JP3460659B2 - Soft high carbon steel strip with small heat treatment distortion and method for producing the same - Google Patents

Soft high carbon steel strip with small heat treatment distortion and method for producing the same

Info

Publication number
JP3460659B2
JP3460659B2 JP2000026618A JP2000026618A JP3460659B2 JP 3460659 B2 JP3460659 B2 JP 3460659B2 JP 2000026618 A JP2000026618 A JP 2000026618A JP 2000026618 A JP2000026618 A JP 2000026618A JP 3460659 B2 JP3460659 B2 JP 3460659B2
Authority
JP
Japan
Prior art keywords
steel strip
high carbon
carbon steel
elongation
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000026618A
Other languages
Japanese (ja)
Other versions
JP2001220642A (en
Inventor
清 福井
正規 辻
洋二 八並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000026618A priority Critical patent/JP3460659B2/en
Publication of JP2001220642A publication Critical patent/JP2001220642A/en
Application granted granted Critical
Publication of JP3460659B2 publication Critical patent/JP3460659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、精密打ち抜き等、
複雑な形状への成形が容易なように軟質で、その後の焼
入れ・焼戻し等の熱処理での歪みが小さく、かつ、従来
よりも安価なコストで製造が可能な高炭素鋼帯およびそ
の製造方法に関する。さらに詳述すれば、本発明は、フ
ァインブランキングされる高炭素鋼板製品に代表される
プレス部品の焼入れ・焼戻し等の熱処理にともなう熱処
理歪みを効果的に抑制することが可能で、かつ、熱処理
の前は軟質でプレス時の加工性にも優れた高炭素鋼帯お
よびその製造方法に関する。
TECHNICAL FIELD The present invention relates to precision punching, etc.
The present invention relates to a high carbon steel strip which is soft so that it can be easily formed into a complicated shape, has a small distortion due to subsequent heat treatment such as quenching and tempering, and can be produced at a lower cost than before, and a method for producing the same. . More specifically, the present invention is capable of effectively suppressing the heat treatment distortion associated with the heat treatment such as quenching and tempering of a press part represented by a fine blanked high carbon steel sheet product, and the heat treatment. Is related to a high carbon steel strip which is soft and has excellent workability during pressing, and a method for producing the same.

【0002】[0002]

【従来の技術】成形後に焼入れ・焼戻し、あるいはオー
ステンパー等の熱処理を施して強度を高めて用いられる
自動車部品には、従来より、JISG3311に規定されるS35C
〜S70Cや、SCM415〜SCM440等のC量が高く、かつ必要に
応じて複数の合金成分を含有する高炭素鋼が用いられて
いた。かかる高炭素鋼を、熱間あるいは冷間にて鍛造
し、さらに必要に応じて切削加工を用いて所要の部品形
状に加工し、次いで、必要な強度を熱処理により達成し
ていた。
2. Description of the Related Art Conventionally, S35C stipulated in JIS G3311 has been used for automobile parts that are used by hardening and tempering after molding or heat treatment such as austempering to increase strength.
.About.S70C, SCM415 to SCM440, and the like, high carbon steels having a high C content and containing a plurality of alloy components as necessary have been used. Such a high carbon steel is forged hot or cold, further cut into a desired part shape by using a cutting process, and then, necessary strength is achieved by heat treatment.

【0003】しかし、近年、ファインブランキング等の
プレス加工技術の発達により、高炭素を含有する硬質な
鋼帯でも複雑な形状への冷間加工が可能で、熱間鍛造あ
るいは切削加工を省略した効率的な製造方法が普及して
きている。
However, in recent years, with the development of press working techniques such as fine blanking, cold working into a complicated shape is possible even with a hard steel strip containing high carbon, and hot forging or cutting work is omitted. Efficient manufacturing methods are becoming popular.

【0004】これらの加工に供するためには、高炭素を
含有する鋼でも極力軟質化する必要があり、従来にあっ
ても化学組成の調整、圧延、焼鈍条件の調整による軟質
化で一般に対応されている。具体的には、鋼中のセメン
タイトを化学組成あるいは製造方法の調整により黒鉛化
する方法( 例: 特開平8−120405号公報参照) 、あるい
は、セメンタイト自体を化学組成、製造方法の調整によ
り粗大化し、鋼材を軟質化する方法( 例: 特開平11−25
6268号公報、特開平11−256272号公報参照) がこれまで
に提案されている。
In order to be subjected to these workings, it is necessary to soften steel containing high carbon as much as possible, and even in the conventional case, it is generally dealt with by softening by adjusting chemical composition, rolling and annealing conditions. ing. Specifically, a method of graphitizing cementite in steel by adjusting the chemical composition or manufacturing method (see, for example, Japanese Patent Laid-Open No. 8-120405), or coarsening cementite itself by adjusting the chemical composition and manufacturing method. , A method of softening a steel material (Example: JP-A-11-25
6268 and Japanese Patent Laid-Open No. 11-256272) have been proposed so far.

【0005】[0005]

【発明が解決しようとする課題】これらの従来技術の手
法は、冷間加工性の向上に有効ではあるが焼入組織の安
定化には不適切な点が多く、熱処理後の強度の安定性、
熱処理歪みの抑制が不十分で、不均質な熱処理歪みが発
生するという問題が残されてきた。
Although these prior art techniques are effective in improving cold workability, they have many unsuitable points for stabilizing the quenching structure, and the stability of strength after heat treatment is high. ,
There has been a problem that the heat treatment strain is not sufficiently suppressed, resulting in non-uniform heat treatment strain.

【0006】本発明者が実験した結果、例えば、特開平
8−120405号公報の開示する方法では、炭素の拡散が制
約され、鋼中の炭素固溶量が不足し、焼入性が低いため
組織の不均一による変形の発生が問題となることが判明
した。さらには特開平11−256268号公報、特開平11−25
6272号公報の開示する方法では、焼入性を高める合金成
分の制約により、焼入加熱条件、冷却条件によっては焼
入後のパーライト組織の残存による硬度の低下、変形の
発生が問題となることが判明した。
As a result of experiments conducted by the present inventor, for example, in the method disclosed in Japanese Patent Application Laid-Open No. 8-120405, diffusion of carbon is restricted, carbon solid solution amount in steel is insufficient, and hardenability is low. It was found that the occurrence of deformation due to non-uniformity of the structure becomes a problem. Furthermore, JP-A-11-256268 and JP-A-11-25
In the method disclosed in Japanese Patent No. 6272, due to restrictions on alloying components that enhance hardenability, depending on quenching heating conditions and cooling conditions, deterioration of hardness due to residual pearlite structure after quenching, and occurrence of deformation become a problem. There was found.

【0007】ここに、本発明の課題は、冷間加工性に優
れているばかりでなく、焼入れ・焼戻し等の熱処理によ
って高強度化をはかる際の熱歪みを効果的に抑制できる
高炭素鋼帯とその安価かつ簡便な製造方法を提供するこ
とである。
An object of the present invention is not only excellent in cold workability, but also high carbon steel strip capable of effectively suppressing thermal strain at the time of strengthening by heat treatment such as quenching and tempering. And an inexpensive and simple manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】そこで、上述のような従
来技術の問題点について種々検討した結果、次のような
点に着目した。
Therefore, as a result of various studies on the above-mentioned problems of the prior art, the following points have been noted.

【0009】パーライトとマルテンサイトでは、結晶格
子長さが異なるため、マルテンサイト中において部分的
にパーライトが混在すると、製品の単位長さにおける厚
さ方向および表面上の任意の方向に不特定の歪みや反り
が発生することが確認された。
Since the crystal lattice lengths of pearlite and martensite are different, if pearlite is partially mixed in martensite, unspecified strain will occur in the thickness direction in the unit length of the product and in any direction on the surface. It was confirmed that a warp occurred.

【0010】また、均一なマルテンサイトが得られた場
合でも、焼入による熱処理歪みが発生する場合があり、
この原因は冷間加工時に生じた残留応力が加熱中に変化
したことによるものと推察された。
Further, even when uniform martensite is obtained, heat treatment distortion may occur due to quenching,
It is speculated that this is because the residual stress generated during cold working changed during heating.

【0011】さらに、冷間加工に供する素材の伸びに大
きな異方性がある場合、冷間加工の段階でも形状に異方
性が生じ、熱処理後まで不均一な形状が残存するため、
あらかじめ素材の伸びの異方性を一定範囲内に限定する
ことも好ましい。
Furthermore, when the elongation of the material to be cold worked has a large anisotropy, the shape becomes anisotropic even at the cold working stage, and the non-uniform shape remains until after the heat treatment.
It is also preferable to limit the anisotropy of elongation of the material within a certain range in advance.

【0012】焼入時の変形抑制に際して、上述のように
推察した各焼入変形発生要因を解消するための手段につ
いて以下のように整理した。
When suppressing the deformation during quenching, the means for eliminating the causes of each quenching deformation inferred as described above are summarized as follows.

【0013】(1) 焼入冷却過程におけるパーライトの部
分的形成の冶金的抑制 パーライト形成の抑制は、換言すればマルテンサイトの
均一化であり、このためには焼入性の向上が必要とな
る。焼入性を支配する要素には、合金元素の増大、炭素
量の増大とならんで、焼入加熱中のオーステナイト結晶
粒径の粗大化が挙げられる。
(1) Metallurgical suppression of partial formation of pearlite in quenching and cooling process The suppression of pearlite formation is, in other words, the homogenization of martensite, which requires improvement of hardenability. . Factors that control the hardenability include an increase in alloying elements and an increase in carbon content, as well as coarsening of the austenite crystal grain size during quenching heating.

【0014】一方、冷間加工性を高めるためには、鋼中
の炭化物の粗大化、あるいは焼入性を向上させる合金成
分の低減が余儀なくされる。しかし、双方の作用とも焼
入性を低下させることから、冷間加工性と焼入性の両立
には、焼入加熱時のオーステナイト粒径の粗大化が必須
となる。このため、焼入加熱中に適正な粗大オーステナ
イト粒組織を生成させる。
On the other hand, in order to improve the cold workability, it is inevitable to coarsen the carbides in the steel or reduce the alloy components for improving the hardenability. However, since both actions reduce the hardenability, coarsening of the austenite grain size at the time of quenching heating is indispensable for achieving both cold workability and hardenability. Therefore, a proper coarse austenite grain structure is generated during quenching and heating.

【0015】(2) 焼入加熱過程における残留応力による
変形の冶金的抑制 焼入加熱時の変形は、プレス成型時に発生した残留応力
が開放されることにより生じるものである。この残留応
力は、変形抵抗に依存し、その変形抵抗は鋼材の降伏強
度に支配される。このため冷間加工されるフェライト組
織に対し、降伏応力を低減しうる組織対応を施す必要が
ある。とりわけフェライト粒の粗大化は、降伏応力の低
減に極めて有効であることから、フェライト粒の粗大化
が可能な化学組成、製造条件を求める。
(2) Metallurgical Suppression of Deformation Due to Residual Stress in Quenching and Heating Deformation during quenching and heating is caused by release of residual stress generated during press molding. This residual stress depends on the deformation resistance, and the deformation resistance is governed by the yield strength of the steel material. For this reason, it is necessary to provide a structure that can reduce the yield stress to the ferrite structure that is cold-worked. In particular, since coarsening of ferrite grains is extremely effective in reducing the yield stress, a chemical composition and manufacturing conditions that enable coarsening of ferrite grains are required.

【0016】(3) さらに、鋼帯の冷間加工による伸びの
異方性に起因する変形の不均一を抑制すべく、高炭素鋼
帯に特有の伸びの異方性を一定レベル以下に制限する。
(3) Further, in order to suppress the unevenness of deformation due to the anisotropy of elongation due to cold working of the steel strip, the anisotropy of elongation peculiar to the high carbon steel strip is limited to a certain level or less. To do.

【0017】(1) 、(2) の課題に対する共通の対応策と
して、(1) のオーステナイト粒の粗大化には焼入加熱前
のフェライト粒の粗大化が有効で、(2) の残留応力抑制
に向けた降伏強度の抑制にもフェライト粒の粗大化が有
効であることから、(1) 、(2) の条件を満足しうるフェ
ライトの粗粒化を実現し、その粗粒化フェライト組織を
安定して形成しうる化学組成と製造条件の確立を図るこ
ととした。
As common measures against the problems of (1) and (2), coarsening of ferrite grains before quenching heating is effective for coarsening of austenite grains of (1), and residual stress of (2) is effective. Since coarsening of ferrite grains is also effective for suppressing the yield strength to suppress the ferrite grain size, ferrite grain coarsening that satisfies the conditions (1) and (2) has been realized, and the coarse grain ferrite structure It was decided to establish the chemical composition and manufacturing conditions that would allow stable formation of

【0018】また、(3) の課題については、伸びを安定
化させる目的からセメンタイトの球状化率および粒径を
特定条件に規定すると共に、フェライト粒の展伸度を一
定レベル以上に規定することにより異方性を抑制でき
る。
With regard to the problem (3), the spheroidization rate and grain size of cementite should be specified under specific conditions for the purpose of stabilizing elongation, and the elongation of ferrite grains should be specified to a certain level or higher. Can suppress anisotropy.

【0019】そこで、本発明者らは、まず、焼入時の冷
却に際して、冷却速度が小さい条件下でもパーライトが
生じることのなオーステナイト組織の鋼帯を特定の条件
で冷間加工して得た試験片を用いて熱処理後の組織観察
調査を行い、冷間加工の段階でのセメンタイトの球状化
条件と粒径、フェライト粒径との関係を求めた。併せ
て、種々のC量で発揮し得る平均伸びと、伸びの異方性
を抑制すべく合金成分と組成を規定すると共に、フェラ
イトの圧延方向への展伸の状況について異方性との関連
を求めた。
Therefore, the inventors of the present invention first obtained a cold-worked steel strip having an austenitic structure in which pearlite is not generated even under the condition of a low cooling rate during cooling during quenching under specific conditions. Microstructure observation after heat treatment was carried out using the test pieces, and the relationship between the spheroidizing condition of cementite and the grain size and ferrite grain size at the cold working stage was obtained. At the same time, the average elongation that can be exhibited with various C contents and the alloy components and compositions to suppress the anisotropy of elongation are specified, and the relationship between the anisotropy of the state of expansion of ferrite in the rolling direction is related. I asked.

【0020】また、上述のようにして得られた粗大フェ
ライト粒の生成条件を確保するため、化学組成において
Al、N、Tiに対しそれぞれの窒化物形態を特定の範囲内
のものに限定するために、各元素の含有比率の範囲を特
定した。すなわち、微細なAlN の析出の抑制を前提とし
て、Tiによる窒化物形成に加え、特定の熱間圧延、冷間
圧延、焼鈍条件下でAlN が粗大化しうる成分組成範囲を
求めた。
Further, in order to secure the formation conditions of the coarse ferrite particles obtained as described above, the chemical composition
The range of the content ratio of each element was specified in order to limit each nitride morphology to a specific range with respect to Al, N, and Ti. That is, on the premise of suppressing the precipitation of fine AlN 3, in addition to nitride formation by Ti, the component composition range in which AlN 3 can be coarsened under specific hot rolling, cold rolling and annealing conditions was determined.

【0021】さらに、C量が種々異なる鋼種であっても
所期の機械的性質と金属組織を実現できるための製造条
件、熱間圧延、冷間圧延、焼鈍条件を求めた。
Further, manufacturing conditions, hot rolling, cold rolling, and annealing conditions for achieving desired mechanical properties and metallographic structures even with steels having various C contents were determined.

【0022】したがって、これらの知見に基づいて、高
炭素鋼帯の熱処理後の必要硬度と、冷間加工に耐え得る
成形性を確保するために、(i)合金組成、(ii)金属組
織、さらに(iii) 機械的特性、そして(iv)製造方法を下
記の如く規定することにより本発明を完成した。
Therefore, based on these findings, in order to secure the necessary hardness after heat treatment of the high carbon steel strip and the formability capable of withstanding cold working, (i) alloy composition, (ii) metal structure, Furthermore, the present invention was completed by defining (iii) mechanical properties and (iv) manufacturing method as follows.

【0023】(i) 合金組成:本発明によれば、合金組成
は次のように規定される。すなわち、重量割合にてC:
0.10〜0.80%、Si:0.005 %〜0.30%、Mn:0.20〜1.60
%で、かつ、sol.Al:0.005 〜0.100 %、N:0.001 〜
0.010 %、Ti:0.001 〜0.050 %が、(1) 、(2) 式を満
足し、 X=0.15×sol.Al+N−0.29×Ti−0.0030≧0 ・・・(1) Y=0.15×sol.Al+N−0.29×Ti−0.0135≦0 ・・・(2) その他不可避的不純物からなる鋼組成を有する。
(I) Alloy composition: According to the present invention, the alloy composition is defined as follows. That is, in weight ratio C:
0.10 to 0.80%, Si: 0.005% to 0.30%, Mn: 0.20 to 1.60
%, And sol.Al: 0.005 to 0.100%, N: 0.001 to
0.010%, Ti: 0.001 to 0.050% satisfy the formulas (1) and (2), and X = 0.15 × sol.Al + N−0.29 × Ti−0.0030 ≧ 0 (1) Y = 0.15 × sol. Al + N-0.29 × Ti-0.0135 ≦ 0 (2) It has a steel composition containing other inevitable impurities.

【0024】さらに所望により、Cr:0.05〜1.20%、M
o:0.05〜0.40%、Nb:0.010 〜0.050 %、およびB:
0.0002〜0.0030%の内の1種または2種以上を含有する
ものであってもよい。
If desired, Cr: 0.05-1.20%, M
o: 0.05 to 0.40%, Nb: 0.010 to 0.050%, and B:
It may contain one or more of 0.0002 to 0.0030%.

【0025】(ii)金属組織:下記式(3) 、(4) で規定す
る鋼中の平均フェライト粒径d、形状eが、下記(3) 、
(4) 式の条件を満足する。 35<d (μm) <100 ・・・ (3) e=n1 /n2 >1.25 ・・・ (4) ここで、(3) 式に規定する平均フェライト粒径dは、鋼
帯表面から板厚1/4 深さの部位の領域で1.0mm ×1.0mm
の視野を100 倍で撮影した組織写真から観察されるフェ
ライト粒径の平均値である。
(Ii) Metallographic structure: The average ferrite grain size d and shape e in the steel defined by the following formulas (3) and (4) are as follows (3),
The condition of Eq. (4) is satisfied. 35 <d (μm) <100 ・ ・ ・ (3) e = n 1 / n 2 > 1.25 ・ ・ ・ (4) Here, the average ferrite grain size d specified in the equation (3) is calculated from the steel strip surface. 1.0mm x 1.0mm in the area of 1/4 depth of thickness
This is the average value of the ferrite grain size observed from the structure photograph taken at 100 times the field of view.

【0026】さらに、平均フェライト粒径dは、展伸方
向と、展伸方向と直角方向の結晶粒の分断長さの平均値
の1.156 倍で換算してもよい。
Further, the average ferrite grain size d may be calculated as 1.156 times the average value of the divided lengths of the crystal grains in the extending direction and the direction perpendicular to the extending direction.

【0027】(4) 式に規定するフェライト形状e( n1
/n2)は、JIS G0552 で規定される展伸粒の規定に基づ
き、展伸方向に対し直角方向の単位線分あたりの粒数
n1、展伸方向の単位線分あたりの粒数n2から換算される
数値である。
The ferrite shape e (n 1
/ N 2 ) is the number of grains per unit line segment in the direction perpendicular to the direction of expansion, based on the rules for expanded grain specified in JIS G0552.
n 1 is a numerical value converted from the number of particles n 2 per unit line segment in the stretching direction.

【0028】さらに望ましくは、鋼中炭化物の平均粒径
が0.3 〜2.0 μmで球状化率≧80%を満足する。また、
鋼中炭化物は主としてセメンタイトであり、炭化物の球
状化率%は、長径/短径<5となる球状組織の占有比率
を示す。
More preferably, the average grain size of the carbide in the steel is 0.3 to 2.0 μm, and the spheroidization rate ≧ 80% is satisfied. Also,
The carbides in the steel are mainly cementite, and the spheroidization rate% of the carbides indicates the occupancy ratio of the spherical structure where the major axis / minor axis <5.

【0029】(iii) 機械的性質:さらに降伏強度/引張
強度×100(%)(YR)が、40〜80%を、かつ平均伸び値Elm
[=(El0+2×El45+El90)/4)] が(5) 式を、伸び異方
性指数ΔEl [=(El0−2×El45+El90)/2)] が(6) 式を
満足する。 50−40×C(%) −2×Mn<Elm(%) ・・・ (5) −5<ΔEl(%) <5 ・・・ (6) ただし、Elm =(El0+2×El45+El90)/4) ΔEl=(El0−2×El45+El90)/2) El0 : 圧延方向の伸び El45: 圧延方向に45度方向の伸び El90: 圧延方向に90度方向の伸び (iv)製造方法:仕上温度Ac1 +80℃〜Ac1 +160 ℃の範
囲で熱間圧延後、550 〜700 ℃の範囲で巻取り、酸洗
後、Ac1 −80℃〜Ac1 +30℃で、雰囲気中の水素濃度が
質量比で90%以上の条件で箱焼鈍する。
(Iii) Mechanical properties: Yield strength / tensile strength × 100 (%) (YR) is 40 to 80%, and average elongation value Elm
[= (El 0 + 2 × El 45 + El 90 ) / 4)] is given by equation (5), and the elongation anisotropy index ΔEl [= (El 0 -2 × El 45 + El 90 ) / 2)] is (6). Satisfy the formula. 50-40 × C (%) −2 × Mn <Elm (%) ・ ・ ・ (5) −5 <ΔEl (%) <5 ・ ・ ・ (6) However, Elm = (El 0 + 2 × El 45 + El 90 ) / 4) ΔEl = (El 0 -2 × El 45 + El 90 ) / 2) El 0 : Elongation in rolling direction El 45 : Elongation in 45 ° direction in rolling direction El 90 : Elongation in 90 ° direction in rolling direction (iv) production method: finish after hot rolling at a temperature Ac 1 + 80 ° C. range ~Ac 1 +160 ℃, 550 winding in a range of to 700 ° C., after pickling, Ac at 1 -80 ℃ ~Ac 1 + 30 ℃ Box annealing is performed under the condition that the hydrogen concentration in the atmosphere is 90% or more by mass.

【0030】あるいは別法として、仕上温度Ac1 +80℃
〜Ac1 +160 ℃の範囲で熱間圧延後、550 〜700 ℃の範
囲で巻取り、酸洗後、圧下率5〜30%で冷間圧延した
後、さらにAc1 −50℃〜Ac1 +30℃で、雰囲気中の水素
濃度が質量比で90%以上の条件で箱焼鈍する。
Alternatively, the finishing temperature Ac 1 + 80 ° C.
~ Ac 1 +160 ℃ After hot rolling, 550 ~ 700 ℃ in the range, after pickling, cold rolling at a rolling reduction of 5 ~ 30%, then further Ac 1 -50 ℃ ~ Ac 1 +30 Box annealing is performed at ℃ at a hydrogen concentration of 90% or more in the atmosphere.

【0031】さらに別法として、冷間圧延を行うに先立
ってAc1 −80℃〜Ac1 +30℃で、雰囲気中の水素濃度が
質量比で90%以上の条件で箱焼鈍を行ってもよい。
[0031] As yet another method, prior to performing cold rolling at Ac 1 -80 ℃ ~Ac 1 + 30 ℃, hydrogen concentration in the atmosphere may be carried out box annealing at 90% or more conditions in a weight ratio .

【0032】[0032]

【発明の実施の形態】次に、本発明において鋼組成、金
属組織、機械的特性、および製造条件を上述のように規
定した理由について説明するが、本明細書において組成
割合はとくにことわりがない限り、質量に基づく。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the reasons why the steel composition, metal structure, mechanical properties, and manufacturing conditions are defined as described above in the present invention will be explained, but the composition ratio is not particularly mentioned in this specification. As far as it is based on mass.

【0033】A. 素材鋼の成分含有割合 (a) C:C量は、熱処理後の鋼製品に対する耐摩耗性、
疲労強度の向上を目的として、所定量配合する。本発明
においては、焼入れ・焼戻しあるいはオーステンパー、
さらには必要に応じて浸炭処理等の熱処理の後の引張強
度が980 N/mm2 以上 (ヴィッカース硬度Hv:300 以上)
を前提に、熱処理後の靱性を確保すべく、引張強度上限
を1960N/mm2(ヴィッカース硬度で580)以下とするため
に、また、球状化焼鈍後の冷間加工を容易とするため
に、C添加量の範囲を0.10〜0.80%とした。好ましくは
0.20〜0.60%とする。
A. Component content ratio of raw steel (a) C: C content is the wear resistance of the steel product after heat treatment,
A predetermined amount is blended for the purpose of improving fatigue strength. In the present invention, quenching / tempering or austempering,
Furthermore, if necessary, the tensile strength after heat treatment such as carburizing is 980 N / mm 2 or more (Vickers hardness Hv: 300 or more).
In order to ensure the toughness after heat treatment, in order to set the tensile strength upper limit to 1960 N / mm 2 (580 Vickers hardness) or less, and to facilitate cold working after spheroidizing annealing, The range of the amount of C added was 0.10 to 0.80%. Preferably
0.20 to 0.60%

【0034】(b) Si:本発明では熱処理後のSi酸化物に
よる疲労強度の低下を避けるため、Siを0.30%を上限と
して添加する。好ましくは0.20%以下である。またはSi
は極度に抑制しても優位性はなくコストアップとなるた
め下限は0.005 %とする。
(B) Si: In the present invention, Si is added with an upper limit of 0.30% in order to avoid deterioration of fatigue strength due to Si oxide after heat treatment. It is preferably 0.20% or less. Or Si
Even if it is extremely suppressed, there is no advantage and the cost increases, so the lower limit is made 0.005%.

【0035】(c) Mn:Mnの添加は、熱処理時の焼入性の
確保、あるいは靱性向上のための焼戻し温度およびオー
ステンパー温度の上昇を目的として、0.20%以上とす
る。しかし、1.60%を超える添加は、熱間圧延における
鋼板の硬化を来たし、酸洗あるいは冷間圧延等の実施が
困難となる。このため、Mn添加量の範囲を0.20〜1.60%
とした。好ましくは、0.30〜0.80%とする。
(C) Mn: Mn is added in an amount of 0.20% or more for the purpose of ensuring hardenability during heat treatment or increasing tempering temperature and austempering temperature for improving toughness. However, addition of more than 1.60% causes hardening of the steel sheet in hot rolling, making it difficult to carry out pickling or cold rolling. Therefore, the range of Mn addition is 0.20 to 1.60%
And Preferably, it is 0.30 to 0.80%.

【0036】(d) sol.Al:本発明では、フェライト結晶
粒径を特定の粗大粒径に規定する。この条件を満足する
には、鋼中のAl系窒化物、AlN を極力抑制するか、粗大
化して析出させる必要がある。
(D) sol.Al: In the present invention, the ferrite crystal grain size is defined as a specific coarse grain size. In order to satisfy this condition, it is necessary to suppress Al-based nitrides and AlN in steel as much as possible, or to coarsen and precipitate them.

【0037】Alは製鋼段階の脱酸工程で必然的に含有さ
れるが、本発明者らに知見によれば、Alを特定量の範囲
で含有させることでAlN が粗大化し、フェライトが粗大
化する。
Although Al is inevitably contained in the deoxidizing step in the steelmaking stage, it is known to the present inventors that inclusion of Al in a specific amount makes AlN coarse and coarse ferrite. To do.

【0038】これに基づき、Alの含有範囲を、0.005 %
以上0.100 %以下と規定した。これ未満の含有量では、
鋼中の酸素が増大し、熱処理後の疲労強度が低下し、一
方、この範囲を超えると過剰なAl量自体が熱処理後の脆
化を招いたり、粗大化したAl酸化物が疲労強度を低下さ
せる等の弊害が生じることから、含有量を0.005 %以上
0.100 %以下と規定した。好ましくは、0.02〜0.05%と
する。
Based on this, the content range of Al is 0.005%.
Specified as 0.100% or less. If the content is less than this,
Oxygen in the steel increases, and the fatigue strength after heat treatment decreases.On the other hand, if it exceeds this range, the excessive Al amount itself causes embrittlement after heat treatment, or coarse Al oxide decreases the fatigue strength. Since it causes adverse effects such as causing it, the content should be 0.005% or more.
It was defined as 0.100% or less. Preferably, it is 0.02 to 0.05%.

【0039】(e) N:Nは鋼中に不可避的に含有される
不純物元素であるが、本発明の目的である高炭素鋼帯の
フェライト粒径を特定の粗大粒として制御するために
は、含有量の範囲の制約が必要で、かつsol.Alと特定の
比率で含有されている必要がある。種々の評価の結果so
l.Al、Tiとの比率で、Nを特定の範囲内に制限する必要
があり、その範囲が、0.0010〜0.0100%であることを見
い出した。この範囲を外れると、フェライト粒径が過度
に粗大化し、本発明の目標とする粒径での制御が困難と
なる。したがって、本発明ではN含有量の範囲を0.0010
〜0.0100%に規定した。
(E) N: N is an impurity element inevitably contained in the steel, but in order to control the ferrite grain size of the high carbon steel strip as a specific coarse grain, which is the object of the present invention, , It is necessary to limit the content range, and it must be contained in a specific ratio with sol.Al. Results of various evaluations so
It has been found that it is necessary to limit N within a specific range by the ratio of l.Al and Ti, and the range is 0.0010 to 0.0100%. If it is out of this range, the ferrite grain size becomes excessively coarse, and it becomes difficult to control the grain size targeted by the present invention. Therefore, in the present invention, the range of N content is 0.0010
Stipulated to ~ 0.0100%.

【0040】(f) Ti:Tiは0.001 〜0.050 %の範囲で含
有させる。この範囲を下回っても、フェライト粒の粗粒
化形態の抑制効果に大きな影響はないが、これを下回る
範囲まで不純物としての低減は、経済性を考慮すると不
必要である。一方、この範囲を超えて含有すると、粗大
な窒化物や酸化物が形成され、熱処理後の疲労強度が低
下するほか、焼鈍した状態で炭化物が形成され、冷間加
工性や残留応力抑制効果を阻害する。以上の見地から、
Tiの含有量の範囲は0.001 〜0.050 %とする。
(F) Ti: Ti is contained in the range of 0.001 to 0.050%. Even if it falls below this range, the effect of suppressing the coarse-grained form of ferrite grains is not significantly affected, but reduction to below this range as an impurity is unnecessary in consideration of economic efficiency. On the other hand, if the content exceeds this range, coarse nitrides and oxides are formed, the fatigue strength after heat treatment is reduced, and carbides are formed in the annealed state, which leads to cold workability and residual stress suppressing effect. Inhibit. From the above viewpoint,
The Ti content range is 0.001 to 0.050%.

【0041】(g) Cr:高炭素鋼帯は、冷間加工により鋼
部品として成形された後、必要に応じて浸炭をともなっ
た焼入れ・焼戻し、あるいはオーステンパー処理によ
り、その強度を高められる。このとき、強度の上昇、あ
るいは靱性の上昇をはかるため、適宜、合金元素を含有
させる。
(G) Cr: The high carbon steel strip is formed into a steel part by cold working, and then the strength thereof can be increased by quenching / tempering accompanied by carburization as required, or austempering. At this time, in order to increase the strength or the toughness, an alloying element is appropriately contained.

【0042】この様な合金元素の中で、Crは強度、靱性
の向上効果が大きい。このことから強度と靱性の双方の
向上を要する場合に、その必要強度に応じて0.05〜1.20
%の範囲で添加すればよい。
Among these alloy elements, Cr has a great effect of improving strength and toughness. From this, when it is necessary to improve both strength and toughness, 0.05 to 1.20 depending on the required strength.
It may be added in the range of%.

【0043】この範囲未満では、強度・靱性のバランス
は、所定の効果を発揮しない。一方、これを超える範囲
では、箱焼鈍を施しても硬質で、冷間加工性、熱処理時
の残留応力の抑制効果が得られない。
Below this range, the balance between strength and toughness does not exhibit the desired effect. On the other hand, in a range exceeding this range, even if box annealing is performed, it is hard and cold workability and the effect of suppressing residual stress during heat treatment cannot be obtained.

【0044】(h) Mo:Moも、強度上昇、靱性上昇に有効
であることから、所望により、さらに高い靱性を求めら
れる場合に0.05〜0.40%の範囲で添加する。好ましく
は、上限は0.30%である。
(H) Mo: Mo is also effective in increasing strength and toughness, so if desired, if higher toughness is required, it is added in the range of 0.05 to 0.40%. Preferably, the upper limit is 0.30%.

【0045】この範囲未満では、強度・靱性バランス
は、所定の効果を発揮しない。一方、これを超えると、
箱焼鈍を施しても硬質で、冷間加工性、熱処理時の残留
応力の抑制効果が得られない。
Below this range, the strength / toughness balance does not exhibit the desired effect. On the other hand, if this is exceeded,
Even if box annealing is performed, it is hard and cold workability and residual stress suppressing effect during heat treatment cannot be obtained.

【0046】(i)Nb:Nbも、強度上昇、靱性上昇に有効で
あることから、所望により、さらに高い靱性を求められ
る場合に0.010 〜0.050 %の範囲で添加する。
(I) Nb: Nb is also effective in increasing strength and toughness, so if desired, if higher toughness is required, it is added within the range of 0.010 to 0.050%.

【0047】(j) B:Bは、熱処理における焼入性の向
上、靱性の向上効果を有し、本発明においても所望によ
り適当量添加することとする。このとき、Bの効果は、
鋼中のNによって阻害される他、Bの添加自体も本発明
の目的であるフェライト粒径の制御を困難とすることか
ら、Bを添加する場合は、0.0002〜0.0030%の範囲とす
る。
(J) B: B has the effect of improving the hardenability and the toughness in the heat treatment, and is added in an appropriate amount in the present invention if desired. At this time, the effect of B is
In addition to being hindered by N in steel, addition of B itself also makes it difficult to control the ferrite grain size, which is the object of the present invention. Therefore, when B is added, the range is 0.0002 to 0.0030%.

【0048】このとき同時にTiを含有せしめ、TiはB含
有量に対し、約10倍程度の比率で含有することが望まし
い。特に、Tiは、N量の3〜10倍、望ましくはN量の3
〜5倍の含有比率に制御することが靱性、粗大フェライ
ト粒径制御に有効である。
At this time, it is preferable that Ti is contained at the same time, and Ti is contained in a ratio of about 10 times the B content. In particular, Ti is 3 to 10 times the N content, preferably 3 times the N content.
It is effective to control the toughness and coarse ferrite grain size by controlling the content ratio to 5 times.

【0049】(k) sol.Al、N、Tiの関係式:焼鈍によっ
てフェライト粒成長を促進する場合、AlN の粗大化ある
いは析出の抑制が必要となる。このとき、sol.Al、Nの
比率を特定の関係式で規定される範囲に制御すれば、焼
鈍後に本発明で規定するフェライト組織を得ることが可
能であり、また、Tiが含有される場合、本発明における
知見によれば、Tiに特定の係数を加えて関係式に加えた
場合に、フェライト粒が本発明で規定した粒径範囲に制
御できる。
(K) Relational expression of sol.Al, N and Ti: When accelerating ferrite grain growth by annealing, it is necessary to suppress coarsening or precipitation of AlN. At this time, if the ratio of sol.Al and N is controlled within a range defined by a specific relational expression, it is possible to obtain the ferrite structure defined in the present invention after annealing, and when Ti is contained. According to the findings of the present invention, when a specific coefficient is added to Ti and added to the relational expression, the ferrite grains can be controlled within the grain size range specified in the present invention.

【0050】このときsol.Al、N、Tiが規定される関係
式は、本発明者らの知見によれば、「0.15×sol.Al+N
−0.29×Ti」を基本式とし、0.15×sol.Al+N−0.29×
Tiの値が0.0030〜0.0135の範囲の条件にあるとき、本発
明の目的であるフェライト粒径の組織が得られる。
At this time, the relational expression defining sol.Al, N and Ti is, according to the knowledge of the present inventors, "0.15 × sol.Al + N
-0.29 x Ti "as the basic formula, 0.15 x sol.Al + N-0.29 x
When the Ti value is in the range of 0.0030 to 0.0135, the ferrite grain size structure that is the object of the present invention is obtained.

【0051】そこで、sol.Al、N、Tiに関し、下記(1)
、(2) 式のX、Yを満足することが好ましい。 X=0.15×sol.Al+N−0.29×Ti−0.0030≧0 ・・・(1) Y=0.15×sol.Al+N−0.29×Ti−0.0135≦0 ・・・(2) B. 本発明の対象となる鋼材の金属組織 (l) フェライト粒径および形状:フェライト粒径は、最
もYSに影響を与えるもので、その残留応力形態を強く支
配する。このフェライト粒径の粗大化にともなうYSの減
少により、冷間加工による残留応力を低減することがで
きる。
Therefore, regarding sol.Al, N and Ti, the following (1)
, It is preferable that X and Y in the expression (2) are satisfied. X = 0.15 × sol.Al + N−0.29 × Ti−0.0030 ≧ 0 (1) Y = 0.15 × sol.Al + N−0.29 × Ti−0.0135 ≦ 0 (2) B. Object of the present invention Metallographic structure of steel (1) Ferrite grain size and shape: The ferrite grain size has the largest effect on YS and strongly controls its residual stress morphology. Residual stress due to cold working can be reduced due to the decrease in YS accompanying the coarsening of the ferrite grain size.

【0052】本発明の高炭素鋼帯でこのYS適正領域を検
討した結果、フェライト粒の大きさdは35μmを超える
条件であると判明した。また、dが100 μm以上では、
冷間加工時にストレッチャーストレインによる皺が顕在
化し、成形性を劣化することから、dの上限を100 μm
未満とする。
As a result of examining this YS proper region in the high carbon steel strip of the present invention, it was found that the size d of the ferrite grains is a condition exceeding 35 μm. When d is 100 μm or more,
The upper limit of d is 100 μm, since wrinkles due to stretcher strain become visible during cold working and the formability deteriorates.
Less than

【0053】ここで規定する平均フェライト粒径dは、
鋼帯表面から板厚1/4 深さの部位の領域で1.0mm ×1.0m
m の視野を100 倍で撮影した組織写真から観察されるフ
ェライト粒径の平均値である。
The average ferrite grain size d defined here is
1.0 mm x 1.0 m in the area of the plate thickness 1/4 depth from the steel strip surface
This is the average value of the ferrite grain size observed from the microstructure photograph taken at 100 times the m field of view.

【0054】便宜的には、単位線分長さを1.0 mmとし、
また平均フェライト粒径dは、展伸方向と、展伸方向と
直角方向の結晶粒の分断長さの平均値の1.156 倍で換算
してもよいこととする。
For convenience, the unit line length is 1.0 mm,
Further, the average ferrite grain size d may be calculated as 1.156 times the average value of the dividing lengths of the crystal grains in the extending direction and the direction perpendicular to the extending direction.

【0055】また、フェライト粒形状に関して、本発明
では冷間加工に際しての機械的性質の面内異方性を抑制
し、冷間加工時の2次元的な残留応力、伸びを均一化す
るためにはフェライト粒が圧延方向に展伸していること
が有利である。
Regarding the ferrite grain shape, in the present invention, in order to suppress the in-plane anisotropy of mechanical properties during cold working and to make the two-dimensional residual stress and elongation during cold working uniform. It is advantageous that the ferrite grains are expanded in the rolling direction.

【0056】このときのフェライト組織の展伸の程度に
ついては、JISG0552で規定される展伸粒の規定に基づ
き、フェライト粒の形状eで規定し、これは、展伸方向
に対し直角方向の単位線分あたりの粒数n1、展伸方向の
単位線分あたりの粒数n2から換算される数値とし、e=
n1/n2で定義される。本発明によれば、このフェライト
形状e=n1/n2>1.25に限定する。
The degree of expansion of the ferrite structure at this time is defined by the shape e of ferrite particles based on the specification of expanded grains specified in JIS G0552, which is a unit in the direction perpendicular to the expanded direction. The number of particles per line segment n 1 and the number of particles per unit line segment in the drawing direction n 2 are converted to a value, e =
It is defined by n 1 / n 2 . According to the invention, this ferrite shape is limited to e = n 1 / n 2 > 1.25.

【0057】(m) 鋼中炭化物の粒径、球状化率:本発明
においては鋼中炭化物は、主としてセメンタイトから成
り、このセメンタイトの析出形態は冷間加工に際しての
残留応力、熱処理に際しての加熱中の炭化物の固溶状態
と焼入時の焼入性に大きな影響を有する。
(M) Grain size and spheroidization rate of carbides in steel: In the present invention, the carbides in steel are mainly composed of cementite, and the precipitation form of this cementite is the residual stress during cold working and during heating during heat treatment. Has a great influence on the solid solution state of the carbide and the hardenability at the time of quenching.

【0058】本発明による知見によれば、高炭素鋼帯
の熱処理変形の抑制を目的とする本発明では、球状化炭
化物の粒径と球状化率が熱処理変形量に対して影響す
る。
According to the knowledge of the inventor of the present invention, the grain size and spheroidization rate of the spheroidized carbide influence the heat treatment deformation amount in the present invention for suppressing the heat treatment deformation of the high carbon steel strip.

【0059】鋼中における球状化炭化物の形態は、鋼帯
の断面を研磨、ナイタール液で腐食した上で、板厚1/4
部分の100 μm幅×100 μm深さの領域を走査型電子顕
微鏡で観察し、そのとき得られたデータで規定する。
The form of the spheroidized carbide in the steel was determined by polishing the cross section of the steel strip, corroding it with a Nital solution, and then obtaining a plate thickness of 1/4.
The area of 100 μm width × 100 μm depth of the part is observed with a scanning electron microscope, and is specified by the data obtained at that time.

【0060】本発明の好適態様において、球状化炭化
物、好ましくは球状化セメンタイトは、平均粒径が0.5
〜2.0 μmで、球状化率≧80%を満足することとする。
In a preferred embodiment of the invention, the spheroidized carbide, preferably spheroidized cementite, has an average particle size of 0.5.
Spheroidization rate ≧ 80% is to be satisfied at ˜2.0 μm.

【0061】この数値を下回ると降伏強度(YS)が増大す
るため、冷間加工の際の残留応力が増大し、熱処理の
の加熱温度に起因した変形が生じやすくなる。また、球
状化率の低下は伸びの低下を招き、冷間加工性も劣化す
ることから、本発明では球状化率を80%以上と規定し
た。
Below this value, the yield strength (YS) increases, so the residual stress during cold working increases, and deformation due to the heating temperature during heat treatment tends to occur. Further, since the reduction of the spheroidization rate leads to the reduction of elongation and the cold workability is also deteriorated, the spheroidization rate is defined as 80% or more in the present invention.

【0062】このとき、球状化率%は、ナイタール液で
腐食して観察される炭化物の長径/短径<5となる球状
組織の観察される全炭化物に対する占有比率と規定す
る。
At this time, the spheroidization rate% is defined as the occupancy ratio of the observed spherical carbides corroded by the Nital solution and having a major axis / minor axis <5 to all the observed carbides.

【0063】また、鋼中炭化物の粒径は、0.3 μm未満
では、YSが高く、残留応力の増大による熱処理変形が生
じやすいことから、粒径を0.3 μm以上とする。また、
粒径が2.0 μmを超えると、熱処理加熱中の炭化物の固
溶が制約されて焼入性が低下し、焼入れた際にマルテン
サイトの均一性が阻害され、一部パーライトが混在し、
焼入歪みにつながることから、本発明の好適態様におい
て鋼中炭化物の粒径は2.0 μm以下とする。
If the grain size of the carbide in the steel is less than 0.3 μm, YS is high and heat treatment deformation is likely to occur due to an increase in residual stress. Therefore, the grain size is set to 0.3 μm or more. Also,
If the particle size exceeds 2.0 μm, the solid solution of carbide during heat treatment and heating is restricted and hardenability deteriorates. When hardened, the uniformity of martensite is impaired and some pearlite is mixed,
In the preferred embodiment of the present invention, the grain size of carbides in steel is set to 2.0 μm or less because it leads to quenching strain.

【0064】(n) 平均伸び値Elm 、伸び面内異方性指数
ΔEl:伸び値は、C量および合金元素の増大により減少
する。しかし、本発明にしたがって限定する前述のよう
な金属組織を確保することにより、特定量のC、Mn、C
r、Moを含有しても高い伸びを有し、冷間加工性と残留
応力の抑制効果に優れる。そこで本発明の好適態様とし
て、これら特定量の合金元素を含有した状態で、一定以
上の伸びを有することを条件として限定することとし
た。このとき、平均伸び値Elm および伸び面内異方性指
数ΔElを次の通り定義する。 平均伸び値Elm =(El0+2×El45+El90)/4) 伸び面内異方性指数ΔEl =(El0−2×El45+El90)/2) ただし、El0 : 圧延方向の伸び El45: 圧延方向に45度方向の伸び El90: 圧延方向に90度方向の伸び ここに、本発明の知見によれば、伸びの面内異方性指
数ΔElを抑制することは、熱処理加熱における2次元方
向の寸法変化の抑制に効果がある。そこで、Elm は特定
の合金含有量のパラメーター値以上とし、かつΔElを±
5%以内に限定することとし、(5) 、(6) 式にその範囲
を規定した。 50−40×C(%) −2×Mn(%) −2×Cr(%) −1×Mo(%) <Elm(%)・(5) −5<ΔEl(%) <5 ・・・・ (6) C.本発明の対象となる鋼材の製造方法 (o) 熱間圧延、焼鈍条件:本発明の対象となる高炭素鋼
帯の金属組織、とりわけ、セメンタイトの球状化とフェ
ライトの粗粒化組織を形成するためには、熱間圧延での
仕上温度、巻取温度および酸洗後の焼鈍温度、雰囲気条
件を特定することでそれが可能となる。
(N) Average elongation value Elm, elongation in-plane anisotropy index ΔEl: The elongation value decreases as the C content and alloying elements increase. However, a certain amount of C, Mn, C is ensured by ensuring the metallographic structure as defined above according to the invention.
Even if it contains r and Mo, it has high elongation and is excellent in cold workability and effect of suppressing residual stress. Therefore, as a preferred embodiment of the present invention, it is decided to limit the elongation to a certain level or more in a state where these specific amounts of alloying elements are contained. At this time, the average elongation value Elm and the elongation in-plane anisotropy index ΔEl are defined as follows. Average elongation value Elm = (El 0 +2 x El 45 + El 90 ) / 4) In-plane elongation anisotropy index ΔEl = (El 0 -2 x El 45 + El 90 ) / 2) where El 0 : elongation in the rolling direction El 45 : Elongation in 45 ° direction in rolling direction El 90 : Elongation in 90 ° direction in rolling direction Here, according to the knowledge of the present inventors , suppressing the in-plane anisotropy index ΔEl of elongation means heat treatment. It is effective in suppressing the dimensional change in the two-dimensional direction during heating. Therefore, Elm should be more than the parameter value of the specific alloy content, and ΔEl should be ±
It is limited to within 5%, and the range is specified in equations (5) and (6). 50-40 x C (%) -2 x Mn (%) -2 x Cr (%) -1 x Mo (%) <Elm (%) ・ (5) -5 <ΔEl (%) <5 ...・ (6) C. Method for producing steel material targeted by the present invention (o) hot rolling, annealing conditions: forming a metal structure of the high carbon steel strip targeted by the present invention, in particular, spheroidizing of cementite and coarse-grained structure of ferrite In order to do so, it is possible to specify the finishing temperature in hot rolling, the winding temperature, the annealing temperature after pickling, and the atmospheric conditions.

【0065】フェライトの粗粒化、セメンタイトの球状
化には、熱延仕上温度は、C量、合金成分量に応じて適
宜最適温度に選択すればよい。
For the coarsening of ferrite and the spheroidizing of cementite, the hot rolling finishing temperature may be appropriately selected depending on the amount of C and the amount of alloy components.

【0066】本発明では、C、その他の合金元素量によ
って変動するAc1 温度をパラメーターとし、Ac1 +80℃
〜Ac1 +160 ℃の範囲に限定した。これ未満の温度範囲
では、焼鈍後もフェライトが過度に細粒化してYSの上昇
にともなって残留応力が増大し、熱処理加熱中に寸法変
化を生じる。
In the present invention, Ac 1 + 80 ° C. is used as a parameter with the Ac 1 temperature varying depending on the amount of C and other alloy elements.
It was limited to the range of to Ac 1 + 160 ° C. In a temperature range lower than this range, ferrite is excessively fine-grained even after annealing, the residual stress increases with an increase in YS, and a dimensional change occurs during heat treatment heating.

【0067】また、仕上温度がAc1 +160 ℃超の場合
も、焼鈍前のフェライト、パーライト粒の大きさが過度
に粗大化して、焼鈍中にフェライト粒が粗大化せず、残
留応力の増大により熱処理加熱中に寸法変化を生じる。
Also, when the finishing temperature is more than Ac 1 + 160 ° C., the size of ferrite and pearlite grains before annealing is excessively coarsened, the ferrite grains are not coarsened during annealing, and the residual stress increases. Heat treatment causes dimensional changes during heating.

【0068】巻取温度に関しては、550 ℃未満の場合、
焼鈍後もフェライトが過度に細粒化してYSの上昇にとも
なって残留応力が増大し、熱処理加熱中に寸法変化を生
じる。700 ℃を超える場合も焼鈍前のフェライト、パー
ライト粒の大きさが過度に粗大化して、焼鈍中にフェラ
イト粒が粗大化せず、残留応力の増大により熱処理加熱
中に寸法変化を生じる。
Regarding the coiling temperature, if it is less than 550 ° C.,
Even after annealing, the ferrite becomes excessively fine-grained and the residual stress increases as YS rises, causing dimensional changes during heat treatment and heating. Even when the temperature exceeds 700 ° C, the size of ferrite and pearlite grains before annealing is excessively coarsened, the ferrite grains are not coarsened during annealing, and dimensional changes occur during heat treatment and heating due to an increase in residual stress.

【0069】さらに焼鈍温度に関しては、熱延板に対し
ては適度な粗粒化組織を得る温度条件が、Ac1 で規定す
るパラメーターに対し、特定の温度範囲において本発明
で規定する粗粒フェライト組織が得られることから、そ
の温度範囲を Ac1−80℃〜 Ac1+30℃と規定した。
Regarding the annealing temperature, the temperature condition for obtaining an appropriate coarse-grained structure for a hot-rolled sheet is the coarse-grained ferrite specified in the present invention in a specific temperature range with respect to the parameter defined by Ac 1. since the structure is obtained, and define the temperature range Ac 1 -80 ℃ ~ Ac 1 + 30 ℃ with.

【0070】この範囲未満の温度ではフェライトが過度
に細粒化してYSの上昇にともなって残留応力が増大し、
熱処理加熱中に寸法変化を生じる。また、この範囲を超
える温度では、フェライトの過度の粗粒化およびセメン
タイトの球状化率の劣化が進む。
At temperatures below this range, the ferrite becomes excessively fine-grained, and the residual stress increases with an increase in YS.
Heat treatment causes dimensional changes during heating. Further, if the temperature exceeds this range, excessive coarsening of ferrite and deterioration of the spheroidization rate of cementite will proceed.

【0071】冷延板に対する焼鈍温度はAc1 −50℃〜Ac
1 +30℃の範囲とする。さらに、焼鈍雰囲気は、90%以
上の水素雰囲気であることとした。この濃度を下回る
と、雰囲気ガス中に不純物として混在する酸素により、
表面に局部的極めて粗大なフェライト粒からなる脱炭層
が形成され、伸びの低下等を生じる。このことから、焼
鈍雰囲気を本発明において規定する条件に限定した。
The annealing temperature for the cold-rolled sheet is Ac 1 −50 ° C. to Ac
The range is 1 + 30 ℃. Further, the annealing atmosphere is a hydrogen atmosphere of 90% or more. Below this concentration, oxygen mixed as an impurity in the atmospheric gas causes
A decarburized layer consisting of extremely coarse ferrite grains is locally formed on the surface, which causes a decrease in elongation and the like. Therefore, the annealing atmosphere is limited to the conditions specified in the present invention.

【0072】(p) 冷間圧延条件/冷間圧延前焼鈍条件:
(o) 項で限定した製造方法に対し、さらにフェライトの
粗粒化を促進および安定化しうる方法として、本発明に
おける知見によれば、焼鈍前に適当量の圧下率の冷間圧
延を加えることが有効である。このとき、冷間圧延によ
るフェライト粒の粗粒化の有効範囲は、圧下率で5〜30
%である。圧下率がこの範囲を下回る冷間圧延では、冷
間圧延を加えない条件と粗粒化効果に差異はない。ま
た、30%を超えるとむしろ細粒化によるYSの上昇と残留
応力の増大、熱処理時の寸法変化が顕在化する。このと
き、上述の(o) 項に規定する条件の箱焼鈍を、冷間圧延
前に実施することもフェライト粒径の均一化に有効であ
る。
(P) Cold rolling condition / annealing condition before cold rolling:
According to the findings of the present invention, as a method capable of further promoting and stabilizing coarsening of ferrite with respect to the manufacturing method defined in the item (o), cold rolling with an appropriate amount of reduction is performed before annealing. Is effective. At this time, the effective range of coarsening of ferrite grains by cold rolling is 5 to 30 in terms of reduction rate.
%. In the cold rolling in which the rolling reduction is less than this range, there is no difference between the condition without cold rolling and the effect of grain coarsening. On the other hand, if it exceeds 30%, increase in YS due to grain refinement, increase in residual stress, and dimensional change during heat treatment become apparent. At this time, it is also effective to make the ferrite grain size uniform by carrying out box annealing under the conditions specified in the above item (o) before cold rolling.

【0073】次に、実施例によって本発明の作用効果に
ついてさらに具体的に説明する。
Next, the function and effect of the present invention will be described more specifically by way of examples.

【0074】[0074]

【実施例】実施例1 表1に示す合金組成を有する鋼No.1〜19の鋼材を1200℃
×1h加熱後、表2中の仕上温度、巻取温度で、板厚6.
0 mmの鋼帯とした。酸洗脱スケールした後、5.0 mmに冷
間圧延し、引き続き100 %水素雰囲気中で740 ℃×12h
均熱する焼鈍を施した。この焼鈍後の鋼帯の金属組織と
機械的性質を測定した。
EXAMPLES Example 1 Steel Nos. 1 to 19 having the alloy compositions shown in Table 1 were heated to 1200 ° C.
After heating for × 1h, at the finishing temperature and winding temperature in Table 2, the plate thickness is 6.
A 0 mm steel strip was used. After descaling by pickling, cold rolling to 5.0 mm, and then 740 ° C x 12h in 100% hydrogen atmosphere
Annealing was applied to soak the heat. The metal structure and mechanical properties of the steel strip after this annealing were measured.

【0075】目的である優れた冷間加工性と焼入性の判
定基準として焼鈍後の伸びは、本発明において規定した
とおり、下記2式の充足を判定基準とした。 50−40×C(%)−2×Mn(%) −2×Cr(%) −1×Mo(%) <Elm(%) ・(5) −5<ΔEl(%) <5 ・・・・(6) また、金属組織も本発明に規定した条件を判定基準とし
た。
The elongation after annealing was used as the criterion for judging the excellent cold workability and hardenability, which were the objectives, and the satisfaction of the following two formulas was used as the criterion as defined in the present invention. 50−40 × C (%) − 2 × Mn (%) −2 × Cr (%) −1 × Mo (%) <Elm (%) <(5) −5 <ΔEl (%) <5 ... (6) In addition, the metal structure was also determined based on the conditions specified in the present invention.

【0076】次いで、このようにして得られた鋼帯から
図1に示す冷間加工試験片を採取し、55tクランクプレ
スで成形し、成型品の水平高さを測定した。
Next, the cold-working test piece shown in FIG. 1 was sampled from the steel strip thus obtained and molded by a 55t crank press, and the horizontal height of the molded product was measured.

【0077】測定部位は、図1に示す直径上の7ヶ所の
○印の部位を圧延方向、圧延45°方向、圧延90°方向
で、合計19ヶ所とし、測定方法は、成型品を鋼製水平定
盤上におき、KEYENCE 社、LC-2320/2100型レーザ変位計
を用いて各部位の高さを調査した。このとき、鋼製水平
定盤は1000×1000mmで、高さ変位精度は10μm/m で、試
験片は定盤中央部に設置して測定した。
The measurement points were 7 points on the diameter shown in FIG. 1 in the rolling direction, the rolling direction 45 °, and the rolling direction 90 °, for a total of 19 points. It was placed on a horizontal surface plate and the height of each site was investigated using an LC-2320 / 2100 type laser displacement meter from KEYENCE. At this time, the horizontal steel platen was 1000 × 1000 mm, the height displacement accuracy was 10 μm / m, and the test piece was placed in the center of the platen for measurement.

【0078】なお、図1において、図1(a) は、熱処理
歪み判定試験片の平面図であり、図1(b) はその断面図
である。図中、○は測定部位を示し、数字は寸法( 単
位:mm)を示す。
In FIG. 1, FIG. 1 (a) is a plan view of the heat treatment distortion determination test piece, and FIG. 1 (b) is a sectional view thereof. In the figure, ○ indicates the measurement site, and the numbers indicate the dimensions (unit: mm).

【0079】高さを測定した後の試験片を、Ar雰囲気で
870 ℃×30分加熱後、80℃の油に焼入れし、引き続き42
0 ℃×40分の焼戻しを行い、熱処理後の表面ビッカース
硬度を測定した。判定基準をHv250 以上とした。
The test piece after measuring the height was placed in an Ar atmosphere.
After heating at 870 ℃ for 30 minutes, quench in oil at 80 ℃ and continue to 42
After tempering at 0 ° C. for 40 minutes, the surface Vickers hardness after heat treatment was measured. The criterion was Hv250 or higher.

【0080】さらに引き続き試験片を、前述のレーザ変
位計による測定を行った。高さ変位の程度の判定基準
は、熱処理後の高さ変動が±0.2 mm以内を合格とした。
Further, subsequently, the test piece was measured by the above-mentioned laser displacement meter. The criterion for the degree of height displacement was that the height variation after heat treatment was within ± 0.2 mm.

【0081】結果を表3にまとめて示す。これらの結果
からも分かるように、C含有量が本発明範囲を下回る鋼
No.1は、焼入変形が生じ、焼戻し後の硬度も不足した。
鋼No.6は、3方向伸び平均値が設定条件を下回る。
The results are summarized in Table 3. As can be seen from these results, steel with a C content below the range of the present invention.
In No. 1, quenching deformation occurred, and the hardness after tempering was insufficient.
Steel No. 6 has an average value of elongation in three directions below the set condition.

【0082】鋼No.7はMnが下限を下回るため熱処理硬度
が不足する。鋼No.11 はMnが上限を超え、伸びが発明範
囲を下回る。鋼No.12 は、Alおよび条件式Xが本発明の
範囲から外れるため、ΔElが−5を下回る。また、鋼N
o.15 は、Alおよび条件式Xが本発明の範囲から外れる
ため、熱処理歪みが増大する。鋼No.16 は、条件式Yが
本発明の範囲から外れるため、ΔElが−5を下回り、熱
処理歪みが増大する。鋼No.19 は、Si、Xが本発明の範
囲から外れるため、熱処理歪みが増大する。
Steel No. 7 has a Mn below the lower limit, and therefore has insufficient heat treatment hardness. Steel No. 11 has Mn above the upper limit and elongation below the invention range. In Steel No. 12, ΔEl is less than −5 because Al and conditional expression X are out of the range of the present invention. Also steel N
In o.15, Al and conditional expression X are out of the range of the present invention, so that the heat treatment strain increases. In Steel No. 16, since the conditional expression Y is out of the range of the present invention, ΔEl is less than −5, and heat treatment strain increases. In Steel No. 19, Si and X are out of the range of the present invention, so that heat treatment strain increases.

【0083】実施例2 表4に示す合金組成を有する鋼No.20 〜35の鋼を、1200
℃×1h 加熱後、表5に示す仕上温度、巻取温度で熱間
圧延し、板厚6mmの鋼帯とした。続く酸洗の後、板厚5
mmに冷間圧延し、100 %水素雰囲気において740 ℃×16
h 均熱する焼鈍を行った。
Example 2 Steel Nos. 20 to 35 having the alloy compositions shown in Table 4 were changed to 1200
After heating at ℃ × 1h, hot rolling was carried out at the finishing temperature and the coiling temperature shown in Table 5 to obtain a steel strip having a plate thickness of 6 mm. After subsequent pickling, plate thickness 5
Cold rolled to mm, 740 ° C x 16 in 100% hydrogen atmosphere
h Annealing for uniform heating was performed.

【0084】得られた鋼帯の金属組織の観察、判定と機
械的性質の測定を行うと共に、実施例1と同じ試験片を
作成し、同じ方法を用いて水平方向の高さを測定した。
The metal structure of the obtained steel strip was observed and judged, and the mechanical properties were measured, the same test piece as in Example 1 was prepared, and the height in the horizontal direction was measured by the same method.

【0085】次いで、引き続きAr雰囲気で870 ℃×30分
加熱後、80℃の油に焼入れし、引き続き420 ℃×40分の
焼戻しを行い、熱処理後の表面ビッカース硬度を測定し
た。判定基準をHv250 以上とした。
Subsequently, after heating in an Ar atmosphere at 870 ° C. for 30 minutes, it was quenched in oil at 80 ° C., and subsequently tempered at 420 ° C. for 40 minutes, and the surface Vickers hardness after the heat treatment was measured. The criterion was Hv250 or higher.

【0086】さらに引き続き試験片を、前述のレーザ変
位計による測定を行った。高さ変位の程度の判定基準
は、熱処理後の高さ変動が±0.2 mm以内を合格とした。
焼鈍後の金属組織、機械的性質の判定基準は試験1と同
じ条件とした。結果は表6にまとめて示す。
Further, subsequently, the test piece was measured by the above laser displacement meter. The criterion for the degree of height displacement was that the height variation after heat treatment was within ± 0.2 mm.
The criteria for determining the metal structure and mechanical properties after annealing were the same as in Test 1. The results are summarized in Table 6.

【0087】これらの結果から分かるように、鋼No.23
は、Crが本発明の範囲を超え、伸びElm が目標値を下回
る。鋼No.27 はMoが本発明の範囲を超え、伸びElm が目
標値を下回る。鋼No.31 は、Bが本発明の範囲を超えて
過剰に含有されるため、熱処理硬度が減少し、熱処理歪
みも増大する。鋼No.35 は、Nbが本発明の範囲を超え、
またTiが無添加でかつBが単独で含有されていることか
ら、熱処理硬度と熱処理歪みが大きい。
As can be seen from these results, Steel No. 23
Of Cr exceeds the range of the present invention, and the elongation Elm is below the target value. In Steel No. 27, Mo exceeds the range of the present invention, and the elongation Elm falls below the target value. Steel No. 31 contains B in an excessive amount exceeding the range of the present invention, so that the heat treatment hardness decreases and the heat treatment strain increases. Steel No. 35, Nb exceeds the scope of the present invention,
Further, since Ti is not added and B is contained alone, heat treatment hardness and heat treatment strain are large.

【0088】実施例3 化学組成において本発明条件を満足する表1の鋼No.3、
No.21 に対し、表7に示すように、製造条件を種々変化
させて(プロセスNo.1〜No.11)、製造条件を機械的性
質、熱処理挙動におよぼす影響を整理した。
Example 3 Steel No. 3 in Table 1 satisfying the conditions of the present invention in chemical composition,
With respect to No. 21, as shown in Table 7, the manufacturing conditions were variously changed (processes No. 1 to No. 11), and the effects of the manufacturing conditions on the mechanical properties and heat treatment behavior were summarized.

【0089】このとき、焼鈍雰囲気において水素以外の
含有元素は窒素を主体とした、若干量の酸素を含む不可
避的混合ガス雰囲気である。結果は表8にまとめて示
す。
At this time, in the annealing atmosphere, the contained element other than hydrogen is an unavoidable mixed gas atmosphere containing nitrogen as a main component and a slight amount of oxygen. The results are summarized in Table 8.

【0090】表8に示す結果からも分かるように、鋼N
o.3に対しプロセスNo.1では、仕上熱延温度(TF)が本発
明の範囲を下回り、フェライト粒が粗粒化するためにΔ
Elが判定条件を外れ、プロセスNo.2では、巻取温度(TC)
が本発明の範囲を下回り、フェライト粒が細粒化するた
めに、焼入硬度が低下し、熱処理歪みも判定条件から外
れる。プロセスNo.6は、冷間圧延での圧下率が本発明の
範囲を外れるため、フェライト粒が細粒化するために、
熱処理歪みも判定条件から外れる。
As can be seen from the results shown in Table 8, steel N
On the other hand, in Process No. 1 as compared with o.3, the finish hot rolling temperature (TF) was below the range of the present invention, and the ferrite grains became coarse.
El is out of the judgment condition, and in process No. 2, the winding temperature (TC)
Is less than the range of the present invention, and the ferrite grains are made finer, so that the quenching hardness is reduced and the heat treatment strain is also out of the judgment condition. Process No. 6 is because the rolling reduction in the cold rolling is out of the range of the present invention, so that the ferrite grains become finer,
The heat treatment strain also falls outside the judgment conditions.

【0091】さらにプロセスNo.8では、熱延仕上温度
が、、プロセスNo.9では熱延巻取温度が本発明の範囲か
ら外れ、セメンタイト粒径と球状化率が本発明の条件か
ら外れ、この結果、Elm が判定条件から外れる。この
他、プロセスNo.11 は、焼鈍温度が本発明の範囲を超え
るため、球状化率が極端に低く、Elm が判定条件から外
れる。
Further, in the process No. 8, the hot rolling finish temperature is out of the range, in the process No. 9, the hot rolling coiling temperature is out of the range of the present invention, and the cementite particle size and the spheroidization rate are out of the conditions of the present invention. As a result, Elm is out of the judgment condition. In addition, in Process No. 11, since the annealing temperature exceeds the range of the present invention, the spheroidization rate is extremely low, and Elm falls outside the judgment conditions.

【0092】鋼No.21 に対しプロセスNo.12 では、仕上
熱延温度が本発明の範囲を下回り、フェライト粒が粗粒
化するためにΔElが判定条件を外れ、プロセスNo.13 で
は、巻取温度が本発明範囲を下回り、フェライト粒が細
粒化するため、焼入硬度が低下し、熱処理歪みも判定条
件から外れる。
Compared with steel No. 21, in process No. 12, the finishing hot rolling temperature was below the range of the present invention, and ΔEl was out of the judgment condition because the ferrite grains became coarse, and in process No. 13, winding was performed. Since the taking temperature is below the range of the present invention and the ferrite grains become finer, the quenching hardness decreases and the heat treatment strain also falls outside the judgment conditions.

【0093】プロセスNo.17 は、冷間圧延での圧下率が
本発明の範囲を外れるため、フェライト粒が細粒化する
ため、熱処理歪みも判定条件から外れる。さらにプロセ
スNo.19 では、熱延仕上温度が、プロセスNo.20 では熱
延巻取温度が本発明の範囲から外れ、セメンタイト粒径
と球状化率が本発明条件から外れ、この結果、Elm が判
定条件から外れる。
In Process No. 17, since the rolling reduction in cold rolling is out of the range of the present invention, the ferrite grains are made finer and the heat treatment strain is also out of the judgment condition. Furthermore, in process No. 19, the hot rolling finish temperature was out of the range of the present invention, and in process No. 20, the hot rolling coiling temperature was out of the range of the present invention. The condition is not met.

【0094】また、プロセスNo.22 は、焼鈍温度が本発
明の範囲を超えるため、球状化率が極端に低く、Elm が
判定条件から外れる。
Further, in Process No. 22, since the annealing temperature exceeds the range of the present invention, the spheroidization rate is extremely low, and Elm is out of the judgment conditions.

【0095】[0095]

【表1】 [Table 1]

【0096】[0096]

【表2】 [Table 2]

【0097】[0097]

【表3】 [Table 3]

【0098】[0098]

【表4】 [Table 4]

【0099】[0099]

【表5】 [Table 5]

【0100】[0100]

【表6】 [Table 6]

【0101】[0101]

【表7】 [Table 7]

【0102】[0102]

【表8】 [Table 8]

【0103】[0103]

【発明の効果】本発明により、冷間加工に際して求めら
れる高い軟質性、高延性とを備え、成形後に行われる熱
処理の際の寸法変動の小さい、いわゆるファインブラン
キングに適した鋼材が得られ、本発明を実施することに
より自動車部品等の効率的な製造が期待される。
According to the present invention, it is possible to obtain a steel material having high softness and high ductility required for cold working, small dimensional variation during heat treatment performed after forming, and suitable for so-called fine blanking, By implementing the present invention, efficient production of automobile parts and the like is expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a) は、熱処理歪み判定試験片の平面図で
あり、図1(b) はその断面図である。
FIG. 1 (a) is a plan view of a heat treatment distortion determination test piece, and FIG. 1 (b) is a sectional view thereof.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/38 C22C 38/38 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI C22C 38/38 C22C 38/38 (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量割合にて C:0.10〜0.80%、Si:0.005 〜0.30%、Mn:0.20〜1.
60%、 sol.Al:0.005 〜0.100 %、N:0.0010〜0.0100%、T
i:0.001 〜0.050 %、かつ(1) 、(2) 式を満足する鋼
組成を有し、 X=0.15×sol.Al+N−0.29×Ti−0.0030≧0 ・・・(1) Y=0.15×sol.Al+N−0.29×Ti−0.0135≦0 ・・・(2) 鋼中の平均フェライト粒径d、形状eが下記(3) 、(4)
式の条件を満足することを特徴とする軟質で熱処理歪み
の均質な高炭素鋼帯。 35<d (μm) <100 ・・・ (3) e=n1 /n2 >1.25 ・・・ (4) ここで、平均フェライト粒径dは、鋼帯表面から板厚1/
4 深さの部位の領域で1.0mm ×1.0mm の視野を100 倍で
撮影した組織写真から観察されるフェライト粒径の平均
値である。上記(4) 式で規定される形状e( n1 /n2)
は、JIS G0552 で規定される展伸粒の規定に基づき、展
伸方向に対し直角方向の単位線分あたりの粒数n1、展伸
方向の単位線分あたりの粒数n2から計算される数値であ
る。
1. A mass ratio of C: 0.10 to 0.80%, Si: 0.005 to 0.30%, Mn: 0.20 to 1.
60%, sol.Al: 0.005 to 0.100%, N: 0.0010 to 0.0100%, T
i: 0.001 to 0.050%, and having a steel composition satisfying the expressions (1) and (2), X = 0.15 × sol.Al + N−0.29 × Ti−0.0030 ≧ 0 (1) Y = 0.15 × sol.Al + N-0.29 × Ti-0.0135 ≦ 0 (2) Average ferrite grain size d and shape e in steel are as follows (3), (4)
A high carbon steel strip that is soft and has uniform heat treatment strain, characterized by satisfying the conditions of the formula. 35 <d (μm) <100 ・ ・ ・ (3) e = n 1 / n 2 > 1.25 ・ ・ ・ (4) where the average ferrite grain size d is the thickness of the steel strip 1 /
4 This is the average value of the ferrite grain size observed from a micrograph of a 1.0 mm × 1.0 mm field of view taken 100 times in the region of the depth region. Shape e (n 1 / n 2 ) defined by the above equation (4)
Is calculated from the number of grains per unit line segment in the direction orthogonal to the splaying direction n 1 and the number of grains per unit line segment in the splaying direction n 2 based on the stipulated grain specifications in JIS G0552. It is a numerical value.
【請求項2】 鋼中炭化物の平均粒径が0.3 〜2.0 μ
m、同じく球状化率≧80%を満足する請求項1記載の高
炭素鋼帯。ただし、鋼中炭化物の球状化率は、長径/短
径<5となる球状組織の占有比率を示す。
2. The average grain size of carbides in steel is 0.3 to 2.0 μm.
The high carbon steel strip according to claim 1, wherein the spheroidization rate ≧ 80%. However, the spheroidization rate of carbides in steel indicates the occupancy ratio of the spherical structure where the major axis / minor axis <5.
【請求項3】 前記平均フェライト粒径dが、展伸方向
と、展伸方向と直角方向の結晶粒の分断長さの平均値の
1.156 倍で換算した値である請求項1または2記載の記
載の高炭素鋼帯。
3. The average ferrite grain size d is the average value of the split lengths of crystal grains in the stretching direction and in the direction perpendicular to the stretching direction.
The high carbon steel strip according to claim 1 or 2, which has a value converted by 1.156 times.
【請求項4】 前記鋼中炭化物が主としてセメンタイト
である請求項2記載の高炭素鋼帯。
4. The high carbon steel strip according to claim 2, wherein the carbide in the steel is mainly cementite.
【請求項5】 降伏強度/引張強度×100(%)(YR)が40〜
80%である請求項1ないし4のいずれかに記載の高炭素
鋼帯。
5. Yield strength / tensile strength × 100 (%) (YR) is 40 to
The high carbon steel strip according to any one of claims 1 to 4, which is 80%.
【請求項6】 平均伸び値Elm が(5) 式を、伸び異方性
指数ΔElが(6) 式をそれぞれ満足する請求項1ないし5
のいずれかに記載の高炭素鋼帯。 50−40×C(%) −2×Mn(%) <Elm(%) ・・・ (5) −5<ΔEl(%) <5 ・・・ (6) ただし、Elm =(El0+2×El45+El90)/4) ΔEl=(El0−2×El45+El90)/2) El0 : 圧延方向の伸び El45: 圧延方向に45度方向の伸び El90: 圧延方向に90度方向の伸び
6. The average elongation value Elm satisfies the equation (5) and the elongation anisotropy index ΔEl satisfies the equation (6), respectively.
High carbon steel strip according to any one of. 50-40 x C (%) -2 x Mn (%) <Elm (%) ... (5) -5 <ΔEl (%) <5 ... (6) However, Elm = (El 0 + 2 x El 45 + El 90 ) / 4) ΔEl = (El 0 -2 x El 45 + El 90 ) / 2) El 0 : Elongation in rolling direction El 45 : Elongation in 45 ° direction in rolling direction El 90 : 90 ° in rolling direction Directional stretch
【請求項7】 質量割合にて C:0.10〜0.80%、Si:0.005 〜0.30%、Mn:0.20〜1.
60%、ならびに、 Cr:0.05〜1.20%、Mo:0.05〜0.40%、Nb:0.010 〜0.
050 %、およびB:0.0002〜0.0030%の内の1種または
2種以上、かつ、 sol.Al:0.005 〜0.100 %、N:0.0010〜0.0100%、T
i:0.001 〜0.050 %を含有し、下記式(1) 、(2) を満
足する鋼組成を有し、 X=0.15×sol.Al+N−0.29×Ti−0.0030≧0 ・・・(1) Y=0.15×sol.Al+N−0.29×Ti−0.0135≦0 ・・・(2) 鋼中の平均フェライト粒径d、形状eが(3) 、(4) 式の
条件を満足することを特徴とする軟質で熱処理歪みの均
質な高炭素鋼帯。 35<d (μm) <100 ・・・(3) e=n1 /n2 >1.25 ・・・(4) ここで、平均フェライト粒径dは、鋼帯表面から板厚1/
4 深さの部位の領域で1.0mm ×1.0mm の視野を100 倍で
撮影した組織写真から観察されるフェライト粒径の平均
値である。上記(4) 式で規定される形状e (n1 /n2)
は、JIS G0552 で規定される展伸粒の規定に基づき、展
伸方向に対し直角方向の単位線分あたりの粒数n1、展伸
方向の単位線分あたりの粒数n2から計算される数値であ
る。
7. A mass ratio of C: 0.10 to 0.80%, Si: 0.005 to 0.30%, Mn: 0.20 to 1.
60%, Cr: 0.05-1.20%, Mo: 0.05-0.40%, Nb: 0.010-0.
050%, and B: 0.0002 to .0030% 1, two or more of, and, sol.Al:0.005 ~0.100%, N: 0.00 10 ~0.0100%, T
i: 0.001 to 0.050% is contained and has a steel composition satisfying the following formulas (1) and (2): X = 0.15 × sol.Al + N−0.29 × Ti−0.0030 ≧ 0 (1) Y = 0.15 × sol.Al + N−0.29 × Ti−0.0135 ≦ 0 (2) The average ferrite grain size d and shape e in the steel satisfy the conditions of formulas (3) and (4). High carbon steel strip that is soft and has uniform heat treatment distortion. 35 <d (μm) <100 ・ ・ ・ (3) e = n 1 / n 2 > 1.25 ・ ・ ・ (4) where the average ferrite grain size d is the thickness of the steel strip 1 /
4 This is the average value of the ferrite grain size observed from a micrograph of a 1.0 mm × 1.0 mm field of view taken 100 times in the region of the depth region. Shape e (n 1 / n 2 ) defined by the above equation (4)
Is calculated from the number of grains per unit line segment in the direction orthogonal to the splaying direction n 1 and the number of grains per unit line segment in the splaying direction n 2 based on the stipulated grain specifications in JIS G0552. It is a numerical value.
【請求項8】さらに降伏強度/引張強度×100(%)(YR)が
40〜80%である請求項7記載の高炭素鋼帯。
8. The yield strength / tensile strength × 100 (%) (YR)
The high carbon steel strip according to claim 7, which is 40 to 80%.
【請求項9】平均伸び値Elm が下記(5) 式を、さらに伸
び異方性指数ΔElが下記(6) 式を満足する請求項7また
は8に記載の高炭素鋼帯。 50−40×C(%)−2×Mn(%) −2×Cr(%) −1×Mo(%) <Elm(%) ・(5) −5<ΔEl(%) <5 ・・・(6) ただし、Elm =(El0+2×El45+El90)/4) ΔEl=(El0−2×El45+El90)/2) El0 : 圧延方向の伸び El45: 圧延方向に45度方向の伸び El90: 圧延方向に90度方向の伸び
9. The high carbon steel strip according to claim 7, wherein the average elongation value Elm satisfies the following formula (5) and the elongation anisotropy index ΔEl satisfies the following formula (6). 50−40 × C (%) − 2 × Mn (%) −2 × Cr (%) −1 × Mo (%) <Elm (%) <(5) −5 <ΔEl (%) <5 ... (6) However, Elm = (El 0 + 2 x El 45 + El 90 ) / 4) ΔEl = (El 0 -2 x El 45 + El 90 ) / 2) El 0 : elongation in rolling direction El 45 : 45 in rolling direction Elongation in 90 ° direction El 90 : Elongation in 90 ° direction in rolling direction
【請求項10】 仕上温度Ac1 +80℃〜Ac1 +160 ℃の
範囲で熱間圧延後、550 〜700 ℃の範囲で巻取り、酸洗
後、Ac1 −80℃〜Ac1 +30℃で、雰囲気中の水素濃度が
質量比で90%以上の条件で箱焼鈍することを特徴とす
る、請求項1ないし9のいずれかに記載の高炭素鋼帯の
製造方法。
After hot rolling at 10. finishing temperature Ac 1 + 80 ° C. range to Ac 1 +160 ° C., the winding range of 550 to 700 ° C., after pickling, in Ac 1 -80 ℃ ~Ac 1 + 30 ℃, The method for producing a high carbon steel strip according to any one of claims 1 to 9, wherein the box annealing is performed under the condition that the hydrogen concentration in the atmosphere is 90% or more by mass ratio.
【請求項11】 仕上温度Ac1 +80℃〜Ac1 +160 ℃の
範囲で熱間圧延後、550 〜700 ℃の範囲で巻取り、酸洗
後、圧下率5〜30%で冷間圧延した後、さらにAc1 −50
℃〜Ac1 +30℃で、雰囲気中の水素濃度が質量比で90%
以上の条件で箱焼鈍を行うことを特徴とする、請求項1
ないし9のいずれかに記載の高炭素鋼帯の製造方法。
11. After hot rolling at a finishing temperature Ac 1 + 80 ° C. range ~Ac 1 +160 ℃, 550 ~700 winding in the range of ° C., after pickling, after cold rolling at a reduction rate of 5-30% , And further Ac 1 −50
℃ ~ Ac 1 + 30 ℃, hydrogen concentration in the atmosphere is 90% by mass ratio
The box annealing is performed under the above conditions.
10. The method for producing a high carbon steel strip according to any one of 9 to 9.
【請求項12】 仕上温度Ac1 +80℃〜Ac1 +160 ℃の
範囲で熱間圧延後、550 〜700 ℃の範囲で巻取り、酸洗
後、Ac1 −80℃〜Ac1 +30℃で、雰囲気中の水素濃度が
量比で90%以上の条件で箱焼鈍を行い、さらに圧下率
5〜30%で冷間圧延した後、引き続きAc1 −50℃〜Ac1
+30℃で、雰囲気中の水素濃度が質量比で90%以上の条
件で箱焼鈍を行うことを特徴とする、請求項1ないし9
のいずれかに記載の高炭素鋼帯の製造方法。
After hot rolling at 12. finishing temperature Ac 1 + 80 ° C. range to Ac 1 +160 ° C., the winding range of 550 to 700 ° C., after pickling, in Ac 1 -80 ℃ ~Ac 1 + 30 ℃, The hydrogen concentration in the atmosphere
Performed box annealing at mass ratio of 90% or more of the conditions, after cold rolling still at a reduction rate of 5-30%, subsequently Ac 1 -50 ℃ ~Ac 1
The box annealing is carried out at + 30 ° C. under the condition that the hydrogen concentration in the atmosphere is 90% or more by mass ratio.
The method for producing a high carbon steel strip according to any one of 1.
JP2000026618A 2000-02-03 2000-02-03 Soft high carbon steel strip with small heat treatment distortion and method for producing the same Expired - Fee Related JP3460659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026618A JP3460659B2 (en) 2000-02-03 2000-02-03 Soft high carbon steel strip with small heat treatment distortion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026618A JP3460659B2 (en) 2000-02-03 2000-02-03 Soft high carbon steel strip with small heat treatment distortion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001220642A JP2001220642A (en) 2001-08-14
JP3460659B2 true JP3460659B2 (en) 2003-10-27

Family

ID=18552334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026618A Expired - Fee Related JP3460659B2 (en) 2000-02-03 2000-02-03 Soft high carbon steel strip with small heat treatment distortion and method for producing the same

Country Status (1)

Country Link
JP (1) JP3460659B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2375145C2 (en) * 2003-10-10 2009-12-10 Ньюкор Корпорейшн Casting of steel strip
US7484551B2 (en) 2003-10-10 2009-02-03 Nucor Corporation Casting steel strip
US7163047B2 (en) 2005-03-21 2007-01-16 Nucor Corporation Pinch roll apparatus and method for operating the same
US7168478B2 (en) 2005-06-28 2007-01-30 Nucor Corporation Method of making thin cast strip using twin-roll caster and apparatus therefor
JP5050433B2 (en) * 2005-10-05 2012-10-17 Jfeスチール株式会社 Method for producing extremely soft high carbon hot-rolled steel sheet
JP5292698B2 (en) * 2006-03-28 2013-09-18 Jfeスチール株式会社 Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP5126844B2 (en) * 2008-08-19 2013-01-23 新日鐵住金株式会社 Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP5619668B2 (en) * 2011-04-18 2014-11-05 本田技研工業株式会社 Cold stamping steel and steel belt element using the same
JP5549640B2 (en) 2011-05-18 2014-07-16 Jfeスチール株式会社 High carbon steel sheet and method for producing the same
KR101600723B1 (en) * 2011-09-09 2016-03-07 신닛테츠스미킨 카부시키카이샤 Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member
JP5644966B2 (en) * 2012-01-05 2014-12-24 Jfeスチール株式会社 High carbon hot-rolled steel sheet with excellent in hardenability and low in-plane anisotropy and method for producing the same
JP5768781B2 (en) * 2012-08-09 2015-08-26 新日鐵住金株式会社 High carbon steel sheet
CN113544299B (en) * 2019-03-22 2023-08-15 日本制铁株式会社 High-strength steel sheet and method for producing same
KR102658165B1 (en) * 2019-03-22 2024-04-19 닛폰세이테츠 가부시키가이샤 High-strength steel plate and its manufacturing method
CN110846573A (en) * 2019-11-07 2020-02-28 包头钢铁(集团)有限责任公司 Seamless steel tube for X80 conveying pipeline and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001220642A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
JP5292698B2 (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
EP1731626A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP6583587B2 (en) Carburizing steel sheet and method for manufacturing carburizing steel sheet
EP1932933A1 (en) Dead-soft high-carbon hot-rolled steel sheet and process for producing the same
JP3460659B2 (en) Soft high carbon steel strip with small heat treatment distortion and method for producing the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
US10077485B2 (en) Steel sheet for soft-nitriding and method for manufacturing the same
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
KR20160138231A (en) High-carbon hot-rolled steel sheet and method for producing same
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
EP2955242A1 (en) Steel sheet for nitriding and production method therefor
CN111655893B (en) High carbon hot-rolled steel sheet and method for producing same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
EP2868764B1 (en) Steel sheet for soft nitriding and method for manufacturing the same
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JPWO2019131099A1 (en) Hot rolled steel sheet and method for producing the same
JP2004250768A (en) Steel for machine structural having excellent cold workability and low decarburizing property, and production method therefor
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH08246051A (en) Production of medium carbon steel sheet excellent in workability
EP4074855B1 (en) Hot-rolled steel sheet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030715

R150 Certificate of patent or registration of utility model

Ref document number: 3460659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees