JP4148065B2 - Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method - Google Patents

Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method Download PDF

Info

Publication number
JP4148065B2
JP4148065B2 JP2003301682A JP2003301682A JP4148065B2 JP 4148065 B2 JP4148065 B2 JP 4148065B2 JP 2003301682 A JP2003301682 A JP 2003301682A JP 2003301682 A JP2003301682 A JP 2003301682A JP 4148065 B2 JP4148065 B2 JP 4148065B2
Authority
JP
Japan
Prior art keywords
bottle container
preform
blow molding
molding method
stretch blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003301682A
Other languages
Japanese (ja)
Other versions
JP2005067084A (en
Inventor
耕二 前田
秀彦 勝田
正樹 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2003301682A priority Critical patent/JP4148065B2/en
Publication of JP2005067084A publication Critical patent/JP2005067084A/en
Application granted granted Critical
Publication of JP4148065B2 publication Critical patent/JP4148065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Description

本発明は、ポリエチレンテレフタレート等からなるプリフォーム(パリソン)を延伸ブロー成形してプラスチックボトル容器を製造する延伸ブロー成形方法に関する。
特に、ボトルの底ヒール部や肩部に相当するプリフォームの所定範囲を一体的に延伸することにより、局所的な延伸や過延伸を防止してプリフォーム全体を均一かつ十分に延伸することができ、これによって、白化が生じることなくボトル全体を均一に薄肉化でき、高温のヒートセットが可能となって耐熱性にも優れたボトル容器を製造できるプラスチックボトル容器の延伸ブロー成形方法と、この成形方法により得られるプラスチックボトル容器に関する。
The present invention relates to a stretch blow molding method for producing a plastic bottle container by stretch blow molding a preform (parison) made of polyethylene terephthalate or the like.
In particular, by integrally stretching a predetermined range of the preform corresponding to the bottom heel or shoulder of the bottle, local stretching and overstretching can be prevented and the entire preform can be stretched uniformly and sufficiently. This allows the entire bottle to be uniformly thinned without causing whitening, and enables a high-temperature heat set to produce a bottle container with excellent heat resistance, and a stretch blow molding method for a plastic bottle container. The present invention relates to a plastic bottle container obtained by a molding method.

一般に、ポリエチレンテレフタレート等のポリエステル,ポリプロピレン,ポリアミド等からなり、延伸ブローによって成形されるプラスチックボトル容器が知られている。この種のプラスチックボトル容器は、一般に、射出成形されたプリフォーム(パリソン)を延伸ブロー成形することにより製造される(例えば、特許文献1−3参照。)。
このように延伸ブロー成形方法により製造されたプラスチックボトル容器は、透明性とガスバリヤー性に優れ、コーラ,サイダー等の炭酸飲料、果汁飲料、ミネラルウォーター、各種お茶類等の飲料用のボトル容器として広く使用されている。
In general, a plastic bottle container made of polyester such as polyethylene terephthalate, polypropylene, polyamide or the like and formed by stretch blow is known. This type of plastic bottle container is generally manufactured by stretch-blow molding an injection-molded preform (parison) (see, for example, Patent Documents 1-3).
Thus, the plastic bottle container manufactured by the stretch blow molding method is excellent in transparency and gas barrier property, and is used as a bottle container for beverages such as carbonated beverages such as cola and cider, fruit juice beverages, mineral water, and various teas. Widely used.

特開2002−240136号公報(第4頁、第4図)JP 2002-240136 A (page 4, FIG. 4) 特許公報第2781810号公報(第5頁、第2−4図)Japanese Patent Publication No. 2781810 (5th page, Fig. 2-4) 特許公報第3011058号公報(第2頁)Japanese Patent Publication No. 3011058 (Page 2)

ところで、近年、プラスチックボトル容器は急速に普及,浸透するようになり、この広範な普及にともない、特に飲料用の容器に対して、容器の薄肉化,軽量化が強く要請されるようになった。例えば、現在、容量2000ml用の容器として使用されているプラスチックボトル容器は平均肉厚が約0.35mm程度あるが、これを更に0.25mm程度に薄肉化したいという要請がある。
ここで、プラスチックボトル容器の肉厚は、プリフォームの樹脂量を削減し、高い延伸倍率で延伸ブロー成形することにより薄肉化が可能である。
By the way, in recent years, plastic bottle containers have rapidly spread and penetrated, and with this wide spread, there has been a strong demand for thinner and lighter containers, especially for beverage containers. . For example, a plastic bottle container currently used as a container for a capacity of 2000 ml has an average thickness of about 0.35 mm, and there is a demand for further reducing the thickness to about 0.25 mm.
Here, the thickness of the plastic bottle container can be reduced by reducing the resin amount of the preform and performing stretch blow molding at a high stretch ratio.

しかし、このように単にプリフォームの樹脂量を減らして延伸倍率を高める方法では、特に扁平ボトル容器の場合、延伸ひずみが生じ、均一な肉厚分布のボトルが得られず、また、白化が起こり易いという問題があった。特に、長方形ボトル容器のヒール部の対角線方向は延伸倍率が局所的に高くなってしまい、過延伸によるひずみや白化,変形等の問題が顕著であった。
また、延伸ひずみが生じたボトル容器では、金型のヒートセット温度が通常肉厚のボトルの場合(例えば約120〜135℃)と同様であると、金型から取り出した際にボトルが収縮してしまうという問題も発生し、特に長方形ボトルのヒール部の過延伸部分には所謂ヒケが生じ易かった。
However, in this method of simply reducing the amount of preform resin and increasing the draw ratio, especially in the case of flat bottle containers, stretch distortion occurs, a bottle with a uniform wall thickness distribution cannot be obtained, and whitening occurs. There was a problem that it was easy. In particular, in the diagonal direction of the heel portion of the rectangular bottle container, the stretch ratio is locally high, and problems such as strain, whitening, and deformation due to overstretching are significant.
Further, in a bottle container in which stretch distortion has occurred, if the heat set temperature of the mold is the same as that of a normally thick bottle (for example, about 120 to 135 ° C.), the bottle shrinks when removed from the mold. In particular, so-called sink marks were easily generated in the overstretched portion of the heel portion of the rectangular bottle.

さらに、このようなボトルの収縮を防止するにはヒートセット温度(ブロー金型温度)を下げる必要があるが(例えば約80℃)、このようにヒートセット温度を低くすると、ボトル容器に所望の耐熱性が得られない問題が発生した。
耐熱性のないボトル容器では、比較的耐熱性能を必要としないアセプティック充填用途における温水殺菌洗浄温度(約65〜80℃)にも耐えられず、温水殺菌洗浄するとボトルが収縮してしまい、アセプティックボトルとしても使用することができなかった。
Further, in order to prevent such shrinkage of the bottle, it is necessary to lower the heat set temperature (blow mold temperature) (for example, about 80 ° C.). There was a problem that heat resistance could not be obtained.
A bottle container that does not have heat resistance cannot withstand the hot water sterilization washing temperature (about 65 to 80 ° C.) in an aseptic filling application that does not require relatively high heat resistance. Could not be used as well.

このように、単にプリフォームの樹脂量を削減して延伸倍率を高くしてボトル容器の薄肉化を図ろうとしても、肉厚分布の不均一とボトルの白化、さらには、耐熱性の劣化という問題が発生してしまい、特に軽量化が望まれているアセプティックボトルの薄肉化には対応できなかった。
本発明者は、上記事情に鑑み鋭意研究を重ねた結果、プリフォームの所定範囲を一体的に延伸することで、局所的な延伸や過延伸を防止して均一な延伸ブロー成形が可能となり、これによってボトル容器の薄肉化を図る際の不都合を解消できることに想到した。
In this way, simply reducing the amount of resin in the preform and increasing the draw ratio to reduce the thickness of the bottle container will result in uneven thickness distribution, whitening of the bottle, and further deterioration in heat resistance. Problems have arisen, and it has not been possible to cope with the thinning of the aseptic bottle, which is particularly desired to be lightweight.
As a result of intensive research in view of the above circumstances, the present inventor has achieved uniform stretch blow molding by preventing local stretching and overstretching by integrally stretching a predetermined range of the preform, This has led to the idea that problems associated with reducing the thickness of the bottle container can be eliminated.

すなわち、本発明は、上述のような従来の技術が有する問題を解決するために提案されたものであり、ボトルの底ヒール部や肩部に相当するプリフォームの所定範囲を一体的に延伸することにより、局所的な延伸や過延伸を防止してプリフォーム全体を均一かつ十分に延伸することができ、これによって、白化が生じることなくボトル全体を均一に薄肉化でき、高温のヒートセットが可能となって耐熱性にも優れたボトル容器を製造できる、特に、扁平ボトルやアセプティックボトル等に適したプラスチックボトル容器の延伸ブロー成形方法と、この成形方法によって得られるプラスチックボトル容器に関する。 That is, the present invention has been proposed in order to solve the problems of the conventional techniques as described above, and integrally extends a predetermined range of a preform corresponding to the bottom heel portion or shoulder portion of the bottle. Therefore, it is possible to uniformly and sufficiently stretch the entire preform by preventing local stretching and overstretching, which makes it possible to uniformly thin the entire bottle without causing whitening, and high temperature heat setting More particularly, the present invention relates to a stretch blow molding method for plastic bottle containers suitable for flat bottles, aseptic bottles and the like, and a plastic bottle container obtained by this molding method.

上記目的を達成するため、本発明のプラスチックボトル容器の延伸ブロー成形方法は、請求項1に記載するように、有底筒状のプリフォームを所定温度で加熱し、延伸ブロー成形することにより、プラスチックボトル容器を形成する延伸ブロー成形方法であって、前記プリフォームが、胴部と底部とを備えた有底筒状であって、胴部と底部との間に段付部を備え、前記段付部の内面及び外面の傾斜角度θが7°≦θ≦45°、前記胴部の肉厚Taと段付部の肉厚Tbの比が1.0<Ta/Tb≦1.5に設定され、このプリフォームを所定温度で加熱し、プリフォームの、胴部及び底部の連続する所定範囲を均一に延伸することにより、ボトル容器の底部及びヒール部に相当する部分の全体を延伸させ、ボトル容器の底部,ヒール部及び胴部の肉厚分布をほぼ均一にする方法としてある。 In order to achieve the above object, the stretch blow molding method for a plastic bottle container of the present invention, as described in claim 1, by heating a bottomed cylindrical preform at a predetermined temperature and performing stretch blow molding, A stretch blow molding method for forming a plastic bottle container, wherein the preform has a bottomed cylindrical shape including a trunk portion and a bottom portion, and includes a stepped portion between the trunk portion and the bottom portion, The inclination angle θ of the inner surface and the outer surface of the stepped portion is 7 ° ≦ θ ≦ 45 °, and the ratio of the thickness Ta of the barrel portion to the thickness Tb of the stepped portion is 1.0 <Ta / Tb ≦ 1.5. The preform is heated at a predetermined temperature, and the entire portion corresponding to the bottom portion and the heel portion of the bottle container is stretched by uniformly stretching a predetermined range of the body portion and the bottom portion of the preform. The bottom, heel and torso of the bottle container There a way to a thickness distribution substantially uniform.

また、請求項2に記載するように、本発明のプラスチックボトル容器の延伸ブロー成形方法は、有底筒状のプリフォームを所定温度で加熱し、延伸ブロー成形することにより、プラスチックボトル容器を形成する延伸ブロー成形方法であって、前記プリフォームが、口部と胴部と底部とを備えた有底筒状であって、口部と胴部との間に首下部を備え、前記首下部には、口部から連続する胴部より薄肉のストレート部が設けられ、前記ストレート部の長さLaと肉厚Tcの比が3≦La/Tc≦5に設定され、このプリフォームを所定温度で加熱し、プリフォームの、胴部及び口部の連続する所定範囲を均一に延伸することにより、ボトル容器の肩部に相当する部分の全体を延伸させ、ボトル容器の肩部及び胴部の肉厚分布をほぼ均一にする方法としてある。 According to a second aspect of the present invention, the stretch blow molding method for a plastic bottle container of the present invention forms a plastic bottle container by heating a bottomed cylindrical preform at a predetermined temperature and performing stretch blow molding. A stretch blow molding method, wherein the preform has a bottomed cylindrical shape including a mouth portion, a body portion, and a bottom portion, and includes a neck lower portion between the mouth portion and the body portion, and the neck lower portion Is provided with a straight portion that is thinner than the trunk continuous from the mouth, and the ratio of the length La to the thickness Tc of the straight portion is set to 3 ≦ La / Tc ≦ 5. By heating and uniformly stretching a predetermined range of the body and mouth of the preform, the entire portion corresponding to the shoulder of the bottle container is stretched, and the shoulder and body of the bottle container are stretched. To make the wall thickness distribution almost uniform There as.

さらに、請求項3に記載するように、本発明のプラスチックボトル容器の延伸ブロー成形方法は、有底筒状のプリフォームを所定温度で加熱し、延伸ブロー成形することにより、プラスチックボトル容器を形成する延伸ブロー成形方法であって、前記プリフォームが、口部と胴部と底部とを備えた有底筒状であって、胴部と底部との間に段付部を備え、前記段付部の内面及び外面の傾斜角度θが7°≦θ≦45°、前記胴部の肉厚Taと段付部の肉厚Tbの比が1.0<Ta/Tb≦1.5に設定されるとともに、口部と胴部との間に首下部を備え、前記首下部には、口部から連続する胴部より薄肉のストレート部が設けられ、前記ストレート部の長さLaと肉厚Tcの比が3≦La/Tc≦5に設定され、このプリフォームを所定温度で加熱し、プリフォームの、胴部及び底部の連続する所定範囲を均一に延伸することにより、ボトル容器の底部及びヒール部に相当する部分の全体を延伸させるとともに、プリフォームの、胴部及び口部の連続する所定範囲を均一に延伸することにより、ボトル容器の肩部に相当する部分の全体を延伸させ、ボトル容器の肩部,胴部,ヒール部及び底部の肉厚分布をほぼ均一にする方法としてある。 Furthermore, as described in claim 3, the plastic bottle container stretch blow molding method of the present invention forms a plastic bottle container by heating a bottomed cylindrical preform at a predetermined temperature and performing stretch blow molding. A stretch blow molding method, wherein the preform has a bottomed cylindrical shape including a mouth portion, a body portion, and a bottom portion, and includes a stepped portion between the body portion and the bottom portion. The inclination angle θ between the inner surface and the outer surface of the portion is set to 7 ° ≦ θ ≦ 45 °, and the ratio of the thickness Ta of the body portion to the thickness Tb of the stepped portion is set to 1.0 <Ta / Tb ≦ 1.5. In addition, a neck lower part is provided between the mouth part and the trunk part, and a straight part thinner than the trunk part continuous from the mouth part is provided in the neck lower part, and the length La and the wall thickness Tc of the straight part are provided. Is set to 3 ≦ La / Tc ≦ 5, and this preform is heated at a predetermined temperature. , Of the preform, by uniformly stretching a predetermined range of contiguous body portion and a bottom portion, with stretching the entire portion corresponding to the bottom and the heel portion of the bottle, the preform of the body and the mouth A method of extending the entire portion corresponding to the shoulder portion of the bottle container by uniformly extending a predetermined continuous range so that the wall thickness distribution of the shoulder portion, body portion, heel portion and bottom portion of the bottle container is substantially uniform. It is as.

より具体的には、請求項4に記載するように、ボトル容器のウェスト部の周方向断面形状を、ほぼ長方形状に形成するとともに、ボトル底部に近づくにつれて長辺側及び対角側の長さを縮小させることで漸次、ほぼ正方形状に形成し、ボトル底部の接地面の外周縁はほぼ円形状に形成する方法としてある。
また、請求項5に記載するように、延伸ブロー成形されたボトル容器の肩部から胴部、ヒール部にかけての肉厚を0.2〜0.3mmとすることにより、当該ボトル容器の平均肉厚を0.25mmとした方法としてある。
More specifically, as described in claim 4, the circumferential cross-sectional shape of the waist portion of the bottle container is formed in a substantially rectangular shape, and the lengths on the long side and the diagonal side as the bottle bottom is approached. By gradually reducing the size, the outer peripheral edge of the ground contact surface at the bottom of the bottle is formed in a substantially circular shape.
In addition, as described in claim 5, by setting the wall thickness from the shoulder portion to the body portion and the heel portion of the stretch blow molded bottle container to 0.2 to 0.3 mm, the average thickness of the bottle container is set. This is a method of setting the thickness to 0.25 mm .

また、本発明においては、プリフォームを、110〜120℃の温度で加熱後、延伸プローを行うことができる。
また、請求項6に記載するように、プリフォームを、105〜115℃に加熱した金型でヒートセットする方法としてある。
さらに、本発明においては、延伸ブロー成形されたブロー成形体を、エア圧力ほぼ4MPaでクーリングブローすることができる。
In the present invention, the preform can be stretched after heating at a temperature of 110 to 120 ° C.
According to a sixth aspect of the present invention, the preform is heat set with a mold heated to 105 to 115 ° C.
Furthermore, in the present invention, the blow-molded body that has been stretch blow-molded can be cooled blow at an air pressure of approximately 4 MPa .

そして、以上のような延伸ブロー成形方法により形成される本発明のプラスチックボトル容器は、請求項7に記載するように、ボトル容器の本体のウェスト部を切り出して標点間距離20mm、幅5mmの試料とし、無荷重、昇温速度=5℃/分の条件のTMA評価において、標点間距離の収縮変化量が加熱温度80℃で60μm以下となる物性を有する構成となっている。
また、本発明のプラスチックボトル容器は、請求項8に記載するように、温度65〜80℃の温水によるリンス後のボトル容量の収縮率が1%以下となる物性を有する構成となっている。
And the plastic bottle container of this invention formed by the above stretch blow molding methods cuts out the waist part of the main body of a bottle container as described in Claim 7, and is 20 mm in distance between marks, and 5 mm in width. In the TMA evaluation under the conditions of no load and temperature increase rate = 5 ° C./min, the sample has a physical property such that the shrinkage change amount of the distance between the gauge points is 60 μm or less at the heating temperature of 80 ° C.
Moreover, the plastic bottle container of this invention has the structure which has the physical property in which the shrinkage | contraction rate of the bottle capacity | capacitance after the rinse with the hot water of the temperature of 65-80 degreeC becomes 1% or less, as described in Claim 8 .

以上のような本発明のプラスチックボトル容器の延伸ブロー成形方法によれば、例えばボトルの底ヒール部に相当するプリフォームの所定範囲に段付部を形成し、この段付部の傾斜角度や厚みを所定の値に設定することにより、段付部と底部を一体的に延伸させたり、あるいは、プリフォーム各部の加熱温度を変更することによって、局所的な延伸や過延伸を防止して胴部、段付部、底部の全体を均一かつ十分に延伸することが可能となる。
また、ボトルの肩部に相当するプリフォームの所定範囲にストレート部を有する首下部を形成し、ストレート部の長さや厚みを所定の値に設定することにより、ストレート部を含む首下部を胴部と一体的に延伸させ、これによって、首下部に局所的な延伸や過延伸が生じるのを防止することができる。
According to the stretch blow molding method for a plastic bottle container of the present invention as described above, for example, a stepped portion is formed in a predetermined range of a preform corresponding to the bottom heel portion of the bottle, and the inclination angle or thickness of the stepped portion is formed. Is set to a predetermined value so that the stepped portion and the bottom portion are stretched integrally, or the heating temperature of each part of the preform is changed to prevent local stretching and overstretching. It becomes possible to extend the stepped portion and the bottom portion uniformly and sufficiently.
In addition, the neck lower part including the straight part is formed by forming a neck lower part having a straight part in a predetermined range of the preform corresponding to the shoulder part of the bottle, and setting the length and thickness of the straight part to predetermined values. Thus, it is possible to prevent local stretching and overstretching from occurring in the lower part of the neck.

このようにして、本発明では、プリフォームの全体を均一に延伸できるようになり、延伸ひずみや白化が生じることなくボトル全体を均一に薄肉化でき、例えば、平均肉厚が約0.25mm程度の所望の薄肉ボトルを得ることができる。
また、延伸ひずみのないボトルは、高温のヒートセットが可能で、薄肉でありながら通常の肉厚のボトルとほぼ同様の耐熱性を付与することができる。
これによって、特に、ボトルヒール部に過延伸が生じ易い長方形ボトルや、温水殺菌洗浄が必要となるアセプティックボトル等に適したプラスチックボトル容器の延伸ブロー成形方法を実現することができる。
In this way, in the present invention, the entire preform can be stretched uniformly, and the entire bottle can be uniformly thinned without causing stretching strain or whitening. For example, the average thickness is about 0.25 mm. Desired thin-walled bottles can be obtained.
In addition, a bottle having no stretching strain can be heat-set at high temperature, and can impart heat resistance substantially the same as that of a normal wall-thick bottle while being thin.
This makes it possible to realize a stretch blow molding method for a plastic bottle container particularly suitable for rectangular bottles that are likely to be overstretched in the bottle heel portion, aseptic bottles that require hot water sterilization cleaning, and the like.

以下、本発明に係るプラスチックボトル容器の延伸ブロー成形方法の好ましい実施形態について、図面を参照しつつ説明する。
図1は、本発明の一実施形態に係るプラスチックボトル容器の延伸ブロー成形方法に使用されるプリフォームを示す断面図である。
図2は、図1に示すプリフォームの要部拡大図で、(a)はプリフォームの全体図、(b)は首下部の拡大図、(c)は段付部の拡大図である。
図3は、図1に示すプリフォームの段付部の拡大図であり、段付部の傾斜角度を変更する態様を示している。
Hereinafter, a preferred embodiment of a stretch blow molding method for a plastic bottle container according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a preform used in a stretch blow molding method for a plastic bottle container according to an embodiment of the present invention.
2 is an enlarged view of the main part of the preform shown in FIG. 1, wherein (a) is an overall view of the preform, (b) is an enlarged view of the lower part of the neck, and (c) is an enlarged view of the stepped portion.
FIG. 3 is an enlarged view of the stepped portion of the preform shown in FIG. 1, and shows a mode in which the inclination angle of the stepped portion is changed.

[プリフォーム]
1.プリフォームの構造
図1に示すように、本実施形態の延伸ブロー成形方法で使用するプリフォーム1は、ボトル容器10(図6参照)を製造するための予備成形品であって、熱可塑性樹脂からなり、筒状の胴部4と、胴部4の一端側に開口する口部2と、胴部4の他端側を閉塞するほぼ半球形状の底部5を備えた有底筒状(試験管状)に形成されている。
そして、プリフォーム1は、胴部4と底部5の間に所定形状に形成された段付部5aを備え、また、口部2と胴部4の間に所定形状に形成された首下部3を備えている。
[preform]
1. Preform Structure As shown in FIG. 1, a preform 1 used in the stretch blow molding method of the present embodiment is a preform for producing a bottle container 10 (see FIG. 6), and is a thermoplastic resin. A bottomed cylindrical body (test) having a cylindrical body part 4, a mouth part 2 opened to one end side of the body part 4, and a substantially hemispherical bottom part 5 closing the other end side of the body part 4 It is formed in a tubular shape.
The preform 1 includes a stepped portion 5 a formed in a predetermined shape between the body portion 4 and the bottom portion 5, and a neck lower portion 3 formed in a predetermined shape between the mouth portion 2 and the body portion 4. It has.

段付部5aは、胴部4と底部5の間に位置するプリフォーム1の一部(所定範囲)であり、胴部からほぼ同じ肉厚で連続し、内面及び外面がともに筒中心側に傾斜しつつ底部5に連続するように形成されている。
ここで、段付部5aは、肉厚、内面及び外面の傾斜角度、長さ等を所望の値に設定することができ、成形するボトル容器の大きさ,形状,肉厚等に応じて任意に設定可能である。
The stepped portion 5a is a part (predetermined range) of the preform 1 located between the barrel portion 4 and the bottom portion 5 and is continuous from the barrel portion with substantially the same thickness. Both the inner surface and the outer surface are on the cylinder center side. It is formed so as to continue to the bottom 5 while being inclined.
Here, the stepped portion 5a can set the wall thickness, the inclination angle of the inner and outer surfaces, the length, etc. to desired values, and can be arbitrarily set according to the size, shape, wall thickness, etc. of the bottle container to be molded. Can be set.

本実施形態では、図2に示す胴部4の肉厚(Ta)と段付部5a(及び連続する底部5)の肉厚(Tb)の比が、1.0<Ta/Tb≦1.5となるように設定してある。このような範囲に設定するのは、胴部4より段付部5aの肉厚が大きくなる(Ta/Tb≦1)ようにプリフォーム1を射出成形することは困難であり、また、Ta/Tbが1.5を超えると(Ta/Tb>1.5)、胴部4と段付部5aの肉厚差が大きくなり過ぎ、胴部4と段付部5aの連続部分に局部延伸,過延伸が生じるためである。なお、段付部5aの肉厚(Tb)とは、底部5と段付部5aの境界部の厚みをいう(図2(c)参照)。
また、図2に示す胴部4の筒中心から肉厚中心までの半径(Ra)と段付部5aの筒中心から肉厚中心までの半径(Rb)と胴部の肉厚(Ta)が、Rb≦Ra−Ta/2となるように設定してある。このような範囲に設定するのは、段付部5aの半径は少なくとも胴部4の半径より小さくしなければ段差が形成されず、その一方、半径の差が胴部の肉厚(Ta)の半分以下の段差は、射出成形が困難となるためである。
以上のような値に設定することにより、段付き部5aを連続する胴部4とほぼ同じ肉厚にしつつ所望の角度に傾斜させることができる。
In the present embodiment, the ratio of the thickness (Ta) of the body portion 4 shown in FIG. 2 to the thickness (Tb) of the stepped portion 5a (and the continuous bottom portion 5) is 1.0 <Ta / Tb ≦ 1. It is set to be 5. Setting such a range makes it difficult to injection-mold the preform 1 so that the thickness of the stepped portion 5a is larger than that of the body portion 4 (Ta / Tb ≦ 1). When Tb exceeds 1.5 (Ta / Tb> 1.5), the difference in thickness between the body 4 and the stepped portion 5a becomes too large, and the stretched portion locally extends to the continuous portion of the body 4 and the stepped portion 5a. This is because overstretching occurs. Note that the thickness (Tb) of the stepped portion 5a refers to the thickness of the boundary portion between the bottom portion 5 and the stepped portion 5a (see FIG. 2C).
Further, the radius (Ra) from the cylinder center to the wall thickness center of the body portion 4 shown in FIG. 2, the radius (Rb) from the tube center to the wall thickness center of the stepped portion 5a, and the wall thickness (Ta) of the body portion. , Rb ≦ Ra−Ta / 2. The range is set so that a step is not formed unless the radius of the stepped portion 5a is at least smaller than the radius of the body portion 4, while the difference in radius is the thickness (Ta) of the body portion. This is because a step of less than half makes injection molding difficult.
By setting the values as described above, the stepped portion 5a can be inclined at a desired angle while making the stepped portion 5a substantially the same thickness as the continuous body portion 4.

さらに、図2(c)に示す段付部5aの筒中心側に傾斜する角度(θ)は、所望の範囲に設定可能であり、図3に示すように、傾斜角度が大きくなるように(θa)から(θb)に設定することができ、また、その逆に、傾斜角度が小さくなるように設定することができる。段付部5aの傾斜角度を設定することにより、角度に応じて段付部5a及び底部5の延伸量及び底部5の重量を制御することができる。
すなわち、段付部5aの傾斜角度を小さくなるように設定すれば、段付部5aの延伸量が大きくなり、底部5の延伸量が小さくなって、底部5の重量が大きくなる。一方、段付部5aの傾斜角度を大きくなるように設定すれば、段付部5aの延伸量が小さくなり、底部5の延伸量が大きくなって、底部5の重量は小さくすることができる。
ここで、段付部5aの傾斜角度としては、7°≦θ≦45°とし、特に20°≦θ≦40°の範囲で設定することが好ましい。θが7°より小さいと(θ<7°)、段差による効果が得られず、また、45°より大きいと(θ>45°)、局部延伸,過延伸が生じるためである。
Further, the angle (θ) inclined toward the cylinder center side of the stepped portion 5a shown in FIG. 2 (c) can be set to a desired range, and as shown in FIG. θa) can be set to (θb), and conversely, the inclination angle can be set to be small. By setting the inclination angle of the stepped portion 5a, the extension amount of the stepped portion 5a and the bottom portion 5 and the weight of the bottom portion 5 can be controlled according to the angle.
That is, if the inclination angle of the stepped portion 5a is set to be small, the stretch amount of the stepped portion 5a is increased, the stretch amount of the bottom portion 5 is decreased, and the weight of the bottom portion 5 is increased. On the other hand, if the inclination angle of the stepped portion 5a is set to be large, the stretch amount of the stepped portion 5a is reduced, the stretch amount of the bottom portion 5 is increased, and the weight of the bottom portion 5 can be reduced.
Here, the inclination angle of the stepped portion 5a is set to 7 ° ≦ θ ≦ 45 °, and particularly preferably set in a range of 20 ° ≦ θ ≦ 40 °. If θ is smaller than 7 ° (θ <7 °), the effect due to the step cannot be obtained, and if it is larger than 45 ° (θ> 45 °), local stretching and overstretching occur.

なお、図2及び図3に示す例では、段付部5aの内面と外面はほぼ同じ角度に傾斜しており、段付部5aの肉厚が胴部4から底部5までほぼ同じ値となるように設定してあるが、この段付部5aの傾斜角度は、内面と外面で異ならせるようにしても良い。このようにすると、例えば、段付部5aの外面の傾斜角度を内面の傾斜角度より大きく設定することで、段付部5aを胴部4から底部5に向かって肉薄になるテーパ形状に形成することができ、所望の肉薄部分を設定して延伸量を大きくすることができる。
そして、このような段付部5aを備えることにより、後述する工程によりプリフォーム1が延伸ブロー成形されると、段付部5a及び底部5が全体的に均一に延伸され、胴部4の延伸負担を小さくして、また、底部5の重量を少なくして、結果的にプリフォーム全体が均一に延伸されるようになる。
In the example shown in FIGS. 2 and 3, the inner surface and the outer surface of the stepped portion 5a are inclined at substantially the same angle, and the thickness of the stepped portion 5a is substantially the same value from the trunk portion 4 to the bottom portion 5. However, the inclination angle of the stepped portion 5a may be different between the inner surface and the outer surface. If it does in this way, the stepped part 5a is formed in the taper shape which becomes thin toward the bottom part 5 from the trunk | drum 4 by setting the inclination angle of the outer surface of the stepped part 5a larger than the inclination angle of an inner surface, for example. It is possible to increase the stretch amount by setting a desired thin portion.
And by providing such a stepped part 5a, when the preform 1 is stretch blow-molded by a process described later, the stepped part 5a and the bottom part 5 are stretched uniformly uniformly, and the body part 4 is stretched. The burden is reduced and the weight of the bottom 5 is reduced, and as a result, the entire preform is stretched uniformly.

首下部3は、胴部4と口部2の間に位置するプリフォーム1の一部(所定範囲)であり、口部2から連続する、胴部4より肉薄のストレート部3aを有しており、このストレート部3aを経て胴部4に連続するように形成されている。
ここで、首下部3は、ストレート部3aを含めて、肉厚、長さ等を所望の値に設定することができ、成形するボトル容器の大きさ,形状,肉厚等に応じて任意に設定可能である。
本実施形態では、図2に示す胴部4の肉厚(Ta)とストレート部3aの肉厚(Tc)の比が、1.2≦Ta/Tc≦1.7となるように設定してある。このような範囲に設定するのは、胴部4とストレート部3aの肉厚比が1.2より小さくなる(Ta/Tc<1.2)ようにプリフォーム1を射出成形することは困難であり、また、Ta/Tcが1.7を超えると(Ta/Tc>1.7)、胴部4とストレート部3aの肉厚差が大きくなり過ぎ、ストレート部3aに局部延伸,過延伸が生じるためである。
また、ストレート部3aの肉厚(Tc)と筒長手方向の長さ(La)の比は、3≦La/Tc≦5となるように設定してある。ストレート部3aが短すぎると(La/Tc<3)、通常のプリフォーム形状と同様となり、首下部に局部延伸,過延伸が生じてしまい、ストレート部3aを長くしすぎると(La/Tc>5)射出成形の際に材料が入りづらく成形不良が生じるからである。
The neck lower part 3 is a part (predetermined range) of the preform 1 located between the body part 4 and the mouth part 2, and has a straight part 3 a continuous from the mouth part 2 and thinner than the body part 4. And is formed so as to be continuous with the body portion 4 through the straight portion 3a.
Here, the neck lower part 3 including the straight part 3a can be set to a desired value for thickness, length, etc., and arbitrarily according to the size, shape, thickness, etc. of the bottle container to be molded It can be set.
In the present embodiment, the ratio of the thickness (Ta) of the body portion 4 shown in FIG. 2 to the thickness (Tc) of the straight portion 3a is set to satisfy 1.2 ≦ Ta / Tc ≦ 1.7. is there. Setting such a range makes it difficult to injection-mold the preform 1 so that the thickness ratio of the body portion 4 and the straight portion 3a is smaller than 1.2 (Ta / Tc <1.2). Yes, if Ta / Tc exceeds 1.7 (Ta / Tc> 1.7), the thickness difference between the body 4 and the straight portion 3a becomes too large, and the straight portion 3a is locally stretched and overstretched. This is because it occurs.
Further, the ratio between the thickness (Tc) of the straight portion 3a and the length (La) in the longitudinal direction of the cylinder is set to satisfy 3 ≦ La / Tc ≦ 5. If the straight part 3a is too short (La / Tc <3), it will be the same as the normal preform shape, and local stretching and overstretching will occur at the bottom of the neck, and if the straight part 3a is too long (La / Tc>) 5) This is because it is difficult for the material to enter during injection molding, resulting in molding defects.

具体的には、容量2000mlのボトル容器用のプリフォームの場合、樹脂重量は約45gで、胴部4の肉厚は約3〜4mmに設定する。この場合、図2に示す胴部の肉厚(Ta)とストレート部の肉厚(Tc)の差が、Ta−Tc=1.3mm以下となるように設定する。
さらに、ストレート部3aは、筒長手方向の長さが所望の範囲に設定可能であり、上述した容量2000mlボトルの場合には、図2に示す筒長手方向の長さ(La)が、7mm〜9mmの範囲となるように設定する。
このような値に設定することで、容量2000mlで平均肉厚が約0.25mmのボトル容器が得られるようになる。
Specifically, in the case of a preform for a bottle container having a capacity of 2000 ml, the resin weight is set to about 45 g, and the thickness of the body portion 4 is set to about 3 to 4 mm. In this case, the difference between the thickness (Ta) of the trunk portion and the thickness (Tc) of the straight portion shown in FIG. 2 is set to be Ta−Tc = 1.3 mm or less.
Furthermore, the length in the cylinder longitudinal direction of the straight part 3a can be set in a desired range, and in the case of the above-described capacity 2000 ml bottle, the length (La) in the cylinder longitudinal direction shown in FIG. Set to be in the range of 9 mm.
By setting to such a value, a bottle container having a capacity of 2000 ml and an average wall thickness of about 0.25 mm can be obtained.

このようにして、首下部3に胴部4より肉薄のストレート部3aを設け、その肉厚と長さを適宜設定可能とすることで、ストレート部3aを含む首下部3に局部的な延伸や過延伸部分を生じさせることなく、首下部3の全体を均一に延伸させることができる。そして、後述する工程によりプリフォーム1が延伸ブロー成形されると、ストレート部3aを含む首下部3が全体的に均一に延伸され、胴部4の延伸負担を小さくして、結果的にプリフォーム全体が均一に延伸されるようになる。
なお、ストレート部3aは、図2に示す例では、口部2から胴部4に至るまで、肉厚が均一になるように形成してあるが、例えば、ストレート部3aの外面又は内面を傾斜させることで、肉厚を変更することも可能である。このようにすると、肉厚部と肉薄部とで延伸量を異ならせて延伸量を調整することができる。
In this way, the straight portion 3a thinner than the body portion 4 is provided in the neck lower portion 3, and the thickness and length can be set as appropriate, so that the neck lower portion 3 including the straight portion 3a can be stretched locally. The entire neck lower part 3 can be uniformly stretched without causing an overstretched portion. When the preform 1 is stretch-blow-molded by a process to be described later, the neck lower part 3 including the straight part 3a is stretched uniformly as a whole, reducing the stretching burden on the body part 4, and consequently the preform. The whole is stretched uniformly.
In the example shown in FIG. 2, the straight portion 3 a is formed so as to have a uniform thickness from the mouth portion 2 to the trunk portion 4. For example, the straight portion 3 a is inclined on the outer surface or the inner surface. It is also possible to change the wall thickness. If it does in this way, the amount of extending | stretching can be varied between a thick part and a thin part, and the amount of extending | stretching can be adjusted.

2.構成成分
本実施形態に係るプリフォーム1(及びボトル容器10)を構成する熱可塑性樹脂は、延伸ブロー成形及び熱結晶化可能な樹脂であれば任意のものを使用することができる。
具体的には、ポリエチレンテレフタレート,ポリブチレンテレフタレート,ポリエチレンナフタレート,ポリカーボネート,ポリアリレート、又はこれらの共重合体等の熱可塑性ポリエステル、これらの樹脂あるいは他の樹脂とのブレンド物が好適であり、特に、ポリエチレンテレフタレート等のエチレンテレフタレート系熱可塑性ポリエステルが好適に使用される。
また、アクリロニトリル樹脂,ポリプロピレン,プロピレン−エチレン共重合体,ポリエチレン等も使用することができる。
これらの樹脂には、成形品の品質を損なわない範囲内で種々の添加剤、例えば、着色剤,紫外線吸収剤,離型剤,滑剤,核剤,酸化防止剤,帯電防止剤等を配合することができる。
2. Component As the thermoplastic resin constituting the preform 1 (and the bottle container 10) according to the present embodiment, any resin can be used as long as it is a resin that can be stretch blow molded and thermally crystallized.
Specifically, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyarylate, thermoplastic polyesters such as copolymers thereof, blends of these resins or other resins are particularly suitable. Ethylene terephthalate thermoplastic polyester such as polyethylene terephthalate is preferably used.
Further, acrylonitrile resin, polypropylene, propylene-ethylene copolymer, polyethylene and the like can also be used.
These resins are blended with various additives such as colorants, ultraviolet absorbers, mold release agents, lubricants, nucleating agents, antioxidants, antistatic agents, etc. within the range that does not impair the quality of the molded product. be able to.

プリフォーム1を構成するエチレンテレフタレート系熱可塑性ポリエステルは、エステル反復単位の大部分、一般に70モル%以上をエチレンテレフタレート単位を占めるものであり、ガラス転移点(Tg)が50〜90℃、融点(Tm)が200〜275℃の範囲にあるものが好適である。
エチレンテレフタレート系熱可塑性ポリエステルとしては、ポリエチレンテレフタレート(PET)が耐圧性,耐熱性,耐熱圧性等の点で特に優れているが、エチレンテレフタレート単位以外にイソフタル酸やナフタレンジカルボン酸等の二塩基酸とプロピレングリコール等のジオールからなるエステル単位の少量を含む共重合ポリエステルも使用することができる。
The ethylene terephthalate-based thermoplastic polyester constituting the preform 1 occupies most of the ester repeating units, generally 70 mol% or more of the ethylene terephthalate units, and has a glass transition point (Tg) of 50 to 90 ° C., a melting point ( Those having a Tm) in the range of 200 to 275 ° C are preferred.
As an ethylene terephthalate-based thermoplastic polyester, polyethylene terephthalate (PET) is particularly excellent in terms of pressure resistance, heat resistance, heat pressure resistance, etc. In addition to ethylene terephthalate units, dibasic acids such as isophthalic acid and naphthalenedicarboxylic acid Copolyesters containing a small amount of ester units composed of diols such as propylene glycol can also be used.

また、本実施形態のプリフォーム1は、単層(一層)の熱可塑性ポリエステル層で構成される場合の他、二層以上の熱可塑性ポリエステル層により構成することもできる。
さらに、本実施形態のプリフォーム1は、二層以上の熱可塑性ポリエステル層からなる内層及び外層の間に封入される中間層を備えることができ、中間層をバリヤー層や酸素吸収層とすることができる。
このようにバリヤー層,酸素吸収層を備えることにより、ボトル容器内への外部からの酸素の透過を抑制し、ボトル容器内の内容物の外部からの酸素による変質を防止することができ、特に炭酸ガス入り飲料用のボトル容器に好適となる。
ここで、酸素吸収層としては、酸素を吸収して酸素の透過を防ぐものであれば任意のものを使用することができるが、酸化可能有機成分及び遷移金属触媒の組合せ、あるいは実質的に酸化しないガスバリヤー性樹脂,酸化可能有機成分及び遷移金属触媒の組み合わせを使用することが好適である。
Further, the preform 1 of the present embodiment can be composed of two or more thermoplastic polyester layers in addition to the case of being composed of a single layer (one layer) of thermoplastic polyester layer.
Furthermore, the preform 1 of the present embodiment can include an intermediate layer enclosed between an inner layer and an outer layer composed of two or more thermoplastic polyester layers, and the intermediate layer is a barrier layer or an oxygen absorbing layer. Can do.
By providing the barrier layer and the oxygen absorbing layer in this way, it is possible to suppress the permeation of oxygen from the outside into the bottle container, and to prevent the deterioration of the contents in the bottle container due to the oxygen from the outside. Suitable for bottle containers for beverages containing carbon dioxide gas.
Here, as the oxygen absorbing layer, any layer can be used as long as it absorbs oxygen and prevents permeation of oxygen, but a combination of an oxidizable organic component and a transition metal catalyst, or substantially oxidized. It is preferred to use a combination of non-gas barrier resin, oxidizable organic component and transition metal catalyst.

[プラスチックボトル容器の製造方法]
次に、以上のような本実施形態に係るプラスチックボトル容器の延伸ブロー成形によるプラスチック容器の製造方法について説明する。
1.プリフォームの製造
プリフォーム1は、公知の射出成形や押出成形により有底筒状のプリフォーム(パリソン)を製造することができる。上述した胴部4と底部5の間の段付部5a、口部3と胴部4の間のストレート部3aを含む首下部3についても、公知の射出成形等により所望の形状,寸法で製造可能である。
なお、プリフォーム1として、中間層に酸素吸収層を備える多層プリフォームを使用する場合には、従来から公知の共射出成形機等を用いて、内外層をポリエステル樹脂とし、内外層の間に一層又は二層以上の酸素吸収層を挿入し、射出用プリフォーム金型の形状に対応した、底部及び開口部を有する多層プリフォームを製造することができる。
[Plastic bottle container manufacturing method]
Next, the manufacturing method of the plastic container by the stretch blow molding of the plastic bottle container which concerns on this embodiment as mentioned above is demonstrated.
1. Production of Preform The preform 1 can produce a bottomed cylindrical preform (parison) by known injection molding or extrusion molding. The neck lower portion 3 including the stepped portion 5a between the trunk portion 4 and the bottom portion 5 and the straight portion 3a between the mouth portion 3 and the trunk portion 4 is also manufactured in a desired shape and size by known injection molding or the like. Is possible.
When a multilayer preform having an oxygen absorbing layer in the intermediate layer is used as the preform 1, the inner and outer layers are made of polyester resin using a conventionally known co-injection molding machine or the like, and between the inner and outer layers. A multilayer preform having a bottom and an opening corresponding to the shape of the injection preform mold can be produced by inserting one or more oxygen absorbing layers.

2.延伸ブロー成形
次に、プリフォーム1を二軸延伸ブロー成形する。
本実施形態に係る延伸ブロー成形法では、まず、プリフォーム1をガラス転移点(Tg)以上の延伸温度に加熱する。プリフォーム1の加熱は、図1に示すように、ヒータ101などの公知の加熱手段により行う。また、この加熱の際には、図1に示すように、非結晶の口部2が加熱されないように加熱防止用冷却ガイド102で保護される。なお、口部2を予め結晶化させたプリフォームを使用することもできる。
本実施形態では、プリフォーム1を加熱限界温度である約120℃で加熱するようにしてある。通常の肉厚のボトル容器を製造する場合には、プリフォームの加熱温度は約85℃〜110℃であるが、本実施形態では加熱限界である120℃近傍まで温度を上げることにより、樹脂の粘性を落とし、延伸成形で発生する歪みを軽減するようにしてある。但し、120℃を超える高温で加熱すると、プロー成形後にボトルが白化(白濁)してしまうため好ましくない。
2. Stretch Blow Molding Next, the preform 1 is biaxially stretch blow molded.
In the stretch blow molding method according to this embodiment, first, the preform 1 is heated to a stretching temperature equal to or higher than the glass transition point (Tg). The preform 1 is heated by a known heating means such as a heater 101 as shown in FIG. Further, at the time of this heating, as shown in FIG. 1, the non-crystalline mouth portion 2 is protected by a heating prevention cooling guide 102 so as not to be heated. A preform in which the mouth 2 is crystallized in advance can also be used.
In this embodiment, the preform 1 is heated at a heating limit temperature of about 120 ° C. When a normal thick bottle container is manufactured, the heating temperature of the preform is about 85 ° C. to 110 ° C. In this embodiment, the temperature of the resin is increased by raising the temperature to around 120 ° C. which is the heating limit. The viscosity is reduced, and the strain generated by stretch molding is reduced. However, heating at a high temperature exceeding 120 ° C. is not preferable because the bottle is whitened (white turbid) after the pro molding.

次に、加熱したプリフォーム1は、所定の熱処理(ヒートセット)温度に加熱された金型内において二軸延伸ブロー成形する。
具体的には、図4(a)〜(b)に示すように、まず、加熱したプリフォーム1が金型103内にセットされ(同図(a)参照)、次に、ストレッチロッド(延伸ロッド)104により縦方向(軸方向)に延伸されるとともに、ブローエアによって横方向(周方向)に延伸される(同図(b)参照)。
Next, the heated preform 1 is subjected to biaxial stretch blow molding in a mold heated to a predetermined heat treatment (heat set) temperature.
Specifically, as shown in FIGS. 4A to 4B, the heated preform 1 is first set in the mold 103 (see FIG. 4A), and then stretch rod (stretched) (Rod) 104 is extended in the vertical direction (axial direction) and is extended in the horizontal direction (circumferential direction) by blow air (see FIG. 4B).

ここで、本実施形態のプリフォーム1では、延伸の際に、図5(a)に示すように、段付部5aが、連続する底部5を含めて全体として均一に延伸される。また、首下部3が、ストレート部3aを含めて全体として均一に延伸される。
これによって、首下部3から胴部4、段付部5a及び底部5の全体が均一に延伸され、局所的な延伸や過延伸が発生せず、その結果、均一な肉厚分布のボトル容器10が成形されることになる(図7参照)。
これに対して、図5(b)に示すように、従来のプリフォーム201では、底部と胴部のつなぎ目部分や首下部分は局所的な延伸がされる一方、全体的な延伸量は小さくなる。このため、首下部分や底部の延伸量が少なくなるため、胴部への延伸負担が大きくなり、結果として、延伸ひずみが生じ、肉厚分布が不均一なボトル容器が成形されることになる(図7参照)。
Here, in the preform 1 of the present embodiment, as illustrated in FIG. 5A, the stepped portion 5 a is uniformly stretched as a whole including the continuous bottom portion 5 during stretching. Moreover, the neck lower part 3 is uniformly extended as a whole including the straight part 3a.
As a result, the entire body part 4, the stepped part 5 a and the bottom part 5 are uniformly stretched from the neck lower part 3, and local stretching and overstretching do not occur. As a result, the bottle container 10 having a uniform wall thickness distribution. Is formed (see FIG. 7).
On the other hand, as shown in FIG. 5 (b), in the conventional preform 201, the joint portion of the bottom portion and the trunk portion and the neck portion are locally stretched, while the overall stretch amount is small. Become. For this reason, since the amount of stretching of the lower neck portion and the bottom portion is reduced, the stretching burden on the body portion is increased, and as a result, stretching strain occurs and a bottle container having a nonuniform thickness distribution is formed. (See FIG. 7).

ここで、本実施形態におけるブロー成形体の延伸倍率は、縦方向約2.4倍以上、横方向約5.2倍以上とし、縦×横で約12.5倍以上となるように設定する。
通常の肉厚のボトル容器の場合、ブロー成形体の延伸倍率は、縦方向約2.2倍、横方向約5倍程度で、縦×横で約11倍程度となっている。
本実施形態では、プリフォーム1の形状により局所的延伸や過延伸を発生させることなく均一な延伸が可能であるため、均一な肉厚分布で可能な限り肉薄のボトル容器を得るために、少なくとも上記の延伸倍率とすることが好ましい。
延伸倍率を、縦×横で15倍以上にすると、過延伸によるボトルの白化が発生する。また、延伸倍率が12倍以下では、プリフォームの肉厚を小さくしなければならず、均一な延伸ができなくなるばかりでなく、そのようなプリフォーム自体を射出成形することができない。
従って、均一な肉厚で延伸を行うには、延伸倍率を縦×横で約12〜15倍の範囲に設定することが好ましい。
Here, the stretch ratio of the blow molded article in the present embodiment is set to be about 2.4 times or more in the longitudinal direction and about 5.2 times or more in the transverse direction, and about 12.5 times or more in the length × width direction. .
In the case of a normal thick bottle container, the stretch ratio of the blow molded product is about 2.2 times in the vertical direction, about 5 times in the horizontal direction, and about 11 times in the vertical and horizontal directions.
In the present embodiment, since uniform stretching is possible without causing local stretching or overstretching due to the shape of the preform 1, in order to obtain a bottle container as thin as possible with a uniform wall thickness distribution, at least It is preferable to set it as said draw ratio.
When the draw ratio is set to 15 times or more in the vertical and horizontal directions, whitening of the bottle due to overdrawing occurs. Further, when the draw ratio is 12 times or less, the thickness of the preform must be reduced, and not only uniform drawing cannot be performed, but also such a preform itself cannot be injection molded.
Therefore, in order to perform stretching with a uniform wall thickness, it is preferable to set the stretching ratio in the range of about 12 to 15 times in the vertical and horizontal directions.

3.ヒートセット
延伸されたブロー成形体は、金型内でヒートセット(熱固定)される。
ヒートセットは、上述したブロー金型103を、所定温度に加熱し、二軸延伸ブロー時に、ブロー成形体の器壁の外側を金型内面に所定時間接触させて熱処理を行う。
ここで、本実施形態では、ヒートセット温度として金型を約105〜115℃となるように加熱する。従来のアセプティックボトルの場合、ヒートセット温度は約120〜135℃程度となっている。ところが、ボトル容器を薄肉化するために延伸ひずみが生じたボトル容器では、金型のヒートセット温度が通常肉厚のボトルの場合と同様にすると、金型から取り出した際にボトルが収縮してしまった。一方、ヒートセット温度を105℃より低くするとボトルの耐熱性が得られなくなる。
本実施形態では、プリフォーム1の形状により局所的延伸や過延伸を発生させることなく均一な延伸が可能となり、延伸ひずみが生じないので、ヒートセット温度を可能な限り通常のボトル容器の場合に近づけることができる。これによって、ボトル容器に所望の耐熱性を付与することができる。
3. Heat setting The stretched blow molded article is heat set (heat-set) in a mold.
In the heat setting, the above-described blow mold 103 is heated to a predetermined temperature, and at the time of biaxial stretching blow, the outer wall of the blow molded article is brought into contact with the inner surface of the mold for a predetermined time for heat treatment.
Here, in this embodiment, the mold is heated to a temperature of about 105 to 115 ° C. as the heat set temperature. In the case of a conventional aseptic bottle, the heat set temperature is about 120 to 135 ° C. However, in a bottle container that has undergone stretching strain to reduce the thickness of the bottle container, if the heat set temperature of the mold is the same as that of a normally thick bottle, the bottle shrinks when removed from the mold. Oops. On the other hand, when the heat set temperature is lower than 105 ° C., the heat resistance of the bottle cannot be obtained.
In the present embodiment, the shape of the preform 1 enables uniform stretching without causing local stretching or overstretching, and stretching distortion does not occur. Therefore, in the case of a normal bottle container as much as possible, You can get closer. Thereby, desired heat resistance can be imparted to the bottle container.

また、ヒートセットの熱処理時間(ブロー時間)は、ブロー成形体の厚みや温度によっても相違するが、一般に1〜10秒、好ましくは2〜5秒程度である。また、その後の冷却時間も、熱処理温度や冷却用流体の種類により異なるが、一般に0.1〜10秒、好ましくは0.2〜5秒程度である。
このヒートセットにより、ブロー成形体は結晶化される。
なお、このブロー成形体の結晶化度は、容器の肉厚,形状,ヒートセット温度,時間等の条件によるため、これらの条件を最適化することにより、ボトル容器10の胴部13の結晶化度を、例えば、約30〜40%程度の好適な範囲とすることができる。
Moreover, although the heat processing time (blow time) of heat set changes also with the thickness and temperature of a blow molded object, it is generally 1 to 10 seconds, Preferably it is about 2 to 5 seconds. Further, the subsequent cooling time varies depending on the heat treatment temperature and the type of cooling fluid, but is generally about 0.1 to 10 seconds, preferably about 0.2 to 5 seconds.
By this heat setting, the blow molded product is crystallized.
The crystallinity of the blow molded product depends on conditions such as the thickness, shape, heat set temperature, time, etc. of the container. By optimizing these conditions, the crystallization of the body portion 13 of the bottle container 10 is achieved. The degree can be set to a suitable range of about 30 to 40%, for example.

4.クーリングブロー
以上の所定時間の熱処理後、図4(c)に示すように、クーリングブローロッド105から噴出する内部冷却用流体により、ブロー成形体内部を冷却する。
ここで、本実施形態では、クーリングブローのエア供給圧を約4MPaとしてある。通常の肉厚のボトル容器をブロー成形する場合、クーリングブローのエア供給圧は約3MPa程度であるが、本実施形態では、エアの供給圧力を高めることにより、ブロー成形後のボトルの取り出し温度を低減してヒケの発生を防止するようにしてある。
4). Cooling Blow After the heat treatment for the predetermined time, the inside of the blow molded body is cooled by the internal cooling fluid ejected from the cooling blow rod 105 as shown in FIG.
Here, in this embodiment, the air supply pressure of the cooling blow is about 4 MPa. When a normal thick bottle container is blow-molded, the air supply pressure of the cooling blow is about 3 MPa. However, in this embodiment, by increasing the air supply pressure, the temperature at which the bottle is taken out after blow molding is increased. This is reduced to prevent the occurrence of sink marks.

なお、冷却用流体としては、常温の空気,冷却された各種気体、例えば、−40℃〜+10℃の窒素,空気,炭酸ガス等のほか、化学的に不活性な液化ガス、例えば、液化窒素ガス,液化炭酸ガス,液化トリクロロフルオロメタンガス,液化ジクロロジフルオロメタンガス,他の液化脂肪族炭化水素ガス等を使用することができる。この冷却用流体には、水等の気化熱の大きい液化ミストを共存させることもできる。以上のような冷却用流体を使用することにより、顕著な冷却温度を得ることができる。   In addition, as a cooling fluid, in addition to normal temperature air, various cooled gases, for example, nitrogen at −40 ° C. to + 10 ° C., air, carbon dioxide, etc., a chemically inert liquefied gas, for example, liquefied nitrogen Gas, liquefied carbon dioxide gas, liquefied trichlorofluoromethane gas, liquefied dichlorodifluoromethane gas, other liquefied aliphatic hydrocarbon gases, and the like can be used. In this cooling fluid, a liquefied mist having a large heat of vaporization such as water can coexist. By using the cooling fluid as described above, a remarkable cooling temperature can be obtained.

その後は、図4(d)に示すように、成形体は金型から取り出され、ボトル容器10が得られる。
金型から取り出したブロー成形体(ボトル容器10)は、放冷により、又は冷風を吹き付けることにより冷却する。
これで、延伸ブロー成形工程が完了する。
以上のような工程により、例えば、図6に示すような本実施形態に係るボトル容器10が製造されることになる。
Thereafter, as shown in FIG. 4D, the molded body is taken out from the mold, and the bottle container 10 is obtained.
The blow molded body (bottle container 10) taken out from the mold is cooled by cooling or by blowing cold air.
This completes the stretch blow molding process.
Through the steps as described above, for example, the bottle container 10 according to this embodiment as shown in FIG. 6 is manufactured.

[ボトル容器]
1.ボトル容器の構成
ボトル容器10は、上述した製造工程によりプリフォーム1が延伸ブロー成形されることにより形成されるプラスチックボトル容器であり、例えば、図6に示すようなボトル容器10が製造される。
図6に示すボトル容器10は、首部11,肩部12,胴部(上)13,ウェスト部14,胴部(下)15,ヒール部16及び底部17が形成されており、容量2000ml用の断面ほぼ長方形状の扁平ボトルとなっている。なお、図示はしていないが、ボトル容器の胴部には容器内の減圧によるパネル変形を防ぐため、例えば複数の横ビート凹リブなど、適宜のパネル形状を付加形成することができる。
このような扁平ボトルは、周方向の延伸倍率が、短辺,長辺,対角方向で大きく異なっている(例えば、短辺方向:3.7倍,長辺方向4.4倍,対角方向:5.2倍)。このため、従来のプリフォームや延伸ブロー成形方法では、特に延伸倍率の高い対角方向に所謂ヒケや変形,過延伸による白化が発生した。
ここで、上述した段付部5aを形成した本実施形態のプリフォーム1では、ボトル容器10のヒール部16に相当する部分は、段付部5aの作用により局所的な延伸が生じることなく底部5及び胴部4と一体的に均一に延伸することができ、ひずみのない均一な延伸が可能となる。
[Bottle container]
1. Configuration of Bottle Container The bottle container 10 is a plastic bottle container formed by the stretch blow molding of the preform 1 by the manufacturing process described above. For example, a bottle container 10 as shown in FIG. 6 is manufactured.
The bottle container 10 shown in FIG. 6 is formed with a neck portion 11, a shoulder portion 12, a trunk portion (upper) 13, a waist portion 14, a trunk portion (lower) 15, a heel portion 16 and a bottom portion 17, and has a capacity of 2000 ml. The flat bottle has a substantially rectangular cross section. Although not shown, an appropriate panel shape such as a plurality of lateral beat concave ribs can be additionally formed on the body of the bottle container in order to prevent panel deformation due to reduced pressure in the container.
In such flat bottles, the stretching ratio in the circumferential direction is greatly different in the short side, the long side, and the diagonal direction (for example, the short side direction: 3.7 times, the long side direction 4.4 times, the diagonal direction) Direction: 5.2 times). For this reason, in the conventional preform and stretch blow molding method, so-called sink marks, deformation, and whitening due to overstretching occurred particularly in the diagonal direction with a high stretch ratio.
Here, in the preform 1 of the present embodiment in which the stepped portion 5a described above is formed, the portion corresponding to the heel portion 16 of the bottle container 10 is the bottom portion without causing local stretching due to the action of the stepped portion 5a. 5 and the body 4 can be uniformly stretched integrally, and uniform stretching without distortion is possible.

そこで、本実施形態では、段付部5aを形成したプリフォーム1を使用するとともに、ボトル容器10の形状として、最も延伸倍率の高くなるヒール部16の形状をできる限り延伸倍率を抑制した形状とすることにより、ヒール部対角方向に延伸ひずみの発生しない扁平ボトルが得られるようになっている。
具体的には、ボトル容器10の形状は、図6に示すように、ヒール部16の対角方向に丸味を持たせてあり、ウェスト部14の周方向断面形状はほぼ長方形状で(同図(d)参照)、底部17に近づくにつれて徐々に正方形に近い断面形状になり、底部17の接地面はほぼ円形に近い断面形状に形成してある(同図(e)参照)。このようなボトル形状は、金型(図4参照)を所定形状に設定することで、所望の形状が得られる。
これにより、ヒール部対角方向の延伸倍率を可能な限り小さくでき、延伸ひずみの発生しない長方形ボトルとすることが可能となった。
So, in this embodiment, while using the preform 1 in which the stepped portion 5a is formed, the shape of the bottle container 10 is such that the shape of the heel portion 16 having the highest draw ratio is suppressed as much as possible. By doing so, a flat bottle in which stretching strain does not occur in the diagonal direction of the heel portion can be obtained.
Specifically, as shown in FIG. 6, the shape of the bottle container 10 is rounded in the diagonal direction of the heel portion 16, and the circumferential cross-sectional shape of the waist portion 14 is substantially rectangular (see FIG. (Refer to (d)), the cross-sectional shape gradually becomes closer to the square as the bottom portion 17 is approached, and the ground contact surface of the bottom portion 17 is formed in a cross-sectional shape that is substantially circular (see FIG. 5E). Such a bottle shape can be obtained by setting the mold (see FIG. 4) to a predetermined shape.
Thereby, the draw ratio of the heel part diagonal direction can be made as small as possible, and it became possible to set it as the rectangular bottle which does not generate | occur | produce a stretching distortion.

2.肉厚
本実施形態のボトル容器10は、図7(a)に示すように、肉厚分布が均一となっており、平均肉厚が約0.25mmとなっている。
これに対して、図7(b)に示すように、従来のプリフォームの肉厚だけを変更し、通常の肉厚のボトル(平均肉厚が約0.35mm)と同様の条件で延伸ブロー成形を行うと、肉厚分布が均一とならず延伸ひずみが生じてしまう。特に、ボトルの肩部と底ヒール部は、局所延伸,過延伸により肉厚が薄くなり過ぎてしまう。
2. Thickness As shown in FIG. 7A, the bottle container 10 of the present embodiment has a uniform thickness distribution and an average thickness of about 0.25 mm.
On the other hand, as shown in FIG. 7 (b), only the thickness of the conventional preform is changed, and the stretch blow is performed under the same conditions as a normal thickness bottle (average thickness is about 0.35 mm). When molding is performed, the thickness distribution is not uniform, and stretching strain occurs. In particular, the thickness of the shoulder portion and the bottom heel portion of the bottle becomes too thin due to local stretching and overstretching.

なお、図7(a)では特に図示していないが、ボトルのウェスト部の肉厚を、例えば約0.30mmとし、他の部分より厚くなるように形成することもできる。このようにすると、容量2000ml用ボトルの場合に把持部分となるウェスト部の肉厚を厚くして強度を大きくすることができる。本発明は、ボトル容器の肩部、胴部、ヒール部の肉厚分布をほぼ均一にすることを特徴とするものであるが、他の大部分がほぼ均一な肉厚になるのであれば、例えば、上記のウェスト部のように、ボトルの所定箇所の肉厚を適宜変更して厚く(薄く)することもできる。
また、ボトル底部については、ヒール部や胴部と肉厚分布をほぼ均一にする箇所は、ヒール部との連続する部分から接地部までの範囲であり、底中央のドーム状の上底部は含まれない。一般に、延伸ブロー成形により得られるプラスチックボトル容器では、成形工程上、底部の中心にはドーム状に***した上底部が他の部位より肉厚に形成されるようになっている。従って、この上底部は、他の部位とほぼ均一な肉厚の底部には含まれない。
Although not particularly shown in FIG. 7A, the thickness of the waist portion of the bottle may be set to about 0.30 mm, for example, so as to be thicker than other portions. If it does in this way, in the case of a bottle for a capacity | capacitance of 2000 ml, the thickness of the waist part used as a holding part can be thickened and intensity | strength can be enlarged. The present invention is characterized in that the wall thickness distribution of the shoulder portion, the trunk portion, and the heel portion of the bottle container is made substantially uniform. For example, as in the above-described waist portion, the thickness of a predetermined portion of the bottle can be changed as appropriate to make it thicker (thinner).
As for the bottom of the bottle, the part where the wall thickness distribution is almost uniform with the heel and body is the range from the continuous part with the heel to the grounding part, including the dome-shaped top bottom at the bottom center. I can't. In general, in a plastic bottle container obtained by stretch blow molding, an upper bottom portion raised in a dome shape is formed thicker than other portions in the center of the bottom portion in the molding process. Therefore, the upper bottom portion is not included in the bottom portion having a substantially uniform thickness with other portions.

3.耐熱性
本実施形態のボトル容器10は、上述したように、金型温度約110℃でヒートセットされており、温水殺菌洗浄温度(約65〜80℃)の耐熱性を有している。
ボトル容器10に対して約75℃のシャワー温水リンスを約30秒間行った場合、収縮率はほぼ1%以下となる。これは、通常の肉厚(平均肉厚が約0.35mm)で、金型温度約120℃でヒートセットされたボトル容器の収縮率が約0.8%程度であるため、ほぼ同様の耐熱性を有している。
これに対して、従来のプリフォームの樹脂量を削減し、ボトルの収縮を防止するためにヒートセットを約80℃としたボトル容器では、収縮率が約3.1%程度となり、容量が本発明に係るボトルの3倍以上収縮してしまう。
このように本実施形態のボトル容器10では、平均肉厚を約0.25mmと薄肉化しつつ、通常の肉厚のボトルと同様の耐熱性を確保することができる。
3. Heat Resistance As described above, the bottle container 10 of the present embodiment is heat-set at a mold temperature of about 110 ° C. and has heat resistance at a hot water sterilization washing temperature (about 65 to 80 ° C.).
When the bottle container 10 is rinsed with hot shower water at about 75 ° C. for about 30 seconds, the shrinkage rate is about 1% or less. This is a normal wall thickness (average wall thickness is about 0.35 mm), and the shrinkage rate of a bottle container heat-set at a mold temperature of about 120 ° C. is about 0.8%. It has sex.
In contrast, a bottle container with a heat set of about 80 ° C. in order to reduce the amount of resin in the conventional preform and prevent the bottle from shrinking has a shrinkage rate of about 3.1%, and the capacity is reduced. It shrinks more than 3 times that of the bottle according to the invention.
Thus, in the bottle container 10 of the present embodiment, the same heat resistance as that of a normal wall thickness bottle can be secured while the average wall thickness is reduced to about 0.25 mm.

ここで、本実施形態に係るボトル容器の耐熱性は、TMA(Thermal Mechanical Analysis:熱機械分析)による無荷重変化量評価で示すことができる。
通常、プラスチックボトル容器の耐熱性は結晶化度で示すことができるが、配向結晶化度の場合、同じ値であっても耐熱性が大きく異なる場合がある。
TMAは、試料を加熱炉内で加熱し、温度変化に伴う形状変化を非振動的な荷重下で測定する熱分析法であり、ボトル容器の一部を試料として切り出して加熱し、その形状変化を測定することで、ボトル容器の正確な耐熱性を示すことができる。
本実施形態に係るボトル容器10のウェスト部14をボトル横方向に幅5mmのサンプルを切り出し、無荷重(0kgf)条件下で、昇温速度=5℃/分で常温から加熱して、標点間距離20mm、幅5mmのサンプルについてTMAによる無荷重変化量評価を行うと、変化量が加熱温度80℃で60μm以下となるようにしてある。これは、通常の0.35mm肉厚のボトルとほぼ同様の値である。これにより、本実施形態のボトル容器では、薄肉化によっても耐熱性が損なわれず、通常の肉厚のボトルと変わらない耐熱性が得られる。
Here, the heat resistance of the bottle container according to the present embodiment can be shown by no-load change evaluation by TMA (Thermal Mechanical Analysis).
Usually, the heat resistance of a plastic bottle container can be indicated by the degree of crystallinity, but in the case of oriented crystallinity, the heat resistance may vary greatly even if the value is the same.
TMA is a thermal analysis method in which a sample is heated in a heating furnace and the shape change accompanying a temperature change is measured under a non-vibrating load. A part of the bottle container is cut out as a sample and heated to change the shape. By measuring, the accurate heat resistance of the bottle container can be shown.
A sample having a width of 5 mm is cut out from the waist portion 14 of the bottle container 10 according to the present embodiment in the lateral direction of the bottle, and heated from normal temperature at a temperature increase rate of 5 ° C./min under no load (0 kgf) condition. When a no-load change amount evaluation by TMA is performed on a sample having a distance of 20 mm and a width of 5 mm, the change amount is set to 60 μm or less at a heating temperature of 80 ° C. This is almost the same value as a normal 0.35 mm thick bottle. Thereby, in the bottle container of this embodiment, heat resistance is not impaired by thinning, and heat resistance which is not different from a normal wall thickness bottle is obtained.

4.結晶化度
本実施形態のボトル容器10を形成する熱可塑性ポリエステルは、胴部の結晶化度が30〜40%の範囲となるようにしてある。結晶化度をこの範囲にすることで、ボトル容器10の変形を防止できる。
結晶化度が30%未満であると、耐熱性がなく、変形防止の効果が充分に得られず、また、結晶化度が40%を超えると、二軸延伸ブロー成形後の金型の離型性が低下し、また、離型後の変形が大きくなる傾向がある。
胴部の結晶化度をこの範囲とすることで、ボトル容器10の耐熱性,耐衝撃強度をより向上させることができる。
4). Crystallinity The thermoplastic polyester forming the bottle container 10 of the present embodiment is such that the crystallinity of the barrel is in the range of 30 to 40%. By making the crystallinity within this range, deformation of the bottle container 10 can be prevented.
When the degree of crystallinity is less than 30%, there is no heat resistance and the effect of preventing deformation is not sufficiently obtained. When the degree of crystallinity exceeds 40%, the mold is separated after biaxial stretch blow molding. There is a tendency that moldability is lowered and deformation after mold release is increased.
By setting the crystallinity of the body part within this range, the heat resistance and impact strength of the bottle container 10 can be further improved.

以上説明したように、本実施形態のプラスチックボトル容器の延伸ブロー成形方法によれば、ボトル容器10のヒール部16に相当するプリフォーム1の該当部分に段付部5aを形成し、この段付部5aの傾斜角度や厚みを所定の値に設定することにより、段付部5aと底部5を一体的に延伸させることができ、局所的な延伸や過延伸を防止して胴部4、段付部5a、底部5の全体を均一かつ十分に延伸することが可能となる。
また、ボトル容器10の肩部12に相当するプリフォーム1の該当部分にストレート部3aを有する首下部3を形成し、ストレート部3aの長さや厚みを所定の値に設定することにより、ストレート部3aを含む首下部3を胴部4と一体的に延伸させることができ、首下部に局所的な延伸や過延伸が生じるのを防止することができる。
As described above, according to the stretch blow molding method of the plastic bottle container of the present embodiment, the stepped portion 5a is formed in the corresponding portion of the preform 1 corresponding to the heel portion 16 of the bottle container 10, and this stepped portion is formed. By setting the inclination angle and thickness of the portion 5a to predetermined values, the stepped portion 5a and the bottom portion 5 can be stretched integrally, and local stretching and overstretching can be prevented to prevent the body portion 4 and step It becomes possible to extend the attachment part 5a and the entire bottom part 5 uniformly and sufficiently.
Further, by forming the neck lower part 3 having the straight part 3a in the corresponding part of the preform 1 corresponding to the shoulder part 12 of the bottle container 10, and setting the length and thickness of the straight part 3a to predetermined values, the straight part The neck lower part 3 including 3a can be stretched integrally with the body part 4, and local stretching and overstretching can be prevented from occurring in the neck lower part.

このようにして、プリフォーム1の全体を均一に延伸できるので、延伸ひずみや白化が生じることなくボトル全体を均一に薄肉化でき、平均肉厚が約0.25mm程度の所望の薄肉ボトルを得ることができる。
また、延伸ひずみのないボトルは、高温のヒートセットが可能で、薄肉でありながら通常の肉厚のボトルとほぼ同様の耐熱性を付与することができる。
これにより、特に、ボトルヒール部に過延伸が生じ易い長方形ボトルや、温水殺菌洗浄が必要となるアセプティックボトル等に適したプラスチックボトル容器の延伸ブロー成形方法を提供することができる。
In this way, since the entire preform 1 can be stretched uniformly, the entire bottle can be uniformly thinned without causing stretching strain or whitening, and a desired thin-walled bottle having an average wall thickness of about 0.25 mm is obtained. be able to.
In addition, a bottle having no stretching strain can be heat-set at high temperature, and can impart heat resistance substantially the same as that of a normal wall-thick bottle while being thin.
Thereby, it is possible to provide a stretch blow molding method for a plastic bottle container particularly suitable for rectangular bottles that are likely to be overstretched in the bottle heel portion, aseptic bottles that require hot water sterilization cleaning, and the like.

以下、本発明のプラスチックボトル容器の延伸ブロー成形方法によってボトル容器を延伸ブロー成形する場合の具体的な実施例を示す。
[実施例1]
ポリエチレンテレフタレート(PET)を押出機に供給して重量45gのプリフォームを製造した。プリフォームには、胴部と底部の間に段付部を形成し、また、胴部と口部の間にストレート部を有する首下部を形成した。
プリフォームの肉厚は、胴部が約3.4mm、ストレート部が約2.3mm、段付部及び底部が約2.8mmとした。また、ストレート部は長さ約7mmとした。
このプリフォームをガラス転移点(Tg)以上の約120℃に加熱し、約110℃に加熱された金型内にセットして一段ブロー成形法により二軸延伸ブローを行い、その後、約4MPaのエア供給圧でクーリングブローをして、内容量約2000ml、平均肉厚約0.25mmのボトル容器を得た。
Hereinafter, the specific Example in the case of carrying out stretch blow molding of the bottle container by the stretch blow molding method of the plastic bottle container of this invention is shown.
[Example 1]
Polyethylene terephthalate (PET) was supplied to the extruder to produce a preform weighing 45 g. In the preform, a stepped portion was formed between the trunk portion and the bottom portion, and a lower neck portion having a straight portion between the trunk portion and the mouth portion was formed.
The thickness of the preform was about 3.4 mm for the body, about 2.3 mm for the straight part, and about 2.8 mm for the stepped part and the bottom part. The straight part was about 7 mm long.
This preform is heated to about 120 ° C. above the glass transition point (Tg), set in a mold heated to about 110 ° C., and biaxially stretched by a one-stage blow molding method, and then about 4 MPa. Cooling blow was performed with air supply pressure to obtain a bottle container having an internal volume of about 2000 ml and an average wall thickness of about 0.25 mm.

[比較例1]
実施例1と同様にポリエチレンテレフタレート(PET)を重量45g使用し、胴部と底部の間に段付部がなく、胴部と口部の間に約3mmの薄肉部(実施例1のストレート部に相当)を有する従来形状のプリフォームを製造した。
プリフォームの肉厚は、胴部が約3.9mmとした。
このプリフォームを、通常のボトルと同様、約110℃に加熱するとともに、通常のボトルより低めの約80℃に加熱した金型内にセットして一段ブロー成形法により二軸延伸ブローを行い、その後、通常のボトルと同様に、約3MPaのエア供給圧でクーリングブローをして、内容量約2000ml、平均肉厚約0.25mmのボトル容器を得た。
[Comparative Example 1]
As in Example 1, 45 g of polyethylene terephthalate (PET) is used, there is no stepped part between the body part and the bottom part, and a thin part of about 3 mm between the body part and the mouth part (the straight part of Example 1) A preform with a conventional shape having
The thickness of the preform was about 3.9 mm at the body.
Like the normal bottle, this preform is heated to about 110 ° C. and set in a mold heated to about 80 ° C., which is lower than the normal bottle, and biaxially stretched and blown by a single-stage blow molding method. Thereafter, like an ordinary bottle, cooling blow was performed with an air supply pressure of about 3 MPa to obtain a bottle container having an internal volume of about 2000 ml and an average wall thickness of about 0.25 mm.

[比較例2]
比較例1と同様に段付部のないプリフォームを使用して、胴部の肉厚を3.5mmに設定し、比較例1と同様の成形条件により、内容量約2000ml、平均肉厚約0.25mmのボトル容器を得た。
[Comparative Example 2]
Similar to Comparative Example 1, a preform without a stepped portion was used, and the thickness of the barrel was set to 3.5 mm. Under the same molding conditions as in Comparative Example 1, the inner volume was about 2000 ml, and the average thickness was about A 0.25 mm bottle container was obtained.

[比較例3]
比較例1と同様に段付部のないプリフォームを使用して、胴部の肉厚を3.3mmに設定し、比較例1と同様の成形条件により、内容量約2000ml、平均肉厚約0.25mmのボトル容器を得た。
[Comparative Example 3]
Similar to Comparative Example 1, a preform without a stepped portion was used, and the thickness of the barrel was set to 3.3 mm. Under the same molding conditions as in Comparative Example 1, the internal volume was about 2000 ml and the average thickness was about A 0.25 mm bottle container was obtained.

以上のボトル容器の肉厚分布を図7(a)及び(b)に示す。
実施例1では、図7(a)に示すように、ボトル側面側の全体に亘って肉厚がほぼ均一化しており、特に、ボトルの肩部やヒール部についても、他の部位(ボトルの胴部,底部)と同様の肉厚となった。
なお、底部についてヒール部や胴部と肉厚分布をほぼ均一にする箇所は、ヒール部との連続する部分から接地部までの範囲であり、底中央のドーム状の上底部は他の部位より肉厚となっている。
The thickness distribution of the bottle container is shown in FIGS. 7 (a) and (b).
In Example 1, as shown to Fig.7 (a), thickness is substantially equal over the whole bottle side surface side, and also about the other site | part (bottle of a bottle) especially also about the shoulder part and heel part of a bottle. The wall thickness was the same as that of the body and bottom.
The part where the wall thickness distribution is almost uniform with the heel part and the body part in the bottom part is the range from the part where the heel part continues to the grounding part. It is thick.

この実施例1のボトル容器に約80℃のシャワー温水リンスを約30秒間行って容器の内容量を測定したところ、シャワー前よりも容器の内容量が20ml減少し、収縮率は約1%であった。
平均肉厚が約0.35mmの通常のボトル容器に同様のシャワー温水リンスを行ったところ、容器の内容量は17ml減少し、収縮率は約0.8%程度であった。
また、実施例1のボトル容器の結晶化度は、ウェスト部で約33%程度であり、平均肉厚が約0.35mmの通常のボトル容器のウェスト部が約34%程度で、ほぼ同様の値となった。
The bottle container of Example 1 was rinsed with hot shower water at about 80 ° C. for about 30 seconds to measure the inner volume of the container. As a result, the inner volume of the container was reduced by 20 ml and the shrinkage rate was about 1%. there were.
When a similar shower warm water rinse was performed on a normal bottle container having an average wall thickness of about 0.35 mm, the inner volume of the container decreased by 17 ml and the shrinkage rate was about 0.8%.
Further, the crystallinity of the bottle container of Example 1 is about 33% in the waist part, and the waist part of a normal bottle container having an average wall thickness of about 0.35 mm is about 34%, which is almost the same. Value.

そこで、TMAによる無荷重変化量評価を行った。なお、TMAは、機種名DMS6100(セイコーインスツルメンツ株式会社製)を使用して行った。
実施例1のボトル容器のウェスト部をボトル横方向に幅5mmのサンプルを切り出し、無荷重(0kgf)条件下で、昇温速度=5℃/分で常温から加熱して標点間距離20mm、幅5mmのサンプルについてTMAによる無荷重変化量評価を行ったところ、変化量は加熱温度80℃で約30μm以下となった。これは、通常の0.35mm肉厚のボトルの変化量が約20μmであるのとほぼ同様の値となった。
以上により、実施例1のボトル容器は、従来からの肉厚のボトル容器とほぼ同様の耐熱性を有していることがわかった。
Therefore, no load change evaluation by TMA was performed. TMA was performed using the model name DMS6100 (manufactured by Seiko Instruments Inc.).
A sample having a width of 5 mm was cut out from the waist portion of the bottle container of Example 1 in the lateral direction of the bottle, heated under normal temperature at a temperature increase rate of 5 ° C./min under no load (0 kgf) condition, and the distance between the gauge points was 20 mm. When a no-load change amount evaluation by TMA was performed on a sample having a width of 5 mm, the change amount was about 30 μm or less at a heating temperature of 80 ° C. This was almost the same value as the amount of change of a normal 0.35 mm thick bottle was about 20 μm.
From the above, it was found that the bottle container of Example 1 had almost the same heat resistance as a conventional thick bottle container.

一方、比較例1〜3では、図7(b)に示すように、比較例1(PF3.9mm)、比較例2(PF3.5mm)、比較例3(PF3.3mm)のいずれも、肉厚分布が均一とならず延伸ひずみが生じてしまった。
比較例1では、局所延伸により、ボトル肩部の肉厚が薄くなり過ぎ、一方、ボトルヒール部は延伸不足により肉厚が大きくなり過ぎてしまった。
比較例2,3は、ほぼ同様の肉厚分布となっており、ボトル肩部とヒール部の肉厚が局所延伸により薄くなり過ぎ、ボトル底部が延伸されずに肉厚が過大に成っている。特に比較例2では、ボトルのヒール部のみが過延伸され、底部はまったく延伸されなかった。
また、この比較例1〜3のボトル容器に約80℃のシャワー温水リンスを行ったところ、容器の内容量が64ml減少し、収縮率は約3.1%で、容量が実施例1のボトルの3倍以上収縮することがわかった。
さらに、比較例1〜3のボトルの結晶化度は、ウェスト部で約32%程度で、実施例1のボトルの結晶化度とほぼ同様の値となった。そこで、実施例1の場合と同様の条件により、TMAによる無荷重変化量評価を行ったところ、変化量は加熱温度80℃で約80μmとなり、実施例1の2.5倍以上、通常の肉厚のボトルの約4倍の変化量となった。
On the other hand, in Comparative Examples 1 to 3, as shown in FIG. 7B, all of Comparative Example 1 (PF 3.9 mm), Comparative Example 2 (PF 3.5 mm), and Comparative Example 3 (PF 3.3 mm) are meat. The thickness distribution was not uniform and stretching strain occurred.
In Comparative Example 1, the wall thickness of the bottle shoulder portion was too thin due to local stretching, while the bottle heel portion was too thick due to insufficient stretching.
Comparative Examples 2 and 3 have almost the same thickness distribution, and the thickness of the bottle shoulder and heel is too thin due to local stretching, and the bottle bottom is not stretched and the thickness is excessive. . Particularly in Comparative Example 2, only the heel portion of the bottle was overstretched, and the bottom portion was not stretched at all.
In addition, when the bottle container of Comparative Examples 1 to 3 was rinsed with hot shower water at about 80 ° C., the volume of the container decreased by 64 ml, the shrinkage rate was about 3.1%, and the capacity of the bottle of Example 1 It was found that it contracted more than 3 times.
Furthermore, the degree of crystallinity of the bottles of Comparative Examples 1 to 3 was about 32% at the waist, which was almost the same as the degree of crystallinity of the bottle of Example 1. Therefore, when the no-load change amount evaluation by TMA was performed under the same conditions as in Example 1, the change amount was about 80 μm at the heating temperature of 80 ° C. The amount of change was about four times that of a thick bottle.

このように、プリフォームの重量が同一である実施例1と比較例1〜3とを対比すると、比較例1〜3では、ボトルの肩部やヒール部に局所的延伸,過延伸による延伸ひずみが生じ、ボトル全体の肉厚分布が不均一であるのに対し、実施例1では、容器全体の肉厚が均一化しており、プリフォームの全体が均一に延伸され、過延伸や局所的延伸が生じず、延伸ひずみがないことがわかる。
また、比較例1〜3では、薄肉化のためにヒートセットを低くしたために、結晶化度ではほぼ同様の値を示しながら、ボトルの耐熱性が劣化し、温水殺菌洗浄温度(約65〜80℃)に耐えられず容器が実施例1の3倍以上収縮したのに対し、実施例1では、ボトルの平均肉厚が薄肉化されているにも拘わらず、通常のボトルと同様の耐熱性が得られることがわかった。
以上により、実施例1では、ボトル全体に亘って肉厚が均一化され、ボトル肩部やヒール部についても局所的な延伸がなく、かつ、高い耐熱性が得られることがわかった。
Thus, when Example 1 and Comparative Examples 1 to 3 in which the weight of the preform is the same are compared, in Comparative Examples 1 to 3, stretching strain due to local stretching and overstretching on the shoulder portion and heel portion of the bottle. In Example 1, the thickness distribution of the entire container is uniform, the entire preform is uniformly stretched, and overstretching and local stretching are performed. It can be seen that there is no stretching strain.
Moreover, in Comparative Examples 1-3, since the heat set was lowered for thinning, the heat resistance of the bottle was deteriorated while showing almost the same crystallization degree, and the hot water sterilization washing temperature (about 65-80) In contrast to Example 1, the container shrank more than three times that of Example 1, whereas Example 1 had the same heat resistance as that of a normal bottle despite the fact that the average wall thickness of the bottle was reduced. Was found to be obtained.
As described above, in Example 1, it was found that the wall thickness was made uniform over the entire bottle, the bottle shoulder portion and the heel portion were not locally stretched, and high heat resistance was obtained.

なお、本発明のプラスチックボトル容器の延伸ブロー成形方法は、上述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。
例えば、上記実施形態で得られるボトル容器は、外形が断面ほぼ長方形状の扁平角筒状のボトル容器となっていたが、ボトル容器の外形は特に扁平角筒状のものに限られるものではない。
図8に示すように、断面長方形状のボトル容器(同図(a)参照)以外にも、断面ほぼ円形状の円筒状のボトル容器(同図(b)参照)をブロー成形することもでき、また、特に図示しないが、断面ほぼ正方形状のボトル容器であってもよく、角筒と円筒を組み合わせたボトル容器をブロー成形することも可能である。
また、上記実施形態では、容量が2000mlのボトル容器を示したが、本発明の適用にあたってボトル容器の容量は特に限定されるものではない。従って、例えば容量1000mlのボトル容器であっても、また、容量1500mlのボトル容器であっても本発明の適用を妨げない。
In addition, the stretch blow molding method of the plastic bottle container of the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made within the scope of the present invention.
For example, the bottle container obtained in the above embodiment is a flat rectangular tube container whose outer shape is substantially rectangular in cross section, but the outer shape of the bottle container is not particularly limited to a flat rectangular tube shape. .
As shown in FIG. 8, in addition to a bottle container having a rectangular cross section (see FIG. 8A), a cylindrical bottle container having a substantially circular cross section (see FIG. 8B) can be blow-molded. Although not particularly illustrated, the bottle container may have a substantially square cross section, and a bottle container in which a square tube and a cylinder are combined can be blow-molded.
Moreover, in the said embodiment, although the capacity | capacitance of a 2000 ml bottle container was shown, in the application of this invention, the capacity | capacitance of a bottle container is not specifically limited. Therefore, for example, even a bottle container with a capacity of 1000 ml or a bottle container with a capacity of 1500 ml does not hinder the application of the present invention.

以上説明した本発明は、予備成形品であるポリエチレンテレフタレート等からなるプリフォーム(パリソン)を延伸ブロー成形してプラスチックボトル容器を製造する延伸ブロー成形方法に利用可能である。特に、白化が生じることなくボトル全体を均一に薄肉化でき、また、高温のヒートセットが可能となり、耐熱性にも優れたボトル容器を製造できることから、扁平ボトルやアセプティックボトル等に適したプラスチックボトル容器の延伸ブロー成形方法に利用できる。 The present invention described above can be used in a stretch blow molding method for manufacturing a plastic bottle container by stretch blow molding a preform (parison) made of polyethylene terephthalate or the like, which is a preformed product. In particular, plastic bottles that are suitable for flat bottles, aseptic bottles, etc., because the entire bottle can be uniformly thinned without whitening, and high-temperature heat setting is possible, making it possible to produce bottle containers with excellent heat resistance. It can be used in a stretch blow molding method for containers.

本発明に係るプラスチックボトル容器の延伸ブロー成形方法に使用するプリフォームの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the preform used for the stretch blow molding method of the plastic bottle container which concerns on this invention. 図1に示すプリフォームの要部拡大図で、(a)はプリフォームの全体図、(b)は首下部の拡大図、(c)は段付部の拡大図である。FIG. 2 is an enlarged view of a main part of the preform shown in FIG. 1, (a) is an overall view of the preform, (b) is an enlarged view of a lower part of the neck, and (c) is an enlarged view of a stepped portion. 図1に示すプリフォームの段付部の拡大図であり、段付部の傾斜角度を変更する態様を示している。It is an enlarged view of the step part of the preform shown in FIG. 1, and has shown the aspect which changes the inclination angle of a step part. 本発明に係るプラスチックボトル容器の延伸ブロー成形方法の工程を示す説明図である。It is explanatory drawing which shows the process of the stretch blow molding method of the plastic bottle container which concerns on this invention. 本発明に係るプラスチックボトル容器の延伸ブロー成形方法におけるプリフォームの延伸状態を示す要部断面図であり、(a)は本発明に係るプリフォーム、(b)は従来方法に係るプリフォームを示している。It is principal part sectional drawing which shows the extending | stretching state of the preform in the stretch blow molding method of the plastic bottle container which concerns on this invention, (a) shows preform which concerns on this invention, (b) shows preform which concerns on the conventional method ing. 本発明に係るプラスチックボトル容器の延伸ブロー成形方法により製造したボトル容器の一例を示す外観図であり、(a)は正面図、(b)は側面図、(c)は平面図、(d)A−A線断面図、(e)は底面図である。It is an external view which shows an example of the bottle container manufactured with the stretch blow molding method of the plastic bottle container which concerns on this invention, (a) is a front view, (b) is a side view, (c) is a top view, (d) AA line sectional view, (e) is a bottom view. 本発明に係るプラスチックボトル容器の延伸ブロー成形方法により製造したボトル容器の肉厚分布を示すグラフであり、(a)は本発明のボトル容器、(b)は従来品のボトル容器のものを示している。It is a graph which shows the thickness distribution of the bottle container manufactured with the stretch blow molding method of the plastic bottle container which concerns on this invention, (a) shows the bottle container of this invention, (b) shows the thing of the bottle product of a conventional product. ing. 本発明に係るプラスチックボトル容器の延伸ブロー成形方法により製造可能なボトル容器の外形例を示す正面図であり、(a)は長方形ボトル、(b)は円形ボトルである。It is a front view which shows the external example of the bottle container which can be manufactured with the stretch blow molding method of the plastic bottle container which concerns on this invention, (a) is a rectangular bottle, (b) is a circular bottle.

符号の説明Explanation of symbols

1 本発明に係るプリフォーム(パリソン)
2 口部
3 首下部
3a ストレート部
4 プリフォーム胴部
5 プリフォーム底部
5a プリフォーム段付部
10 ボトル容器
10a 長方形ボトル
10b 円形ボトル
11 ボトル首部
12 ボトル肩部
13 ボトル胴部(上)
14 ボトルウェスト部
15 ボトル胴部(下)
16 ボトルヒール部
17 ボトル底部
201 従来のプリフォーム
1 Preform (Parison) according to the present invention
2 mouth part 3 neck lower part 3a straight part 4 preform trunk part 5 preform bottom part 5a preform stepped part 10 bottle container 10a rectangular bottle 10b round bottle 11 bottle neck part 12 bottle shoulder part 13 bottle trunk part (upper)
14 Bottle waist 15 Bottle body (bottom)
16 Bottle heel part 17 Bottle bottom part 201 Conventional preform

Claims (8)

有底筒状のプリフォームを所定温度で加熱し、延伸ブロー成形することにより、プラスチックボトル容器を形成する延伸ブロー成形方法であって、
前記プリフォームが、
胴部と底部とを備えた有底筒状であって、
胴部と底部との間に段付部を備え、前記段付部の内面及び外面の傾斜角度θが7°≦θ≦45°、前記胴部の肉厚Taと段付部の肉厚Tbの比が1.0<Ta/Tb≦1.5に設定され、
このプリフォームを所定温度で加熱し、
プリフォームの、胴部及び底部の連続する所定範囲を均一に延伸することにより、ボトル容器の底部及びヒール部に相当する部分の全体を延伸させ、
ボトル容器の底部,ヒール部及び胴部の肉厚分布をほぼ均一にすることを特徴とするプラスチックボトル容器の延伸ブロー成形方法。
A stretched blow molding method for forming a plastic bottle container by heating a bottomed cylindrical preform at a predetermined temperature and performing stretch blow molding,
The preform is
A bottomed cylinder with a trunk and a bottom,
A stepped portion is provided between the body portion and the bottom portion, and the inclination angle θ of the inner surface and the outer surface of the stepped portion is 7 ° ≦ θ ≦ 45 °, the thickness Ta of the body portion and the thickness Tb of the stepped portion. Is set to 1.0 <Ta / Tb ≦ 1.5,
This preform is heated at a predetermined temperature,
By uniformly stretching a predetermined range of the body portion and the bottom portion of the preform, the entire portion corresponding to the bottom portion and the heel portion of the bottle container is stretched,
A stretch blow molding method for a plastic bottle container, characterized in that the thickness distribution of the bottom part, the heel part and the body part of the bottle container is made substantially uniform.
有底筒状のプリフォームを所定温度で加熱し、延伸ブロー成形することにより、プラスチックボトル容器を形成する延伸ブロー成形方法であって、
前記プリフォームが、
口部と胴部と底部とを備えた有底筒状であって、
口部と胴部との間に首下部を備え、前記首下部には、口部から連続する胴部より薄肉のストレート部が設けられ、前記ストレート部の長さLaと肉厚Tcの比が3≦La/Tc≦5に設定され、
このプリフォームを所定温度で加熱し、
プリフォームの、胴部及び口部の連続する所定範囲を均一に延伸することにより、ボトル容器の肩部に相当する部分の全体を延伸させ、
ボトル容器の肩部及び胴部の肉厚分布をほぼ均一にすることを特徴とするプラスチックボトル容器の延伸ブロー成形方法。
A stretched blow molding method for forming a plastic bottle container by heating a bottomed cylindrical preform at a predetermined temperature and performing stretch blow molding,
The preform is
A bottomed cylinder with a mouth, a trunk and a bottom,
A neck lower part is provided between the mouth part and the trunk part, and a straight part thinner than the trunk part continuous from the mouth part is provided at the neck lower part, and the ratio of the length La to the thickness Tc of the straight part is 3 ≦ La / Tc ≦ 5 is set,
This preform is heated at a predetermined temperature,
By stretching uniformly the predetermined range of the body and mouth of the preform, the entire portion corresponding to the shoulder of the bottle container is stretched,
A stretch blow molding method of a plastic bottle container, characterized in that the thickness distribution of the shoulder part and the trunk part of the bottle container is made substantially uniform.
有底筒状のプリフォームを所定温度で加熱し、延伸ブロー成形することにより、プラスチックボトル容器を形成する延伸ブロー成形方法であって、
前記プリフォームが、
口部と胴部と底部とを備えた有底筒状であって、
胴部と底部との間に段付部を備え、前記段付部の内面及び外面の傾斜角度θが7°≦θ≦45°、前記胴部の肉厚Taと段付部の肉厚Tbの比が1.0<Ta/Tb≦1.5に設定されるとともに、
口部と胴部との間に首下部を備え、前記首下部には、口部から連続する胴部より薄肉のストレート部が設けられ、前記ストレート部の長さLaと肉厚Tcの比が3≦La/Tc≦5に設定され、
このプリフォームを所定温度で加熱し、
プリフォームの、胴部及び底部の連続する所定範囲を均一に延伸することにより、ボトル容器の底部及びヒール部に相当する部分の全体を延伸させるとともに、
プリフォームの、胴部及び口部の連続する所定範囲を均一に延伸することにより、ボトル容器の肩部に相当する部分の全体を延伸させ、
ボトル容器の肩部,胴部,ヒール部及び底部の肉厚分布をほぼ均一にすることを特徴とするプラスチックボトル容器の延伸ブロー成形方法。
A stretched blow molding method for forming a plastic bottle container by heating a bottomed cylindrical preform at a predetermined temperature and performing stretch blow molding,
The preform is
A bottomed cylinder with a mouth, a trunk and a bottom,
A stepped portion is provided between the body portion and the bottom portion, and the inclination angle θ of the inner surface and the outer surface of the stepped portion is 7 ° ≦ θ ≦ 45 °, the thickness Ta of the body portion and the thickness Tb of the stepped portion. Is set to 1.0 <Ta / Tb ≦ 1.5,
A neck lower part is provided between the mouth part and the trunk part, and a straight part thinner than the trunk part continuous from the mouth part is provided at the neck lower part, and the ratio of the length La to the thickness Tc of the straight part is 3 ≦ La / Tc ≦ 5 is set,
This preform is heated at a predetermined temperature,
By stretching uniformly the predetermined range of the body and the bottom of the preform, the entire portion corresponding to the bottom and heel of the bottle container is stretched,
By stretching uniformly the predetermined range of the body and mouth of the preform, the entire portion corresponding to the shoulder of the bottle container is stretched,
A stretch blow molding method for a plastic bottle container, characterized in that the thickness distribution of the shoulder part, body part, heel part and bottom part of the bottle container is made substantially uniform.
請求項1〜3記載のプラスチックボトル容器の延伸ブロー成形方法において、
ボトル容器のウェスト部の周方向断面形状を、ほぼ長方形状に形成するとともに、
ボトル底部に近づくにつれて長辺側及び対角側の長さを縮小させることで漸次、ほぼ正方形状に形成し、
ボトル底部の接地面の外周縁はほぼ円形状に形成することを特徴とするプラスチックボトル容器の延伸ブロー成形方法。
In the stretch blow molding method of the plastic bottle container according to claims 1 to 3,
While forming the circumferential cross-sectional shape of the waist part of the bottle container into a substantially rectangular shape,
By gradually reducing the length of the long side and diagonal side as it approaches the bottom of the bottle, it is gradually formed into a substantially square shape,
A stretch blow molding method for a plastic bottle container, characterized in that the outer peripheral edge of the ground contact surface at the bottom of the bottle is formed in a substantially circular shape.
請求項1〜4記載のプラスチックボトル容器の延伸ブロー成形方法において、
延伸ブロー成形されたボトル容器の肩部から胴部、ヒール部にかけての肉厚を0.2〜0.3mmとすることにより、当該ボトル容器の平均肉厚を0.25mmとしたことを特徴とするプラスチックボトル容器の延伸ブロー成形方法。
In the stretch blow molding method of the plastic bottle container according to claim 1,
It is characterized in that the average thickness of the bottle container is set to 0.25 mm by setting the thickness from the shoulder part to the body part and the heel part of the stretched blow molded bottle container to 0.2 to 0.3 mm. Stretch blow molding method for plastic bottle containers.
請求項1〜5記載のプラスチックボトル容器の延伸ブロー成形方法において、
プリフォームを、105〜115℃に加熱した金型でヒートセットすることを特徴とするプラスチックボトル容器の延伸ブロー成形方法。
In stretch blow molding method for a plastic bottle as claimed in claim 5, wherein,
A stretch blow molding method for a plastic bottle container, wherein the preform is heat set with a mold heated to 105 to 115 ° C.
請求項1〜6記載の延伸ブロー成形方法により形成されるプラスチックボトル容器であって、
ボトル容器の本体のウェスト部を切り出して標点間距離20mm、幅5mmの試料とし、無荷重、昇温速度=5℃/分の条件のTMA評価において、標点間距離の収縮変化量が加熱温度80℃で60μm以下であることを特徴とするプラスチックボトル容器。
A plastic bottle formed by stretch blow molding method according to claim 6, wherein,
Cut out waist portion of the main body of the bottle to gauge distance 20 mm, a sample width 5 mm, no load, the TMA evaluation heating rate = the 5 ° C. / min condition, shrinkage variation between gauge length heating A plastic bottle container characterized by being 60 μm or less at a temperature of 80 ° C.
請求項1〜7記載の延伸ブロー成形方法により形成されるプラスチックボトル容器であって、
温度65〜80℃の温水によるリンス後のボトル容量の収縮率が1%以下であることを特徴とするプラスチックボトル容器。
A plastic bottle formed by stretch blow molding method according to claim 7, wherein,
A plastic bottle container, wherein the shrinkage of the bottle capacity after rinsing with hot water at a temperature of 65 to 80 ° C. is 1% or less.
JP2003301682A 2003-08-26 2003-08-26 Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method Expired - Fee Related JP4148065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301682A JP4148065B2 (en) 2003-08-26 2003-08-26 Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301682A JP4148065B2 (en) 2003-08-26 2003-08-26 Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method

Publications (2)

Publication Number Publication Date
JP2005067084A JP2005067084A (en) 2005-03-17
JP4148065B2 true JP4148065B2 (en) 2008-09-10

Family

ID=34406226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301682A Expired - Fee Related JP4148065B2 (en) 2003-08-26 2003-08-26 Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method

Country Status (1)

Country Link
JP (1) JP4148065B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122241A1 (en) * 2014-02-12 2015-08-20 東洋製罐株式会社 Container sterilization method and device
JP2015151141A (en) * 2014-02-12 2015-08-24 東洋製罐株式会社 Method and apparatus for sterilizing container
CN105073586A (en) * 2012-12-28 2015-11-18 埃维昂矿泉水有限公司 Self collapsible blow moulded plastic thin-walled container

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20061922A1 (en) * 2006-10-06 2008-04-07 Gianfilippo Pagliacci PREFORMATION OF REFINED PLASTIC MATERIAL.
CN204124464U (en) * 2014-08-18 2015-01-28 西帕机械(杭州)有限公司 A kind of lightweight Packaging Bottle embryo bottom structure
JP6935838B2 (en) * 2016-07-28 2021-09-15 大日本印刷株式会社 Manufacturing method of composite container
JP7148899B2 (en) * 2020-08-27 2022-10-06 大日本印刷株式会社 Composite container manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073586A (en) * 2012-12-28 2015-11-18 埃维昂矿泉水有限公司 Self collapsible blow moulded plastic thin-walled container
WO2015122241A1 (en) * 2014-02-12 2015-08-20 東洋製罐株式会社 Container sterilization method and device
JP2015151141A (en) * 2014-02-12 2015-08-24 東洋製罐株式会社 Method and apparatus for sterilizing container
CN105939936A (en) * 2014-02-12 2016-09-14 东洋制罐株式会社 Container sterilization method and device

Also Published As

Publication number Publication date
JP2005067084A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
KR100742076B1 (en) Polyester resin lamination vessel and molding method therefor
JP4292918B2 (en) Preforms for plastic bottle containers
US20140332490A1 (en) Flat container comprising thermoplastic resin and method for molding the same
JP4599900B2 (en) Preform and blow molded container comprising the preform
US6720047B2 (en) Heat resistant blow molded containers
JP4333280B2 (en) Plastic bottle containers
JP3797156B2 (en) Preforms for blow molding of bottle-shaped containers
JP4052055B2 (en) Stretch blow molding method for plastic bottle containers
JP4148065B2 (en) Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method
JP4734896B2 (en) Manufacturing method of plastic bottle container
JP4210901B2 (en) Manufacturing method of bottle-shaped container
KR101682140B1 (en) Manufacturing method of cosmetic container pet substitution transparent glass
JPH07156933A (en) Pressure-resistant self-standing container and its manufacture
JP4780443B2 (en) Flat container two-stage blow molding
JP3680526B2 (en) Stretched resin container and manufacturing method thereof
JP4289048B2 (en) Two-stage blow molding method for heat-resistant bottles
JP2003103609A (en) Two-stage blow molding method for heat-resistant bottle
JP3449182B2 (en) Manufacturing method of heat-resistant stretched resin container
JP4721138B2 (en) Flat container made of polyester resin
JP2005112440A (en) Container
JP3740955B2 (en) Method for producing biaxially stretched polyester container with whitening prevention at the bottom
JP2003103607A (en) Bottom structure of heat-resistant bottle
JP3740968B2 (en) Method for producing biaxially stretched polyester container with whitening prevention at the bottom
JPH0615643A (en) Manufacture of premolded body
JP3835428B2 (en) Heat-resistant stretched resin container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4148065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees