JP4325422B2 - 復調装置、ディスクドライブ装置、位相調整方法 - Google Patents

復調装置、ディスクドライブ装置、位相調整方法 Download PDF

Info

Publication number
JP4325422B2
JP4325422B2 JP2004029116A JP2004029116A JP4325422B2 JP 4325422 B2 JP4325422 B2 JP 4325422B2 JP 2004029116 A JP2004029116 A JP 2004029116A JP 2004029116 A JP2004029116 A JP 2004029116A JP 4325422 B2 JP4325422 B2 JP 4325422B2
Authority
JP
Japan
Prior art keywords
phase
internal reference
reference wave
signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004029116A
Other languages
English (en)
Other versions
JP2005222608A (ja
JP2005222608A5 (ja
Inventor
達史 佐野
充 岡部
忠明 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004029116A priority Critical patent/JP4325422B2/ja
Priority to US11/045,352 priority patent/US7333408B2/en
Priority to KR1020050010455A priority patent/KR101161673B1/ko
Priority to CNB2005100075437A priority patent/CN100411043C/zh
Priority to TW094103846A priority patent/TWI289296B/zh
Publication of JP2005222608A publication Critical patent/JP2005222608A/ja
Publication of JP2005222608A5 publication Critical patent/JP2005222608A5/ja
Application granted granted Critical
Publication of JP4325422B2 publication Critical patent/JP4325422B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10222Improvement or modification of read or write signals clock-related aspects, e.g. phase or frequency adjustment or bit synchronisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10305Improvement or modification of read or write signals signal quality assessment
    • G11B20/10361Improvement or modification of read or write signals signal quality assessment digital demodulation process
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • G11B7/0053Reproducing non-user data, e.g. wobbled address, prepits, BCA
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Rotational Drive Of Disk (AREA)

Description

本発明は第1,第2の変調信号を含む信号に対する復調装置、復調装置を備えたディスクドライブ装置、及び復調装置における内部基準波の位相調整方法に関し、特に第1,第2の変調信号としてのMSK(Minimum Shift Keying)変調信号、STW(Saw Tooth Wobble)変調信号の復調に好適なものである。
特開2003−123249号公報 特開平11−306686号公報 特開2002−74660号公報
デジタルデータを記録・再生するための技術として、例えば、CD(Compact Disk),MD(Mini-Disk),DVD(Digital Versatile Disk)などの、光ディスク(光磁気ディスクを含む)を記録メディアに用いたデータ記録技術がある。光ディスクとは、金属薄板をプラスチックで保護した円盤に、レーザ光を照射し、その反射光の変化で信号を読み取る記録メディアの総称である。
光ディスクには、例えばCD、CD−ROM、DVD−ROMなどとして知られているように再生専用タイプのものと、MD、CD−R、CD−RW、DVD−R、DVD−RW、DVD+RW、DVD−RAMなどで知られているようにユーザーデータが記録可能なタイプがある。記録可能タイプのものは、光磁気記録方式、相変化記録方式、色素膜変化記録方式などが利用されることで、データが記録可能とされる。色素膜変化記録方式はライトワンス記録方式とも呼ばれ、一度だけデータ記録が可能で書換不能であるため、データ保存用途などに好適とされる。一方、光磁気記録方式や相変化記録方式は、データの書換が可能であり音楽、映像、ゲーム、アプリケーションプログラム等の各種コンテンツデータの記録を始めとして各種用途に利用される。
更に近年、ブルーレイディスク(Blu-Ray Disc)と呼ばれる高密度光ディスクが開発され、著しい大容量化が図られている。
光磁気記録方式、色素膜変化記録方式、相変化記録方式などの記録可能なディスクに対してデータを記録するには、データトラックに対するトラッキングを行うための案内手段が必要になり、このために、プリグルーブとして予め溝(グルーブ)を形成し、そのグルーブもしくはランド(グルーブとグルーブに挟まれる断面台地状の部位)をデータトラックとすることが行われている。
またデータトラック上の所定の位置にデータを記録することができるようにアドレス情報を記録する必要もあるが、このアドレス情報は、グルーブをウォブリング(蛇行)させることで記録される場合がある。
すなわち、データを記録するトラックが例えばプリグループとして予め形成されるが、このプリグループの側壁をアドレス情報に対応してウォブリングさせる。
このようにすると、記録時や再生時に、反射光情報として得られるウォブリング情報からアドレスを読み取ることができ、例えばアドレスを示すピットデータ等を予めトラック上に形成しておかなくても、所望の位置にデータを記録再生することができる。
このようにウォブリンググルーブとしてアドレス情報を付加することで、例えばトラック上に離散的にアドレスエリアを設けて例えばピットデータとしてアドレスを記録することが不要となり、そのアドレスエリアが不要となる分、実データの記録容量を増大させることができる。
なお、このようなウォブリングされたグルーブにより表現される絶対時間(アドレス)情報は、ATIP(Absolute Time In Pregroove)又はADIP(Adress In Pregroove)と呼ばれる。
上記ブルーレイディスクの場合、MSK変調とSTW変調を組み合わせた変調波形に基づいてグルーブがウォブリングされる。
このMSK変調とSTW変調、及びこれらを組み合わせて形成されるADIP情報について詳しくは後述するが、MSK変調は、位相が連続したFSK(Frequency Shift Keying)変調のうちの変調指数が0.5のものである。
またSTW変調は、ウォブル基本波に対して2倍の高調波を加算又は減算することで、鋸歯状波形のような変調波形を生成する変調方式である。
ブルーレイディスクに対応するディスクドライブ装置では、このようなADIP情報を再生するために、MSK復調器、STW復調器が搭載されることになる。
特にMSK/STW変調信号の復調及びADIP情報のデコードに関する技術は上記特許文献1,2,3に開示されている。
図24に、ADIP情報をデコードするために、その前段の処理として必要となるMSK復調/STW復調を行う回路例を示す。これは、ディスクのウォブリンググルーブによる反射光情報としてのプッシュプル信号P/P(ウォブル信号)について、MSK復調/STW復調を行い、その復調信号を後段のADIPデコーダに供給する回路である。
ウォブル信号として供給されるプッシュプル信号P/Pは、図24のMSK復調器110において、A/D変換器111及びコンパレータ112に供給される。
コンパレータ112は、プッシュプル信号P/Pを2値化し、PLL回路113に供給する。PLL回路113では、2値化信号に基づいてプッシュプル信号P/P、つまりウォブリンググルーブの変調信号の周波数(ウォブル周波数)のクロック(以下、ウォブルクロックWCKという)を生成する。
またPLL回路113から出力されるウォブルクロックWCKは、PLL回路114及び遅延回路116に供給される。
PLL回路114では、ウォブルクロックWCKを逓倍し、マスタークロックMCKを生成する。このマスタークロックMCKは、A/D変換器111のサンプリングクロックとされ、また、遅延回路116、カウンタ117など、各部で用いられる。
遅延回路116は、ウォブルクロックWCKに対して、マスタークロックMCKの単位で所定の遅延時間を与え、カウンタ117に供給する。遅延時間はCPU100によって設定される。
カウンタ117は、マスタークロックMCKをカウントする動作を行うが、遅延回路116を介したウォブルクロックWCKの立ち上がりをリセットタイミング信号として入力し、カウントリセットを行う。つまりカウンタ117は、ウォブルクロックWCKによるリセットタイミングからマスタークロックMCKをカウントしていき、そのカウント値をcosテーブル121に出力する。
cosテーブル121は、内部基準波となる波形データを記憶したテーブルであり、各データがカウンタ117のカウント値に応じて読み出される。
例えばマスタークロックMCKが、ウォブル基本波形の1周期(ウォブルクロックWCK単位)において23クロックとなる周波数であるとする。カウンタ117は、ウォブル基本波形の1周期間隔でリセットされるため、この場合カウンタ117は0〜22のカウント値を繰り返し発生させることになる。
cosテーブル121では、内部基準波となるcos波形データとして、TD0〜TD22のデータを記憶しており、これがカウント値に応じて順次読み出されていく。これによってウォブル基本波形と同一周波数の内部基準波が発生され、乗算器118に供給される。
一方、入力されたプッシュプル信号P/PはA/D変換器111でマスタークロックMCKでサンプリングされてデジタルデータ化(ウォブルデータ)され、乗算器118に供給される。
従って乗算器118においては、ウォブルデータと、内部基準波データが乗算される。この乗算値は積算器119に供給されて積算される。積算器119は、遅延回路116からのウォブルクロックWCKの立ち上がりタイミングでリセットされる。つまり積算器119はカウンタ117と同タイミングでリセットされる。従って積算器119では、1ウォブル基本波形周期の間で乗算値の積算を行うことになる。例えば23サンプルの乗算結果を積算する動作を繰り返す。
するとその積算値(乗算後加算値)は、入力されるウォブル信号においてウォブル基本波の区間では正方向に推移し、一方、MSK変調された区間では負方向に推移する。従って、これを正負判定回路120で正負判定することでMSKマークと基本波を判別する復調信号が得られる。
STW復調器130については、ここでの詳細な説明は略すが、MSK復調器110とほぼ同様の構成となる。即ち変調信号であるプッシュプル信号P/Pをデジタルデータ化し、それに対して内部基準波を乗算し、乗算結果の積算値を正負判定することでSTW復調信号が得られる。但しSTW復調器130の場合、内部基準波はウォブル基本波形の二次高調波の信号となる。また積算は、1ウォブル基本波形の期間ではなく、ウォブル信号においてSTW変調がなされている複数ウォブル期間において行われる。
ところで、ディスク上の隣接トラックからのクロストークや、記録前と記録後の出力振幅の違い、さらにはディスクの品質ばらつきなどにより、ウォブル信号は変動している。このウォブルの振幅変化を避ける方式としてAGC回路方式やウォブル信号の振幅を制限させる方式が考えられ、例えば上記特許文献2,3等において提案されているが、ウォブル信号波形は振幅だけでなく、時間軸(位相)方向にも外乱を受けている。
後述するが、この位相外乱を避ける方式として、上記ブルーレイディスクのADIPフォーマットでは、ウォブル信号のSTW変調信号に関しては、復調器の検波のための内部基準波の位相を調整する目的で リファレンス信号が設けられている。ところが外乱による振幅変動が大きくなってきたときの復調が困難であるという問題が残されている。
またMSK変調信号の復調に関しては、従来、そもそも外乱による位相変動を検出する機能は設けられていないため、外乱による位相変動が大きくなってきたときのMSK変調信号の復調が困難であった。
上記図24の復調回路構成からわかるように、ウォブル信号(プッシュプル信号P/P)は、内部基準波と乗算された後、所定期間積算される。そして積算値が正負判定されてMSK復調信号、STW復調信号が得られる。
この場合の入力されるウォブル信号と積算器119の出力(積算値)としてのMSK復調信号波形を図25(a)に示す。また図25(b)は、図25(a)の波形を時間軸方向に縮小した波形を示している。
外乱による位相変動が大きくなると、図25(b)にみられるように、MSK復調信号波形(積算値)は周期的に振幅が変動する。この場合、信号の振幅が小さくなった部分でMSK復調が困難になる。このため例えば、ビートの大きいディスクを再生した場合や、フォーカスオフセット或いはメディア傾きの大きなディスクを再生した場合、MSK復調が困難になる。
本発明はこのような問題に鑑み、外乱による位相変動にも対応して安定した復調動作が実現されるようにすることを目的とする。
本発明の復調装置は、第1の変調信号と第2の変調信号を含む入力信号を復調する復調装置において、上記第1の変調信号に対する第1の内部基準波を出力する第1の内部基準波発生手段と、上記第1の内部基準波と上記入力信号の演算処理により、上記第1の変調信号の復調信号を得る第1の復調演算手段と、上記第1の内部基準波発生手段から出力される上記第1の内部基準波の位相を調整する第1の位相調整手段と、上記入力信号について位相をずらした3つの入力信号における上記第2の変調信号に対する第2の内部基準波を出力する第2の内部基準波発生手段と、上記第2の内部基準波と上記3つの入力信号の演算処理により、上記第2の変調信号の復調信号を得る3つの第2の復調演算手段と、復調結果が必ず正又は負となるべき所定の入力信号区間において、上記3つの第2の復調演算手段の復調結果のいずれの復調結果が正又は負の最大になるかにより上記第2の内部基準波の最適な位相を判別し、判別された最適位相値に基づいて、上記第2の内部基準波発生手段から出力される上記第2の内部基準波の位相を調整する第2の位相調整手段とを備える。そして上記第1の位相調整手段は、上記第2の位相調整手段での最適位相値を用いて、上記第1の内部基準波発生手段から出力される上記第1の内部基準波の位相の調整を行う。
また本発明のディスクドライブ装置は、ディスク記録媒体上でウォブリンググルーブとして記録された、第1の変調信号と第2の変調信号を含むウォブル信号を読み出す読出手段を備え、その読出手段で読み出されたウォブル信号について、上記構成の復調装置で復調を行う。そして復調された復調信号をデコード手段でデコードし、上記ウォブリンググルーブとして記録された情報を得る構成とする。
この場合上記デコード手段は、上記ウォブリンググルーブとして記録された情報として、ディスク記録媒体上のアドレス情報を得る。
また上記復調装置、又はディスクドライブ装置において、上記第1の変調信号はMSK変調信号であり、上記第1の内部基準波発生手段は、MSK変調信号の基準波と同一周波数とされる第1の内部基準波を出力する。
また上記第2の変調信号はSTW変調信号であり、上記第2の内部基準波発生手段は、STW変調信号の基準波の二次高調波とされる第2の内部基準波を出力する。
また上記第1の位相調整手段は、設定された位相調整値に対して、上記第2の位相調整手段からの最適位相値に基づく位相調整値を加算し、その加算結果の位相調整値により上記第1の内部基準波の位相を調整する。
また上記第2の位相調整手段は、上記3つの第2の復調演算手段の復調結果に基づいてカウント値をアップ/ダウンさせるカウンタを有し、該カウンタのカウント値から上記最適位相値を得るとともに、上記カウンタは、値が連続した上記最適位相値が得られる状態となるように制御される。
さらにその場合、上記カウンタは、位相調整開始時点で所定のカウント初期値がロードされる。
本発明の位相調整方法は、第1の変調信号と第2の変調信号を含む入力信号の、上記第1の変調信号に対する第1の内部基準波を出力する第1の内部基準波発生手段と、上記第1の内部基準波と上記入力信号の演算処理により、上記第1の変調信号の復調信号を得る第1の復調演算手段と、上記入力信号の上記第2の変調信号に対する第2の内部基準波を出力する第2の内部基準波発生手段と、上記第2の内部基準波と上記入力信号について位相をずらした3つの入力信号との演算処理により、上記第2の変調信号の復調信号を得る3つの第2の復調演算手段とを備えた復調装置における、上記第1、第2の内部基準波の位相調整方法である。そして復調結果が必ず正又は負となるべき所定の入力信号区間において、上記3つの第2の復調演算手段の復調結果のいずれの復調結果が正又は負の最大になるかにより上記第2の内部基準波の最適な位相を判別し、判別された最適位相値に基づいて、上記第2の内部基準波発生手段から出力される上記第2の内部基準波の位相を調整するステップと、上記最適位相値を用いて、上記第1の内部基準波発生手段から出力される上記第1の内部基準波の位相の調整を行うステップとを備える。
即ち本発明は、第1,第2の変調信号に対する復調処理において、第2の変調信号(STW変調信号)の復調のための検波用基準波、即ち第2の内部基準波について、復調結果に応じて最適位相値を発生させ、位相を自動調整する機能を有するようにする。そして、その自動調整のための最適位相値を用いて、第1の変調信号(MSK変調信号)の復調のための検波用基準波、即ち第1の内部基準波の位相も調整するようにする。
本発明によれば、第1,第2の変調信号に対する復調処理において、第2の変調信号(STW変調信号)の復調のための検波用基準波、即ち第2の内部基準波について、復調結果に応じて最適位相値を発生させ、位相を自動調整する。そしてさらに、その自動調整のための最適位相値を用いて、第1の変調信号(MSK変調信号)の復調のための検波用基準波、即ち第1の内部基準波の位相も自動調整されるようにしている。これによって、例えば隣接トラックからのクロストーク、書き込み後の反射率の低下による変調信号振幅の低下、ディスクスキュー等の外乱により、入力信号(ウォブル信号)の位相変動が発生しても、十分に復調できるようになる。ディスクドライブ装置の場合、このようなMSK変調信号、STW変調信号の復調性能の向上により、アドレスエラーが低減し、記録再生動作性能が向上される。例えば物理特性や記録再生特性のバラツキの大きい記録再生メディアに対しても安定した記録再生を行えるようになる。
また、自動的な位相調整によりMSK変調/STW変調に対する復調能力が上がることは、ピックアップ部の特性のばらつきに対しても、ウォブルアドレス復調能力を維持できることになるため、ピックアップ部の歩留まりを改善することもできる。
またMSK復調のための第1の位相調整手段は、設定された位相調整値に対して、STW復調のための第2の位相調整手段からの最適位相値に基づく位相調整値を加算し、その加算結果の位相調整値により第1の内部基準波の位相を調整するようにすることで、適切な位相調整が可能となる。
また第2の位相調整手段は、第2の復調演算手段の復調結果に基づいてカウント値をアップ/ダウンさせるカウンタを有し、該カウンタのカウント値から上記最適位相値を得るとともに、カウンタは、値が連続した最適位相値が得られる状態となるように制御される。この場合、連続した値として最適位相値を第1の位相調整手段に受け渡すことができ、適切な位相調整制御を実現させる。
また上記カウンタは、位相調整開始時点で所定のカウント初期値がロードされることで、初期状態から常に連続したカウント値が出力される状態にできる。
以下、本発明の実施の形態を次の順序で説明する。
1.MSK変調、STW変調、及びADIP
2.ディスクドライブ装置の構成
3.ウォブル回路
3−1 MSK復調器の構成
3−2 STW復調器の構成
3−3 位相調整動作
4.変形例
1.MSK変調、STW変調、及びADIP

本発明の実施の形態に対応する光ディスク1は、図1(a)に示すように、記録トラックとなるグルーブGVが形成されている。このグルーブGVは、内周側から外周側へスパイラル状に形成されている。そのため、この光ディスク1の半径方向の切断面を見ると、図1(b)に示すように、凸状のランドLと、凹状のグルーブGVとが交互に形成されることとなる。なお、図1(a)のスパイラル方向は、光ディスク1を記録面側から見た状態であり、複数の記録層を有するディスクの場合、各記録層でスパイラル状態が異なる場合がある。
光ディスク1のグルーブGVは、図1(b)に示すように、接線方向に対して蛇行形成されている。このグルーブGVの蛇行形状は、ウォブル信号に応じた形状となっている。そのため、光ディスクドライブでは、グルーブGVに照射したレーザスポットLSの反射光からそのグルーブGVの両エッジ位置を検出し、レーザスポットLSを記録トラックに沿って移動させていった際におけるその両エッジ位置のディスク半径方向に対する変動成分を抽出することにより、ウォブル信号を再生することができる。
このウォブル信号には、その記録位置における記録トラックのアドレス情報(物理アドレスやその他の付加情報等)が変調されている。そのため、光ディスクドライブでは、このウォブル信号からアドレス情報等を復調することによって、データの記録や再生の際のアドレス制御等を行うことができる。
なお、本発明の実施の形態では、グルーブ記録がされる光ディスクについて説明をするが、本発明はこのようなグルーブ記録の光ディスクに限らず、ランドにデータを記録するランド記録を行う光ディスクに適用することも可能であるし、また、グルーブ及びランドにデータを記録するランドグルーブ記録の光ディスクにも適用することも可能である。
ここで、本実施の形態の光ディスク1では、2つの変調方式を用いて、ウォブル信号に対してアドレス情報を変調している。一つは、MSK(Minimum Shift Keying)変調方式である。もう一つは、正弦波のキャリア信号に対して偶数次の高調波信号を付加し、被変調データの符号に応じて当該高調波信号の極性を変化させることによって変調するSTW(Saw Tooth Wobble)変調方式である。
本実施の形態の光ディスク1では、図3(a)に示すように、所定周波数の正弦波の基準キャリア信号波形が所定周期連続したブロックを構成し、このブロック内に、MSK変調されたアドレス情報が挿入されるMSK変調部と、STW変調されたアドレス情報が挿入されるSTW変調部とを設けたウォブル信号を生成する。すなわち、MSK変調されたアドレス情報と、STW変調されたアドレス情報とを、ブロック内の異なる位置に挿入している。さらに、MSK変調で用いられる2つの正弦波のキャリア信号のうちの一方のキャリア信号と、STW変調のキャリア信号とを、上記の基準キャリア信号としている。また、MSK変調部とSTW変調部とは、それぞれブロック内の異なる位置に配置するものとし、MSK変調部とSTW変調部との間には、1周期以上の基準キャリア信号が配置されるものとしている。
なお、なんらデータの変調がされておらず、基準キャリア信号の周波数成分だけが現れる部分を、以下モノトーンウォブルと呼ぶ。また、以下では、基準キャリア信号として用いる正弦波信号は、Cos(ωt)であるものとする。また、基準キャリア信号の1周期を1ウォブル周期と呼ぶ。また、基準キャリア信号の周波数は、光ディスク1の内周から外周まで一定であり、レーザスポットが記録トラックに沿って移動する際の線速度との関係に応じて定まる。
以下、MSK変調及びSTW変調の変調方法についてさらに詳細に説明をする。まず、MSK変調方式を用いたアドレス情報の変調方式について説明をする。
MSK変調は、位相が連続したFSK(Frequency Shift Keying)変調のうちの変調指数が0.5のものである。FSK変調は、周波数f1と周波数f2の2つのキャリア信号に対して、被変調データの符号の“0”,“1”をそれぞれ対応させて変調する方式である。つまり、被変調データが“0”であれば周波数f1の正弦波波形を出力し、被変調データが“1”であれば周波数f1の正弦波波形を出力する変調方式である。さらに、位相が連続したFSK変調の場合には、被変調データの符号の切り換えタイミングにおいて、2つのキャリア信号の位相が連続する。
このFSK変調では、変調指数mというものが定義される。この変調指数mは、
m=|f1−f2|T
で定義される。ここで、Tは、被変調データの伝送速度(1/最短の符号長の時間)である。このmが0.5の場合の位相連続FSK変調のことを、MSK変調という。
MSK変調波形を図2(a)に示す。図2(a)においては、モノトーンウォブルMWに挟まれた3ウォブル周期の領域にMSK変調波形(MM1,MM2,MM3)が存在している状態を示している。
上記のようにモノトーンウォブルをCos(ωt)と表現すると、MSK変調に用いられる2つの周波数は、一方を基準キャリア信号と同一の周波数とし、他方を基準キャリア信号の1.5倍の周波数とするため、MSK変調に用いられる信号波形は、一方がCos(ωt)又は−Cos(ωt)となり、他方がCos(1.5ωt)又は−Cos(1.5ωt)となる。
そして図2(a)の波形では、2つのモノトーンウォブルと、MSK変調領域と、2つのモノトーンウォブルを示しており、その場合、MSKストリームの信号波形は、1ウォブル周期毎に、Cos(wt),Cos(wt),Cos(1.5wt),-Cos(wt),-Cos(1.5wt),Cos(wt)といった波形となる。なお図面では、モノトーンウォブルのCos(ωt)=cos{2π・(fwob)・t}として示しており(fwobは基準キャリア周波数)、従って、MSK変調領域としての3ウォブル期間は、MM1=cos{2π・(1.5・fwob)・t}、MM2=−cos{2π・(fwob)・t}、MM3=−cos{2π・(1.5・fwob)・t}となる。
このように1個目のウォブル周期期間(MM1)はモノトーンウォブルの1.5倍の周波数、2個目(MM2)はモノトーンウォブルと同じ周波数、3個目(MM3)はモノトーンウォブルの1.5倍の周波数とされ、この3ウォブル期間で位相が戻る。つまり前後のモノトーンウォブルと位相が連続した状態であり、しかも2個目のウォブル(MM2)はモノトーンウォブルに対して極性が反転したものとなる。
光ディスク1では、ウォブル信号を以上のようなMSKストリームとすることによって、ウォブル信号にアドレス情報を変調しており、このMSK変調信号は以下の理由により同期検波が可能なものとなる。
光ディスク1のウォブル信号にMSK変調方式で被変調データを挿入する場合、まず、被変調データのデータストリームに対して、ウォブル周期に対応するクロック単位で差動符号化処理をする。すなわち、被変調データのストリームと、基準キャリア信号の1周期分遅延させた遅延データとを差分演算する。この差動符号化処理をしたデータを、プリコードデータとする。続いて、このプリコードデータをMSK変調して、上記のようなMSKストリームを生成する。
上記差動符号化データ(プリコードデータ)は、被変調データの符号変化点でビットが立つ(“1”となる)。被変調データの符号長がウォブル周期の2倍以上とされているので、被変調データの符号長の後半部分には、必ず基準キャリア信号(Cos(ωt))又はその反転信号(−Cos(ωt))が挿入されることとなる。プリコードデータのビットが“1”となると、基準キャリア信号に対して1.5倍の周波数の波形が挿入され、さらに、符号の切り換え点においては位相を合わせて波形が接続される。従って、被変調データの符号長の後半部分に挿入される信号波形は、被変調データが“0”であれば、必ず基準キャリア信号波形(Cos(ωt))となり、被変調データが“1”であれば必ずその反転信号波形(−Cos(ωt))となる。同期検波出力は、キャリア信号に対して位相が合っていれば、プラス側の値になり、位相が反転していればマイナス側の値となるので、以上のようなMSK変調した信号を基準キャリア信号により同期検波すれば、被変調データの復調が可能となるものである。
続いてSTW変調について説明する。
STW変調は、上述のように正弦波のキャリア信号に対して偶数次の高調波信号を付加し、当該高調波信号の極性を被変調データの符号に応じて変化させることによってデジタル符号を変調する変調方式である。
光ディスク1では、STW変調のキャリア信号は、上記MSK変調のキャリア信号である基準キャリア信号(Cos(ωt))と同一周波数及び位相の信号としている。付加する偶数次の高調波信号は、基準キャリア信号(Cos(ωt))の2次高調波であるSin(2ωt)、−Sin(2ωt)とし、その振幅は、基準キャリア信号の振幅に対して−12dBの振幅としている。被変調データの最小符号長は、ウォブル周期(基準キャリア信号の周期)の2倍としている。
そして、被変調データの符号が“1”のときにはSin(2ωt)をキャリア信号に付加し、“0”のときには−Sin(2ωt)をキャリア信号に付加して変調を行うものとする。
以上のような方式でウォブル信号を変調した場合の信号波形を図2(b)に示す。図2(b)においては、中央のウォブル期間に基準キャリア信号(Cos(ωt))のモノトーンウォブルMWの信号波形を示している。そしてその前の2つのウォブル期間において、基準キャリア信号(Cos(ωt))に対してSin(2ωt)が付加された信号波形、即ち、被変調データが“1”のときの信号波形を示している。またモノトーンウォブルMWの後の2ウォブル期間において、基準キャリア信号(Cos(ωt))に対して−Sin(2ωt)が付加された信号波形、即ち、被変調データが“0”のときの信号波形を示している。
なお図面では、モノトーンウォブルのCos(ωt)=cos{2π・(fwob)・t}として示しており、従って、STW変調信号は、被変調データが“1”の場合、cos{2π・(fwob)・t}+a・sin{2π・(2・fwob)・t}となり、被変調データが“0”の場合、cos{2π・(fwob)・t}−a・sin{2π・(2・fwob)・t}となるとして示している。
図からわかるように、このSTW信号波形は、ディスク外周側に急峻に立ち上がり、内周側に緩やかに戻る波形と、その逆にディスク外周側に緩い傾斜で立ち上がって急峻に戻る波形となり、これによって「1」「0」の値が表現される。またどちらの波形の場合も、破線で示すモノトーンウォブルMWと共通のゼロクロスポイントを有するものとなる。従ってMSK方式のモノトーンウォブルMWの部分と共通の基本波成分からクロックを抽出するに当たって、その位相に影響を与えない。
そしてこのように基準キャリア信号に対して正負の偶数次の高調波信号を付加した場合には、その生成波形の特性から、この高調波信号により同期検波して、被変調データの符号長時間その同期検波出力を積分することによって、被変調データを復調することが可能である。
なお、光ディスク1では、キャリア信号に加える高調波信号を2次高調波としているが、2次高調波に限らず、偶数次の高調波であればどのような信号を加算してもよい。また光ディスク1では、2次高調波のみを加算しているが、2次高調波と4次高調波との両者を同時に加算するといったように複数の高調波信号を同時に加算しても良い。
以上のようなMSK変調、STW変調を含むADIP構造を説明する。ADIP情報としての1つのユニット(ADIPユニット)は、56ウォブルから構成される。
図3(b)に8種類のADIPユニットを示す。8種類とは、モノトーンユニット、リファレンスユニット、シンク0ユニット、シンク1ユニット、シンク2ユニット、シンク3ユニット、データ1ユニット、データ0ユニットである。
8種類の全てのADIPユニットでは、先頭のウォブル番号0,1,2はMSKマークとされる。
モノトーンユニットは、MSKマークに続くウォブル番号4〜55が全てモノトーンウォブルで構成される。
リファレンスユニットは、ウォブル番号18〜54が、0値を示すSTW変調ウォブルとなる。
シンク0ユニット、シンク1ユニット、シンク2ユニット、シンク3ユニットは、それぞれシンク情報の為のADIPユニットであり、図示するようにそれぞれ所定ウォブル番号位置にMSKマークが配置される。
データ1ユニットは値「1」を表現し、またデータ0ユニットは値「0」を表現するユニットである。データ1ユニットの場合、ウォブル番号12〜14にMSKマークが配され、またウォブル番号18〜54が、値「1」のSTW変調ウォブルとされる。データ0ユニットの場合、ウォブル番号14〜16にMSKマークが配され、またウォブル番号18〜54が、値「0」のSTW変調ウォブルとされる。
このようなADIPユニットが83個集められることによって、1つのADIP情報(アドレス情報)が形成される。
即ち図4に示すように、ADIP情報の1単位は、ADIPユニット0〜82により形成される。そしてADIPユニットナンバ0から7が、モノトーンユニット、シンク0ユニット、モノトーンユニット、シンク1ユニット、モノトーンユニット、シンク2ユニット、モノトーンユニット、シンク3ユニットとされる。
ADIPユニットナンバ8以降は、リファレンスユニット及び4ビット分のデータユニットとしての5つのユニットが繰り返し配される。そして各データユニット(例えばdata[0]、data[1]、data[2]、data[3]・・・data[59])は、上記データ1ユニット、データ0ユニットのいずれかとされることで、ADIP情報としての60ビットの値が示される。この60ビットには、アドレス値、付加情報、ECCパリティ等が含まれる。
2.ディスクドライブ装置の構成

次に、上記のようなディスク1に対応して記録/再生を行うことのできるディスクドライブ装置を説明する。図5はディスクドライブ装置の構成を示す。
ディスク1は、図示しないターンテーブルに積載され、記録/再生動作時においてスピンドルモータ52によって一定線速度(CLV)で回転駆動される。
そして光学ピックアップ(光学ヘッド)51によってディスク1上のグルーブトラックのウォブリングとして埋め込まれたADIP情報の読み出しがおこなわれる。
なお、ディスク1上には、再生専用の管理情報として例えばディスクの物理情報等がエンボスピット又はウォブリンググルーブによって記録されるが、これらの情報の読出もピックアップ51により行われる。
またデータ記録時には光学ピックアップによってトラックにユーザーデータがフェイズチェンジマークとして記録され、再生時には光学ピックアップによって記録されたマークの読出が行われる。
ピックアップ51内には、レーザ光源となるレーザダイオードや、反射光を検出するためのフォトディテクタ、レーザ光の出力端となる対物レンズ、レーザ光を対物レンズを介してディスク記録面に照射し、またその反射光をフォトディテクタに導く光学系(図示せず)が形成される。レーザダイオードは、例えば波長405nmのいわゆる青色レーザを出力する。また光学系によるNAは0.85である。
ピックアップ51内において対物レンズは二軸機構によってトラッキング方向及びフォーカス方向に移動可能に保持されている。
またピックアップ51全体はスレッド機構53によりディスク半径方向に移動可能とされている。
またピックアップ51におけるレーザダイオードはレーザドライバ63からのドライブ信号(ドライブ電流)によってレーザ発光駆動される。
ディスク1からの反射光情報はフォトディテクタによって検出され、受光光量に応じた電気信号とされてマトリクス回路54に供給される。
マトリクス回路54には、フォトディテクタとしての複数の受光素子からの出力電流に対応して電流電圧変換回路、マトリクス演算/増幅回路等を備え、マトリクス演算処理により必要な信号を生成する。
例えば再生データに相当する高周波信号(再生データ信号)、サーボ制御のためのフォーカスエラー信号、トラッキングエラー信号などを生成する。
さらに、グルーブのウォブリングに係る信号、即ちウォブリングを検出する信号としてプッシュプル信号を生成する。
マトリクス回路54から出力される再生データ信号はリーダ/ライタ回路55へ、フォーカスエラー信号及びトラッキングエラー信号はサーボ回路61へ、プッシュプル信号はウォブル回路58へ、それぞれ供給される。
リーダ/ライタ回路55は、再生データ信号に対して2値化処理、PLLによる再生クロック生成処理等を行い、例えばフェイズチェンジマークとして読み出されたデータを再生して、変復調回路56に供給する。
変復調回路56は、再生時のデコーダとしての機能部位と、記録時のエンコーダとしての機能部位を備える。
再生時にはデコード処理として、再生クロックに基づいてランレングスリミテッドコードの復調処理を行う。
またECCエンコーダ/デコーダ57は、記録時にエラー訂正コードを付加するECCエンコード処理と、再生時にエラー訂正を行うECCデコード処理を行う。
再生時には、変復調回路56で復調されたデータを内部メモリに取り込んで、エラー検出/訂正処理及びデインターリーブ等の処理を行い、再生データを得る。
ECCエンコーダ/デコーダ57で再生データにまでデコードされたデータは、システムコントローラ60の指示に基づいて読み出され、AV(Audio-Visual)システム120に転送される。
グルーブのウォブリングに係る信号としてマトリクス回路54から出力されるプッシュプル信号は、ウォブル回路58において処理される。ADIP情報としてのプッシュプル信号は、ウォブル回路58においてMSK復調、STW復調され、ADIPアドレスを構成するデータストリームに復調されてアドレスデコーダ59に供給される。
アドレスデコーダ59は、供給されるデータについてのデコードを行い、アドレス値を得て、システムコントローラ60に供給する。
またアドレスデコーダ59はウォブル回路58から供給されるウォブル信号を用いたPLL処理でクロックを生成し、例えば記録時のエンコードクロックとして各部に供給する。
なおウォブル回路58におけるMSK復調、STW復調を行う構成は後述する。
記録時には、AVシステム120から記録データが転送されてくるが、その記録データはECCエンコーダ/デコーダ57におけるメモリに送られてバッファリングされる。
この場合ECCエンコーダ/デコーダ57は、バファリングされた記録データのエンコード処理として、エラー訂正コード付加やインターリーブ、サブコード等の付加を行う。
またECCエンコードされたデータは、変復調回路56においてRLL(1−7)PP方式(RLL;Run Length Limited、PP:Parity preserve/Prohibit rmtr(repeated minimum transition runlength))の変調が施され、リーダ/ライタ回路55に供給される。
記録時においてこれらのエンコード処理のための基準クロックとなるエンコードクロックは上述したようにウォブル信号から生成したクロックを用いる。
エンコード処理により生成された記録データは、リーダ/ライタ回路55で記録補償処理として、記録層の特性、レーザー光のスポット形状、記録線速度等に対する最適記録パワーの微調整やレーザドライブパルス波形の調整などが行われた後、レーザドライブパルスとしてレーザードライバ63に送られる。
レーザドライバ63では供給されたレーザドライブパルスをピックアップ51内のレーザダイオードに与え、レーザ発光駆動を行う。これによりディスク1に記録データに応じたピット(フェイズチェンジマーク)が形成されることになる。
なお、レーザドライバ63は、いわゆるAPC回路(Auto Power Control)を備え、ピックアップ51内に設けられたレーザパワーのモニタ用ディテクタの出力によりレーザ出力パワーをモニターしながらレーザーの出力が温度などによらず一定になるように制御する。記録時及び再生時のレーザー出力の目標値はシステムコントローラ60から与えられ、記録時及び再生時にはそれぞれレーザ出力レベルが、その目標値になるように制御する。
サーボ回路61は、マトリクス回路54からのフォーカスエラー信号、トラッキングエラー信号から、フォーカス、トラッキング、スレッドの各種サーボドライブ信号を生成しサーボ動作を実行させる。
即ちフォーカスエラー信号、トラッキングエラー信号に応じてフォーカスドライブ信号、トラッキングドライブ信号を生成し、ピックアップ51内の二軸機構のフォーカスコイル、トラッキングコイルを駆動することになる。これによってピックアップ51、マトリクス回路54、サーボ回路61、二軸機構によるトラッキングサーボループ及びフォーカスサーボループが形成される。
またサーボ回路61は、システムコントローラ60からのトラックジャンプ指令に応じて、トラッキングサーボループをオフとし、ジャンプドライブ信号を出力することで、トラックジャンプ動作を実行させる。
またサーボ回路61は、トラッキングエラー信号の低域成分として得られるスレッドエラー信号や、システムコントローラ60からのアクセス実行制御などに基づいてスレッドドライブ信号を生成し、スレッド機構53を駆動する。スレッド機構53には、図示しないが、ピックアップ51を保持するメインシャフト、スレッドモータ、伝達ギア等による機構を有し、スレッドドライブ信号に応じてスレッドモータを駆動することで、ピックアップ51の所要のスライド移動が行なわれる。
スピンドルサーボ回路62はスピンドルモータ52をCLV回転させる制御を行う。
スピンドルサーボ回路62は、ウォブル信号に対するPLL処理で生成されるクロックを、現在のスピンドルモータ52の回転速度情報として得、これを所定のCLV基準速度情報と比較することで、スピンドルエラー信号を生成する。
またデータ再生時においては、リーダ/ライタ回路55内のPLLによって生成される再生クロック(デコード処理の基準となるクロック)が、現在のスピンドルモータ52の回転速度情報となるため、これを所定のCLV基準速度情報と比較することでスピンドルエラー信号を生成することもできる。
そしてスピンドルサーボ回路62は、スピンドルエラー信号に応じて生成したスピンドルドライブ信号を出力し、スピンドルモータ62のCLV回転を実行させる。
またスピンドルサーボ回路62は、システムコントローラ60からのスピンドルキック/ブレーキ制御信号に応じてスピンドルドライブ信号を発生させ、スピンドルモータ52の起動、停止、加速、減速などの動作も実行させる。
以上のようなサーボ系及び記録再生系の各種動作はマイクロコンピュータによって形成されたシステムコントローラ60により制御される。
システムコントローラ60は、AVシステム120からのコマンドに応じて各種処理を実行する。
例えばAVシステム120から書込命令(ライトコマンド)が出されると、システムコントローラ60は、まず書き込むべきアドレスにピックアップ51を移動させる。そしてECCエンコーダ/デコーダ57、変復調回路56により、AVシステム120から転送されてきたデータ(例えばMPEG2などの各種方式のビデオデータや、オーディオデータ等)について上述したようにエンコード処理を実行させる。そして上記のようにリーダ/ライタ回路55からのレーザドライブパルスがレーザドライバ63に供給されることで、記録が実行される。
また例えばAVシステム120から、ディスク1に記録されている或るデータ(MPEG2ビデオデータ等)の転送を求めるリードコマンドが供給された場合は、まず指示されたアドレスを目的としてシーク動作制御を行う。即ちサーボ回路61に指令を出し、シークコマンドにより指定されたアドレスをターゲットとするピックアップ51のアクセス動作を実行させる。
その後、その指示されたデータ区間のデータをAVシステム120に転送するために必要な動作制御を行う。即ちディスク1からのデータ読出を行い、リーダ/ライタ回路55、変復調回路56、ECCエンコーダ/デコーダ57におけるデコード/バファリング等を実行させ、要求されたデータを転送する。
なお、これらのフェイズチェンジマークによるデータの記録再生時には、システムコントローラ60は、ウォブル回路58及びアドレスデコーダ59によって検出されるADIPアドレスを用いてアクセスや記録再生動作の制御を行う。
ところで、この図5の例は、AVシステム120に接続されるディスクドライブ装置としたが、本発明のディスクドライブ装置としては例えばパーソナルコンピュータ等と接続されるものとしてもよい。
さらには他の機器に接続されない形態もあり得る。その場合は、操作部や表示部が設けられたり、データ入出力のインターフェース部位の構成が、図5とは異なるものとなる。つまり、ユーザーの操作に応じて記録や再生が行われるとともに、各種データの入出力のための端子部が形成されればよい。
もちろん構成例としては他にも多様に考えられ、例えば記録専用装置、再生専用装置としての例も考えられる。
3.ウォブル回路
3−1 MSK復調器の構成

図6は、上記図5の構成の内で、ウォブル信号を復調しADIP情報を得るための回路系のみを示している。上記もしたようにマトリクス回路54からのプッシュプル信号P/Pがウォブル回路58に供給される。ウォブル回路58には、MSK復調器10、STW復調器30が設けられており、MSK復調器10は、プッシュプル信号P/Pをデジタルデータ化したウォブルデータを復調し、MSK復調信号を出力する。STW復調器30には同じくプッシュプル信号P/Pをデジタルデータ化したウォブルデータがMSK復調器10から供給され、そのウォブルデータを復調し、STW復調信号を出力する。このMSK復調信号及びSTW復調信号がアドレスデコーダ59に供給される。そしてアドレスデコーダ59によってADIP情報がデコードされ、システムコントローラ60に供給される。
ウォブル回路58におけるMSK復調器10、STW復調器30の構成を説明する。まずここはMSK復調器10について、その構成を図7に挙げ、図8〜図12を参照しながら説明する。
ウォブリンググルーブの変調信号(ウォブル信号)として上述したマトリクス回路54から端子15aに入力される、図8(a)のようなプッシュプル信号P/Pは、MSK復調器10において、A/D変換器11及びコンパレータ12に供給される。
コンパレータ12は、オペアンプ、コンパレータアンプで構成され、プッシュプル信号P/Pを2値化する。そして2値化したプッシュプル信号P/PをPLL回路13に供給する。
PLL回路13では、2値化信号に基づいて図8(b)のように、プッシュプル信号P/P、つまりウォブリンググルーブの変調信号の周波数(ウォブル周波数)のクロック(ウォブルクロックWCK)を生成する。なおPLL回路13はデジタル回路を用いてもよい。
PLL回路13から出力されるウォブルクロックWCKは、PLL回路14及び遅延回路16に供給される。また端子15bから後述するSTW復調器30にも供給される。
PLL回路14では、ウォブルクロックWCKを逓倍し、マスタークロックMCKを生成する。このマスタークロックMCKは、A/D変換器11のサンプリングクロックとされ、また、遅延回路16、カウンタ17等で用いられる。さらに端子15cからSTW復調器30に供給される。
なおPLL回路14も、アナログ回路、デジタル回路のいずれで構成しても良い。
遅延回路16は、ウォブルクロックWCKをマスタークロックMCKの単位で遅延させる。この場合の遅延時間は、システムコントローラ60から加算器23を介して供給される位相調整値に基づいて設定される。この遅延回路16は、ウォブルクロックWCKを遅延させて、例えばその立ち上がりエッジ(又は立ち下がりエッジ)を、カウンタ17のリセット/スタートタイミング、及び積算器27のクリアタイミングとしての基準タイミング信号とするものである。後述するが、遅延時間の調整により、復調用の内部基準波の位相を調整し、ウォブルデータの位相に一致させる。
なお遅延回路16は、例えばフリップフロップにより構成されるシフトレジスタとセレクタにより構成できる。もちろん他の構成でも良い。例えばデジタルカウンタを用いても実現でき、或いはCR構成のアナログ回路を用いてもよい。さらにはバッファとセレクタを用いた遅延回路を用いてもよい。
遅延回路16を介したウォブルクロックWCKは、リセット/スタート信号としてカウンタ17に供給される。
カウンタ17は、マスタークロックMCKをカウントする動作を行うが、遅延回路16からのリセット/スタート信号が供給されたタイミングでカウントリセットを行う。つまりカウンタ17は、遅延されたウォブルクロックWCKのエッジタイミングでカウント値をリセットしながらマスタークロックMCKのカウントを行っていき、そのカウント値をテーブル群21に対してテーブルのアドレスとして出力する。
例えばマスタークロックMCKは、ウォブル基本波形の1周期が23クロックとなる周波数であるとする。そしてカウンタ17は、ウォブル基本波形の1周期間隔でリセットされることになるため、0〜22のカウント値を繰り返し発生させることになる。
テーブル群21は、例えばテーブルTB0〜TB7として8個のテーブルを有する。なお、テーブルを8個とするのは一例である。
そして各テーブルTB0〜TB7は、それぞれが内部基準波となる波形データを記憶したテーブル(ROM)であり、各データがカウンタ17のカウント値に応じて読み出されるものである。
各テーブルTB0〜TB7の波形データとしては、例えばTD0〜TD22の23個のデータが記憶されている。これが上記0〜22のカウント値に応じて順次読み出されていくことで、図8(c)のように、ウォブル基本波形と同一周波数の内部基準波が発生される。
ただし、各テーブルTB0〜TBnに記憶されている内部基準波の波形は、それぞれが少しづつ位相がずらされたsin波形(又はcos波形)とされている。つまり各テーブルTB0〜TBnのデータTD0〜TD22は、それぞれ位相をずらしたウォブル1周期の波形を示すデータとされている。各テーブルTB0〜TBnの位相差については後述する。
選択回路22は、テーブルTB0〜TB7の内の1つを選択する。選択回路22はシステムコントローラ60から加算器23を介して供給された位相調整値に基づいて1つのテーブルを選択する。
なお、位相調整値は、例えば8ビット値とされ、上位5ビットが遅延回路16での23段階の遅延量を指示し、下位3ビットが選択回路22でのテーブルTB0〜TB7の選択値を指示するものとされる。
各テーブルTB0〜TB7は、カウンタ17からのカウント値に応じて内部基準波となる波形データが順次出力されるが、選択回路22で選択されたテーブルTBxからの内部基準波が乗算器18に供給されることになる。
なおテーブル群21は内部基準波を発生させるものであるが、波形データを出力するものであればテーブル群以外の構成のものでもよく、RAMを用いてシステムコントローラ60から設定してもよいし、組み合わせ回路で構成してもよい。また、データ列を順番に出力するシフトレジスタを採用しても良いし、発振器を用いたアナログ回路でもよい。また発生する信号はsin信号、cos信号のいずれでもよく、さらには矩形波を発生する回路でも良い。
また、カウンタ17,テーブル群21、選択回路22は、後述するように多様な位相状態で内部基準波を発生する構成例の1つであるが、同様の動作が実行されれば構成は限定されず、例えばカウンタ17を例えばシステムコントローラ60からの設定により1の増減ではなくn個の増減で動作させ、n個のテーブルを融合して1つのテーブルとする構成も考えられる。
一方、端子15aから入力されたプッシュプル信号P/PはA/D変換器11でマスタークロックMCKでサンプリングされてデジタルデータ化され、ウォブルデータとして乗算器18に供給される。なお、このウォブルデータは端子15dからSTW復調器30にも供給される。
乗算器18においては、A/D変換器11からのウォブルデータと、選択回路22で選択されたテーブルTBxからの内部基準波データが乗算される。この乗算値は例えば図8(d)のようになる。そして乗算値は加算器19に供給される。
加算器19は、乗算器18からの乗算値と、フリップフロップにより構成される積算器27の出力を加算し、加算値を積算器27に供給する。そして積算器27は、遅延回路16からのタイミング信号でクリアされる。つまり積算器19はカウンタ17と同タイミングでリセットされる。従って積算器27では、1ウォブル基本波形周期の間で乗算値の積算を行うことになる。例えば23サンプルの乗算結果を積算する動作を繰り返す。
するとその積算値(乗算後加算値)は、図8(e)のように推移する。このような積算器27の出力は正負判定回路20で正負判定され、判定結果がMSK復調信号となる。そしてそのMSK復調信号が端子15fからアドレスデコーダ59に出力される。
積算器27が2の補数表現で積算値を出力する場合は、正負判定回路20は、その最上位ビットを出力する構成とされれば良い。もちろん数値の正負を判定するものであれば他のものでもよく正負の判定はコンパレータ回路を用いてもよい。
また加算器19,積算器27による構成は、乗算器18の乗算値を1ウォブル期間で積分する回路であればどのようなものでも良く、各種のデジタル回路またはアナログ回路を用いることができる。
ところで後述するSTW復調器30からは、端子15eにSTW最適位相値が供給される。このSTW最適位相値は、減算器25及び振幅中心測定回路26に入力される。振幅中心測定回路26は、STW最適位相値の振幅中心を計測する。そして減算器25において、STW最適位相値から振幅中心値が減算されることで、STW位相変化量が求められる。なお、減算器25及び振幅中心測定回路26は、STW位相変化量を求める構成例であり、他の回路構成も考えられる。また振幅中心値は例えばシステムコントローラ60から与えるようにしてもよい。
減算器25から出力されるSTW位相変化量は、振幅調整器24でゲイン調整される。そしてゲイン調整されたSTW位相変化量が、加算器23でシステムコントローラ60からの位相調整値に加算され、遅延回路16及び選択回路22に供給される。
以上の構成のMSK復調器10の処理においては、図8からわかるように、入力されるウォブル信号においてウォブル基本波(モノトーンウォブルMW)の区間では乗算後加算値は正方向に推移する。一方、MSKマークの区間では乗算後加算値が負方向に推移する。従って、これを正負判定することでMSKマークと基本波を判別する復調信号が得られる。
但し、この図8は、乗算器18に与えられるウォブルデータと内部基準波の位相が一致している状態である。即ち位相が一致しているときに一番よい復調結果が得られる。一方、図9にはプッシュプル信号P/P(ウォブルデータ)と内部基準波の位相がずれた場合を示しているが、この図9(e)の乗算後加算値は、位相が合っている場合の図8(e)の乗算後加算値と比較してわかるように、正負判定の際にエラーの生じやすい状態となっている。つまりウォブルデータと内部基準波の位相ズレによって復調精度が悪化する。
そこでMSK復調器10では、遅延回路16の遅延量及び選択回路22でのテーブルの選択により、内部基準波の位相を調整できるようにしている。
なお、上記のSTW最適位相値に基づいたSTW位相変化量(位相調整値)を、加算器23でシステムコントローラ60からの位相調整値に加算する動作による位相調整については後述することとし、ここではシステムコントローラ60からの位相調整値によって基本的な位相調整が行われる点について説明する。
システムコントローラ60が例えば8ビットの位相調整値の上位5ビットで、遅延回路16での遅延量を調整することによっては、内部基準波の位相をマスタークロックCK単位で可変設定できるものとなる。
例えば上記のようにマスタークロックMCKは、1ウォブル基本波形周期において23クロックとなる周波数であるとするとき、遅延回路16での遅延量を変更することで、1/23周期単位で内部基準波の位相を調整できることになる。つまり遅延回路16から出力されるウォブルクロックWCKのエッジタイミングでカウンタ17がリセットされるため、遅延量を変えれば、1ウォブル周期においてカウンタ17のリセットタイミングを23段階に変化させることができる。カウンタ17のリセットタイミングは、或るテーブルTBxのデータTD0〜TD22における先頭のデータTD0の出力タイミングとなるため、遅延量を23段階で可変とすることで、テーブルTBxから出力される内部基準波の位相を1ウォブル周期内で23段階に可変できる。
例えば図10は、或るテーブルTBxから出力される内部基準波として、遅延時間調整によって1/23周期単位で位相調整できる様子を示している。
また、このような遅延回路16による位相調整に加えて、テーブルTB0〜TB7を選択することでさらに精細な位相調整ができる。
入力されるプッシュプル信号P/Pの位相が、マスタークロックMCKの位置で常にゼロクロスする波形であれば、遅延回路16による位相調整のみで問題ないが、回路動作の遅延等で内部動作クロックサンプリングのタイミングにより位相がずれる事がある。また動作周波数を下げるとサンプリングの間隔が大きくなり位相差が大きくなる。特に高転送レート時においてはサンプリング周波数が相対的に低くなるため、ウォブル信号波形と、内部基本波との位相が大きく異なる場合がある。従ってマスタークロック単位よりさらに精細な位相調整を行う必要が生ずる。
テーブルTB0〜TB7は、このようにマスタークロック単位よりも細かい位相調整を行うために設けられる。例えば8個とされるテーブルTB0〜TB7により1クロック期間の1/8期間単位で位相をずらした内部基準波形を用意する。
図11に、各テーブルTB0〜TB7に記憶される波形データ例を示している。図示するように、各テーブルTB0〜TB7に記憶されるデータは、それぞれが1/8MCK期間だけ位相がずれたデータとなっている。特に図11の破線Sの部分を拡大して図12に示しているが、図12に明瞭に示されるように、マスタークロックMCKによるサンプリング間隔の内で位相がずれるように、各テーブルTB0〜TB7のデータTDが設定されている。
つまり、選択回路22でテーブル群21の内の1つのテーブルを選択することで、より精細な位相調整が可能となる。換言すれば、8個のテーブルTB0〜TB7を備える場合、サンプリング周波数(マスタークロック周波数)を上げることなしに、サンプリング周波数を8倍上げた場合と同じ精度での位相調整を実現できる。
なお、テーブル数は次の様に計算する事ができる。
テーブル数=(1/2)・2ADB×Sin(2π/S)
但し、ADBはA/D変換器11のビット数、Sは入力信号1周期のサンプル数である。
例えばA/D変換器11のビット数が6ビットで、入力信号1周期のサンプル数が上記のように23個である場合、上記式によるテーブル数は8.6となり、テーブル数は8個ないし9個が適正であるといえる。
このように内部基準波の位相調整は、システムコントローラ60が遅延回路16の遅延量及び選択回路22の選択動作を制御することによって行われる。
このような位相調整は、例えばディスクドライブ装置の製造後の調整工程において行われる。
例えばシステムコントローラ60は、まず位相調整値の上位5ビットの値を順次変化させながら再生動作を実行させ、アドレスデコーダ59で得られるADIP情報のエラーレートを観測する。つまり遅延回路16の遅延量を段階的に変化させながら、各遅延時間でのエラーレートを観測する。そして最適なエラーレートの遅延時間を判別し、上位5ビットの値を決定する。
続いて、下位3ビットの値を順次変化させながら、同様に再生動作を実行させ、アドレスデコーダ59で得られるADIP情報のエラーレートを観測する。つまりテーブルTB0〜TB7を順次切り換えて各テーブル選択状態でのエラーレートを観測する。そして最適なテーブルを判別し、上位3ビットの値を決定する。
このように遅延量及びテーブルが設定されることで、乗算器18に与えられる内部基準波は、乗算器18に与えられるウォブルデータに対して最適な位相状態、つまり最も位相の合った状態に調整されていることになる。
そしてテーブルTB0〜TB8を用意することは、サンプリング周波数を上げること無しに内部基準波の位相を精度良く調整でき、これによってMSK復調精度を向上させることができるものとなる。
なお通常は、このような調整がディスクドライブ装置の製造段階で一度行われれば、以降はその調整状態に固定されればよい。特にクロックタイミングに対する入力信号の位相ズレは、回路の素子の特性等によるものであるため、テーブルTB0〜TB7で調整されるべき位相ズレ量はほぼ固定的なためである。
但し、このような基本的な調整のみでは、上述した各種外乱の影響に対応できない。そこで本例では、このMSK復調器10において、STW最適位相値を用いた位相調整を行うようにする。即ち、加算器23において、システムコントローラ60からの位相調整値に、STW最適位相値に基づく位相調整値を加算し、これによって再生動作中に内部基準波の位相が自動調整されるようにするものである。この動作については後述する。
3−2 STW復調器の構成

次に、図6に示したSTW復調器30の構成を図13に示し、図14〜図16を参照しながら説明する。
上述のようにMSK復調器10におけるA/D変換器11で得られるウォブルデータは、端子15dからSTW復調器30に供給され、図13の端子46dに入力される。入力されるウォブルデータ(プッシュプル信号P/P)におけるSTW変調波形の例を図14(a)に示している。
STW復調器30では、このウォブルデータに対する復調回路系として、第1復調器31A,第2復調器31B,第3復調器31Cを備えている。
各復調器31A,31B,31Cは、それぞれ乗算器(32−1,32−2,32−3)、加算器(33−1,33−2,33−3)、積算器(34−1,34−2,34−3)を備えている。
また第2復調器31BはマスタークロックMCKのNクロック時間の遅延回路35−2を備え、第3復調器31Cは2Nクロック時間の遅延回路35−3を備えている。(Nは0以外の設定値)
そして、入力されたウォブルデータは、第1復調器31Aではそのまま乗算器32−1に供給され、また第2復調器31BにおいてはNクロック時間遅延されて乗算器32−2に供給され、第3復調器31Cにおいては2Nクロック時間遅延されて乗算器32−3に供給されることになる。
乗算器32−1,32−2,32−3には、後述するセレクタ42を介して内部基準波が供給される。なお、この場合内部基準波がウォブル基本波形の2次高調波となるsin波又はcos波とされる。
上記MSK復調器10において端子15dから出力されるウォブルクロックWCK(図14(b))は、STW復調器30の端子46bに入力される。またMSK復調器10の端子15cから出力されるマスタークロックMCKは、端子46cから入力され、STW復調器30内の各部で基準クロックとして用いられる。
端子46bからのウォブルクロックWCKは、遅延回路36に供給される。遅延回路36ではウォブルクロックWCKに対して、マスタークロックMCKの単位で所定の遅延時間が与え、カウンタ36に供給する。
カウンタ37は、マスタークロックMCKをカウントする動作を行うが、遅延回路36からのウォブルクロックWCKの立ち上がりエッジ(又は立ち下がりエッジ)のタイミングでカウントリセット/スタートを行う。つまりカウンタ37は、ウォブルクロックWCKによるリセットタイミングからマスタークロックCKをカウントしていき、そのカウント値をテーブル群41に対してテーブルのアドレスとして出力する。
上記のようにマスタークロックMCKは、ウォブル基本波形の1周期が23クロックとなる周波数であるとすると、カウンタ37は、ウォブル基本波形の1周期間隔でリセットされることになるため、0〜22のカウント値を繰り返し発生させることになる。
テーブル群41は、テーブルTB0〜TB15として16個のテーブルを有する。そして各テーブルTB0〜TB15は、それぞれが内部基準波となる波形データを記憶したテーブル(ROM)であり、各データがカウンタ37のカウント値に応じて読み出されるものである。
各テーブルTB0〜TB15の波形データとしては、例えばTD0〜TD22の23個のデータが記憶されている。これが上記0〜22のカウント値に応じて順次読み出されていくことで、図14(c)のように、ウォブル基本波形の2次高調波となる内部基準波が発生される。
ただし、各テーブルTB0〜TB15に記憶されている内部基準波の波形は、それぞれが少しづつ位相がずらされた波形とされている。つまり各テーブルTB0〜TB15のデータTD0〜TD22は、それぞれ位相をずらしたウォブル1周期の波形を示すデータとされている。
図16に、上記図12と同様にゼロクロス近辺での、各テーブルTB0〜TB15の位相のずれた波形の様子を示している。即ち各テーブルTB0〜TB15では、マスタークロックMCKによるサンプリング間隔の内で位相がずれるように、それぞれのデータTDが設定されている。
この場合のテーブル数は、
テーブル数=(1/2)・2ADB×Sin(4π/S)
で計算できる。この場合も、ADBはA/D変換器11のビット数、Sは入力信号1周期のサンプル数である。すると、例えばA/D変換器11のビット数が6ビットで、入力信号1周期のサンプル数が上記のように23個である場合、テーブル数は16個程度が適切となる。
なお、各テーブルTB0〜TB15は、STW信号を復調するための基本波である、ウォブル基本周波数の2倍の周波数として、Sin(2ωt)又はCos(2ωt)の内部基準波を発生させるものであるが、ROMテーブルに限らず、RAMテーブルを用いたり、発振器を用いたアナログ回路で構成しても良い。
選択回路42は、テーブルTB0〜TB15の内の1つを選択する。各テーブルTB0〜TB15は、カウンタ37からのカウント値に応じて内部基準波となる波形データが順次出力されるが、選択回路42で選択されたテーブルTBxからの内部基準波が乗算器32−1,32−2,32−3に供給されることになる。
第1,第2,第3復調器31A,31B,31Cにおいては、乗算器32−1、32−2,32−3のそれぞれに、Nクロック時間ずつずれたタイミングでウォブルデータが供給されるが、このタイミングのずれた3系統のウォブルデータが、それぞれ乗算器32−1、32−2,32−3で内部基準波と乗算される。乗算値は例えば図14(d)のようになる。
そして第1,第2,第3復調器31A,31B,31Cは、それぞれ上記MSK復調器10の場合と同様に、乗算結果を加算器(33−1,33−2,33−3)及び積算器(34−1,34−2,34−3)により積算する。
なお、各積算器34−1,34−2,34−3としてのフリップフロップは、後段のアドレスデコーダ59から端子46gに供給されるSTWエリア信号によってイネーブル/クリア制御される。
つまりこの場合、積算器34−1,34−2,34−3は、例えば図3(b)に示したADIPユニットのSTW変調信号の範囲で乗算値の積算を行うように制御され、1ADIPユニット毎にリセットされる。例えばウォブル番号18〜54の区間において積算を行う。するとその積算値(乗算後加算値)は、図14(e)のように推移する。
各積算器34−1,34−2,34−3の積算値は、最適位相判定部38に供給される。また第2復調器31Bにおける積算器34−2の出力は、正負判定回路40に供給される。
正負判定回路40では、積算器34−2の積算値に対して正負判定を行い、その判定結果をSTW復調信号として端子46fから後段のアドレスデコーダ59に供給する。つまりこの場合、第2復調器31Bが、アドレスデコーダ59にSTW復調信号を供給するための主たる復調回路系となる。
図14からわかるように、入力される変調信号において「1」値のSTW変調波の区間では乗算後加算値は正方向に推移する。一方、「0」値のSTW変調波の区間では乗算後加算値が負方向に推移する。またモノトーンウォブル区間では、ほぼゼロレベルで推移する。従って、これを正負判定することでSTW復調信号が得られる。
但しこの図14は、乗算器32−1に与えられるウォブルデータと内部基準波(二次高調波)の位相が一致している状態である。即ち位相が一致しているときに一番よい復調結果が得られる。一方、図15に同様の波形を示すが、この図15は乗算器32−2に与えられるウォブルデータと内部基準波の位相がずれた場合を示している。この場合図15(e)からわかるように、乗算後加算値の推移が曖昧になり、正負判定回路40での正確な正負判定が困難な状態になって復調精度が悪化することになる。
そこで本例では、内部基準波について、遅延回路36の遅延時間の調整、及び選択回路42でのテーブルTB0〜TB15の選択によって、精細な位相調整が自動的に実行できるようにしている。
上記のように主たる復調回路系である第2復調器31Bに加えて、第1,第3復調器31A,31Cが設けられることと、最適位相判定部38、アップダウンカウンタ39が設けられるのは、第2復調器31Bの乗算器32−2に与えられるウォブルデータと内部基準波の位相を合わせる自動調整を行うためである。
最適位相判定部38は、STWリファレンス区間において 第1,第2,第3復調器31A,31B,31Cの各積算器34−1,34−2,34−3の積算結果をみて、どの復調器において位相が最適であったかを判定する。そしてその判定結果により、アップダウンカウンタ39に対して、カウントアップ/カウントダウン/ホールド(カウント変更せず)を指示する。この最適位相判定部38は比較器により構成できる。
STWリファレンス区間とは、図3(b)に示したリファレンスユニットのSTW変調信号区間(ウォブル番号18〜54)である。リファレンスユニットは図4に示したように83ADIPユニットの内で、繰り返しあらわれる。このSTWリファレンス区間であるか否かは、アドレスデコーダ59から端子46hに供給されるSTWリファレンスエリア信号によって示される。
アドレスデコーダ59では、MSK復調信号により各ADIPユニットのタイミングをを判別することで、STWリファレンスエリア信号や、上記STWエリア信号を生成し、STW復調器30に与えることができる。
アップダウンカウンタは、最適位相判定部38からの指示に応じて、カウント値をアップ/カウントダウン/ホールドする。
このアップダウンカウンタ39のカウント値は、STW最適位相値として遅延回路36、選択回路42、及び端子46eに供給される。
なお、アップダウンカウンタ39は、カウント値が非連続にならない(負にならない)ように制御される折り返し防止機能が設けられている。また、例えばシステムコントローラ60から端子46iに初期値ロード信号が供給されることで、カウント初期値をロードできる。これらについては後述する。
遅延回路36では、例えばアップダウンカウンタ39から供給されるカウント値(STW最適位相値)の上位ビットに応じて遅延時間を設定する。また選択回路42は、アップダウンカウンタ39から供給されるカウント値(STW最適位相値)の下位ビットに応じてテーブルTB0〜TB15のうちの1つを選択する。
基本的に上記MSK復調器10の場合と同様であるため詳細な説明は省略するが、遅延回路36での遅延時間を調整することで、内部基準波の位相をマスタークロックMCK単位で調整でき、またテーブルTB0〜TB15を選択することで、マスタークロックMCKの1/16単位で調整できることになる。
つまりこのSTW復調器30の自動位相調整は、3つの復調系である第1,第2,第3復調器31A,31B,31Cの復調結果を監視しながら、内部基準波の位相を最適状態に追い込んでいくものである。
上記のように3つの復調系の各乗算器32−1,32−2,32−3には、タイミングのずれたウォブルデータが供給される。従って各乗算器32−1,32−2,32−3でのウォブルデータと内部基準波の位相ズレ状態は異なるものとなる。このため、最適位相判定部38で、どの復調系が最適な位相状態かを判別することで、第2復調器31Bでの位相状態を最適化させる方向に追い込むことができる。
最適位相判定部38は、アドレスデコーダ59からのSTWリファレンスエリア信号によってSTWリファレンス区間が終了したことを合図に第1、第2、第3復調部31A,31B,31Cの積算結果で一番よい結果を示した方向にアップダウンカウンタ39を加減させる。
即ち、内部基準波に対するウォブルデータの位相が最も進んでいる第1復調器31Aでの位相状態が最適である場合は、アップダウンカウンタ39を例えばカウントダウンさせる。すると、内部基準波の位相が進む方向、つまり第2復調器31Bでの位相状態を合致させる方向に調整される。また内部基準波に対するウォブルデータの位相が最も遅れている第3復調器31Cでの位相状態が最適である場合は、アップダウンカウンタ39を例えばカウントアップさせる。すると、内部基準波の位相が遅れる方向、つまり第2復調器31Bでの位相状態を合致させる方向に調整される。第2復調器31Bでの位相状態が最適である場合は、アップダウンカウンタ39をホールドさせる。つまり第2復調器31Bでの位相状態が適切である場合は、内部基準波の位相を変化させない。
基本的にこのような動作が行われることで、第2復調器31Bでの位相状態は自動的に最適状態に追い込まれ、これによってSTW復調性能を向上させることができる。
特には遅延回路36での遅延時間だけでなく、テーブル群41でのテーブル選択によって、サンプリング周波数(マスタークロックMCK)を高周波数化しなくても、高精度な位相の自動調整が可能となる。
なお、この自動調整の調整精度(分解能)は、マスタークロックMCK周波数と、テーブル群41のテーブル数と、遅延回路35−2、35−3での遅延時間(N)の設定によるものとなるため、必要とする調整精度を考慮して、これらが適切に設計されればよい。
また、図13の例では、第2,第3復調器31B,31Cにおいて遅延回路35−2、35−3でウォブルデータを遅延させるようにしているが、ウォブルデータについては遅延させずに、乗算器32−2、32−3に与える内部基準波を遅延させるように構成しても、同様の動作が可能である。
3−3 位相調整動作

ここまでの説明でわかるように、MSK復調器10においては、システムコントローラ60からの位相調整値により、内部基準波の位相が初期的に最適な状態に調整される。またSTW復調器30においては、常時、第2復調器31Bでの位相状態が最適となるように自動調整される。
ここで、MSK復調器10側で、動作中の自動調整が行われないと、各種外乱の影響による位相ズレに対応できない。そこで本例では、MSK復調器10側も、STW復調器30で得られるSTW最適位相値を用いて位相調整が行われるようにしている。
図13の端子46eから出力されるSTW最適位相値は、図7のMSK復調器10の端子15eに入力され、上記した振幅中心測定回路26及び減算器25に供給される。
そして上述のように減算及び振幅調整器24でのゲイン演算された位相調整値、つまりSTW最適位相値に基づく位相調整値が加算器23でシステムコントローラ60からの位相調整値に加算される。
この加算器23からの位相調整値が遅延回路16及び選択回路22に与えられ、内部基準波の位相が調整されるため、MSK復調器10側においても、記録再生動作中の位相自動調整が行われることになる。
STW変調信号とMSK変調信号は共にウォブル信号上の変調信号であり、ディスクの特性、バラツキ、例えば隣接トラックからの漏れ込み(ビート)の多いディスクの場合や、フォーカスオフセット等の外乱による位相ズレは、ほぼ同様に発生する。従って、STW最適位相値を用いてMSK復調器10での位相調整を行うことで、MSK復調器10側においても外乱による位相ズレに対応した位相調整が実現され、これによってMSK復調性能をさらに向上させることができる。
図17に、MSK復調波形(積算器27の積算出力波形)を示す。図17(a)はSTW最適位相値を用いた位相調整を行っていない場合であり、図17(b)が本例のようにSTW最適位相値を用いた位相調整を行った場合である。図からわかるように、本例ではMSK復調波形としての振幅変動が抑えられており、これによって復調動作性能が向上されることが理解される。
また、STW最適位相値を用いることで、MSK復調器10側では、例えば3系統の復調系を設けて最適位相を判別する等の構成を設ける必要もないため、ウォブル回路58としての構成を複雑化させないという利点もある。
また、MSK復調器10において外乱による位相ズレに対応した調整ができることで、アドレスエラーを低減させることができ、ばらつきの大きい記録再生メディアに対しても安定して記録再生することができる。
また、MSK、STW復調能力が上がるのでピックアップ51の特性のばらつきによる歩留まりを改善することもできる。
ところで、アップダウンカウンタ39にはカウント値の折り返し防止機能が付加されていると先に述べた。これについて説明する。
内部基準波の位相調整は、基本的に遅延時間調整である。テーブル群41でのテーブルTB0〜TB15の選択は、マスタークロックMCKの1/16での遅延時間調整といえる。そしてアップダウンカウンタ39のカウント値が、遅延時間を示すものとなる。いま、遅延回路36で23クロック期間の範囲で位相調整が行われるとし(23クロック時間の遅延の場合、位相は0クロック時間の遅延と同じになる)、またテーブル群41として16個のテーブルTB0〜TB15があるとする。この場合の位相調整分解能にカウント値を対応させると、23×16=368であるため、カウント値0とカウント値368の場合に発生される内部基準波の位相は同じになる。またSTW復調器30の場合、内部基準波はウォブル信号の2次高調波sin(2ωt)であるため、1ウォブル期間に2周期となる。従ってカウント値=184の場合もカウント値0の場合と同位相となる。
ここで、カウント値0と同位相となる、例えばカウント値184を第1周期値、カウント値368を第2周期値とする。
図18(a)(b)(c)に、アップダウンカウンタ39のカウント値の推移の例を示している。なお、後述する初期値ロードがなされないとすれば、カウント値初期値は不定である。
図18(a)(b)は折り返し防止機能が付加された場合のカウント値の推移、図18(c)は折り返し防止機能のない場合の推移の例を示している。
まず図18(c)の、折り返し機能のない場合を説明する。
STW最適位相値となるカウント値は、遅延回路36及び選択回路22での遅延時間制御に用いられる値となるため、負の値をとることができない。但し、0値と第1周期値(=184)の場合は同じ位相状態となる。そこで、例えば図18(c)のようにカウンタ値が初期値0から始まった後、図のようにアップダウンされ、tA時点で一旦0値に戻ってからさらにカウントダウンされる状態となったとすると、このときアップダウンカウンタ39のカウント値は183にセットされてカウントダウンされていくようにする。またtB時点で183を越える方向にカウントアップされる状態となったとすると、カウント値が0にセットされてカウントアップされるようにする。
つまり、STW復調器30の位相調整では、遅延調整のため負のカウント値はとれないが、0〜183の範囲で遅延時間が設定されて位相が調整されればよいため、この図18(c)のように折り返し(カウント値の不連続)が生じても問題ない。
ところが、このカウント値、つまりSTW最適位相値をMSK復調器10に受け渡すことを考えると、このように折り返しが行われてしまうと不適切となる。
図7において説明したように、MSK復調器10において端子15eに供給されるSTW最適位相値は、振幅中心測定回路26において振幅中心が測定され、減算器25でSTW最適位相値から振幅中心値が減算されることで、STW位相変化量が求められる。そしてSTW位相変化量の値が振幅調整器24で調整され、MSK復調のための内部基準波の位相調整値とされて加算器23に与えられる。
つまりMSK復調器10においては、位相調整時の引込のセンタ値からのズレ量を検出して位相調整することになる。つまりSTW最適位相値(カウント値)の変化が、或るセンタ値を中心として連続した値で上下に変動することが必要である。このため図18(c)のようにカウント値が不連続となる折り返しがあることは不都合となる。
そこで本例では、アップダウンカウンタ39が、カウント値の折り返しが無くなるように制御されるようにしている。例えば図18(a)では、カウント値がtC時点で第2周期値−1(367)に達しているが、さらにカウントアップする場合は第1周期値に戻してカウントアップ/ダウンが行われるようにしている。そしてその後は、第1周期値を中心にしてアップ/ダウンが行われるようにする。
また図18(b)では、カウント値がtD時点で0値に達しているが、さらにカウントダウンする場合は第1周期値−1をセットしてカウントアップ/ダウンが行われるようにしている。そしてその後は、第1周期値を中心にしてアップ/ダウンが行われるようにする。
つまり、0値よりダウンする場合は第1周期値−1をセットし、、或いは第2周期値−1よりアップする場合に、第1周期値をセットし、第1周期値をクロスする際には折り返しを行わないようにすることで、最初の折り返し以降は、折り返しが発生しないようにされる。
なお、この図では第1周期値をセンタ値としてカウント値が推移しているが、これはもちろん説明上の例にすぎない。センタ値は、その時点の位相収束点として決まるものであるため変動する。但し、カウント値が0以下、もしくは第2周期値以上となるときに、第1周期値からのカウントに移行されることで、以降は、カウント値が0以下、もしくは第2周期値以上となることはない。つまり、変動するカウント値のセンタ値は、第1周期値を中心とした前後の位相変動範囲、例えばこの場合でカウント値91〜275の範囲になるためである。
そして、このようにSTW最適位相値の値として折り返しがなくなるように制御されることで、STW最適位相値をMSK復調器10において位相調整に使用することが問題ないものとできる。
例えば図18(a)(b)のように折り返し防止を行うためのアップダウンカウンタ39のカウント処理の例を図19で説明する。図19の処理は、最適位相判定部38からのカウント指示毎に行われる。
ステップF101では、最適位相判定部38からのアップ/ダウン/ホールドの指示を判別する。ホールド指示であればそのままカウント値を変化させずに終了する。
カウントダウン指示であればステップF102に進み、現在のカウント値が「0」であるか否かを判別する。そして「0」でなければステップF103に進み、通常のカウントダウンを行う。つまりカウント値を−1する。
一方、ステップF102でカウント値=0と判断された場合は、ステップF104に進み、カウント値を第1周期値−1(例えば183)とする。
ステップF101でカウントアップ指示と判別された場合は、ステップF105に進み、現在のカウント値が第2周期値−1(例えば367)であるか否かを判別する。そして第2周期値−1でなければステップF106に進み、通常のカウントアップを行う。つまりカウント値を+1する。
一方、ステップF105でカウント値=第2周期値−1と判断された場合は、ステップF107に進み、カウント値を第1周期値(例えば184)とする。
このような処理が行われることで、折り返しが発生しない状態に制御されることになり、上述のようにSTW最適位相値をMSK復調器10で正しく利用して位相調整できるようになる。
ところで、図18(a)(b)の例では、最初に1回はカウント値の折り返しが発生している。ただ最初の1回のみであるため、MSK復調器10での位相調整にさほど大きな影響を与えることはない。また、このような1回の折り返しは必ずしも発生するわけではなく、カウント値の初期値が0又は第2周期値に近い値であった場合に、折り返しが発生する可能性が生ずるものである。そうであっても、理想的には、確実に一度も折り返しが発生しないようにすることが好ましい。
最初に折り返しが発生する可能性はカウント値の初期値の値によって生ずるため、初期値をロードするようにすれば、折り返しを一度も発生させないようにすることができる。
例えば図13に示したように、システムコントローラ60は、位相調整の開始に当たって、端子46iからアップダウンカウンタ39に対して初期値ロード信号を与え、例えば第1周期値「184」をカウント初期値としてロードさせる。
その状態で図19の処理を行えば、カウント値の推移は例えば図18(d)のようになる。つまり0以下へのダウンカウント、又は第2周期値を越えるアップカウントが指示されることが無くなって、一度も折り返しのない状態とすることができる。これによってSTW最適位相値をMSK復調器10において使用するに最適となる。
なお、ロードする初期値は第1周期値に限らず、第1周期値に近い値とすればよい。初期値として適切な数値範囲は、位相調整のための遅延制御範囲及びそれによるカウント値としての第1周期値の設定によって決まることはいうまでもない。
折り返し防止のための制御方式は他にも各種考えられる。
図20に他の例を示す。この場合、アップダウンカウンタ39は、負の値をとりうるカウンタとするとともに、STWフェイズ値カウンタ、MSKフェイズ値カウンタを有するようにする。そしてSTWフェイズ値カウンタのカウント値が、遅延回路36及び選択回路42に供給され、またMSKフェイズ値カウンタのカウント値が、MSK復調器10の端子15eに供給されるものとする。
アップダウンカウンタ39は、ステップF201では、最適位相判定部38からの指示に応じてカウント値のアップ/ダウン/ホールドを行う。
ここでステップF202で、アップダウンカウンタ39のカウント値が正の値となっているか負の値となっているかを判別する。
負の値になっている場合はステップF203に進み、STWフェイズ値カウンタの値を、カウント値+第1周期値とする。またMSKフェイズ値カウンタのカウント値も、同じくカウント値+第1周期値とする。
一方、ステップF202でカウント値が正の値になっている場合は、ステップF204に進み、そのカウント値をそのままSTWフェイズ値カウンタの値に代入する。MSKフェイズ値カウンタのカウント値については、カウント値+第1周期値とする。
このように制御する場合のカウント値、STWフェイズ値カウンタの値、MSKフェイズ値カウンタの値の変化例を図21(a)(b)に示す。
図21(a)は、第1周期値を184とし、アップダウンカウント値が「2」からダウン方向へ変位した場合を示している。
するとSTWフェイズ値カウンタの値は、図示するように2→1→0→183→182・・・と変位する。またMSKフェイズ値カウンタの値は、186→185→184→183→182・・・と変位する。
図21(b)は、第1周期値を184とし、アップダウンカウント値が「180」からアップ方向へ変位した場合を示している。
するとSTWフェイズ値カウンタの値は、図示するように180→181→182→183→184・・・と変位する。またMSKフェイズ値カウンタの値は、364→365→366→367→368・・・と変位する。
つまり、STWフェイズ値カウンタの値は、0〜第1周期値の範囲で常に正の値をとるものとなり、遅延回路36及び選択回路42に供給する値として適切になる。またMSKフェイズ値カウンタのカウント値は、数値が不連続となる折り返しの無い値となり、MSK復調器10において適切な位相調整値を得ることができるようになる。
4.変形例

以上、実施の形態について説明したが、本発明の変形例は多様に考えられる。
例えば実施の形態でのMSK復調器10、STW復調器30では、テーブル群21,41を用いて精細な位相調整ができるようにしたが、例えば図22、図23のようにテーブル群を備えない構成としても良い。
図22,図23については上記図7,図13と同一部分に同一符号を付し、詳細な説明は省略するが、図22のMSK復調器10では、内部基準波を発生させる1つのテーブル21Aのみを有し、また図23のSTW復調器30では内部基準波を発生させる1つのテーブル41Aのみを有している。
この場合、内部基準波の位相調整は遅延回路16、36での遅延時間調整によるもののみとなる。
従って図22では加算器23からの位相調整値は遅延回路16のみに供給され、また図23ではアップダウンカウンタ39からのSTW最適位相値(カウント値)は遅延回路36のみに供給される。
上記図7,図13の構成においては、テーブル群21,41の選択により、マスタークロックMCK単位よりも精細な位相調整ができると説明したが、マスタークロックMCKを十分に高周波数化できるのであれば、遅延回路16,36のみでの位相調整で十分に精細な位相調整が可能となる。
つまり遅延回路16,36の動作周波数を上げることができる場合は、この図22,図23のような構成で、性能上問題のない位相調整が可能となるものである。
また上記例では相変化記録方式のディスクのウォブリンググルーブによる情報の復調装置としての例を挙げたが、本発明は、色素膜変化方式、光磁気記録方式など、他の記録方式のディスクのウォブリンググルーブ復調にも適用できる。
また、本例で示した位相調整方式はクロック周波数以上の分解能を得ることが可能であることで、多様な装置に適用できる。即ち上記のように光ディスクのウォブルアドレス復調に応用できるだけでなく、MSK変調やSTW変調を用いた信号伝送復調装置などにも適用できる。
ディスクのウォブリンググルーブの説明図である。 ウォブル信号のMSK変調波及びSTW変調波の説明図である。 ADIPユニットの説明図である。 ADIPユニットから形成されるADIP情報の説明図である。 実施の形態のディスクドライブ装置のブロック図である。 実施の形態のディスクドライブ装置のウォブル復調系のブロック図である。 実施の形態のMSK復調器のブロック図である。 MSK復調波形の説明図である。 位相ズレの場合のMSK復調波形の説明図である。 実施の形態の遅延時間による位相調整の説明図である。 実施の形態のテーブル選択による位相調整の説明図である。 実施の形態の各テーブルの位相の説明図である。 実施の形態のSTW復調器のブロック図である。 STW復調波形の説明図である。 位相ズレの場合のSTW復調波形の説明図である。 実施の形態の各テーブルの位相の説明図である。 実施の形態のアップダウンカウンタの動作の説明図である。 実施の形態のアップダウンカウンタの処理のフローチャートである。 実施の形態により改善されたMSK復調波形の説明図である。 実施の形態の他のアップダウンカウンタの処理のフローチャートである。 実施の形態の他のアップダウンカウンタの処理の説明図である。 実施の形態のMSK復調器の他の構成のブロック図である。 実施の形態のSTW復調器の他の構成のブロック図である。 従来の復調回路のブロック図である。 位相変動に影響されたMSK変調信号の説明図である。
符号の説明
1 ディスク、10 MSK復調器、11 A/D変換器、12 コンパレータ、13,14 PLL回路、16,36,35−2,35−3 遅延回路、17,37 カウンタ、18,32−1,32−2,32−3 乗算器、19,33−1,33−2,33−3 加算器、20,40 正負判定回路、21,41 テーブル群、22,42 選択回路、23 加算器、24 振幅調整器、25 減算器、26 振幅中心測定回路、27,34−1,34−2,34−3 積算器、30 STW復調器、31A 第1復調器31B 第2復調器31C 第3復調器、38 最適位相判定部、39 アップダウンカウンタ、51 ピックアップ、52 スピンドルモータ、53 スレッド機構、54 マトリクス回路、55 リーダ/ライタ回路、56 変復調回路、57 ECCエンコーダ/デコーダ、58 ウォブル回路、59 アドレスデコーダ、60 システムコントローラ、61 サーボ回路、62 スピンドルサーボ回路、63 レーザドライバ、120 AVシステム

Claims (14)

  1. 第1の変調信号と第2の変調信号を含む入力信号を復調する復調装置において、
    上記第1の変調信号に対する第1の内部基準波を出力する第1の内部基準波発生手段と、
    上記第1の内部基準波と上記入力信号の演算処理により、上記第1の変調信号の復調信号を得る第1の復調演算手段と、
    上記第1の内部基準波発生手段から出力される上記第1の内部基準波の位相を調整する第1の位相調整手段と、
    上記入力信号について位相をずらした3つの入力信号における上記第2の変調信号に対する第2の内部基準波を出力する第2の内部基準波発生手段と、
    上記第2の内部基準波と上記3つの入力信号の演算処理により、上記第2の変調信号の復調信号を得る3つの第2の復調演算手段と、
    復調結果が必ず正又は負となるべき所定の入力信号区間において、上記3つの第2の復調演算手段の復調結果のいずれの復調結果が正又は負の最大になるかにより上記第2の内部基準波の最適な位相を判別し、判別された最適位相値に基づいて、上記第2の内部基準波発生手段から出力される上記第2の内部基準波の位相を調整する第2の位相調整手段と、
    を備え、
    上記第1の位相調整手段は、上記第2の位相調整手段での最適位相値を用いて、上記第1の内部基準波発生手段から出力される上記第1の内部基準波の位相の調整を行うことを特徴とする復調装置。
  2. 上記第1の変調信号はMSK変調信号であり、
    上記第1の内部基準波発生手段は、MSK変調信号の基準波と同一周波数とされる第1の内部基準波を出力することを特徴とする請求項1に記載の復調装置。
  3. 上記第2の変調信号はSTW変調信号であり、
    上記第2の内部基準波発生手段は、STW変調信号の基準波の二次高調波とされる第2の内部基準波を出力することを特徴とする請求項1に記載の復調装置。
  4. 上記第1の位相調整手段は、設定された位相調整値に対して、上記第2の位相調整手段からの最適位相値に基づく位相調整値を加算し、その加算結果の位相調整値により上記第1の内部基準波の位相を調整することを特徴とする請求項1に記載の復調装置。
  5. 上記第2の位相調整手段は、上記3つの第2の復調演算手段の復調結果に基づいてカウント値をアップ/ダウンさせるカウンタを有し、該カウンタのカウント値から上記最適位相値を得るとともに、
    上記カウンタは、値が連続した上記最適位相値が得られる状態となるように制御されることを特徴とする請求項1に記載の復調装置。
  6. 上記カウンタは、位相調整開始時点で所定のカウント初期値がロードされることを特徴とする請求項5に記載の復調装置。
  7. ディスク記録媒体上でウォブリンググルーブとして記録された、第1の変調信号と第2の変調信号を含むウォブル信号を読み出す読出手段と、
    上記ウォブル信号における上記第1の変調信号に対する第1の内部基準波を出力する第1の内部基準波発生手段と、
    上記第1の内部基準波と上記ウォブル信号の演算処理により、上記第1の変調信号の復調信号を得る第1の復調演算手段と、
    上記第1の内部基準波発生手段から出力される上記第1の内部基準波の位相を調整する第1の位相調整手段と、
    上記ウォブル信号について位相をずらした3つのウォブル信号における上記第2の変調信号に対する第2の内部基準波を出力する第2の内部基準波発生手段と、
    上記第2の内部基準波と上記3つのウォブル信号の演算処理により、上記第2の変調信号の復調信号を得る3つの第2の復調演算手段と、
    復調結果が必ず正又は負となるべき所定のウォブル信号区間において、上記3つの第2の復調演算手段の復調結果のいずれの復調結果が正又は負の最大になるかにより上記第2の内部基準波の最適な位相を判別し、判別された最適位相値に基づいて、上記第2の内部基準波発生手段から出力される上記第2の内部基準波の位相を調整する第2の位相調整手段と、
    上記第1の復調演算手段で復調された復調信号と、上記3つの第2の復調演算手段のうちの1つで復調された復調信号とをデコードし、上記ウォブリンググルーブとして記録された情報を得るデコード手段と、
    を備え、
    上記第1の位相調整手段は、上記第2の位相調整手段での最適位相値を用いて、上記第1の内部基準波発生手段から出力される上記第1の内部基準波の位相の調整を行うことを特徴とするディスクドライブ装置。
  8. 上記デコード手段は、上記ウォブリンググルーブとして記録された情報として、ディスク記録媒体上のアドレス情報を得ることを特徴とする請求項7に記載のディスクドライブ装置。
  9. 上記第1の変調信号はMSK変調信号であり、
    上記第1の内部基準波発生手段は、MSK変調信号の基準波と同一周波数とされる第1の内部基準波を出力することを特徴とする請求項7に記載のディスクドライブ装置。
  10. 上記第2の変調信号はSTW変調信号であり、
    上記第2の内部基準波発生手段は、STW変調信号の基準波の二次高調波とされる第2の内部基準波を出力することを特徴とする請求項7に記載のディスクドライブ装置。
  11. 上記第1の位相調整手段は、設定された位相調整値に対して、上記第2の位相調整手段からの最適位相値に基づく位相調整値を加算し、その加算結果の位相調整値により上記第1の内部基準波の位相を調整することを特徴とする請求項7に記載のディスクドライブ装置。
  12. 上記第2の位相調整手段は、上記3つの第2の復調演算手段の復調結果に基づいてカウント値をアップ/ダウンさせるカウンタを有し、該カウンタのカウント値を上記最適位相値とするとともに、
    上記カウンタは、値が連続した上記最適位相値が得られる状態となるように制御されることを特徴とする請求項7に記載のディスクドライブ装置。
  13. 上記カウンタは、位相調整開始時点で所定のカウント初期値がロードされることを特徴とする請求項12に記載のディスクドライブ装置。
  14. 第1の変調信号と第2の変調信号を含む入力信号の、上記第1の変調信号に対する第1の内部基準波を出力する第1の内部基準波発生手段と、
    上記第1の内部基準波と上記入力信号の演算処理により、上記第1の変調信号の復調信号を得る第1の復調演算手段と、
    上記入力信号の上記第2の変調信号に対する第2の内部基準波を出力する第2の内部基準波発生手段と、
    上記第2の内部基準波と上記入力信号について位相をずらした3つの入力信号との演算処理により、上記第2の変調信号の復調信号を得る3つの第2の復調演算手段と、
    を備えた復調装置における、上記第1、第2の内部基準波の位相調整方法として、
    復調結果が必ず正又は負となるべき所定の入力信号区間において、上記3つの第2の復調演算手段の復調結果のいずれの復調結果が正又は負の最大になるかにより上記第2の内部基準波の最適な位相を判別し、判別された最適位相値に基づいて、上記第2の内部基準波発生手段から出力される上記第2の内部基準波の位相を調整するステップと、
    上記最適位相値を用いて、上記第1の内部基準波発生手段から出力される上記第1の内部基準波の位相の調整を行うステップと、
    を備えることを特徴とする位相調整方法。
JP2004029116A 2004-02-05 2004-02-05 復調装置、ディスクドライブ装置、位相調整方法 Expired - Fee Related JP4325422B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004029116A JP4325422B2 (ja) 2004-02-05 2004-02-05 復調装置、ディスクドライブ装置、位相調整方法
US11/045,352 US7333408B2 (en) 2004-02-05 2005-01-31 Demodulator, disk drive device, and phase adjustment method
KR1020050010455A KR101161673B1 (ko) 2004-02-05 2005-02-04 복조 장치, 디스크 드라이브 장치, 위상 조정 방법
CNB2005100075437A CN100411043C (zh) 2004-02-05 2005-02-05 解调器、盘驱动设备和相位调整方法
TW094103846A TWI289296B (en) 2004-02-05 2005-02-05 Demodulator, disc driving device and phase regulating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029116A JP4325422B2 (ja) 2004-02-05 2004-02-05 復調装置、ディスクドライブ装置、位相調整方法

Publications (3)

Publication Number Publication Date
JP2005222608A JP2005222608A (ja) 2005-08-18
JP2005222608A5 JP2005222608A5 (ja) 2007-03-01
JP4325422B2 true JP4325422B2 (ja) 2009-09-02

Family

ID=34879180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029116A Expired - Fee Related JP4325422B2 (ja) 2004-02-05 2004-02-05 復調装置、ディスクドライブ装置、位相調整方法

Country Status (5)

Country Link
US (1) US7333408B2 (ja)
JP (1) JP4325422B2 (ja)
KR (1) KR101161673B1 (ja)
CN (1) CN100411043C (ja)
TW (1) TWI289296B (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI301969B (en) * 2004-10-12 2008-10-11 Mediatek Inc Method and apparatus for detecting a physical mark in a signal read from an optical disk
JP2006236421A (ja) 2005-02-22 2006-09-07 Toshiba Corp 記憶媒体、再生方法及び記録方法
US7411465B2 (en) * 2005-07-15 2008-08-12 Watson Industries, Inc. AGC circuit for the reduction of harmonics in the drive signal
US20220271724A1 (en) * 2005-09-27 2022-08-25 Ronald Quan Method and apparatus to evaluate audio equipment for dynamic distortions and or differential phase and or frequency modulation effects
KR100739749B1 (ko) * 2005-11-03 2007-07-13 삼성전자주식회사 광 디스크 재생을 위해 톱니 파형워블(saw-tooth wobble) 신호를 검출하는방법 및 장치
JP4172494B2 (ja) 2006-05-09 2008-10-29 ソニー株式会社 復調装置、ディスクドライブ装置、復調方法
US8355302B1 (en) 2006-05-11 2013-01-15 Marvell International Ltd. Offset loop for wobble
JP5983077B2 (ja) * 2012-06-15 2016-08-31 ソニー株式会社 光情報記録媒体および再生装置
US9164134B2 (en) 2012-11-13 2015-10-20 Nvidia Corporation High-resolution phase detector
US9471091B2 (en) * 2012-11-28 2016-10-18 Nvidia Corporation Periodic synchronizer using a reduced timing margin to generate a speculative synchronized output signal that is either validated or recalled
JP2014142978A (ja) * 2013-01-22 2014-08-07 Sony Corp 制御装置および制御方法、ならびに原盤作製装置
JP2017017588A (ja) * 2015-07-02 2017-01-19 富士通株式会社 伝送装置、誤り訂正符号の生成方法及び誤り訂正方法
CN109116771B (zh) * 2017-06-22 2020-07-28 东元电机股份有限公司 控制命令产生方法及其装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494405B2 (ja) 1999-11-01 2004-02-09 株式会社リコー 復調回路、これを用いた情報記録再生装置、位相復調システム及び位相差除去方法
JP4534387B2 (ja) * 2001-03-19 2010-09-01 ソニー株式会社 記録装置および方法、再生装置および方法、記録媒体、プログラム、並びにディスク媒体
JP4121264B2 (ja) 2001-10-16 2008-07-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ディスクドライブ装置及びウォブル情報検出方法
JP4121265B2 (ja) * 2001-10-16 2008-07-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ディスク状記録媒体、ディスクドライブ装置並びにディスク製造装置及び方法
JP4295474B2 (ja) * 2002-05-24 2009-07-15 ソニー株式会社 ディスク記録媒体、ディスクドライブ装置、ディスク製造方法
JP4100048B2 (ja) 2002-05-28 2008-06-11 ソニー株式会社 復調装置、復調方法及び記録再生装置

Also Published As

Publication number Publication date
CN1652238A (zh) 2005-08-10
TWI289296B (en) 2007-11-01
KR20060041717A (ko) 2006-05-12
TW200603082A (en) 2006-01-16
CN100411043C (zh) 2008-08-13
JP2005222608A (ja) 2005-08-18
US20050195511A1 (en) 2005-09-08
US7333408B2 (en) 2008-02-19
KR101161673B1 (ko) 2012-07-02

Similar Documents

Publication Publication Date Title
KR101161673B1 (ko) 복조 장치, 디스크 드라이브 장치, 위상 조정 방법
KR940002000B1 (ko) 광디스크기록/재생장치 및 그 제어방법
US7668062B2 (en) Disk recording medium, disk production method, disk drive apparatus
EP1093123A1 (en) Information record disc and information recording apparatus
JP2005222608A5 (ja)
JP4311214B2 (ja) 復調装置、ディスクドライブ装置、位相調整方法
JP4172494B2 (ja) 復調装置、ディスクドライブ装置、復調方法
JP4403393B2 (ja) 復調装置、ディスクドライブ装置、復調方法
JP4442342B2 (ja) 積分位相判定方法、復調方法、復調装置、ディスクドライブ装置
JP4345611B2 (ja) ディスクドライブ装置、ウォブル再生方法
JP2008140463A (ja) ウォブル信号検出回路及びウォブル信号検出方法
JP2008071423A (ja) ディスクドライブ装置、フォーカスバイアス及び球面収差補正値の調整方法
JP4192953B2 (ja) ディスク記録媒体、ディスク製造方法、ディスクドライブ装置
JP2006012283A (ja) ディスクドライブ装置、復調装置、復調方法
WO2005101388A1 (ja) 光ディスク記録再生装置
JP4618454B2 (ja) タイミング信号生成装置
JP4192941B2 (ja) 記録媒体、記録装置及び記録方法
JP2010049746A (ja) 復調装置、復調方法、情報再生装置およびコンピュータプログラム
JP2008108400A (ja) ディスクドライブ装置、ディスク記録容量判別方法
WO2005101389A1 (ja) 光ディスク記録再生装置
JPH11144367A (ja) 光ディスク装置
JP2009151883A (ja) 記録再生装置および記録再生方法
JP2004227678A (ja) 光ディスク装置とウォブル信号検出回路及びウォブル信号検出方法
JPH10241266A (ja) 光ディスク装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees