretched portion of the heel portion of the rectangular bottle.

さらに、このようなボトルの収縮を防止するにはヒートセット温度(ブロー金型温度)を下げる必要があるが(例えば約80℃)、このようにヒートセット温度を低くすると、ボトル容器に所望の耐熱性が得られない問題が発生した。
耐熱性のないボトル容器では、比較的耐熱性能を必要としないアセプティック充填用途における温水殺菌洗浄温度(約65〜80℃)にも耐えられず、温水殺菌洗浄するとボトルが収縮してしまい、アセプティックボトルとしても使用することができなかった。
Further, in order to prevent such shrinkage of the bottle, it is necessary to lower the heat set temperature (blow mold temperature) (for example, about 80 ° C.). There was a problem that heat resistance could not be obtained.
A bottle container that does not have heat resistance cannot withstand the hot water sterilization washing temperature (about 65 to 80 ° C.) in an aseptic filling application that does not require relatively high heat resistance. Could not be used as well.

このように、単にプリフォームの樹脂量を削減して延伸倍率を高くしてボトル容器の薄肉化を図ろうとしても、肉厚分布の不均一とボトルの白化、さらには、耐熱性の劣化という問題が発生してしまい、特に軽量化が望まれているアセプティックボトルの薄肉化には対応できなかった。
本発明者は、上記事情に鑑み鋭意研究を重ねた結果、ボトルヒール部に丸味を持たせることで延伸倍率を小さくし、ヒール部の局所的な延伸や過延伸を防止して均一な延伸ブロー成形が可能となり、これによってボトル容器の薄肉化を図る際の不都合を解消できることに想到した。
In this way, simply reducing the amount of resin in the preform and increasing the draw ratio to reduce the thickness of the bottle container will result in uneven thickness distribution, whitening of the bottle, and further deterioration in heat resistance. Problems have arisen, and it has not been possible to cope with the thinning of the aseptic bottle, which is particularly desired to be lightweight.
As a result of intensive research in view of the above circumstances, the present inventor has reduced the stretch ratio by giving the bottle heel part roundness, and prevents local stretching and overstretching of the heel part, and uniform stretching blow. It became possible to mold, and it was conceived that this would eliminate the inconvenience of reducing the thickness of the bottle container.

すなわち、本発明は、上述のような従来の技術が有する問題を解決するために提案されたものであり、ボトルヒール部を底部に向かって漸次テーパ状に湾曲する湾曲形状に形成することより、ヒール部の局所的な延伸や過延伸を防止してプリフォーム全体を均一かつ十分に延伸することができ、これによって、白化が生じることなくボトル全体を均一に薄肉化でき、高温のヒートセットが可能となって耐熱性にも優れたボトル容器を製造できる、特に、扁平ボトルやアセプティックボトル等に適したプラスチックボトル容器に関する。 That is, the present invention was proposed to solve the problems of the conventional techniques as described above, and by forming the bottle heel portion into a curved shape that gradually curves toward the bottom, The entire preform can be stretched uniformly and sufficiently by preventing local stretching and overstretching of the heel part, which allows the entire bottle to be uniformly thinned without causing whitening, resulting in high-temperature heat setting. More particularly, the present invention relates to a plastic bottle container suitable for flat bottles, aseptic bottles and the like.

上記目的を達成するため、本発明のプラスチックボトル容器は有底筒状のプリフォームを延伸ブロー成形することにより形成されるプラスチックボトル容器であって、胴部及び底部が連続するボトルヒール部を、胴部から底部へ連続してボトル中心軸に向かって漸次テーパ状に湾曲する湾曲形状とした構成としてある。 To achieve the above object, a plastic bottle container of the present invention is a plastic bottle formed by stretch blow molding a bottomed cylindrical preform, bottle heel portion body portion and the bottom portion is continuous The curved shape gradually tapers toward the center axis of the bottle continuously from the body portion to the bottom portion.

より具体的にはボトル全高(Ha)と湾曲形状のボトルヒール部の高さ(Hb)の比が、0.1≦Hb/Ha≦0.25となる構成としてある。 More specifically, the ratio of the bottle overall height (Ha) and curved bottle heel height (Hb) is, it is constituted to be 0.1 ≦ Hb / Ha ≦ 0.25.

特にボトル容器の胴部の周方向断面形状をほぼ長方形状とし、ボトルヒール部の長辺方向及び対角方向を、胴部から底部へ連続してボトル中心軸に向かって漸次テーパ状に湾曲する湾曲形状とし、胴部の周方向断面形状を、ボトル底部に近づくにつれて長辺側及び対角側の長さを縮小して、漸次、ほぼ正方形状とし、ボトル底部の接地面をほぼ円形状とした構成としてある。
そしてボトル容器の肩部から胴部、ヒール部にかけての肉厚を0.2〜0.3mmとすることにより、平均肉厚が、ほぼ0.25mmである構成としてある。
さらに、ボトル容器の内容量は1000〜2000mlであり、また、延伸ブロー成形の延伸倍率は縦×横で12〜15倍としている。
In particular , the circumferential cross-sectional shape of the body of the bottle container is almost rectangular, and the long side direction and the diagonal direction of the bottle heel part are continuously tapered from the body part to the bottom part toward the bottle center axis. The shape of the cross section in the circumferential direction of the body portion is reduced to the length of the long side and the diagonal side as it approaches the bottom of the bottle. The configuration is as follows.
And it is set as the structure whose average wall thickness is about 0.25 mm by setting the wall thickness from the shoulder part of a bottle container to a trunk | drum and a heel part to 0.2-0.3 mm.
Furthermore, the inner volume of the bottle container is 1000 to 2000 ml, and the stretch ratio of stretch blow molding is 12 to 15 times in the length × width direction.

以上のような本発明のプラスチックボトル容器によれば、ボトルの底ヒール部を湾曲形状に形成して胴部から底部に連続してボトル中心軸に向かって漸次テーパ状にすることにより、ヒール部の延伸倍率を小さくすることができ、これによって、ヒール部の局所的な延伸や過延伸を防止して連続する胴部と底部の全体を均一かつ十分に延伸することが可能となる。
このようにして、本発明では、ボトルヒール部の延伸倍率を抑制して、延伸ひずみや白化が生じることなくボトル全体を均一に薄肉化でき、例えば、平均肉厚が約0.25mm程度の所望の薄肉ボトルを得ることができる。
また、延伸ひずみのないボトルは、高温のヒートセットが可能で、薄肉でありながら通常の肉厚のボトルとほぼ同様の耐熱性を付与することができる。
これによって、特に、ボトルヒール部に過延伸が生じ易い長方形ボトルや、温水殺菌洗浄が必要となるアセプティックボトル等に適したプラスチックボトル容器を実現することができる。
According to the plastic bottle container of the present invention as described above, the heel portion is formed by forming the bottom heel portion of the bottle in a curved shape and gradually tapering toward the bottle central axis continuously from the trunk portion to the bottom portion. The stretching ratio of the heel portion can be reduced, and local stretching and overstretching of the heel portion can be prevented, and the entire continuous body portion and bottom portion can be stretched uniformly and sufficiently.
In this way, in the present invention, the stretching ratio of the bottle heel portion can be suppressed, and the entire bottle can be uniformly thinned without causing stretching strain or whitening. For example, the average thickness is about 0.25 mm. Can be obtained.
In addition, a bottle having no stretching strain can be heat-set at high temperature, and can impart heat resistance substantially the same as that of a normal wall-thick bottle while being thin.
As a result, it is possible to realize a plastic bottle container particularly suitable for a rectangular bottle that tends to be excessively stretched in the bottle heel portion, an aseptic bottle that requires hot water sterilization cleaning, and the like.

以下、本発明に係るプラスチックボトル容器の好ましい実施形態について、図面を参照しつつ説明する。
図1は、本発明の一実施形態に係るプラスチックボトル容器の予備成形品となるプリフォームを示す断面図である。
図2は、図1に示すプリフォームの要部拡大図で、(a)はプリフォームの全体図、(b)は首下部の拡大図、(c)は段付部の拡大図である。
図3は、図1に示すプリフォームの段付部の拡大図であり、段付部の傾斜角度を変更する態様を示している。
Hereinafter, a preferred embodiment of a plastic bottle container according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a preform that is a preform of a plastic bottle container according to an embodiment of the present invention.
2 is an enlarged view of the main part of the preform shown in FIG. 1, wherein (a) is an overall view of the preform, (b) is an enlarged view of the lower part of the neck, and (c) is an enlarged view of the stepped portion.
FIG. 3 is an enlarged view of the stepped portion of the preform shown in FIG. 1, and shows a mode in which the inclination angle of the stepped portion is changed.

[プリフォーム]
1.プリフォームの構造
図1に示すように、プリフォーム1は、本実施形態に係るボトル容器10(図6参照)を製造するための予備成形品であって、熱可塑性樹脂からなり、筒状の胴部4と、胴部4の一端側に開口する口部2と、胴部4の他端側を閉塞するほぼ半球形状の底部5を備えた有底筒状(試験管状)に形成されている。
そして、プリフォーム1は、胴部4と底部5の間に所定形状に形成された段付部5aを備え、また、口部2と胴部4の間に所定形状に形成された首下部3を備えている。
[preform]
1. Preform Structure As shown in FIG. 1, a preform 1 is a preform for producing a bottle container 10 (see FIG. 6) according to the present embodiment, and is made of a thermoplastic resin and has a cylindrical shape. It is formed in a bottomed cylindrical shape (test tube) having a trunk portion 4, a mouth portion 2 that opens to one end side of the trunk portion 4, and a substantially hemispherical bottom portion 5 that closes the other end side of the trunk portion 4. Yes.
The preform 1 includes a stepped portion 5 a formed in a predetermined shape between the body portion 4 and the bottom portion 5, and a neck lower portion 3 formed in a predetermined shape between the mouth portion 2 and the body portion 4. It has.

段付部5aは、胴部4と底部5の間に位置するプリフォーム1の一部(所定範囲)であり、胴部からほぼ同じ肉厚で連続し、内面及び外面がともに筒中心側に傾斜しつつ底部5に連続するように形成されている。
ここで、段付部5aは、肉厚、内面及び外面の傾斜角度、長さ等を所望の値に設定することができ、成形するボトル容器の大きさ,形状,肉厚等に応じて任意に設定可能である。
The stepped portion 5a is a part (predetermined range) of the preform 1 located between the barrel portion 4 and the bottom portion 5 and is continuous from the barrel portion with substantially the same thickness. Both the inner surface and the outer surface are on the cylinder center side. It is formed so as to continue to the bottom 5 while being inclined.
Here, the stepped portion 5a can set the wall thickness, the inclination angle of the inner and outer surfaces, the length, etc. to desired values, and can be arbitrarily set according to the size, shape, wall thickness, etc. of the bottle container to be molded. Can be set.

本実施形態では、図2に示す胴部4の肉厚(Ta)と段付部5a(及び連続する底部5)の肉厚(Tb)の比が、1.0<Ta/Tb≦1.5となるように設定してある。このような範囲に設定するのは、胴部4より段付部5aの肉厚が大きくなる(Ta/Tb≦1)ようにプリフォーム1を射出成形することは困難であり、また、Ta/Tbが1.5を超えると(Ta/Tb>1.5)、胴部4と段付部5aの肉厚差が大きくなり過ぎ、胴部4と段付部5aの連続部分に局部延伸,過延伸が生じるためである。なお、段付部5aの肉厚(Tb)とは、底部5と段付部5aの境界部の厚みをいう(図2(c)参照)。
また、図2に示す胴部4の筒中心から肉厚中心までの半径(Ra)と段付部5aの筒中心から肉厚中心までの半径(Rb)と胴部の肉厚(Ta)が、Rb≦Ra−Ta/2となるように設定してある。このような範囲に設定するのは、段付部5aの半径は少なくとも胴部4の半径より小さくしなければ段差が形成されず、その一方、半径の差が胴部の肉厚(Ta)の半分以下の段差は、射出成形が困難となるためである。
以上のような値に設定することにより、段付き部5aを連続する胴部4とほぼ同じ肉厚にしつつ所望の角度に傾斜させることができる。
In the present embodiment, the ratio of the thickness (Ta) of the body portion 4 shown in FIG. 2 to the thickness (Tb) of the stepped portion 5a (and the continuous bottom portion 5) is 1.0 <Ta / Tb ≦ 1. It is set to be 5. Setting such a range makes it difficult to injection-mold the preform 1 so that the thickness of the stepped portion 5a is larger than that of the body portion 4 (Ta / Tb ≦ 1). When Tb exceeds 1.5 (Ta / Tb> 1.5), the difference in thickness between the body 4 and the stepped portion 5a becomes too large, and the stretched portion locally extends to the continuous portion of the body 4 and the stepped portion 5a. This is because overstretching occurs. Note that the thickness (Tb) of the stepped portion 5a refers to the thickness of the boundary portion between the bottom portion 5 and the stepped portion 5a (see FIG. 2C).
Further, the radius (Ra) from the cylinder center to the wall thickness center of the body portion 4 shown in FIG. 2, the radius (Rb) from the tube center to the wall thickness center of the stepped portion 5a, and the wall thickness (Ta) of the body portion. , Rb ≦ Ra−Ta / 2. The range is set so that a step is not formed unless the radius of the stepped portion 5a is at least smaller than the radius of the body portion 4, while the difference in radius is the thickness (Ta) of the body portion. This is because a step of less than half makes injection molding difficult.
By setting the values as described above, the stepped portion 5a can be inclined at a desired angle while making the stepped portion 5a substantially the same thickness as the continuous body portion 4.

さらに、図2(c)に示す段付部5aの筒中心側に傾斜する角度(θ)は、所望の範囲に設定可能であり、図3に示すように、傾斜角度が大きくなるように(θa)から(θb)に設定することができ、また、その逆に、傾斜角度が小さくなるように設定することができる。段付部5aの傾斜角度を設定することにより、角度に応じて段付部5a及び底部5の延伸量及び底部5の重量を制御することができる。
すなわち、段付部5aの傾斜角度を小さくなるように設定すれば、段付部5aの延伸量が大きくなり、底部5の延伸量が小さくなって、底部5の重量が大きくなる。一方、段付部5aの傾斜角度を大きくなるように設定すれば、段付部5aの延伸量が小さくなり、底部5の延伸量が大きくなって、底部5の重量は小さくすることができる。
ここで、段付部5aの傾斜角度としては、7°≦θ≦45°とし、特に20°≦θ≦40°の範囲で設定することが好ましい。θが7°より小さいと(θ<7°)、段差による効果が得られず、また、45°より大きいと(θ>45°)、局部延伸,過延伸が生じるためである。
Further, the angle (θ) inclined toward the cylinder center side of the stepped portion 5a shown in FIG. 2 (c) can be set to a desired range, and as shown in FIG. θa) can be set to (θb), and conversely, the inclination angle can be set to be small. By setting the inclination angle of the stepped portion 5a, the extension amount of the stepped portion 5a and the bottom portion 5 and the weight of the bottom portion 5 can be controlled according to the angle.
That is, if the inclination angle of the stepped portion 5a is set to be small, the stretch amount of the stepped portion 5a is increased, the stretch amount of the bottom portion 5 is decreased, and the weight of the bottom portion 5 is increased. On the other hand, if the inclination angle of the stepped portion 5a is set to be large, the stretch amount of the stepped portion 5a is reduced, the stretch amount of the bottom portion 5 is increased, and the weight of the bottom portion 5 can be reduced.
Here, the inclination angle of the stepped portion 5a is set to 7 ° ≦ θ ≦ 45 °, and particularly preferably set in a range of 20 ° ≦ θ ≦ 40 °. If θ is smaller than 7 ° (θ <7 °), the effect due to the step cannot be obtained, and if it is larger than 45 ° (θ> 45 °), local stretching and overstretching occur.

なお、図2及び図3に示す例では、段付部5aの内面と外面はほぼ同じ角度に傾斜しており、段付部5aの肉厚が胴部4から底部5までほぼ同じ値となるように設定してあるが、この段付部5aの傾斜角度は、内面と外面で異ならせるようにしても良い。このようにすると、例えば、段付部5aの外面の傾斜角度を内面の傾斜角度より大きく設定することで、段付部5aを胴部4から底部5に向かって肉薄になるテーパ形状に形成することができ、所望の肉薄部分を設定して延伸量を大きくすることができる。
そして、このような段付部5aを備えることにより、後述する工程によりプリフォーム1が延伸ブロー成形されると、段付部5a及び底部5が全体的に均一に延伸され、胴部4の延伸負担を小さくして、また、底部5の重量を少なくして、結果的にプリフォーム全体が均一に延伸されるようになる。
In the example shown in FIGS. 2 and 3, the inner surface and the outer surface of the stepped portion 5a are inclined at substantially the same angle, and the thickness of the stepped portion 5a is substantially the same value from the trunk portion 4 to the bottom portion 5. However, the inclination angle of the stepped portion 5a may be different between the inner surface and the outer surface. If it does in this way, the stepped part 5a is formed in the taper shape which becomes thin toward the bottom part 5 from the trunk | drum 4 by setting the inclination angle of the outer surface of the stepped part 5a larger than the inclination angle of an inner surface, for example. It is possible to increase the stretch amount by setting a desired thin portion.
And by providing such a stepped part 5a, when the preform 1 is stretch blow-molded by a process described later, the stepped part 5a and the bottom part 5 are stretched uniformly uniformly, and the body part 4 is stretched. The burden is reduced and the weight of the bottom 5 is reduced, and as a result, the entire preform is stretched uniformly.

首下部3は、胴部4と口部2の間に位置するプリフォーム1の一部(所定範囲)であり、口部2から連続する、胴部4より肉薄のストレート部3aを有しており、このストレート部3aを経て胴部4に連続するように形成されている。
ここで、首下部3は、ストレート部3aを含めて、肉厚、長さ等を所望の値に設定することができ、成形するボトル容器の大きさ,形状,肉厚等に応じて任意に設定可能である。
本実施形態では、図2に示す胴部4の肉厚(Ta)とストレート部3aの肉厚(Tc)の比が、1.2≦Ta/Tc≦1.7となるように設定してある。このような範囲に設定するのは、胴部4とストレート部3aの肉厚比が1.2より小さくなる(Ta/Tc<1.2)ようにプリフォーム1を射出成形することは困難であり、また、Ta/Tcが1.7を超えると(Ta/Tc>1.7)、胴部4とストレート部3aの肉厚差が大きくなり過ぎ、ストレート部3aに局部延伸,過延伸が生じるためである。
また、ストレート部3aの肉厚(Tc)と筒長手方向の長さ(La)の比は、3≦La/Tc≦5となるように設定してある。ストレート部3aが短すぎると(La/Tc<3)、通常のプリフォーム形状と同様となり、首下部に局部延伸,過延伸が生じてしまい、ストレート部3aを長くしすぎると(La/Tc>5)射出成形の際に材料が入りづらく成形不良が生じるからである。
The neck lower part 3 is a part (predetermined range) of the preform 1 located between the body part 4 and the mouth part 2, and has a straight part 3 a continuous from the mouth part 2 and thinner than the body part 4. And is formed so as to be continuous with the body portion 4 through the straight portion 3a.
Here, the neck lower part 3 including the straight part 3a can be set to a desired value for thickness, length, etc., and arbitrarily according to the size, shape, thickness, etc. of the bottle container to be molded It can be set.
In the present embodiment, the ratio of the thickness (Ta) of the body portion 4 shown in FIG. 2 to the thickness (Tc) of the straight portion 3a is set to satisfy 1.2 ≦ Ta / Tc ≦ 1.7. is there. Setting such a range makes it difficult to injection-mold the preform 1 so that the thickness ratio of the body portion 4 and the straight portion 3a is smaller than 1.2 (Ta / Tc <1.2). Yes, if Ta / Tc exceeds 1.7 (Ta / Tc> 1.7), the thickness difference between the body 4 and the straight portion 3a becomes too large, and the straight portion 3a is locally stretched and overstretched. This is because it occurs.
Further, the ratio between the thickness (Tc) of the straight portion 3a and the length (La) in the longitudinal direction of the cylinder is set to satisfy 3 ≦ La / Tc ≦ 5. If the straight part 3a is too short (La / Tc <3), it will be the same as the normal preform shape, and local stretching and overstretching will occur at the bottom of the neck, and if the straight part 3a is too long (La / Tc>) 5) This is because it is difficult for the material to enter during injection molding, resulting in molding defects.

具体的には、容量2000mlのボトル容器用のプリフォームの場合、樹脂重量は約45gで、胴部4の肉厚は約3〜4mmに設定する。この場合、図2に示す胴部の肉厚(Ta)とストレート部の肉厚(Tc)の差が、Ta−Tc=1.3mm以下となるように設定する。
さらに、ストレート部3aは、筒長手方向の長さが所望の範囲に設定可能であり、上述した容量2000mlボトルの場合には、図2に示す筒長手方向の長さ(La)が、7mm〜9mmの範囲となるように設定する。
このような値に設定することで、容量2000mlで平均肉厚が約0.25mmのボトル容器が得られるようになる。
Specifically, in the case of a preform for a bottle container having a capacity of 2000 ml, the resin weight is set to about 45 g, and the thickness of the body portion 4 is set to about 3 to 4 mm. In this case, the difference between the thickness (Ta) of the trunk portion and the thickness (Tc) of the straight portion shown in FIG. 2 is set to be Ta−Tc = 1.3 mm or less.
Furthermore, the length in the cylinder longitudinal direction of the straight portion 3a can be set in a desired range. In the case of the above-described capacity 2000 ml bottle, the length (La) in the cylinder longitudinal direction shown in FIG. Set to be in the range of 9 mm.
By setting to such a value, a bottle container having a capacity of 2000 ml and an average wall thickness of about 0.25 mm can be obtained.

このようにして、首下部3に胴部4より肉薄のストレート部3aを設け、その肉厚と長さを適宜設定可能とすることで、ストレート部3aを含む首下部3に局部的な延伸や過延伸部分を生じさせることなく、首下部3の全体を均一に延伸させることができる。そして、後述する工程によりプリフォーム1が延伸ブロー成形されると、ストレート部3aを含む首下部3が全体的に均一に延伸され、胴部4の延伸負担を小さくして、結果的にプリフォーム全体が均一に延伸されるようになる。
なお、ストレート部3aは、図2に示す例では、口部2から胴部4に至るまで、肉厚が均一になるように形成してあるが、例えば、ストレート部3aの外面又は内面を傾斜させることで、肉厚を変更することも可能である。このようにすると、肉厚部と肉薄部とで延伸量を異ならせて延伸量を調整することができる。
In this way, the straight portion 3a thinner than the body portion 4 is provided in the neck lower portion 3, and the thickness and length can be set as appropriate, so that the neck lower portion 3 including the straight portion 3a can be stretched locally. The entire neck lower part 3 can be uniformly stretched without causing an overstretched portion. When the preform 1 is stretch-blow-molded by a process to be described later, the neck lower part 3 including the straight part 3a is stretched uniformly as a whole, reducing the stretching burden on the body part 4, and consequently the preform. The whole is stretched uniformly.
In the example shown in FIG. 2, the straight portion 3 a is formed so as to have a uniform thickness from the mouth portion 2 to the trunk portion 4. For example, the straight portion 3 a is inclined on the outer surface or the inner surface. It is also possible to change the wall thickness. If it does in this way, the amount of extending | stretching can be varied between a thick part and a thin part, and the amount of extending | stretching can be adjusted.

2.構成成分
本実施形態に係るプリフォーム1(及びボトル容器10)を構成する熱可塑性樹脂は、延伸ブロー成形及び熱結晶化可能な樹脂であれば任意のものを使用することができる。
具体的には、ポリエチレンテレフタレート,ポリブチレンテレフタレート,ポリエチレンナフタレート,ポリカーボネート,ポリアリレート、又はこれらの共重合体等の熱可塑性ポリエステル、これらの樹脂あるいは他の樹脂とのブレンド物が好適であり、特に、ポリエチレンテレフタレート等のエチレンテレフタレート系熱可塑性ポリエステルが好適に使用される。
また、アクリロニトリル樹脂,ポリプロピレン,プロピレン−エチレン共重合体,ポリエチレン等も使用することができる。
これらの樹脂には、成形品の品質を損なわない範囲内で種々の添加剤、例えば、着色剤,紫外線吸収剤,離型剤,滑剤,核剤,酸化防止剤,帯電防止剤等を配合することができる。
2. Component As the thermoplastic resin constituting the preform 1 (and the bottle container 10) according to the present embodiment, any resin can be used as long as it is a resin that can be stretch blow molded and thermally crystallized.
Specifically, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyarylate, thermoplastic polyesters such as copolymers thereof, blends of these resins or other resins are particularly suitable. Ethylene terephthalate thermoplastic polyester such as polyethylene terephthalate is preferably used.
Further, acrylonitrile resin, polypropylene, propylene-ethylene copolymer, polyethylene and the like can also be used.
These resins are blended with various additives such as colorants, ultraviolet absorbers, mold release agents, lubricants, nucleating agents, antioxidants, antistatic agents, etc. within the range that does not impair the quality of the molded product. be able to.

プリフォーム1を構成するエチレンテレフタレート系熱可塑性ポリエステルは、エステル反復単位の大部分、一般に70モル%以上をエチレンテレフタレート単位を占めるものであり、ガラス転移点(Tg)が50〜90℃、融点(Tm)が200〜275℃の範囲にあるものが好適である。
エチレンテレフタレート系熱可塑性ポリエステルとしては、ポリエチレンテレフタレート(PET)が耐圧性,耐熱性,耐熱圧性等の点で特に優れているが、エチレンテレフタレート単位以外にイソフタル酸やナフタレンジカルボン酸等の二塩基酸とプロピレングリコール等のジオールからなるエステル単位の少量を含む共重合ポリエステルも使用することができる。
The ethylene terephthalate-based thermoplastic polyester constituting the preform 1 occupies most of the ester repeating units, generally 70 mol% or more of the ethylene terephthalate units, and has a glass transition point (Tg) of 50 to 90 ° C., a melting point ( Those having a Tm) in the range of 200 to 275 ° C are preferred.
As an ethylene terephthalate-based thermoplastic polyester, polyethylene terephthalate (PET) is particularly excellent in terms of pressure resistance, heat resistance, heat pressure resistance, etc. In addition to ethylene terephthalate units, dibasic acids such as isophthalic acid and naphthalenedicarboxylic acid Copolyesters containing a small amount of ester units composed of diols such as propylene glycol can also be used.

また、本実施形態のプリフォーム1は、単層(一層)の熱可塑性ポリエステル層で構成される場合の他、二層以上の熱可塑性ポリエステル層により構成することもできる。
さらに、本実施形態のプリフォーム1は、二層以上の熱可塑性ポリエステル層からなる内層及び外層の間に封入される中間層を備えることができ、中間層をバリヤー層や酸素吸収層とすることができる。
このようにバリヤー層,酸素吸収層を備えることにより、ボトル容器内への外部からの酸素の透過を抑制し、ボトル容器内の内容物の外部からの酸素による変質を防止することができ、特に炭酸ガス入り飲料用のボトル容器に好適となる。
ここで、酸素吸収層としては、酸素を吸収して酸素の透過を防ぐものであれば任意のものを使用することができるが、酸化可能有機成分及び遷移金属触媒の組合せ、あるいは実質的に酸化しないガスバリヤー性樹脂,酸化可能有機成分及び遷移金属触媒の組み合わせを使用することが好適である。
Further, the preform 1 of the present embodiment can be composed of two or more thermoplastic polyester layers in addition to the case of being composed of a single layer (one layer) of thermoplastic polyester layer.
Furthermore, the preform 1 of the present embodiment can include an intermediate layer enclosed between an inner layer and an outer layer composed of two or more thermoplastic polyester layers, and the intermediate layer is a barrier layer or an oxygen absorbing layer. Can do.
By providing the barrier layer and the oxygen absorbing layer in this way, it is possible to suppress the permeation of oxygen from the outside into the bottle container, and to prevent the deterioration of the contents in the bottle container due to the oxygen from the outside. Suitable for bottle containers for beverages containing carbon dioxide gas.
Here, as the oxygen absorbing layer, any layer can be used as long as it absorbs oxygen and prevents permeation of oxygen, but a combination of an oxidizable organic component and a transition metal catalyst, or substantially oxidized. It is preferred to use a combination of non-gas barrier resin, oxidizable organic component and transition metal catalyst.

[プラスチックボトル容器の製造方法]
次に、以上のようなプリフォームを使用して本実施形態に係るプラスチックボトル容器を得るための製造方法について説明する。
1.プリフォームの製造
プリフォーム1は、公知の射出成形や押出成形により有底筒状のプリフォーム(パリソン)を製造することができる。上述した胴部4と底部5の間の段付部5a、口部3と胴部4の間のストレート部3aを含む首下部3についても、公知の射出成形等により所望の形状,寸法で製造可能である。
なお、プリフォーム1として、中間層に酸素吸収層を備える多層プリフォームを使用する場合には、従来から公知の共射出成形機等を用いて、内外層をポリエステル樹脂とし、内外層の間に一層又は二層以上の酸素吸収層を挿入し、射出用プリフォーム金型の形状に対応した、底部及び開口部を有する多層プリフォームを製造することができる。
[Plastic bottle container manufacturing method]
Next, a manufacturing method for obtaining the plastic bottle container according to the present embodiment using the preform as described above will be described.
1. Production of Preform The preform 1 can produce a bottomed cylindrical preform (parison) by known injection molding or extrusion molding. The neck lower portion 3 including the stepped portion 5a between the trunk portion 4 and the bottom portion 5 and the straight portion 3a between the mouth portion 3 and the trunk portion 4 is also manufactured in a desired shape and size by known injection molding or the like. Is possible.
When a multilayer preform having an oxygen absorbing layer in the intermediate layer is used as the preform 1, the inner and outer layers are made of polyester resin using a conventionally known co-injection molding machine or the like, and between the inner and outer layers. A multilayer preform having a bottom and an opening corresponding to the shape of the injection preform mold can be produced by inserting one or more oxygen absorbing layers.

2.延伸ブロー成形
次に、プリフォーム1を二軸延伸ブロー成形する。
本実施形態に係る延伸ブロー成形法では、まず、プリフォーム1をガラス転移点(Tg)以上の延伸温度に加熱する。プリフォーム1の加熱は、図1に示すように、ヒータ101などの公知の加熱手段により行う。また、この加熱の際には、図1に示すように、非結晶の口部2が加熱されないように加熱防止用冷却ガイド102で保護される。なお、口部2を予め結晶化させたプリフォームを使用することもできる。
本実施形態では、プリフォーム1を加熱限界温度である約120℃で加熱するようにしてある。通常の肉厚のボトル容器を製造する場合には、プリフォームの加熱温度は約85℃〜110℃であるが、本実施形態では加熱限界である120℃近傍まで温度を上げることにより、樹脂の粘性を落とし、延伸成形で発生する歪みを軽減するようにしてある。但し、120℃を超える高温で加熱すると、プロー成形後にボトルが白化(白濁)してしまうため好ましくない。
2. Stretch Blow Molding Next, the preform 1 is biaxially stretch blow molded.
In the stretch blow molding method according to this embodiment, first, the preform 1 is heated to a stretching temperature equal to or higher than the glass transition point (Tg). The preform 1 is heated by a known heating means such as a heater 101 as shown in FIG. Further, at the time of this heating, as shown in FIG. 1, the non-crystalline mouth portion 2 is protected by a heating prevention cooling guide 102 so as not to be heated. A preform in which the mouth 2 is crystallized in advance can also be used.
In this embodiment, the preform 1 is heated at a heating limit temperature of about 120 ° C. When a normal thick bottle container is manufactured, the heating temperature of the preform is about 85 ° C. to 110 ° C. In this embodiment, the temperature of the resin is increased by raising the temperature to around 120 ° C. which is the heating limit. The viscosity is reduced, and the strain generated by stretch molding is reduced. However, heating at a high temperature exceeding 120 ° C. is not preferable because the bottle is whitened (white turbid) after the pro molding.

次に、加熱したプリフォーム1は、所定の熱処理(ヒートセット)温度に加熱された金型内において二軸延伸ブロー成形する。
具体的には、図4(a)〜(b)に示すように、まず、加熱したプリフォーム1が金型103内にセットされ(同図(a)参照)、次に、ストレッチロッド(延伸ロッド)104により縦方向(軸方向)に延伸されるとともに、ブローエアによって横方向(周方向)に延伸される(同図(b)参照)。
Next, the heated preform 1 is subjected to biaxial stretch blow molding in a mold heated to a predetermined heat treatment (heat set) temperature.
Specifically, as shown in FIGS. 4A to 4B, the heated preform 1 is first set in the mold 103 (see FIG. 4A), and then stretch rod (stretched) (Rod) 104 is extended in the vertical direction (axial direction) and is extended in the horizontal direction (circumferential direction) by blow air (see FIG. 4B).

ここで、本実施形態のプリフォーム1では、延伸の際に、図5(a)に示すように、段付部5aが、連続する底部5を含めて全体として均一に延伸される。また、首下部3が、ストレート部3aを含めて全体として均一に延伸される。
これによって、首下部3から胴部4、段付部5a及び底部5の全体が均一に延伸され、局所的な延伸や過延伸が発生せず、その結果、均一な肉厚分布のボトル容器10が成形されることになる(図9参照)。
これに対して、図5(b)に示すように、従来のプリフォーム201では、底部と胴部のつなぎ目部分や首下部分は局所的な延伸がされる一方、全体的な延伸量は小さくなる。このため、首下部分や底部の延伸量が少なくなるため、胴部への延伸負担が大きくなり、結果として、延伸ひずみが生じ、肉厚分布が不均一なボトル容器が成形されることになる(図9参照)。
Here, in the preform 1 of the present embodiment, as illustrated in FIG. 5A, the stepped portion 5 a is uniformly stretched as a whole including the continuous bottom portion 5 during stretching. Moreover, the neck lower part 3 is uniformly extended as a whole including the straight part 3a.
As a result, the entire body part 4, the stepped part 5 a and the bottom part 5 are uniformly stretched from the neck lower part 3, and local stretching and overstretching do not occur. As a result, the bottle container 10 having a uniform wall thickness distribution. Is formed (see FIG. 9).
On the other hand, as shown in FIG. 5 (b), in the conventional preform 201, the joint portion of the bottom portion and the trunk portion and the neck portion are locally stretched, while the overall stretch amount is small. Become. For this reason, since the amount of stretching of the lower neck portion and the bottom portion is reduced, the stretching burden on the body portion is increased, and as a result, stretching strain occurs and a bottle container having a nonuniform thickness distribution is formed. (See FIG. 9).

ここで、本実施形態におけるブロー成形体の延伸倍率は、縦方向約2.4倍以上、横方向約5.2倍以上とし、縦×横で約12.5倍以上となるように設定する。
通常の肉厚のボトル容器の場合、ブロー成形体の延伸倍率は、縦方向約2.2倍、横方向約5倍程度で、縦×横で約11倍程度となっている。
本実施形態では、プリフォーム1の形状により局所的延伸や過延伸を発生させることなく均一な延伸が可能であるため、均一な肉厚分布で可能な限り肉薄のボトル容器を得るために、少なくとも上記の延伸倍率とすることが好ましい。
延伸倍率を、縦×横で15倍以上にすると、過延伸によるボトルの白化が発生する。また、延伸倍率が12倍以下では、プリフォームの肉厚を小さくしなければならず、均一な延伸ができなくなるばかりでなく、そのようなプリフォーム自体を射出成形することができない。
従って、均一な肉厚で延伸を行うには、延伸倍率を縦×横で約12〜15倍の範囲に設定することが好ましい。
Here, the stretch ratio of the blow molded article in the present embodiment is set to be about 2.4 times or more in the longitudinal direction and about 5.2 times or more in the transverse direction, and about 12.5 times or more in the length × width direction. .
In the case of a normal thick bottle container, the stretch ratio of the blow molded product is about 2.2 times in the vertical direction, about 5 times in the horizontal direction, and about 11 times in the vertical and horizontal directions.
In the present embodiment, since uniform stretching is possible without causing local stretching or overstretching due to the shape of the preform 1, in order to obtain a bottle container as thin as possible with a uniform wall thickness distribution, at least It is preferable to set it as said draw ratio.
When the draw ratio is set to 15 times or more in the vertical and horizontal directions, whitening of the bottle due to overdrawing occurs. Further, when the draw ratio is 12 times or less, the thickness of the preform must be reduced, and not only uniform drawing cannot be performed, but also such a preform itself cannot be injection molded.
Therefore, in order to perform stretching with a uniform wall thickness, it is preferable to set the stretching ratio in the range of about 12 to 15 times in the vertical and horizontal directions.

3.ヒートセット
延伸されたブロー成形体は、金型内でヒートセット(熱固定)される。
ヒートセットは、上述したブロー金型103を、所定温度に加熱し、二軸延伸ブロー時に、ブロー成形体の器壁の外側を金型内面に所定時間接触させて熱処理を行う。
ここで、本実施形態では、ヒートセット温度として金型を約105〜115℃となるように加熱する。従来のアセプティックボトルの場合、ヒートセット温度は約120〜125℃程度となっている。ところが、ボトル容器を薄肉化するために延伸ひずみが生じたボトル容器では、金型のヒートセット温度が通常肉厚のボトルの場合と同様にすると、金型から取り出した際にボトルが収縮してしまった。一方、ヒートセット温度を105℃より低くするとボトルの耐熱性が得られなくなる。
本実施形態では、プリフォーム1の形状により局所的延伸や過延伸を発生させることなく均一な延伸が可能となり、延伸ひずみが生じないので、ヒートセット温度を可能な限り通常のボトル容器の場合に近づけることができる。これによって、ボトル容器に所望の耐熱性を付与することができる。
3. Heat setting The stretched blow molded article is heat set (heat-set) in a mold.
In the heat setting, the above-described blow mold 103 is heated to a predetermined temperature, and at the time of biaxial stretching blow, the outer wall of the blow molded article is brought into contact with the inner surface of the mold for a predetermined time for heat treatment.
Here, in this embodiment, the mold is heated to a temperature of about 105 to 115 ° C. as the heat set temperature. In the case of a conventional aseptic bottle, the heat set temperature is about 120 to 125 ° C. However, in a bottle container that has undergone stretching strain to reduce the thickness of the bottle container, if the heat set temperature of the mold is the same as that of a normally thick bottle, the bottle shrinks when removed from the mold. Oops. On the other hand, when the heat set temperature is lower than 105 ° C., the heat resistance of the bottle cannot be obtained.
In the present embodiment, the shape of the preform 1 enables uniform stretching without causing local stretching or overstretching, and stretching distortion does not occur. Therefore, in the case of a normal bottle container as much as possible, You can get closer. Thereby, desired heat resistance can be imparted to the bottle container.

また、ヒートセットの熱処理時間(ブロー時間)は、ブロー成形体の厚みや温度によっても相違するが、一般に1〜10秒、好ましくは2〜5秒程度である。また、その後の冷却時間も、熱処理温度や冷却用流体の種類により異なるが、一般に0.1〜10秒、好ましくは0.2〜5秒程度である。
このヒートセットにより、ブロー成形体は結晶化される。
なお、このブロー成形体の結晶化度は、容器の肉厚,形状,ヒートセット温度,時間等の条件によるため、これらの条件を最適化することにより、ボトル容器10の胴部13の結晶化度を、例えば、約30〜40%程度の好適な範囲とすることができる。
Moreover, although the heat processing time (blow time) of heat set changes also with the thickness and temperature of a blow molded object, it is generally 1 to 10 seconds, Preferably it is about 2 to 5 seconds. Further, the subsequent cooling time varies depending on the heat treatment temperature and the type of cooling fluid, but is generally about 0.1 to 10 seconds, preferably about 0.2 to 5 seconds.
By this heat setting, the blow molded product is crystallized.
The crystallinity of the blow molded product depends on conditions such as the thickness, shape, heat set temperature, time, etc. of the container. By optimizing these conditions, the crystallization of the body portion 13 of the bottle container 10 is achieved. The degree can be set to a suitable range of about 30 to 40%, for example.

4.クーリングブロー
以上の所定時間の熱処理後、図4(c)に示すように、クーリングブローロッド105から噴出する内部冷却用流体により、ブロー成形体内部を冷却する。
ここで、本実施形態では、クーリングブローのエア供給圧を約4MPaとしてある。通常の肉厚のボトル容器をブロー成形する場合、クーリングブローのエア供給圧は約3MPa程度であるが、本実施形態では、エアの供給圧力を高めることにより、ブロー成形後のボトルの取り出し温度を低減してヒケの発生を防止するようにしてある。
4). Cooling Blow After the heat treatment for the predetermined time, the inside of the blow molded body is cooled by the internal cooling fluid ejected from the cooling blow rod 105 as shown in FIG.
Here, in this embodiment, the air supply pressure of the cooling blow is about 4 MPa. When a normal thick bottle container is blow-molded, the air supply pressure of the cooling blow is about 3 MPa. However, in this embodiment, by increasing the air supply pressure, the temperature at which the bottle is taken out after blow molding is increased. This is reduced to prevent the occurrence of sink marks.

なお、冷却用流体としては、常温の空気,冷却された各種気体、例えば、−40℃〜+10℃の窒素,空気,炭酸ガス等のほか、化学的に不活性な液化ガス、例えば、液化窒素ガス,液化炭酸ガス,液化トリクロロフルオロメタンガス,液化ジクロロジフルオロメタンガス,他の液化脂肪族炭化水素ガス等を使用することができる。この冷却用流体には、水等の気化熱の大きい液化ミストを共存させることもできる。以上のような冷却用流体を使用することにより、顕著な冷却温度を得ることができる。   In addition, as a cooling fluid, in addition to normal temperature air, various cooled gases, for example, nitrogen at −40 ° C. to + 10 ° C., air, carbon dioxide, etc., a chemically inert liquefied gas, for example, liquefied nitrogen Gas, liquefied carbon dioxide gas, liquefied trichlorofluoromethane gas, liquefied dichlorodifluoromethane gas, other liquefied aliphatic hydrocarbon gases, and the like can be used. In this cooling fluid, liquefied mist having a large heat of vaporization such as water can be coexisted. A remarkable cooling temperature can be obtained by using the cooling fluid as described above.

その後は、図4(d)に示すように、成形体は金型から取り出され、ボトル容器10が得られる。
金型から取り出したブロー成形体(ボトル容器10)は、放冷により、又は冷風を吹き付けることにより冷却する。
これで、延伸ブロー成形工程が完了する。
以上のような工程により、例えば、図6に示すような本実施形態に係るボトル容器10が製造されることになる。
Thereafter, as shown in FIG. 4D, the molded body is taken out from the mold, and the bottle container 10 is obtained.
The blow molded body (bottle container 10) taken out from the mold is cooled by cooling or by blowing cold air.
This completes the stretch blow molding process.
Through the steps as described above, for example, the bottle container 10 according to this embodiment as shown in FIG. 6 is manufactured.

[ボトル容器]
1.ボトル容器の構成
ボトル容器10は、上述した製造工程によりプリフォーム1が延伸ブロー成形されることにより形成されるプラスチックボトル容器であり、本実施形態では、図6に示すようなボトル容器10が製造される。
図6に示すボトル容器10は、首部11,肩部12,胴部(上)13,ウェスト部14,胴部(下)15,ヒール部16及び底部17が形成されており、容量2000ml用の断面ほぼ長方形状の扁平ボトルとなっている。
そして、本実施形態のボトル容器10は、胴部(下)15と底部17が連続するヒール部16を、胴部(下)15から連続してボトル中心に向かって漸次テーパ状に湾曲する湾曲形状に形成してある。なお、図示はしていないが、ボトル容器の胴部には容器内の減圧によるパネル変形を防ぐため、例えば複数の横ビート凹リブなど、適宜のパネル形状を付加形成することができる。
[Bottle container]
1. Configuration of Bottle Container The bottle container 10 is a plastic bottle container formed by the stretch blow molding of the preform 1 by the above-described manufacturing process. In this embodiment, the bottle container 10 as shown in FIG. 6 is manufactured. Is done.
The bottle container 10 shown in FIG. 6 is formed with a neck portion 11, a shoulder portion 12, a trunk portion (upper) 13, a waist portion 14, a trunk portion (lower) 15, a heel portion 16 and a bottom portion 17, and has a capacity of 2000 ml. The flat bottle has a substantially rectangular cross section.
The bottle container 10 according to the present embodiment has a heel portion 16 in which the trunk portion (lower) 15 and the bottom portion 17 are continuously curved from the trunk portion (lower) 15 so as to be gradually tapered toward the center of the bottle. It is formed into a shape. Although not shown, an appropriate panel shape such as a plurality of lateral beat concave ribs can be additionally formed on the body of the bottle container in order to prevent panel deformation due to reduced pressure in the container.

図6に示すような扁平ボトルは、周方向の延伸倍率が、短辺,長辺,対角方向で大きく異なっている(例えば、短辺方向:3.7倍,長辺方向4.4倍,対角方向:5.2倍)。このため、従来のプリフォームや延伸ブロー成形方法では、特に延伸倍率の高い対角方向に所謂ヒケや変形,過延伸による白化が発生した。
ここで、上述した段付部5aを形成した本実施形態のプリフォーム1では、ボトル容器10のヒール部16に相当する部分は、段付部5aの作用により局所的な延伸が生じることなく底部5及び胴部4と一体的に均一に延伸することができ、ひずみのない均一な延伸が可能となる。
In the flat bottle as shown in FIG. 6, the stretching ratio in the circumferential direction is greatly different in the short side, the long side, and the diagonal direction (for example, the short side direction: 3.7 times and the long side direction 4.4 times). , Diagonal direction: 5.2 times). For this reason, in the conventional preform and stretch blow molding method, so-called sink marks, deformation, and whitening due to overstretching occurred particularly in the diagonal direction with a high stretch ratio.
Here, in the preform 1 of the present embodiment in which the stepped portion 5a described above is formed, the portion corresponding to the heel portion 16 of the bottle container 10 is the bottom portion without causing local stretching due to the action of the stepped portion 5a. 5 and the body 4 can be uniformly stretched integrally, and uniform stretching without distortion is possible.

そこで、本実施形態では、段付部5aを形成したプリフォーム1を使用するとともに、ボトル容器10の形状として、最も延伸倍率の高くなるヒール部16の形状をできる限り延伸倍率を抑制した形状とすることにより、ヒール部対角方向に延伸ひずみの発生しない扁平ボトルが得られるようになっている。
具体的には、ボトル容器10の形状は、図6〜図8に示すように、ヒール部16の対角方向に丸味を持たせてあり、胴部(下)15から連続してボトル中心軸に向かって底部17に連続する、漸次テーパ状に湾曲する湾曲形状に形成してある。
そして、ボトル容器10は、ウェスト部14の周方向断面形状はほぼ長方形状で(図6(d)参照)、底部17に近づくにつれて徐々に正方形に近い断面形状になり、底部17の接地面はほぼ円形に近い断面形状に形成してある(図6(e)参照)。このようにすると、図8に示すように、通常の角形状のヒール部(図8の二点鎖線)と比較して、ヒール部の延伸倍率を小さくすることができ、これによって、ヒール部を胴部及び底部と一体的に均一な肉厚で延伸できるようになる。
So, in this embodiment, while using the preform 1 in which the stepped portion 5a is formed, the shape of the bottle container 10 is such that the shape of the heel portion 16 having the highest draw ratio is suppressed as much as possible. By doing so, a flat bottle in which stretching strain does not occur in the diagonal direction of the heel portion can be obtained.
Specifically, as shown in FIGS. 6 to 8, the shape of the bottle container 10 is rounded in the diagonal direction of the heel portion 16, and the bottle central axis continuously from the trunk portion (lower) 15. It is formed in a curved shape that is gradually tapered in a continuous manner toward the bottom 17 toward the bottom.
The bottle container 10 has a substantially rectangular cross-sectional shape in the circumferential direction of the waist portion 14 (see FIG. 6D), and gradually becomes a cross-sectional shape as it approaches the bottom portion 17, and the ground contact surface of the bottom portion 17 is The cross-sectional shape is almost circular (see FIG. 6 (e)). In this way, as shown in FIG. 8, the stretch ratio of the heel portion can be reduced as compared with a normal square heel portion (two-dot chain line in FIG. 8). It becomes possible to stretch with a uniform thickness integrally with the body and the bottom.

ここで、本実施形態では、図7(a)に示すボトル全高(Ha)と湾曲形状のボトルヒール部の高さ(Hb)の比が、0.1≦Hb/Ha≦0.25となるように設定してある。このような範囲に設定するのは、ボトル全高とヒール部高の比が0.1未満では、従来のボトル形状に近くなり、ヒール部に過延伸とそれによる白化が発生し、また、ボトル全高とヒール部高の比が0.25を超えると、最大胴径部(ストレート部)が短くなり、ライン搬送時にボトル同士の接触圧が高くなりボトル潰れ等が起こるためである。
また、本実施形態では、図7(b)に示すボトル中心から底部外縁までの半径(ra)とボトル中心から湾曲形状のボトルヒール部外縁までの半径(rb)の比が、0.5≦ra/rb≦0.75となるように設定してある。
底部外縁とヒール部外縁の半径比が0.5未満の場合、底部の接地部の半径が小さくなるため、ボトルの正立安定性が悪くなり、その結果、ボトルの転倒角度(床面を傾斜させてボトルが転倒したときの角度)が低下し、ボトルが転倒し易くなってしまう。ボトルが転倒し易くなると、パレット積み付け,パレット切り出し時などのボトル搬送時のライン適性が低下し好ましくない。また、底部外縁とヒール部外縁の半径比が0.75を超えると、従来のボトル形状に近くなり、ヒール部に過延伸とそれによる白化が発生してしまう。そこで、本実施形態では、底部外縁とヒール部外縁の半径比を上記の範囲に設定してある。
Here, in this embodiment, the ratio of the bottle total height (Ha) and the height (Hb) of the curved bottle heel portion shown in FIG. 7A is 0.1 ≦ Hb / Ha ≦ 0.25. It is set as follows. This range is set when the ratio of the total bottle height to the heel height is less than 0.1, the bottle shape is close to that of the conventional bottle. If the ratio of the height of the heel part exceeds 0.25, the maximum body diameter part (straight part) becomes short, the contact pressure between the bottles increases during line conveyance, and bottle crushing occurs.
Further, in this embodiment, the ratio of the radius (ra) from the bottle center to the bottom outer edge shown in FIG. 7B and the radius (rb) from the bottle center to the curved bottle heel outer edge is 0.5 ≦ It is set so that ra / rb ≦ 0.75.
When the radius ratio of the outer edge of the bottom and the outer edge of the heel is less than 0.5, the radius of the grounding part at the bottom becomes small, so that the bottle's upright stability is deteriorated. The angle when the bottle falls down) is lowered, and the bottle is likely to fall down. If the bottle easily falls, the line suitability at the time of carrying the bottle such as pallet stacking and pallet cutting is lowered, which is not preferable. Further, when the radius ratio between the outer edge of the bottom part and the outer edge of the heel part exceeds 0.75, it becomes close to a conventional bottle shape, and the heel part is overstretched and thereby whitened. Therefore, in this embodiment, the radius ratio between the bottom outer edge and the heel outer edge is set in the above range.

より具体的には、例えば容量2000mlのボトル容器の場合、ボトル全高は約307mmであり、ヒール部の高さ(Hb)を約30mm〜80mmとなるように設定する。
また、ボトル中心からヒール部外縁までの半径(rb)が約60mmの長方形ボトルの場合、ボトル中心から底部外縁までの半径(ra)を約30mm〜45mmとなるように設定する。
このような値に設定することで、容量2000mlでヒール部16がボトル中心に向かってテーパ形状に湾曲したボトル容器10が得られる。
More specifically, for example, in the case of a bottle container having a capacity of 2000 ml, the total height of the bottle is about 307 mm, and the height (Hb) of the heel portion is set to be about 30 mm to 80 mm.
Further, in the case of a rectangular bottle having a radius (rb) from the bottle center to the heel outer edge of about 60 mm, the radius (ra) from the bottle center to the bottom outer edge is set to be about 30 mm to 45 mm.
By setting to such a value, a bottle container 10 having a capacity of 2000 ml and a heel portion 16 curved in a taper shape toward the center of the bottle is obtained.

なお、以上のようなボトル形状は、金型(図4参照)を所定形状に設定することで、所望の形状が得られる。
そして、このようなボトル形状とすることにより、ヒール部対角方向の延伸倍率を可能な限り小さくでき、ヒール部を胴部及び底部と一体的に均一な肉厚で延伸できるようになり、延伸ひずみの発生しない長方形ボトルが得られる。
The bottle shape as described above can be obtained in a desired shape by setting the mold (see FIG. 4) to a predetermined shape.
And, by adopting such a bottle shape, the stretching ratio in the diagonal direction of the heel part can be made as small as possible, and the heel part can be stretched with a uniform thickness integrally with the body part and the bottom part. A rectangular bottle with no distortion is obtained.

2.肉厚
本実施形態のボトル容器10は、図9(a)に示すように、肉厚分布が均一となっており、平均肉厚が約0.25mmとなっている。
これに対して、図9(b)に示すように、従来のプリフォームの肉厚だけを変更し、通常の肉厚のボトル(平均肉厚が約0.35mm)と同様の条件で延伸ブロー成形を行うと、肉厚分布が均一とならず延伸ひずみが生じてしまう。特に、ボトルの肩部と底ヒール部は、局所延伸,過延伸により肉厚が薄くなり過ぎてしまう。
2. Thickness As shown in FIG. 9A, the bottle container 10 of the present embodiment has a uniform thickness distribution and an average thickness of about 0.25 mm.
On the other hand, as shown in FIG. 9 (b), only the thickness of the conventional preform is changed, and the stretch blow is performed under the same conditions as a normal thickness bottle (average thickness is about 0.35 mm). When molding is performed, the thickness distribution is not uniform, and stretching strain occurs. In particular, the thickness of the shoulder portion and the bottom heel portion of the bottle becomes too thin due to local stretching and overstretching.

なお、図9(a)では特に図示していないが、ボトルのウェスト部の肉厚を、例えば約0.30mmとし、他の部分より厚くなるように形成することもできる。このようにすると、容量2000ml用ボトルの場合に把持部分となるウェスト部の肉厚を厚くして強度を大きくすることができる。本発明は、ボトル容器の肩部、胴部、ヒール部の肉厚分布をほぼ均一にすることを特徴とするものであるが、他の大部分がほぼ均一な肉厚になるのであれば、例えば、上記のウェスト部のように、ボトルの所定箇所の肉厚を適宜変更して厚く(薄く)することもできる。
また、ボトル底部については、ヒール部や胴部と肉厚分布をほぼ均一にする箇所は、ヒール部との連続する部分から接地部までの範囲であり、底中央のドーム状の上底部は含まれない。一般に、延伸ブロー成形により得られるプラスチックボトル容器では、成形工程上、底部の中心にはドーム状に***した上底部が他の部位より肉厚に形成されるようになっている。従って、この上底部は、本発明における「他の部位とほぼ均一な肉厚の底部」には含まれない。
Although not specifically shown in FIG. 9A, the thickness of the waist portion of the bottle can be set to about 0.30 mm, for example, so as to be thicker than other portions. If it does in this way, in the case of a bottle for a capacity | capacitance of 2000 ml, the thickness of the waist part used as a holding part can be thickened and intensity | strength can be enlarged. The present invention is characterized in that the wall thickness distribution of the shoulder portion, the trunk portion, and the heel portion of the bottle container is made substantially uniform. For example, as in the above-described waist portion, the thickness of a predetermined portion of the bottle can be changed as appropriate to make it thicker (thinner).
As for the bottom of the bottle, the part where the wall thickness distribution is almost uniform with the heel and body is the range from the continuous part with the heel to the grounding part, including the dome-shaped top bottom at the bottom center. I can't. In general, in a plastic bottle container obtained by stretch blow molding, an upper bottom portion raised in a dome shape is formed thicker than other portions in the center of the bottom portion in the molding process. Therefore, the upper bottom portion is not included in the “bottom portion having a substantially uniform thickness with other portions” in the present invention.

3.耐熱性
本実施形態のボトル容器10は、上述したように、金型温度約110℃でヒートセットされており、温水殺菌洗浄温度(約65〜80℃)の耐熱性を有している。
ボトル容器10に対して約75℃のシャワー温水リンスを約30秒間行った場合、収縮率はほぼ1%程度となる。これは、通常の肉厚(平均肉厚が約0.35mm)で、金型温度約120℃でヒートセットされたボトル容器の収縮率が約0.8%程度であるため、ほぼ同様の耐熱性を有している。
これに対して、従来のプリフォームの樹脂量を削減し、ボトルの収縮を防止するためにヒートセットを約80℃としたボトル容器では、収縮率が約3.1%程度となり、容量が本発明に係るボトル容器10の3倍以上収縮してしまう。
このように本実施形態のボトル容器10では、平均肉厚を約0.25mmと薄肉化しつつ、通常の肉厚のボトルと同様の耐熱性を確保することができる。
3. Heat Resistance As described above, the bottle container 10 of the present embodiment is heat-set at a mold temperature of about 110 ° C. and has heat resistance at a hot water sterilization washing temperature (about 65 to 80 ° C.).
When the bottle container 10 is rinsed with hot shower water at about 75 ° C. for about 30 seconds, the shrinkage rate is about 1%. This is a normal wall thickness (average wall thickness is about 0.35 mm), and the shrinkage rate of a bottle container heat-set at a mold temperature of about 120 ° C. is about 0.8%. It has sex.
In contrast, a bottle container with a heat set of about 80 ° C. in order to reduce the amount of resin in the conventional preform and prevent the bottle from shrinking has a shrinkage rate of about 3.1%, and the capacity is reduced. The bottle container 10 according to the invention contracts three times or more.
Thus, in the bottle container 10 of the present embodiment, the same heat resistance as that of a normal wall thickness bottle can be secured while the average wall thickness is reduced to about 0.25 mm.

ここで、本実施形態に係るボトル容器の耐熱性は、TMA(Thermal Mechanical Analysis:熱機械分析)による無荷重変化量評価で示すことができる。
通常、プラスチックボトル容器の耐熱性は結晶化度で示すことができるが、配向結晶化度の場合、同じ値であっても耐熱性が大きく異なる場合がある。
TMAは、試料を加熱炉内で加熱し、温度変化に伴う形状変化を非振動的な荷重下で測定する熱分析法であり、ボトル容器の一部を試料として切り出して加熱し、その形状変化を測定することで、ボトル容器の正確な耐熱性を示すことができる。
本実施形態に係るボトル容器10のウェスト部14をボトル横方向に幅5mmのサンプルを切り出し、無荷重(0kgf)条件下で、昇温速度=5℃/分で常温から加熱して、標点間距離20mm、幅5mmのサンプルについてTMAによる無荷重変化量評価を行うと、変化量が加熱温度80℃で60μm以下となるようにしてある。これは、通常の0.35mm肉厚のボトルとほぼ同様の値である。これにより、本実施形態のボトル容器では、薄肉化によっても耐熱性が損なわれず、通常の肉厚のボトルと変わらない耐熱性が得られる。
Here, the heat resistance of the bottle container according to the present embodiment can be shown by no-load change evaluation by TMA (Thermal Mechanical Analysis).
Usually, the heat resistance of a plastic bottle container can be indicated by the degree of crystallinity, but in the case of oriented crystallinity, the heat resistance may vary greatly even if the value is the same.
TMA is a thermal analysis method in which a sample is heated in a heating furnace and the shape change accompanying a temperature change is measured under a non-vibrating load. A part of the bottle container is cut out as a sample and heated to change the shape. By measuring, the accurate heat resistance of the bottle container can be shown.
A sample having a width of 5 mm is cut out from the waist portion 14 of the bottle container 10 according to the present embodiment in the lateral direction of the bottle, and heated from normal temperature at a temperature increase rate of 5 ° C./min under no load (0 kgf) condition. When a no-load change amount evaluation by TMA is performed on a sample having a distance of 20 mm and a width of 5 mm, the change amount is set to 60 μm or less at a heating temperature of 80 ° C. This is almost the same value as a normal 0.35 mm thick bottle. Thereby, in the bottle container of this embodiment, heat resistance is not impaired by thinning, and heat resistance which is not different from a normal wall thickness bottle is obtained.

4.結晶化度
本実施形態のボトル容器10を形成する熱可塑性ポリエステルは、胴部の結晶化度が30〜40%の範囲となるようにしてある。結晶化度をこの範囲にすることで、ボトル容器10の変形を防止できる。
結晶化度が30%未満であると、耐熱性がなく、変形防止の効果が充分に得られず、また、結晶化度が40%を超えると、二軸延伸ブロー成形後の金型の離型性が低下し、また、離型後の変形が大きくなる傾向がある。
胴部の結晶化度をこの範囲とすることで、ボトル容器10の耐熱性,耐衝撃強度をより向上させることができる。
4). Crystallinity The thermoplastic polyester forming the bottle container 10 of the present embodiment is such that the crystallinity of the barrel is in the range of 30 to 40%. By making the crystallinity within this range, deformation of the bottle container 10 can be prevented.
When the degree of crystallinity is less than 30%, there is no heat resistance and the effect of preventing deformation is not sufficiently obtained. When the degree of crystallinity exceeds 40%, the mold is separated after biaxial stretch blow molding. There is a tendency that moldability is lowered and deformation after mold release is increased.
By setting the crystallinity of the body part within this range, the heat resistance and impact strength of the bottle container 10 can be further improved.

以上説明したように、本実施形態のプラスチックボトル容器によれば、ボトル容器10のヒール部16を湾曲形状に形成して底部17に向かってテーパ状に丸味を持たせることにより、ヒール部の延伸倍率を小さくし、これによって、ヒール部の局所的な延伸や過延伸を防止してプリフォーム1の胴部4、段付部5a、底部5の全体を均一かつ十分に延伸することが可能となる。
このようにして、ボトルヒール部の延伸倍率を抑制して、ボトルヒール部に相当するプリフォーム1の該当部分を均一に延伸できるので、延伸ひずみや白化が生じることなくボトル全体を均一に薄肉化でき、平均肉厚が約0.25mm程度の所望の薄肉ボトルを得ることができる。
また、延伸ひずみのないボトルは、高温のヒートセットが可能で、薄肉でありながら通常の肉厚のボトルとほぼ同様の耐熱性を付与することができる。
これにより、特に、ボトルヒール部に過延伸が生じ易い長方形ボトルや、温水殺菌洗浄が必要となるアセプティックボトル等に適したプラスチックボトル容器を提供することができる。
As described above, according to the plastic bottle container of the present embodiment, the heel part 16 of the bottle container 10 is formed in a curved shape and rounded in a tapered shape toward the bottom part 17, thereby extending the heel part. By reducing the magnification, it is possible to prevent local stretching and overstretching of the heel portion, and to uniformly and sufficiently stretch the entire body 4, stepped portion 5 a, and bottom 5 of the preform 1. Become.
In this way, the stretch ratio of the bottle heel portion can be suppressed and the corresponding portion of the preform 1 corresponding to the bottle heel portion can be stretched uniformly, so that the entire bottle is uniformly thinned without causing stretching strain or whitening. And a desired thin-walled bottle having an average thickness of about 0.25 mm can be obtained.
In addition, a bottle having no stretching strain can be heat-set at high temperature, and can impart heat resistance substantially the same as that of a normal wall-thick bottle while being thin.
Thereby, it is possible to provide a plastic bottle container particularly suitable for a rectangular bottle that tends to be overstretched in the bottle heel portion, an aseptic bottle that requires hot water sterilization cleaning, and the like.

以下、本発明のプラスチックボトル容器の具体的な実施例を示す。
[実施例1]
ポリエチレンテレフタレート(PET)を押出機に供給して重量45gのプリフォームを製造した。プリフォームには、胴部と底部の間に段付部を形成し、また、胴部と口部の間にストレート部を有する首下部を形成した。
プリフォームの肉厚は、胴部が約3.4mm、ストレート部が約2.3mm、段付部及び底部が約2.8mmとした。また、ストレート部は長さ約7mmとした。
このプリフォームをガラス転移点(Tg)以上の約120℃に加熱し、約110℃に加熱された金型内にセットして一段ブロー成形法により二軸延伸ブローを行い、その後、約4MPaのエア供給圧でクーリングブローをして、内容量約2000ml、平均肉厚約0.25mm、全高が約307mm、ヒール部の高さ(Hb)が約60mmのボトル容器を得た。また、得られたボトル容器は、ボトル中心からヒール部外縁までの半径(rb)が約60mmの長方形ボトルで、ボトル中心から底部外縁までの半径(ra)が約40mmとなった。
Specific examples of the plastic bottle container of the present invention are shown below.
[Example 1]
Polyethylene terephthalate (PET) was supplied to the extruder to produce a preform weighing 45 g. In the preform, a stepped portion was formed between the trunk portion and the bottom portion, and a lower neck portion having a straight portion between the trunk portion and the mouth portion was formed.
The thickness of the preform was about 3.4 mm for the body, about 2.3 mm for the straight part, and about 2.8 mm for the stepped part and the bottom part. The straight part was about 7 mm long.
This preform is heated to about 120 ° C. above the glass transition point (Tg), set in a mold heated to about 110 ° C., and biaxially stretched by a one-stage blow molding method, and then about 4 MPa. Cooling blow was performed with air supply pressure to obtain a bottle container having an internal volume of about 2000 ml, an average thickness of about 0.25 mm, an overall height of about 307 mm, and a heel portion height (Hb) of about 60 mm. The obtained bottle container was a rectangular bottle having a radius (rb) from the bottle center to the outer edge of the heel part of about 60 mm, and a radius (ra) from the bottle center to the outer edge of the bottom part was about 40 mm.

[比較例1]
実施例1と同様にポリエチレンテレフタレート(PET)を重量45g使用し、胴部と底部の間に段付部がなく、胴部と口部の間に約3mmの薄肉部(実施例1のストレート部に相当)を有する従来形状のプリフォームを製造した。
プリフォームの肉厚は、胴部が約3.9mmとした。
このプリフォームを、通常のボトルと同様、約110℃に加熱するとともに、通常のボトルより低めの約80℃に加熱した金型内にセットして一段ブロー成形法により二軸延伸ブローを行い、その後、通常のボトルと同様に、約3MPaのエア供給圧でクーリングブローをして、内容量約2000ml、平均肉厚約0.25mm、ヒール部が湾曲形状でない通常の角形状のボトル容器を得た。
[Comparative Example 1]
As in Example 1, 45 g of polyethylene terephthalate (PET) is used, there is no stepped part between the body part and the bottom part, and a thin part of about 3 mm between the body part and the mouth part (the straight part of Example 1) A preform with a conventional shape having
The thickness of the preform was about 3.9 mm at the body.
Like the normal bottle, this preform is heated to about 110 ° C. and set in a mold heated to about 80 ° C., which is lower than the normal bottle, and biaxially stretched and blown by a single-stage blow molding method. After that, as with normal bottles, cooling blow is performed with an air supply pressure of about 3 MPa to obtain a normal square bottle container with an internal volume of about 2000 ml, an average wall thickness of about 0.25 mm, and a heel portion that is not curved. It was.

[比較例2]
比較例1と同様に段付部のないプリフォームを使用して、胴部の肉厚を3.5mmに設定し、比較例1と同様の成形条件により、内容量約2000ml、平均肉厚約0.25mm、ヒール部が湾曲形状でない通常の角形状のボトル容器を得た。
[Comparative Example 2]
Similar to Comparative Example 1, a preform without a stepped portion was used, and the thickness of the barrel was set to 3.5 mm. Under the same molding conditions as in Comparative Example 1, the inner volume was about 2000 ml, and the average thickness was about A normal rectangular bottle container having a 0.25 mm heel portion with no curved shape was obtained.

[比較例3]
比較例1と同様に段付部のないプリフォームを使用して、胴部の肉厚を3.3mmに設定し、比較例1と同様の成形条件により、内容量約2000ml、平均肉厚約0.25mm、ヒール部が湾曲形状でない通常の角形状のボトル容器を得た。
[Comparative Example 3]
Similar to Comparative Example 1, a preform without a stepped portion was used, and the thickness of the barrel was set to 3.3 mm. Under the same molding conditions as in Comparative Example 1, the internal volume was about 2000 ml and the average thickness was about A normal rectangular bottle container having a 0.25 mm heel portion with no curved shape was obtained.

以上のボトル容器の肉厚分布を図9(a)及び(b)に示す。
実施例1では、図9(a)に示すように、ボトル側面側の全体に亘って肉厚がほぼ均一化しており、特に、ボトルの肩部やヒール部についても、他の部位(ボトルの胴部,底部)と同様の肉厚となった。
なお、底部についてヒール部や胴部と肉厚分布をほぼ均一にする箇所は、ヒール部との連続する部分から接地部までの範囲であり、底中央のドーム状の上底部は他の部位より肉厚となっている。
The thickness distribution of the bottle container is shown in FIGS. 9 (a) and 9 (b).
In Example 1, as shown in FIG. 9 (a), the wall thickness is almost uniform over the entire side surface of the bottle. The wall thickness was the same as that of the body and bottom.
The part where the wall thickness distribution is almost uniform with the heel part and the body part in the bottom part is the range from the part where the heel part continues to the grounding part. It is thick.

この実施例1のボトル容器に約80℃のシャワー温水リンスを約30秒間行って容器の内容量を測定したところ、シャワー前よりも容器の内容量が20ml減少し、収縮率は約1%であった。
平均肉厚が約0.35mmの通常のボトル容器に同様のシャワー温水リンスを行ったところ、容器の内容量は17ml減少し、収縮率は約0.8%程度であった。
また、実施例1のボトル容器の結晶化度は、ウェスト部で約33%程度であり、平均肉厚が約0.35mmの通常のボトル容器のウェスト部が約34%程度で、ほぼ同様の値となった。
The bottle container of Example 1 was rinsed with hot shower water at about 80 ° C. for about 30 seconds to measure the inner volume of the container. As a result, the inner volume of the container was reduced by 20 ml and the shrinkage rate was about 1%. there were.
When a similar shower warm water rinse was performed on a normal bottle container having an average wall thickness of about 0.35 mm, the inner volume of the container decreased by 17 ml and the shrinkage rate was about 0.8%.
Further, the crystallinity of the bottle container of Example 1 is about 33% in the waist part, and the waist part of a normal bottle container having an average wall thickness of about 0.35 mm is about 34%, which is almost the same. Value.

そこで、TMAによる無荷重変化量評価を行った。なお、TMAは、機種名DMS6100(セイコーインスツルメンツ株式会社製)を使用して行った。
実施例1のボトル容器のウェスト部をボトル横方向に幅5mmのサンプルを切り出し、無荷重(0kgf)条件下で、昇温速度=5℃/分で常温から加熱して標点間距離20mm、幅5mmのサンプルについてTMAによる無荷重変化量評価を行ったところ、変化量は加熱温度80℃で約30μm以下となった。これは、通常の0.35mm肉厚のボトルの変化量が約20μmであるのとほぼ同様の値となった。
以上により、実施例1のボトル容器は、従来からの肉厚のボトル容器とほぼ同様の耐熱性を有していることがわかった。
Therefore, no load change evaluation by TMA was performed. TMA was performed using the model name DMS6100 (manufactured by Seiko Instruments Inc.).
A sample having a width of 5 mm was cut out from the waist portion of the bottle container of Example 1 in the lateral direction of the bottle, heated under normal temperature at a temperature increase rate of 5 ° C./min under no load (0 kgf) condition, and the distance between the gauge points of 20 mm When a no-load change amount evaluation by TMA was performed on a sample having a width of 5 mm, the change amount was about 30 μm or less at a heating temperature of 80 ° C. This was almost the same value as the amount of change of a normal 0.35 mm thick bottle was about 20 μm.
From the above, it was found that the bottle container of Example 1 had almost the same heat resistance as a conventional thick bottle container.

一方、比較例1〜3では、図9(b)に示すように、比較例1(PF肉厚3.9mm)、比較例2(PF肉厚3.5mm)、比較例3(PF肉厚3.3mm)のいずれも、肉厚分布が均一とならず延伸ひずみが生じてしまった。
比較例1では、局所延伸により、ボトル肩部の肉厚が薄くなり過ぎ、一方、ボトルヒール部は延伸不足により肉厚が大きくなり過ぎてしまった。
比較例2,3は、ほぼ同様の肉厚分布となっており、ボトル肩部とヒール部の肉厚が局所延伸により薄くなり過ぎ、ボトル底部が延伸されずに肉厚が過大に成っている。特に比較例2では、ボトルのヒール部のみが過延伸され、底部はまったく延伸されなかった。
また、この比較例1〜3のボトル容器に約80℃のシャワー温水リンスを行ったところ、容器の内容量が64ml減少し、収縮率は約3.1%で、容量が実施例1のボトルの3倍以上収縮することがわかった。
さらに、比較例1〜3のボトルの結晶化度は、ウェスト部で約32%程度で、実施例1のボトルの結晶化度とほぼ同様の値となった。そこで、実施例1の場合と同様の条件により、TMAによる無荷重変化量評価を行ったところ、変化量は加熱温度80℃で約80μmとなり、実施例1の2.5倍以上、通常の肉厚のボトルの約4倍の変化量となった。
On the other hand, in Comparative Examples 1 to 3, as shown in FIG. 9B, Comparative Example 1 (PF wall thickness 3.9 mm), Comparative Example 2 (PF wall thickness 3.5 mm), and Comparative Example 3 (PF wall thickness) In 3.3 mm), the wall thickness distribution was not uniform and stretching strain occurred.
In Comparative Example 1, the wall thickness of the bottle shoulder portion was too thin due to local stretching, while the bottle heel portion was too thick due to insufficient stretching.
Comparative Examples 2 and 3 have almost the same thickness distribution, and the thickness of the bottle shoulder and heel is too thin due to local stretching, and the bottle bottom is not stretched and the thickness is excessive. . Particularly in Comparative Example 2, only the heel portion of the bottle was overstretched, and the bottom portion was not stretched at all.
In addition, when the bottle container of Comparative Examples 1 to 3 was rinsed with hot shower water at about 80 ° C., the volume of the container decreased by 64 ml, the shrinkage rate was about 3.1%, and the capacity of the bottle of Example 1 It was found that it contracted more than 3 times.
Furthermore, the degree of crystallinity of the bottles of Comparative Examples 1 to 3 was about 32% at the waist, which was almost the same as the degree of crystallinity of the bottle of Example 1. Therefore, when the no-load change amount evaluation by TMA was performed under the same conditions as in Example 1, the change amount was about 80 μm at the heating temperature of 80 ° C. The amount of change was about four times that of a thick bottle.

このように、プリフォームの重量が同一である実施例1と比較例1〜3とを対比すると、比較例1〜3では、ボトルのヒール部に局所的延伸,過延伸による延伸ひずみが生じ、ボトル全体の肉厚分布が不均一であるのに対し、実施例1では、容器全体の肉厚が均一化しており、プリフォームの全体が均一に延伸され、ボトルヒール部に過延伸や局所的延伸が生じず、延伸ひずみがないことがわかる。
また、比較例1〜3では、薄肉化のためにヒートセットを低くしたために、結晶化度ではほぼ同様の値を示しながら、ボトルの耐熱性が劣化し、温水殺菌洗浄温度(約65〜80℃)に耐えられず容器が実施例1の3倍以上収縮したのに対し、実施例1では、ボトルの平均肉厚が薄肉化されているにも拘わらず、通常のボトルと同様の耐熱性が得られることがわかった。
以上により、実施例1では、ボトルヒール部について局所的な延伸がなく、ボトル全体に亘って肉厚が均一化され、しかも、高い耐熱性が得られることがわかった。
Thus, when Example 1 and Comparative Examples 1 to 3 in which the weight of the preform is the same are compared, in Comparative Examples 1 to 3, stretching strain due to local stretching and overstretching occurs in the heel portion of the bottle, While the thickness distribution of the entire bottle is not uniform, in Example 1, the thickness of the entire container is uniform, the entire preform is uniformly stretched, and the bottle heel portion is overstretched or locally stretched. It can be seen that no stretching occurs and there is no stretching strain.
Moreover, in Comparative Examples 1-3, since the heat set was lowered for thinning, the heat resistance of the bottle was deteriorated while showing almost the same crystallization degree, and the hot water sterilization washing temperature (about 65-80) In contrast to Example 1, the container shrank more than three times that of Example 1, whereas Example 1 had the same heat resistance as that of a normal bottle despite the fact that the average wall thickness of the bottle was reduced. Was found to be obtained.
As described above, in Example 1, it was found that the bottle heel portion was not locally stretched, the wall thickness was uniform over the entire bottle, and high heat resistance was obtained.

なお、本発明のプラスチックボトル容器は、上述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。
例えば、上記実施形態で得られるボトル容器は、外形が断面ほぼ長方形状の扁平角筒状のボトル容器となっていたが、ボトル容器の外形は特に扁平角筒状のものに限られるものではない。
図10に示すように、断面長方形状のボトル容器(同図(a)参照)以外にも、断面ほぼ円形状の円筒状のボトル容器(同図(b)参照)であっても良く、また、特に図示しないが、断面ほぼ正方形状のボトル容器であってもよく、角筒と円筒を組み合わせたボトル容器であっても良い。ボトルヒール部を湾曲形状に形成してヒール部の延伸倍率を小さくできる限り、どのような外形のボトル容器であっても本発明の適用を妨げるものではない。
Note that the plastic bottle container of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
For example, the bottle container obtained in the above embodiment is a flat rectangular tube container whose outer shape is substantially rectangular in cross section, but the outer shape of the bottle container is not particularly limited to a flat rectangular tube shape. .
As shown in FIG. 10, in addition to a bottle container having a rectangular cross section (see FIG. 10A), it may be a cylindrical bottle container having a substantially circular cross section (see FIG. 10B). Although not particularly illustrated, it may be a bottle container having a substantially square cross section, or a bottle container in which a square tube and a cylinder are combined. As long as the bottle heel portion is formed in a curved shape and the stretch ratio of the heel portion can be reduced, the bottle container having any outer shape does not hinder the application of the present invention.

また、上記実施形態では、容量が2000mlのボトル容器を示したが、本発明の適用にあたってボトル容器の容量は特に限定されるものではない。従って、例えば容量1000mlのボトル容器であっても、また、容量1500mlのボトル容器であっても本発明の適用を妨げない。
さらに、上記実施形態では、プリフォームとして所定形状の段付部及びストレート部を有する首下部を形成したものを示したが、これ以外の形状のプリフォームを用いて本発明に係るボトル容器を形成することも可能である。
Moreover, in the said embodiment, although the capacity | capacitance of a 2000 ml bottle container was shown, in the application of this invention, the capacity | capacitance of a bottle container is not specifically limited. Therefore, for example, even a bottle container with a capacity of 1000 ml or a bottle container with a capacity of 1500 ml does not hinder the application of the present invention.
Furthermore, in the said embodiment, what formed the neck lower part which has the step part of a predetermined shape and a straight part as a preform was shown, The bottle container which concerns on this invention is formed using a preform of shapes other than this It is also possible to do.

以上説明した本発明は、予備成形品であるポリエチレンテレフタレート等からなるプリフォーム(パリソン)を延伸ブロー成形して得られるプラスチックボトル容器に利用可能である。特に、白化が生じることなくボトル全体を均一に薄肉化でき、また、高温のヒートセットが可能となり、耐熱性にも優れたボトル容器を製造できることから、扁平ボトルやアセプティックボトル等に適したプラスチックボトル容器に利用できる。 The present invention described above can be used for a plastic bottle container obtained by stretch blow molding a preform (parison) made of polyethylene terephthalate or the like, which is a preformed product. In particular, plastic bottles that are suitable for flat bottles, aseptic bottles, etc., because the entire bottle can be uniformly thinned without whitening, and high-temperature heat setting is possible, making it possible to produce bottle containers with excellent heat resistance. Available for containers.

本発明の一実施形態に係るプラスチックボトル容器を得るためのプリフォームの一例を示す断面図である。It is sectional drawing which shows an example of the preform for obtaining the plastic bottle container which concerns on one Embodiment of this invention. 図1に示すプリフォームの要部拡大図で、(a)はプリフォームの全体図、(b)は首下部の拡大図、(c)は段付部の拡大図である。FIG. 2 is an enlarged view of a main part of the preform shown in FIG. 1, (a) is an overall view of the preform, (b) is an enlarged view of the lower part of the neck, and (c) is an enlarged view of a stepped portion. 図1に示すプリフォームの段付部の拡大図であり、段付部の傾斜角度を変更する態様を示している。It is an enlarged view of the step part of the preform shown in FIG. 1, and has shown the aspect which changes the inclination angle of a step part. 本発明に係るプラスチックボトル容器を得るための延伸ブロー成形の工程を示す説明図である。It is explanatory drawing which shows the process of the stretch blow molding for obtaining the plastic bottle container which concerns on this invention. 本発明に係るプラスチックボトル容器の延伸ブロー成形工程におけるプリフォームの延伸状態を示す要部断面図であり、(a)は本発明に係るプリフォーム、(b)は従来方法に係るプリフォームを示している。It is principal part sectional drawing which shows the extending | stretching state of the preform in the stretch blow molding process of the plastic bottle container which concerns on this invention, (a) shows the preform which concerns on this invention, (b) shows the preform which concerns on a conventional method. ing. 本発明の一実施形態に係るボトル容器の外観図であり、(a)は正面図、(b)は側面図、(c)は平面図、(d)A−A線断面図、(e)は底面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view of the bottle container which concerns on one Embodiment of this invention, (a) is a front view, (b) is a side view, (c) is a top view, (d) AA sectional view, (e) Is a bottom view. 本発明の一実施形態に係るボトル容器の外観図であり、(a)はボトル全高とヒール部の高さを示すボトル正面図、(b)は底部及びヒール部の半径を示すボトル底面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view of the bottle container which concerns on one Embodiment of this invention, (a) is a bottle front view which shows the bottle full height and the height of a heel part, (b) is a bottle bottom view which shows the radius of a bottom part and a heel part. is there. 本発明の一実施形態に係るボトル容器のヒール部の湾曲形状を示す要部拡大図である。It is a principal part enlarged view which shows the curved shape of the heel part of the bottle container which concerns on one Embodiment of this invention. 本発明に一実施例に係るプラスチックボトル容器の肉厚分布を示すグラフであり、(a)は本発明のボトル容器、(b)は従来品のボトル容器のものを示している。It is a graph which shows the thickness distribution of the plastic bottle container which concerns on one Example to this invention, (a) shows the bottle container of this invention, (b) has shown the thing of the bottle container of a conventional product. 本発明に係るプラスチックボトル容器の外形例を示す正面図であり、(a)は長方形ボトル、(b)は円形ボトルである。It is a front view which shows the external shape example of the plastic bottle container which concerns on this invention, (a) is a rectangular bottle, (b) is a round bottle.

符号の説明Explanation of symbols

1 本発明に係るプリフォーム(パリソン)
2 口部
3 首下部
3a ストレート部
4 プリフォーム胴部
5 プリフォーム底部
5a プリフォーム段付部
10 ボトル容器
10a 長方形ボトル
10b 円形ボトル
11 ボトル首部
12 ボトル肩部
13 ボトル胴部(上)
14 ボトルウェスト部
15 ボトル胴部(下)
16 ボトルヒール部
17 ボトル底部
201 従来のプリフォーム
1 Preform (Parison) according to the present invention
2 mouth part 3 neck lower part 3a straight part 4 preform trunk part 5 preform bottom part 5a preform stepped part 10 bottle container 10a rectangular bottle 10b round bottle 11 bottle neck part 12 bottle shoulder part 13 bottle trunk part (upper)
14 Bottle waist 15 Bottle body (bottom)
16 Bottle heel part 17 Bottle bottom part 201 Conventional preform

Claims (5)

有底筒状のプリフォームを延伸ブロー成形することにより形成されるプラスチックボトル容器であって、
胴部の周方向断面形状が長方形状であり、
胴部及び底部が連続するボトルヒール部の長辺方向及び対角方向を、胴部から底部へ連続してボトル中心軸に向かって漸次テーパ状に湾曲する湾曲形状とし、
前記胴部の周方向断面形状を、ボトル底部に近づくにつれて長辺側及び対角側の長さを縮小して、漸次ほぼ正方形状とするとともに、ボトル底部の接地面の外周縁をほぼ円形状とし、
ボトル全高(Ha)と前記湾曲形状のボトルヒール部の高さ(Hb)の比が、0.1≦Hb/Ha≦0.25であり、
ボトル容器の肩部から胴部、ヒール部にかけての肉厚を0.2〜0.3mmとすることにより、当該ボトル容器の平均肉厚が、ほぼ0.25mmであ
ことを特徴とするプラスチックボトル容器。
A plastic bottle container formed by stretch blow molding a bottomed cylindrical preform,
The circumferential cross-sectional shape of the trunk is a rectangular shape,
The long side direction and the diagonal direction of the bottle heel part where the body part and the bottom part are continuous have a curved shape that is gradually tapered toward the bottle central axis continuously from the body part to the bottom part,
The circumferential cross-sectional shape of the body portion is reduced in length on the long side and the diagonal side as it approaches the bottle bottom, gradually becoming a substantially square shape, and the outer peripheral edge of the ground contact surface of the bottle bottom is substantially circular. age,
Bottles Height (Ha) and height of the bottle heel of the curved ratio of (Hb), Ri 0.1 ≦ Hb / Ha ≦ 0.25 der,
Barrel from the shoulder portion of the bottle by a 0.2~0.3mm the thickness of toward the heel portion, plastics average thickness of the bottle container, characterized in that Ru approximately 0.25mm der Bottle container.
請求項記載のプラスチックボトル容器であって、
内容量が1000〜2000mlであることを特徴とするプラスチックボトル容器。
The plastic bottle container according to claim 1 ,
A plastic bottle container having an internal volume of 1000 to 2000 ml.
請求項1又は2記載のプラスチックボトル容器であって、
前記延伸ブロー成形の延伸倍率は縦×横で12〜15倍であることを特徴とする、プラスチックボトル容器。
The plastic bottle container according to claim 1 or 2 ,
The stretch ratio of the stretch blow molding is 12 to 15 times in length x width, and a plastic bottle container.
請求項1〜3のいずれか一項記載のプラスチックボトル容器であって、
内容量が2000mlで、ボトル全高がほぼ307mmであって、
前記ボトルヒール部の高さ(Hb)がほぼ30mm〜80mmであり、
ボトル中心からヒール部外縁までの半径(rb)がほぼ60mmであり、ボトル中心から底部外縁までの半径(ra)がほぼ30mm〜45mmであることを特徴とするプラスチックボトル容器。
The plastic bottle container according to any one of claims 1 to 3,
The inner volume is 2000ml, the total bottle height is almost 307mm,
The bottle heel portion has a height (Hb) of approximately 30 mm to 80 mm,
A plastic bottle container , wherein a radius (rb) from a bottle center to an outer edge of the heel portion is approximately 60 mm, and a radius (ra) from the bottle center to the outer edge of the bottom portion is approximately 30 mm to 45 mm .
請求項1〜4のいずれか一項記載のプラスチックボトル容器であって、
ボトル中心から底部外縁までの半径(ra)とボトル中心から湾曲形状のボトルヒール部外縁までの半径(rb)の比が、0.5≦ra/rb≦0.75であることを特徴とするプラスチックボトル容器。
The plastic bottle container according to any one of claims 1 to 4,
The ratio of the radius (ra) from the bottle center to the bottom outer edge and the radius (rb) from the bottle center to the curved bottle heel outer edge is 0.5 ≦ ra / rb ≦ 0.75. Plastic bottle container.
JP2003301683A 2003-08-26 2003-08-26 Plastic bottle containers Expired - Fee Related JP4333280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301683A JP4333280B2 (en) 2003-08-26 2003-08-26 Plastic bottle containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301683A JP4333280B2 (en) 2003-08-26 2003-08-26 Plastic bottle containers

Publications (2)

Publication Number Publication Date
JP2005067683A JP2005067683A (en) 2005-03-17
JP4333280B2 true JP4333280B2 (en) 2009-09-16

Family

ID=34406227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301683A Expired - Fee Related JP4333280B2 (en) 2003-08-26 2003-08-26 Plastic bottle containers

Country Status (1)

Country Link
JP (1) JP4333280B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179400A (en) * 2007-01-25 2008-08-07 Mitsubishi Plastics Ind Ltd Handle to be attached to plastic bottle, and plastic bottle with handle
JP5348863B2 (en) * 2007-08-07 2013-11-20 三菱樹脂株式会社 Plastic bottle handle and plastic bottle with handle
JP5666506B2 (en) * 2012-06-15 2015-02-12 大日本印刷株式会社 Plastic bottle
JP2012166858A (en) * 2012-06-15 2012-09-06 Dainippon Printing Co Ltd Plastic bottle
JP6746880B2 (en) * 2015-06-26 2020-08-26 大日本印刷株式会社 Packing body manufacturing method, plastic bottle, packing body, and packing body manufacturing apparatus
JP6710904B2 (en) * 2015-06-26 2020-06-17 大日本印刷株式会社 Filling body manufacturing method, plastic bottle, filling body, and filling body manufacturing apparatus
JP6743360B2 (en) * 2015-09-30 2020-08-19 大日本印刷株式会社 Plastic bottle, filling body, and method for manufacturing filling body
JP6772530B2 (en) * 2016-04-28 2020-10-21 大日本印刷株式会社 Plastic bottles, fillers, and methods for manufacturing fillers
JP7062352B2 (en) * 2016-04-28 2022-05-06 大日本印刷株式会社 Plastic bottles, fillers, and methods for manufacturing fillers

Also Published As

Publication number Publication date
JP2005067683A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
CN100411841C (en) Synthetic resin biaxial oriented blow formed preform for forming bottle body
JP4292918B2 (en) Preforms for plastic bottle containers
US20140332490A1 (en) Flat container comprising thermoplastic resin and method for molding the same
KR101308299B1 (en) Polyester bottle with resistance to heat and pressure and process for producing the same
KR101422308B1 (en) Biaxially stretched thin-walled polyester bottle
JP4333280B2 (en) Plastic bottle containers
EP2331307B1 (en) Preform for making plastic container
JP3797156B2 (en) Preforms for blow molding of bottle-shaped containers
EP1208957A1 (en) Stretch blow molded container
JP4052055B2 (en) Stretch blow molding method for plastic bottle containers
JP4734896B2 (en) Manufacturing method of plastic bottle container
JP4148065B2 (en) Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method
JP4210901B2 (en) Manufacturing method of bottle-shaped container
JPH07156933A (en) Pressure-resistant self-standing container and its manufacture
JP4780443B2 (en) Flat container two-stage blow molding
EP2493671B1 (en) Preform for making a blow-molded container and having a concave gate portion, injection mold stack and process for making the preform, process for making the container and container.
JP7059563B2 (en) Preform manufacturing method
JP3680526B2 (en) Stretched resin container and manufacturing method thereof
JP4289048B2 (en) Two-stage blow molding method for heat-resistant bottles
JP2005112440A (en) Container
JP2003103609A (en) Two-stage blow molding method for heat-resistant bottle
JP2003103607A (en) Bottom structure of heat-resistant bottle
JP3835428B2 (en) Heat-resistant stretched resin container
JP2004067156A (en) Plastics bottle
JPH1142696A (en) Heat resistant stretch formed resin container and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees