JP4320753B2 - Production method and use of metal fine particles - Google Patents

Production method and use of metal fine particles Download PDF

Info

Publication number
JP4320753B2
JP4320753B2 JP2003146678A JP2003146678A JP4320753B2 JP 4320753 B2 JP4320753 B2 JP 4320753B2 JP 2003146678 A JP2003146678 A JP 2003146678A JP 2003146678 A JP2003146678 A JP 2003146678A JP 4320753 B2 JP4320753 B2 JP 4320753B2
Authority
JP
Japan
Prior art keywords
fine particles
metal fine
chemical formula
rod
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003146678A
Other languages
Japanese (ja)
Other versions
JP2004346396A (en
Inventor
寛樹 平田
佳明 高田
成圭 李
大剛 溝口
眞興 石原
聖人 室内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2003146678A priority Critical patent/JP4320753B2/en
Publication of JP2004346396A publication Critical patent/JP2004346396A/en
Application granted granted Critical
Publication of JP4320753B2 publication Critical patent/JP4320753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ナノサイズの金属微粒子の製造において、ロッド状金属微粒子の再現性を高めた製造方法に関する。本発明の製造方法によればロッド状の金属微粒子を再現性良く製造できるので、目的の金属微粒子を効率よく安定に得ることができる。
【0002】
【従来の技術】
金属微粒子に光を照射するとプラズモン吸収と呼ばれる共鳴吸収現象が生じる。この吸収現象は金属の種類と形状によって吸収波長域が異なる。例えば、球状の金微粒子が水に分散した金コロイドは530nm付近に吸収域を持つが、ロッド状金微粒子が存在すると530nmよりも長波長側にも吸収ピークが現れることが知られている。(例えば、S-S.Chang et al,Langmuir,1999,15.p701-709)。
【0003】
このようなロッド状の金属微粒子を製造する方法として電気化学的方法が従来知られている。この方法は、例えば超音波振動装置の上に電解セルを設け、セル内の電解液に陰極(白金板)および陽極(金板)を配設した電解装置を用い、ヘキサデシルトリメチルアンモニウムブロミド(CTAB)、テトラデシルアンモニウムブロミド(TC10AB)、またはテトラドデシルアンモニウムブロミド(TC12AB)を含む電解液を用いて金属微粒子を製造する方法である(C.R.Wang et al, Langmuir 1999, 15, 701-709)。
【0004】
【発明が解決しようとする課題】
しかし、従来の上記方法によって製造した金属微粒子はロッド状金属微粒子の再現性が低いと云う問題がある。本発明は従来の製造方法における上記問題を解決したものであり、ロッド状金属微粒子の再現性に優れた製造方法を提供し、さらに本方法によって製造した金属微粒子の用途を提供するものである。なお、本発明においてロッド状金属微粒子の再現性とは生成濃度、粒子の寸法ないしアスペクト比の再現性を含む意味である。
【0005】
【課題を解決する手段】
本発明は以下の金属微粒子の製造方法に関する。
〔1〕 界面活性剤を含む溶液中で金属イオンを電気化学的に還元して金属微粒子を製造する方法において、以下の化学式[I]で表される界面活性剤と、化学式[II]で表される界面活性剤とを含み、
化学式[I]で表される界面活性剤としてヘキサデシルトリメチルアンモニウムブロミド(CTAB)を用い、
化学式[II]で表される界面活性剤の濃度を、nが1〜9のときは0.006〜0.020mol/Lに制御し、nが10〜15のときは0.002〜0.005mol/Lに制御して、
ロッド状の金属微粒子を製造することを特徴とする金属微粒子の製造方法。
CH3(CH2)n+(CH3)3Br- (n=1〜15の整数)… [I]
(CH3(CH2)n)4+Br- (n=1〜15の整数)… [II]
【0006】
また、本発明は以下の金属微粒子を用いた材料ないし用途に関する。
(2)上記(1)の方法によって製造された金属微粒子を含有するガラス材または樹脂材。
(3)上記(1)の方法によって製造された金属微粒子を含有する塗料組成物。
(4)上記(1)の方法によって製造された金属微粒子を分散させた光学フィルター、または電磁波遮蔽材。
(5)上記(1)の方法によって製造された金属微粒子を線状配列、平面状配列、または3次元に配列させることによって形成された金属微粒子集合体。
(6)上記(5)の金属微粒子集合体を用いた集積回路の配線材。
【0007】
【具体的な説明】
本発明の製造方法は、界面活性剤を含む溶液中で金属イオンを電気化学的に還元して金属微粒子を製造する方法において、以下の化学式[I]で表される界面活性剤と、化学式[II]で表される界面活性剤とを含み、
化学式[I]で表される界面活性剤としてヘキサデシルトリメチルアンモニウムブロミド(CTAB)を用い、
化学式[II]で表される界面活性剤の濃度を、nが1〜9のときは0.006〜0.020mol/Lに制御し、nが10〜15のときは0.002〜0.005mol/Lに制御して、
ロッド状の金属微粒子を製造することを特徴とする金属微粒子の製造方法である。
CH3(CH2)n+(CH3)3Br- (n=1〜15の整数)… [I]
(CH3(CH2)n)4+Br- (n=1〜15の整数)… [II]
【0008】
上記化学式(I)で表される界面活性剤は、アンモニウムイオン(NH4 +)の水素が3つのメチル基と一つのエチル基以上の長さを有するアルキル基によって置換された構造を有する4級アンモニウム塩である。この化学式(I)で表される界面活性剤としては、例えば、ヘキサデシルトリメチルアンモニウムブロミド〔CTAB:CH3(CH2)15N+(CH3)3Br-〕を用いることができる。
【0009】
上記化学式(II)で表される界面活性剤はアンモニウムイオン(NH4 +)の水素が炭素数の等しい直鎖状のアルキル基によって置換された構造を有する4級アンモニウム塩である。この上記化学式(II)で表される界面活性剤としては、例えば、テトラブチルアンモニウムブロミド(TC4AB)、テトラペンチルアンモニウムブロミド(TC5AB)、テトラヘキシルアンモニウムブロミド(TC6AB)、テトラヘプチルアンモニウムブロミド(TC7AB)、テトラオクチルアンモニウムブロミド(TC8AB)、テトラデシルアンモニウムブロミド(TC10AB)、およびテトラドデシルアンモニウムブロミド(TC12AB)が挙げられる。
【0010】
本発明の製造方法は、化学式(I)で表される界面活性剤と化学式(II)で表される界面活性剤とを含む溶液を電解液として用いる。化学式(I)で表される界面活性剤の濃度は0.01〜0.1mol/Lが好ましい。この濃度範囲を外れるとロッド状金属微粒子の生成割合が低下する。また化学式(II)で表される界面活性剤の濃度は、nが1〜9のときは0.006〜0.020mol/Lの範囲に調整し、nが10〜15のときは0.002〜0.005mol/Lの範囲に調整する。化学式(II)で表される界面活性剤の濃度がこの範囲を外れるとロッド状金属微粒子の再現性が低下する。なお、化学式(I)、(II)の界面活性剤は本発明の効果を失わない範囲で不純物ないしアルキル鎖長の異なる炭素数の界面活性剤を含んでいても良い。例えば、一般に市販されている界面活性剤は目的のアルキル鎖長と異なる炭素素の界面活性剤が混在しているが、試薬水準(例えば98%以上)の純度であれば本発明の効果が発現する。
【0011】
上記溶液はアセトンなどのケトン類およびシクロヘキサンを添加したものが好ましい。これらを添加した溶液を電解液として用いることによって効率よくロッド状金属微粒子を生成することができる。
【0012】
本発明の電解は図1に示す構造の電解装置を用いて行うと良い。図示する電解装置は超音波装置10と反応槽12を有しており、超音波装置10の水槽11の中に反応槽12が設置されており、反応槽12のなかに陽極1、陰極2が設けられている。さらに陰極2の側方には電圧をかけない金属板3が電極に並設されている。陽極1には目的の金属種の板を用い、陰極2および金属板3の金属種は陽極1に応じて選択すればよい。例えば、金の微粒子を製造する場合には陽極1に金板を用い、陰極2に白金板またはステンレス板、金属板3に銀板を用いると良い。
【0013】
ロッド状金属微粒子の生成過程は次のように考えられる。まず、陽極1に電圧をかけると陽極1から金属イオンが溶出され、陰極2で還元される。陰極2の表面で還元された金属イオンはクラスターを形成し、このクラスターが次第に成長して陰極2から離れる。この離れたクラスターは電解液中の界面活性剤等の影響によって一方向の成長が促され、ロッド状金属微粒子が生成される。
【0014】
この電解時に超音波を照射することによって、陽極1および陰極2が振動を受け、陽極1から金属イオンが溶出され易くなり、また陰極2からクラスターが剥離し易くなると考えられる。また、陰極2の側方に設けた金属板3からはこの金属板3を構成する原子がイオンとして溶出し、ロッド状金属微粒子の生成を助ける。金属板3を設けないとロッド状金属微粒子の生成効率が著しく低下する。
【0015】
〔ロッド状金属微粒子〕
以上の製造方法によれば、ロッド状金属微粒子の生成濃度が一定であり、しかもロッド状金属微粒子の寸法ないしアスペクト比について再現性良く製造することができる。具体的には、本発明に係る製造方法によれば、製造ロッドごとの金属微粒子について、例えばロッド状金属微粒子による吸光ピーク位置のバラツキは概ね±50nm以内であり、吸光ピークの強度比は2以上である。なお、吸光ピークの強度比とはロッド状金属微粒子による吸光ピークの強度[Prd]と、球状金属微粒子による吸光ピークの強度[Psp]との比([Prd]/[Psp])を云う。再現性の低いものはロッド状金属微粒子の寸法やアスペクト比のバラツキが大きく、ロッド状金属微粒子による吸光ピークの位置が大きくずれ、また、吸光ピーク強度比のバラツキも大きくなる。
【0016】
本発明の金属微粒子は、これをガラス材、樹脂材に含有させて用いることができる。また、この金属微粒子を含有する塗料組成物として用いることができる。さらに、例えば、近赤外光域に対して吸収を有するロッド状金微粒子を分散させた光学フィルターは近赤外光の吸収効果に優れており、また電磁波遮蔽材としても用いることができる。この他に本発明の金属微粒子を線状配列、平面状配列、または3次元に配列させることによって形成した金属微粒子の集合体は集積回路の配線材として利用することができる。
【0017】
【実施例】
以下、本発明の実施例を示す。なお、各実施例において、CTABはMERCK社製品、それ以外の界面活性剤は関東化学社製品を用いた。
【0018】
〔実施例1〕
蒸留水にヘキサデシルトリメチルアンモニウムブロミド[CTAB]を濃度が0.08mol/Lになるように溶解させ、更に、これにテトラヘキシルアンモニウムブロミド[TC6AB]を濃度が0.009mol/Lになるように加えた水溶液100gを調製した。この水溶液にアセトン1.1g、シクロヘキサン0.7gを添加したものを電解液として用い、図1の電解装置によって電解還元を行った。陽極1には純度99.9%以上の金板を用い、陰極2には純度99.9%以上の白金板を用い、金属板3には99.9%以上の銀板を用いた。電解還元は20mAの定電流を120分通電した。この電解還元によって得た金微粒子水分散液について、分光スペクトル(日本分光社製:V570)による吸光ピークとその強度を測定し、また、高分解能TEM(フィリップ社製CM20)によって粒子形状を観察した。この結果を表1に示した。更にこの製造を3回行い、各製造回数で得た金微粒子水分散液について吸光ピークの位置とピーク強度比を表1に示した。
【0019】
〔実施例2〜4〕
実施例1のTC6ABに代えて、TC4ABを0.017mol/L、TC8ABを0.015mol/L、TC12ABを0.004mol/L用いた以外は実施例1と同様にして金微粒子を製造した。得られた金微粒子の測定結果を表1に示した。
【0020】
〔比較例1〜4〕
実施例1のTC6AB0.009mol/Lに代えて、TC6AB、TC4AB、TC8AB、TC12ABをおのおの0.0054mol/L用いた以外は実施例1と同様にして金微粒子を製造した。得られた金微粒子の測定結果を表1に示した。
【0021】
表1の結果に示すように、本発明の実施例1〜4は製造3回分の金微粒子水分散液について何れも吸光波長のピーク位置のバラツキが±50nm以内であり、また吸光ピークの強度比は2以上であって再現性が高い。一方、比較例1は化学式(II)で表される界面活性剤(n=5)の濃度が本発明の濃度範囲よりやや低いためにロッド状金微粒子の再現性が悪く、製造3回分の金微粒子水分散液について吸光波長のピーク位置が200nm以上ずれており、吸光ピークの強度比のバラツキも大きい。同様に比較例2、3は化学式(II)で表される界面活性剤(n=3、7)の濃度が本発明の濃度範囲よりやや低い例であるが、これらは製造3回分のうちロッド状金微粒子が生成されない場合があり、再現性が大幅に低い。また、比較例4は化学式(II)で表される界面活性剤(n=11)の濃度が本発明の濃度範囲よりやや高い例であり、この例でもロッド状金微粒子が生成されない場合があり、再現性が大幅に低い。
【0022】
【表1】

Figure 0004320753
【0023】
【発明の効果】
本発明の製造方法によれば、化学式(I)で表される界面活性剤と、化学式(II)で表される界面活性剤を含み、この化学式(II)で表される界面活性剤についてはアルキル基の長さ(nの数)に応じた特定濃度に調整した溶液を電解液として用いることによって、ナノサイズの金属微粒子を再現性よく製造することができ、従って、目的の寸法やアスペクト比のロッド状金属微粒子を一定濃度で得ることができる。
【0024】
本発明の方法によって製造されるロッド状金属微粒子はアスペクト比を調整することによって吸収波長域を制御できるので、任意の特定波長に対して選択的に光吸収効果の高い材料を容易に得ることができる。製造した金属微粒子は特定波長を吸収する光学フィルター材料として好適であり、さらには電磁遮蔽材料、集積回路の配線材などにも利用することができる。また、本発明に係る金属微粒子は塗料組成物、フィルムなど種々の形態で使用することができる。
【図面の簡単な説明】
【図1】 本発明の製造方法に用いる電解装置の概略図
【符号の説明】
1−電極(陽極)、2−電極(陰極)、3−金属板、10−超音波装置、11−水槽、12−反応槽。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a production method in which reproducibility of rod-shaped metal fine particles is improved in the production of nano-sized metal fine particles. According to the production method of the present invention, rod-shaped metal fine particles can be produced with good reproducibility, and the target metal fine particles can be obtained efficiently and stably.
[0002]
[Prior art]
When the metal fine particles are irradiated with light, a resonance absorption phenomenon called plasmon absorption occurs. This absorption phenomenon has different absorption wavelength ranges depending on the type and shape of the metal. For example, it is known that a gold colloid in which spherical gold fine particles are dispersed in water has an absorption region near 530 nm, but if a rod-shaped gold fine particle is present, an absorption peak appears on a longer wavelength side than 530 nm. (For example, SS. Chang et al, Langmuir, 1999, 15. p701-709).
[0003]
An electrochemical method is conventionally known as a method for producing such rod-shaped metal fine particles. In this method, for example, an electrolytic cell is provided on an ultrasonic vibration device, and an electrolytic device in which a cathode (platinum plate) and an anode (gold plate) are disposed in an electrolytic solution in the cell, hexadecyltrimethylammonium bromide (CTAB) ), Tetradecylammonium bromide (TC10AB), or an electrolyte containing tetradodecylammonium bromide (TC12AB) (CRWang et al, Langmuir 1999, 15, 701-709).
[0004]
[Problems to be solved by the invention]
However, the metal fine particles produced by the conventional method have a problem that the reproducibility of the rod-shaped metal fine particles is low. This invention solves the said problem in the conventional manufacturing method, provides the manufacturing method excellent in the reproducibility of a rod-shaped metal microparticle, and also provides the use of the metal microparticle manufactured by this method. In the present invention, the reproducibility of the rod-shaped metal fine particles includes the reproducibility of the production concentration, the particle size or the aspect ratio.
[0005]
[Means for solving the problems]
The present invention relates to the following method for producing fine metal particles.
[1] In a method for producing metal fine particles by electrochemically reducing metal ions in a solution containing a surfactant, a surfactant represented by the following chemical formula [I] and a chemical formula [II] A surfactant,
Using hexadecyltrimethylammonium bromide (CTAB) as the surfactant represented by the chemical formula [I],
The concentration of the surfactant represented by the chemical formula [II] is controlled to 0.006 to 0.020 mol / L when n is 1 to 9, and 0.002 to 0.00 when n is 10 to 15. Control to 005 mol / L,
A method for producing metal fine particles, comprising producing rod-shaped metal fine particles .
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n = 1 to 15)… [I]
(CH 3 (CH 2 ) n ) 4 N + Br (n = 1 to 15)… [II]
[0006]
The present invention also relates to materials and uses using the following metal fine particles.
(2) A glass material or resin material containing fine metal particles produced by the method of (1) above.
(3) A coating composition containing fine metal particles produced by the method of (1) above.
(4) An optical filter or an electromagnetic shielding material in which metal fine particles produced by the method (1) are dispersed.
(5) A metal fine particle aggregate formed by arranging the metal fine particles produced by the method (1) in a linear array, a planar array, or a three-dimensional array.
(6) A wiring material for an integrated circuit using the metal fine particle aggregate of (5).
[0007]
[Specific explanation]
The production method of the present invention is a method for producing metal fine particles by electrochemically reducing metal ions in a solution containing a surfactant, and a surfactant represented by the following chemical formula [I]: II] and a surfactant represented by
Using hexadecyltrimethylammonium bromide (CTAB) as the surfactant represented by the chemical formula [I],
The concentration of the surfactant represented by the chemical formula [II] is controlled to 0.006 to 0.020 mol / L when n is 1 to 9, and 0.002 to 0.00 when n is 10 to 15. Control to 005 mol / L,
A method for producing metal fine particles, comprising producing rod-shaped metal fine particles .
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n = 1 to 15)… [I]
(CH 3 (CH 2 ) n ) 4 N + Br (n = 1 to 15)… [II]
[0008]
The surfactant represented by the chemical formula (I) is a quaternary compound having a structure in which hydrogen of ammonium ion (NH 4 + ) is substituted with three methyl groups and an alkyl group having a length of one ethyl group or more. Ammonium salt. As the surfactant represented by the chemical formula (I), for example, hexadecyltrimethylammonium bromide [CTAB: CH 3 (CH 2 ) 15 N + (CH 3 ) 3 Br ] can be used.
[0009]
The surfactant represented by the chemical formula (II) is a quaternary ammonium salt having a structure in which hydrogen of ammonium ion (NH 4 + ) is substituted by a linear alkyl group having the same carbon number. Examples of the surfactant represented by the chemical formula (II) include tetrabutylammonium bromide (TC4AB), tetrapentylammonium bromide (TC5AB), tetrahexylammonium bromide (TC6AB), tetraheptylammonium bromide (TC7AB), Examples include tetraoctyl ammonium bromide (TC8AB), tetradecyl ammonium bromide (TC10AB), and tetradodecyl ammonium bromide (TC12AB).
[0010]
In the production method of the present invention, a solution containing a surfactant represented by the chemical formula (I) and a surfactant represented by the chemical formula (II) is used as an electrolytic solution. The concentration of the surfactant represented by the chemical formula (I) is preferably 0.01 to 0.1 mol / L. If the concentration is out of this range, the generation ratio of rod-shaped metal fine particles is lowered. The concentration of the surfactant represented by the chemical formula (II) is adjusted in the range of 0.006 to 0.020 mol / L when n is 1 to 9, and 0.002 when n is 10 to 15. Adjust to the range of ~ 0.005 mol / L. When the concentration of the surfactant represented by the chemical formula (II) is out of this range, the reproducibility of the rod-shaped metal fine particles is lowered. The surfactants represented by the chemical formulas (I) and (II) may contain surfactants having different carbon numbers from impurities or alkyl chain lengths as long as the effects of the present invention are not lost. For example, a commercially available surfactant contains a carbon surfactant different from the target alkyl chain length, but the effect of the present invention is manifested if the purity is at a reagent level (eg, 98% or higher). To do.
[0011]
The solution is preferably a solution to which ketones such as acetone and cyclohexane are added. By using a solution to which these are added as an electrolytic solution, rod-shaped metal fine particles can be efficiently generated.
[0012]
The electrolysis of the present invention is preferably performed using an electrolysis apparatus having the structure shown in FIG. The illustrated electrolysis apparatus includes an ultrasonic device 10 and a reaction tank 12. A reaction tank 12 is installed in a water tank 11 of the ultrasonic apparatus 10, and an anode 1 and a cathode 2 are provided in the reaction tank 12. Is provided. Further, on the side of the cathode 2, a metal plate 3 that does not apply voltage is arranged in parallel with the electrode. A plate of a target metal species is used for the anode 1, and the metal species of the cathode 2 and the metal plate 3 may be selected according to the anode 1. For example, when producing gold fine particles, a gold plate may be used for the anode 1, a platinum plate or a stainless plate for the cathode 2, and a silver plate for the metal plate 3.
[0013]
The formation process of rod-shaped metal fine particles is considered as follows. First, when a voltage is applied to the anode 1, metal ions are eluted from the anode 1 and reduced at the cathode 2. The metal ions reduced on the surface of the cathode 2 form a cluster, and this cluster gradually grows away from the cathode 2. The separated clusters are promoted to grow in one direction by the influence of the surfactant in the electrolytic solution, and rod-shaped metal fine particles are generated.
[0014]
By irradiating the ultrasonic wave during the electrolysis, the anode 1 and the cathode 2 are vibrated, so that metal ions are easily eluted from the anode 1 and the clusters are easily separated from the cathode 2. In addition, atoms constituting the metal plate 3 are eluted as ions from the metal plate 3 provided on the side of the cathode 2 to assist in the production of rod-shaped metal fine particles. If the metal plate 3 is not provided, the production efficiency of rod-shaped metal fine particles is remarkably lowered.
[0015]
[Rod metal fine particles]
According to the above manufacturing method, the production concentration of rod-shaped metal fine particles is constant, and the size or aspect ratio of the rod-shaped metal fine particles can be manufactured with good reproducibility. Specifically, according to the production method according to the present invention, for the metal fine particles for each production rod, for example, the variation in the absorption peak position due to the rod-shaped metal fine particles is generally within ± 50 nm, and the intensity ratio of the absorption peaks is 2 or more. It is. The intensity ratio of the absorption peak means the ratio ([Prd] / [Psp]) of the intensity [Prd] of the absorption peak due to the rod-shaped metal fine particles and the intensity [Psp] of the absorption peak due to the spherical metal fine particles. Those having low reproducibility have large variations in the size and aspect ratio of the rod-shaped metal fine particles, the position of the light absorption peak due to the rod-shaped metal fine particles is greatly shifted, and the variation in the light absorption peak intensity ratio also increases.
[0016]
The metal fine particles of the present invention can be used by containing them in a glass material or a resin material. Further, it can be used as a coating composition containing the metal fine particles. Furthermore, for example, an optical filter in which rod-shaped gold fine particles having absorption in the near-infrared light region are dispersed is excellent in the effect of absorbing near-infrared light, and can also be used as an electromagnetic wave shielding material. In addition, the aggregate of metal fine particles formed by arranging the metal fine particles of the present invention in a linear array, a planar array, or a three-dimensional array can be used as a wiring material for an integrated circuit.
[0017]
【Example】
Examples of the present invention will be described below. In each example, CTAB was a product of MERCK, and the other surfactants were products of Kanto Chemical.
[0018]
[Example 1]
Hexadecyltrimethylammonium bromide [CTAB] is dissolved in distilled water to a concentration of 0.08 mol / L, and tetrahexylammonium bromide [TC6AB] is added to this to a concentration of 0.009 mol / L. 100 g of an aqueous solution was prepared. An electrolytic solution obtained by adding 1.1 g of acetone and 0.7 g of cyclohexane to the aqueous solution was used as an electrolytic solution, and electrolytic reduction was performed using the electrolytic apparatus shown in FIG. A gold plate having a purity of 99.9% or more was used for the anode 1, a platinum plate having a purity of 99.9% or more was used for the cathode 2, and a silver plate having a purity of 99.9% or more was used for the metal plate 3. For electrolytic reduction, a constant current of 20 mA was applied for 120 minutes. About the gold fine particle water dispersion obtained by this electrolytic reduction, the absorption peak by the spectrum (JASCO Corp .: V570) and its intensity were measured, and the particle shape was observed by high resolution TEM (Philip CM20). . The results are shown in Table 1. Further, this production was carried out three times, and the position of the absorption peak and the peak intensity ratio of the gold fine particle aqueous dispersion obtained in each production number are shown in Table 1.
[0019]
[Examples 2 to 4]
Gold fine particles were produced in the same manner as in Example 1 except that 0.017 mol / L of TC4AB, 0.015 mol / L of TC8AB, and 0.004 mol / L of TC12AB were used instead of TC6AB of Example 1. The measurement results of the obtained gold fine particles are shown in Table 1.
[0020]
[Comparative Examples 1-4]
Gold fine particles were produced in the same manner as in Example 1 except that TC6AB, TC4AB, TC8AB, and TC12AB were used in an amount of 0.0054 mol / L instead of TC6AB 0.009 mol / L in Example 1. The measurement results of the obtained gold fine particles are shown in Table 1.
[0021]
As shown in the results of Table 1, in Examples 1 to 4 of the present invention, the dispersion of the peak position of the absorption wavelength is within ± 50 nm for the gold fine particle aqueous dispersion for three productions, and the intensity ratio of the absorption peak Is 2 or more and has high reproducibility. On the other hand, in Comparative Example 1, the concentration of the surfactant represented by the chemical formula (II) (n = 5) is slightly lower than the concentration range of the present invention. The peak position of the absorption wavelength of the fine particle aqueous dispersion is shifted by 200 nm or more, and the variation in the intensity ratio of the absorption peak is large. Similarly, Comparative Examples 2 and 3 are examples in which the concentration of the surfactant (n = 3, 7) represented by the chemical formula (II) is slightly lower than the concentration range of the present invention. In some cases, fine gold particles are not generated, and reproducibility is significantly low. Comparative Example 4 is an example in which the concentration of the surfactant (n = 11) represented by the chemical formula (II) is slightly higher than the concentration range of the present invention. In this example, rod-shaped gold fine particles may not be generated. The reproducibility is significantly low.
[0022]
[Table 1]
Figure 0004320753
[0023]
【The invention's effect】
According to the production method of the present invention, the surfactant represented by the chemical formula (I) and the surfactant represented by the chemical formula (II) are included, and the surfactant represented by the chemical formula (II) By using a solution adjusted to a specific concentration according to the length of the alkyl group (the number of n) as an electrolyte, nano-sized metal fine particles can be produced with good reproducibility. The rod-shaped metal fine particles can be obtained at a constant concentration.
[0024]
Since the rod-shaped metal fine particles produced by the method of the present invention can control the absorption wavelength region by adjusting the aspect ratio, it is possible to easily obtain a material having a high light absorption effect selectively for any specific wavelength. it can. The produced metal fine particles are suitable as an optical filter material that absorbs a specific wavelength, and can also be used for electromagnetic shielding materials, wiring materials for integrated circuits, and the like. Moreover, the metal fine particles according to the present invention can be used in various forms such as a coating composition and a film.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an electrolysis apparatus used in the production method of the present invention.
1-electrode (anode), 2-electrode (cathode), 3-metal plate, 10-ultrasonic device, 11-water tank, 12-reaction tank.

Claims (6)

界面活性剤を含む溶液中で金属イオンを電気化学的に還元して金属微粒子を製造する方法において、以下の化学式[I]で表される界面活性剤と、化学式[II]で表される界面活性剤とを含み、
化学式[I]で表される界面活性剤としてヘキサデシルトリメチルアンモニウムブロミド(CTAB)を用い、
化学式[II]で表される界面活性剤の濃度を、nが1〜9のときは0.006〜0.020mol/Lに制御し、nが10〜15のときは0.002〜0.005mol/Lに制御して、
ロッド状の金属微粒子を製造することを特徴とする金属微粒子の製造方法。
CH3(CH2)n+(CH3)3Br- (n=1〜15の整数)… [I]
(CH3(CH2)n)4+Br- (n=1〜15の整数)… [II]
In a method for producing metal fine particles by electrochemically reducing metal ions in a solution containing a surfactant, a surfactant represented by the following chemical formula [I] and an interface represented by the chemical formula [II] An active agent,
Using hexadecyltrimethylammonium bromide (CTAB) as the surfactant represented by the chemical formula [I],
The concentration of the surfactant represented by the chemical formula [II] is controlled to 0.006 to 0.020 mol / L when n is 1 to 9, and 0.002 to 0.00 when n is 10 to 15. Control to 005 mol / L,
A method for producing metal fine particles, comprising producing rod-shaped metal fine particles .
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n = 1 to 15)… [I]
(CH 3 (CH 2 ) n ) 4 N + Br (n = 1 to 15)… [II]
請求項1の方法によって製造された金属微粒子を含有するガラス材、または樹脂材。  A glass material or resin material containing metal fine particles produced by the method of claim 1. 請求項1の方法によって製造された金属微粒子を含有する塗料組成物。  The coating composition containing the metal microparticles manufactured by the method of Claim 1. 請求項1の方法によって製造された金属微粒子を分散させた光学フィルター、または電磁波遮蔽材。  An optical filter or an electromagnetic wave shielding material in which metal fine particles produced by the method of claim 1 are dispersed. 請求項1の方法によって製造された金属微粒子を線状配列、平面状配列、または3次元に配列させることによって形成された金属微粒子集合体。  A metal fine particle aggregate formed by arranging metal fine particles produced by the method of claim 1 in a linear array, a planar array, or a three-dimensional array. 請求項5の金属微粒子集合体を用いた集積回路の配線材。  A wiring material for an integrated circuit using the metal fine particle assembly according to claim 5.
JP2003146678A 2003-05-23 2003-05-23 Production method and use of metal fine particles Expired - Fee Related JP4320753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146678A JP4320753B2 (en) 2003-05-23 2003-05-23 Production method and use of metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146678A JP4320753B2 (en) 2003-05-23 2003-05-23 Production method and use of metal fine particles

Publications (2)

Publication Number Publication Date
JP2004346396A JP2004346396A (en) 2004-12-09
JP4320753B2 true JP4320753B2 (en) 2009-08-26

Family

ID=33533468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146678A Expired - Fee Related JP4320753B2 (en) 2003-05-23 2003-05-23 Production method and use of metal fine particles

Country Status (1)

Country Link
JP (1) JP4320753B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111675A (en) * 2004-10-13 2006-04-27 Mitsubishi Materials Corp Metal nanorod alignment composition and its application
JP4923763B2 (en) 2006-06-09 2012-04-25 富士ゼロックス株式会社 Method for producing silver triangular pyramid particles, and silver triangular pyramid particles

Also Published As

Publication number Publication date
JP2004346396A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
Liu et al. Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method
Nasretdinova et al. Electrochemical mediated synthesis of silver nanoparticles in solution
Karami et al. Pulsed current electrochemical synthesis of cadmium sulfide nanofibers
Coulthard et al. Novel preparation of noble metal nanostructures utilizing porous silicon
CN106011809A (en) Method for preparing composite material with surface coated with silver through catechol-polyamine
DE102019208252A1 (en) EFFICIENT PRODUCTION OF TWO-DIMENSIONAL COPPER NANOBLATES
Liu et al. Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water
CN108226138A (en) A kind of hollow pipe array surface enhancing Raman scattering substrate of Ag nanometer sheets assembling
CN111215636B (en) Preparation method of Ag nano particles
CN101565840A (en) Two-dimensional noble metal nanometer material and preparation method thereof
JP4320753B2 (en) Production method and use of metal fine particles
JP4320752B2 (en) Production method and use of metal fine particles
JP4320754B2 (en) Production method and use of metal fine particles
JP2005068447A (en) Method of producing metal nanorod
CN108356264B (en) A kind of preparation method of silver cladding copper powder
JP4320756B2 (en) Method for producing silver-containing gold nanorods
JP5163843B2 (en) Method for producing silver fine particles
KR101544105B1 (en) Laminate including flower-type gold nano particle and method for preparing the same
Tang et al. Flowerlike Ag microparticles with novel nanostructure synthesized by an electrochemical approach
CN107755711B (en) A kind of pros' micro-nano silver powder, preparation method thereof
JP2005298891A (en) Process for producing metal microparticle and composition containing the same
JP2005097581A (en) Metal nano rod with small minor axis, composition containing the rod, and application thereof
Kumik et al. Modification of boron-doped diamond with gold-palladium nanoparticles for CO2 electroreduction
JP4573153B2 (en) Metal nanorod, metal nanorod-containing composition, method for producing the same, and use thereof
Motaghedifard et al. Electrochemical growth of sponge/raspberry-like gold nanoclusters at the carbon rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees