JP2005298891A - Process for producing metal microparticle and composition containing the same - Google Patents

Process for producing metal microparticle and composition containing the same Download PDF

Info

Publication number
JP2005298891A
JP2005298891A JP2004116254A JP2004116254A JP2005298891A JP 2005298891 A JP2005298891 A JP 2005298891A JP 2004116254 A JP2004116254 A JP 2004116254A JP 2004116254 A JP2004116254 A JP 2004116254A JP 2005298891 A JP2005298891 A JP 2005298891A
Authority
JP
Japan
Prior art keywords
fine particles
metal
metal fine
acid
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004116254A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takada
佳明 高田
Hiroki Hirata
寛樹 平田
Sumiyoshi Sato
純悦 佐藤
Yasuro Niitome
康郎 新留
Atsushi Yamada
淳 山田
Koji Nishioka
宏司 西岡
Hideya Kawasaki
英也 川崎
Hirotsuyo Mizoguchi
大剛 溝口
Yoshinori Nagai
昌憲 永井
Masahito Murouchi
聖人 室内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2004116254A priority Critical patent/JP2005298891A/en
Priority to KR1020077023867A priority patent/KR20070104954A/en
Priority to PCT/JP2004/013087 priority patent/WO2005023466A1/en
Priority to EP08162064A priority patent/EP2189232A1/en
Priority to EP04772901A priority patent/EP1661648A4/en
Priority to CN2008100929050A priority patent/CN101284313B/en
Priority to CN2010105902456A priority patent/CN102019434A/en
Priority to EP08162067.6A priority patent/EP2165791B1/en
Priority to KR1020067004310A priority patent/KR100861899B1/en
Priority to TW093126733A priority patent/TWI347925B/en
Publication of JP2005298891A publication Critical patent/JP2005298891A/en
Priority to US12/730,776 priority patent/US8182574B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process wherein the aspect ratio of metal nanorods can be easily controlled, and the metal nanorods having the objective aspect ratio can be efficiently produced. <P>SOLUTION: In the process for producing metal microparticles by reducing metal ions in an aqueous solution containing a surfactant, the aspect ratio of the metal microparticles is controlled by producing the metal microparticles in an environment where acid or alkali is added, or the aspect ratio of the metal microparticles is controlled by performing reduction reaction at a regulated liquid temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属微粒子、特にナノサイズのロッド状金属微粒子(金属ナノロッド)の製造方法において、金属微粒子のアスペクト比を容易に制御することができる製造方法とこの方法によって製造した金属微粒子を含有する組成物に関する。   The present invention includes a production method capable of easily controlling the aspect ratio of metal fine particles in a method for producing metal fine particles, particularly nano-sized rod-shaped metal fine particles (metal nanorods), and the metal fine particles produced by this method. Relates to the composition.

金属ナノロッドは、その光吸収特性を利用した光フィルター材料、近赤外線吸収材料、着色剤、化粧品、また導電性を利用した導電材料や配線材料、電磁波シールド材料などの広範な用途での利用が期待されている。この金属ナノロッドを製造する方法として、電解法、化学還元法、光還元法、超音波照射法などが従来知られている。   Metal nanorods are expected to be used in a wide range of applications such as optical filter materials, near-infrared absorbing materials, colorants, cosmetics, and conductive materials, wiring materials, and electromagnetic shielding materials that use conductivity. Has been. Conventionally known methods for producing the metal nanorods include electrolytic methods, chemical reduction methods, photoreduction methods, and ultrasonic irradiation methods.

電解法は、例えば、界面活性剤を添加した電解液に金板の陽極と白金板の陰極を用いて定電流を通じて金微粒子を製造する方法であり、陽極から生じた金イオンが陰極で還元されて金微粒子になり、これが界面活性剤の作用でロッド状の成長してナノサイズの金ナノロッドになる。電解法では、銀板を電解液に浸漬し、この浸漬面積を変えるとロッド長さが影響を受けることが報告されている(非特許文献1)。しかし、銀の溶出量や溶出速度は銀板の表面状態によって異なるため、銀板の浸漬面積を調整しても金属ナノロッドのアスペクト比を十分に制御するのは難しい。   The electrolytic method is, for example, a method of producing gold fine particles through a constant current using an anode of a gold plate and a cathode of a platinum plate in an electrolytic solution to which a surfactant is added, and gold ions generated from the anode are reduced at the cathode. It becomes gold fine particles, and this grows into a rod-like shape by the action of the surfactant to become nano-sized gold nanorods. In the electrolysis method, it is reported that the rod length is affected by immersing the silver plate in an electrolytic solution and changing the immersion area (Non-Patent Document 1). However, since the elution amount and elution rate of silver vary depending on the surface state of the silver plate, it is difficult to sufficiently control the aspect ratio of the metal nanorods even if the immersion area of the silver plate is adjusted.

化学還元法は、例えば、塩化金酸水溶液に還元剤を添加して塩化金酸を還元して金ナノ粒子を生成させ、この「種粒子」を塩化金酸水溶液に移し、液中で成長させることによって金ナノロッドを製造する方法である(非特許文献2)。この方法では成長反応槽に移す種粒子の量を変えることによってロッド長さを制御することができるが、種粒子を生成させる反応槽とこれを成長させる反応槽とが必要であり、製造工程の操作が煩わしい。   In the chemical reduction method, for example, a reducing agent is added to an aqueous chloroauric acid solution to reduce chloroauric acid to produce gold nanoparticles, and this “seed particle” is transferred to an aqueous chloroauric acid solution and grown in the solution. This is a method for producing gold nanorods (Non-patent Document 2). In this method, the rod length can be controlled by changing the amount of seed particles transferred to the growth reaction tank, but a reaction tank for generating seed particles and a reaction tank for growing the seed particles are necessary. Operation is troublesome.

光還元法は、塩化金酸水溶液に紫外線を照射して液中の塩化金酸を還元して金微粒子を製造する方法である(非特許文献3)。この光還元法は化学還元法のような2槽を用いる必要がなく、また光照射時間によってロッド長さを制御できるが、反応時間が遅いと云う問題がある。
「Langmuir」1999年、15号、701〜709頁 「J.Phys.Chem.B」2001年、105号、4065頁〜4067頁 「J. Am.Chem.Soc.」2002年、124号、14316頁〜14318頁
The photoreduction method is a method for producing gold fine particles by irradiating an aqueous chloroauric acid solution with ultraviolet rays to reduce chloroauric acid in the liquid (Non-patent Document 3). This photoreduction method does not require the use of two tanks unlike the chemical reduction method, and the rod length can be controlled by the light irradiation time, but there is a problem that the reaction time is slow.
`` Langmuir '' 1999, No. 15, 701-709 `` J.Phys.Chem.B '' 2001, No. 105, pages 4065-4067 "J. Am. Chem. Soc.", 2002, 124, 14316-14318

本発明は金属微粒子を製造する従来方法における上記課題を解決したものであり、金属ナノロッドを製造する際に、金属微粒子のアスペクト比を容易に制御することができる製造方法とこの方法によって製造した金属微粒子を含有する組成物を提供する。   The present invention solves the above-mentioned problems in the conventional method for producing metal fine particles, and in producing metal nanorods, the production method capable of easily controlling the aspect ratio of the metal fine particles and the metal produced by this method. Compositions containing microparticles are provided.

(1)界面活性剤を含む水溶液中で金属イオンを還元して金属微粒子を製造する方法において、酸またはアルカリを添加した環境下で金属微粒子を製造することによって金属微粒子のアスペクト比を制御することを特徴とする金属微粒子の製造方法。
(2)酸として硝酸、硫酸、塩酸、臭化水素酸の何れか、アルカリとして水酸化ナトリウム、水酸化カリウム、アンモニア水の何れかを用いる上記(1)に記載する金属微粒子の製造方法。
(3)界面活性剤を含む水溶液中で金属イオンを還元して金属微粒子を製造する方法において、液温を調整して還元反応を行うことによって金属微粒子のアスペクト比を制御することを特徴とする金属微粒子の製造方法。
(4)界面活性剤を含む水溶液中で金属イオンを還元する方法が化学還元、電気化学的還元、光還元、または化学還元と光照射を組み合わせた何れかの方法であって、ナノサイズのロッド状金属微粒子(金属ナノロッドと云う)を製造する方法である上記(1)〜(3)の何れかに記載する金属微粒子の製造方法。
(5)化学式(1)(2)(3)で示される界面活性剤の1種または2種以上を添加した水溶液を電解液として用いる電気化学的還元法によって金属微粒子を製造する方法において、酸を添加することによって金属微粒子のアスペクト比を小さくし、またはアルカリを添加することによって金属微粒子のアスペクト比を大きくする上記(1)または(2)の製造方法。
CH3(CH2)n +(CH3)3Br- (nは1〜15の整数) …(1)
〔CH3(CH2)n4+Br- (nは1〜15の整数) …(2)
〔CH3(CH2)n2+(CH3)2Br- (nは7〜17の整数) …(3)
(6) 化学還元と光照射を組み合わせた方法によって金属微粒子を製造する方法において、酸を添加することによって金属微粒子のアスペクト比を大きくし、またはアルカリを添加することによって金属微粒子のアスペクト比を小さくする上記(1)または(2)の製造方法。
(7) 還元剤としてアスコルビン酸、クエン酸、またはその塩、塩酸ヒドロキシルアミン、ヒドラジン化合物、コハク酸あるいはその塩、またはアミン類を添加した金属イオン水溶液に、さらに酸として硝酸、硫酸、塩酸、臭化水素酸の何れか、アルカリとして水酸化ナトリウム、水酸化カリウム、アンモニア水の何れか添加する上記(6)の製造方法。
(8)金属イオンを含む水溶液の液温を高くすることによって金属微粒子のアスペクト比を小さくし、または液温を低くすることによって金属微粒子のアスペクト比を大きくする上記(3)または(4)の製造方法。
(9)上記(1)〜(8)の何れかの製造方法によって製造された金属微粒子を含有する金属微粒子含有組成物。
(10)上記(9)の組成物によって形成されたコーティング組成物、塗膜、透明被膜、またはフィルム。
(11)上記(1)〜(8)の何れかに記載する方法によって製造された金属微粒子を含む光学フィルター材料、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収材、偽造防止インク、電磁波シールド材、表面増強蛍光センサー、生体マーカ、またはナノ導波路。
(1) In a method for producing metal fine particles by reducing metal ions in an aqueous solution containing a surfactant, the aspect ratio of the metal fine particles is controlled by producing the metal fine particles in an environment to which an acid or alkali is added. A method for producing fine metal particles.
(2) The method for producing fine metal particles as described in (1) above, wherein any one of nitric acid, sulfuric acid, hydrochloric acid, and hydrobromic acid is used as the acid, and any one of sodium hydroxide, potassium hydroxide, or aqueous ammonia is used as the alkali.
(3) In a method for producing metal fine particles by reducing metal ions in an aqueous solution containing a surfactant, the aspect ratio of the metal fine particles is controlled by adjusting the liquid temperature and performing a reduction reaction. A method for producing fine metal particles.
(4) The method of reducing metal ions in an aqueous solution containing a surfactant is any one of chemical reduction, electrochemical reduction, photoreduction, or a combination of chemical reduction and light irradiation, and a nano-sized rod The method for producing metal fine particles according to any one of the above (1) to (3), which is a method for producing metal-like metal fine particles (referred to as metal nanorods).
(5) In a method for producing fine metal particles by an electrochemical reduction method using an aqueous solution to which one or more of the surfactants represented by the chemical formulas (1), (2) and (3) are added as an electrolytic solution, The method according to (1) or (2), wherein the aspect ratio of the metal fine particles is reduced by adding or the aspect ratio of the metal fine particles is increased by adding alkali.
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15) (1)
[CH 3 (CH 2 ) n ] 4 N + Br (n is an integer of 1 to 15) (2)
[CH 3 (CH 2 ) n ] 2 N + (CH 3 ) 2 Br (n is an integer from 7 to 17) (3)
(6) In the method of producing metal fine particles by a method combining chemical reduction and light irradiation, the aspect ratio of the metal fine particles is increased by adding an acid, or the aspect ratio of the metal fine particles is decreased by adding an alkali. The production method of (1) or (2) above.
(7) Metal ion aqueous solution to which ascorbic acid, citric acid or its salt, hydroxylamine hydrochloride, hydrazine compound, succinic acid or its salt, or amines are added as a reducing agent, and nitric acid, sulfuric acid, hydrochloric acid, odor as acids The method according to (6) above, wherein any one of hydrofluoric acid or any one of sodium hydroxide, potassium hydroxide, and ammonia water is added as an alkali.
(8) The aspect ratio of the metal fine particles is reduced by increasing the liquid temperature of the aqueous solution containing metal ions, or the aspect ratio of the metal fine particles is increased by decreasing the liquid temperature. Production method.
(9) A metal fine particle-containing composition comprising metal fine particles produced by the production method of any one of (1) to (8) above.
(10) A coating composition, a coating film, a transparent film, or a film formed from the composition of (9) above.
(11) An optical filter material, a wiring material, an electrode material, a catalyst, a colorant, a cosmetic, a near-infrared absorber, and an anti-counterfeit containing metal fine particles produced by the method described in any one of (1) to (8) above. Ink, electromagnetic shielding material, surface-enhanced fluorescent sensor, biomarker, or nanowaveguide.

〔具体的な説明〕
本発明の製造方法は、液中の金属イオンを還元して金属微粒子を製造する方法において、酸またはアルカリを添加した環境下で金属微粒子の製造を促すことによって金属微粒子のアスペクト比を制御することを特徴とする金属微粒子の製造方法であり、また、液中の金属イオンを還元して金属微粒子を製造する方法において、液温を調整して還元反応を行うことによって金属微粒子のアスペクト比を制御することを特徴とする金属微粒子の製造方法である。
[Specific description]
The production method of the present invention is a method for producing metal fine particles by reducing metal ions in a liquid, and controls the aspect ratio of the metal fine particles by promoting the production of metal fine particles in an environment to which an acid or alkali is added. In the method for producing metal fine particles characterized by reducing the metal ions in the liquid, the aspect ratio of the metal fine particles is controlled by adjusting the liquid temperature and performing a reduction reaction. This is a method for producing fine metal particles.

本発明の製造方法において、酸としては、硝酸、硫酸、塩酸、臭化水素酸などを用いることができ、またアルカリとしては、水酸化ナトリウム、水酸化カリウム、アンモニア水などを用いることができる。   In the production method of the present invention, nitric acid, sulfuric acid, hydrochloric acid, hydrobromic acid and the like can be used as the acid, and sodium hydroxide, potassium hydroxide, aqueous ammonia and the like can be used as the alkali.

本発明の製造方法は、水溶液中で金属イオンを還元する方法として、化学還元法、電気化学的還元法、光還元法、または化学還元と光照射を組み合わせた方法の何れの方法においても適用することができる。   The production method of the present invention can be applied to any method of reducing metal ions in an aqueous solution, such as a chemical reduction method, an electrochemical reduction method, a photoreduction method, or a method combining chemical reduction and light irradiation. be able to.

具体的には、酸またはアルカリを添加して金属微粒子のアスペクト比を制御する製造方法としては、例えば、電気化学的還元法において、電解液に酸またはアルカリを添加して定電流を通じることによって金属ナノロッドのアスペクト比を制御することができる。   Specifically, as a manufacturing method for controlling the aspect ratio of metal fine particles by adding acid or alkali, for example, in an electrochemical reduction method, by adding acid or alkali to an electrolyte solution and passing it through a constant current The aspect ratio of the metal nanorod can be controlled.

電気化学的還元法は、陽極から溶出する金属イオンを陰極で還元して金属微粒子を製造する方法であり、例えば、以下の化学式(1)(2)(3)で示される界面活性剤の1種または2種以上を添加した水溶液を電解液として用いることによって、効率よく金属ナノロッドを製造することができる。また、ケトン類を併用することによって金属ナノロッドの生成を安定化することができる。本発明の製造方法は、例えば上記水溶液に酸またはアルカリを添加して電解を行う。
CH3(CH2)n +(CH3)3Br- (nは1〜15の整数) …(1)
〔CH3(CH2)n4+Br- (nは1〜15の整数) …(2)
〔CH3(CH2)n2+(CH3)2Br- (nは7〜17の整数) …(3)
The electrochemical reduction method is a method for producing metal fine particles by reducing metal ions eluted from the anode at the cathode. For example, 1 of surfactants represented by the following chemical formulas (1), (2), and (3) By using an aqueous solution to which seeds or two or more kinds are added as an electrolytic solution, metal nanorods can be produced efficiently. Moreover, the production | generation of a metal nanorod can be stabilized by using ketones together. In the production method of the present invention, for example, acid or alkali is added to the aqueous solution to perform electrolysis.
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15) (1)
[CH 3 (CH 2 ) n ] 4 N + Br (n is an integer of 1 to 15) (2)
[CH 3 (CH 2 ) n ] 2 N + (CH 3 ) 2 Br (n is an integer from 7 to 17) (3)

上記化学式(1)で示される代表的な界面活性剤はヘキサデシルトリメチルアンモニウムブロミド〔CTAB:CH3(CH2)15N+(CH3)3Br-〕である。上記化学式(2)で示される代表的な界面活性剤はテトラブチルアンモニウムブロミド〔TC4AB〕などである。また、上記化学式(3)で示される代表的な界面活性剤はジドデシルジメチルアンモニウムブロミド〔DDAB:〔(CH2)11CH32N+(CH3)2Br-〕である。 A typical surfactant represented by the chemical formula (1) is hexadecyltrimethylammonium bromide [CTAB: CH 3 (CH 2 ) 15 N + (CH 3 ) 3 Br ]. A typical surfactant represented by the chemical formula (2) is tetrabutylammonium bromide [TC4AB]. A typical surfactant represented by the above chemical formula (3) is didodecyldimethylammonium bromide [DDAB: [(CH 2 ) 11 CH 3 ] 2 N + (CH 3 ) 2 Br ].

次に、化学還元と光照射を組み合わせた方法としては、界面活性剤を含む金属塩水溶液に還元剤を添加した溶液を反応溶液として用い、これに紫外線を照射して金属ナノロッドを製造する方法が知られている。この反応溶液に酸またはアルカリを添加した後に紫外線を照射することによって金属ナノロッドのアスペクト比を制御することができる。   Next, as a method of combining chemical reduction and light irradiation, there is a method in which a solution obtained by adding a reducing agent to a metal salt aqueous solution containing a surfactant is used as a reaction solution, and this is irradiated with ultraviolet rays to produce metal nanorods. Are known. The aspect ratio of the metal nanorods can be controlled by irradiating ultraviolet rays after adding acid or alkali to the reaction solution.

化学還元と光照射を組み合わせた上記方法において、還元剤として、好ましくは、アスコルビン酸、クエン酸、またはその塩、塩酸ヒドロキシルアミン、ヒドラジン化合物、コハク酸あるいはその塩、またはアミン類などの還元力が比較的弱い還元剤が適当である。これらの還元剤を添加した金属イオン水溶液に、さらに酸として硝酸、硫酸、塩酸、臭化水素酸などを添加し、またはアルカリとして水酸化ナトリウム、水酸化カリウム、アンモニア水などを添加した溶液を反応溶液として用いる。   In the above method in which chemical reduction and light irradiation are combined, the reducing agent preferably has a reducing power such as ascorbic acid, citric acid, or a salt thereof, hydroxylamine hydrochloride, a hydrazine compound, succinic acid or a salt thereof, or an amine. A relatively weak reducing agent is suitable. Reaction with a solution in which nitric acid, sulfuric acid, hydrochloric acid, hydrobromic acid or the like is further added as an acid or sodium hydroxide, potassium hydroxide, aqueous ammonia or the like is added as an alkali to an aqueous metal ion solution to which these reducing agents are added. Used as a solution.

具体的には、紫外線照射を利用して金属ナノロッドを製造する方法において、例えば、上記化学式(1)(2)(3)で示される界面活性剤の1種または2種以上を含む水溶液に金属塩を添加したものを反応溶液として用い、これにアスコルビン酸などの還元剤を添加して化学還元を行う。アスコルビン酸を添加すると反応溶液は還元反応によって透明になる。なお、上記反応溶液にはアセトンなどのケトン類を添加することによって金属ナノロッドの生成反応を安定化することができる。また、硝酸銀、塩化銀、臭化銀などの銀塩を添加することによって金属ナノロッドの軸方向の成長を促すことができる。   Specifically, in a method for producing metal nanorods using ultraviolet irradiation, for example, a metal is added to an aqueous solution containing one or more surfactants represented by the chemical formulas (1), (2), and (3). A salt-added solution is used as a reaction solution, and a reducing agent such as ascorbic acid is added thereto for chemical reduction. When ascorbic acid is added, the reaction solution becomes transparent by the reduction reaction. In addition, the formation reaction of metal nanorods can be stabilized by adding ketones such as acetone to the reaction solution. Moreover, the growth of the metal nanorods in the axial direction can be promoted by adding a silver salt such as silver nitrate, silver chloride, or silver bromide.

本発明の製造方法は、上記還元剤を添加した反応溶液に紫外線を照射して金属ナノロッドを製造する際に、還元剤を添加して透明になった反応溶液に硝酸、硫酸、塩酸、臭化水素酸などを添加し、またはアルカリとして水酸化ナトリウム、水酸化カリウム、アンモニア水などを添加し、これに紫外線を照射することによって、金属ナノロッドのアスペクト比を制御する。紫外線の照射時間は数分程度で良い。また紫外線照射後に必要に応じて暗所に静置しても良い。   In the production method of the present invention, when producing a metal nanorod by irradiating the reaction solution to which the reducing agent is added with ultraviolet rays, nitric acid, sulfuric acid, hydrochloric acid, bromide is added to the reaction solution that has been made transparent by adding the reducing agent. The aspect ratio of the metal nanorods is controlled by adding hydrogen acid or the like, or adding sodium hydroxide, potassium hydroxide, ammonia water or the like as an alkali and irradiating it with ultraviolet rays. The irradiation time of ultraviolet rays may be about several minutes. Moreover, you may leave still in a dark place as needed after ultraviolet irradiation.

酸またはアルカリを添加する場合、例えば、電気化学的還元法と、化学還元および光照射を組み合わせた方法とではその傾向が異なり、電気化学的還元法においては所定の添加量の範囲内で酸を添加することによって金属微粒子のアスペクト比を小さくし、または、所定の添加量の範囲内でアルカリを添加することによって金属微粒子のアスペクト比を大きくすることができる。一方、化学還元と光照射を組み合わせた方法においては、所定の添加量の範囲内で酸を添加することによって金属微粒子のアスペクト比を大きくし、または、所定の添加量の範囲内でアルカリを添加することによって金属微粒子のアスペクト比を小さくすることができる。なお、上記所定の添加量の範囲は酸、アルカリの種類や他の添加物の量によって異なる。   When adding an acid or an alkali, for example, the tendency is different between the electrochemical reduction method and the method combining chemical reduction and light irradiation. In the electrochemical reduction method, the acid is added within the range of a predetermined addition amount. By adding, the aspect ratio of the metal fine particles can be reduced, or the aspect ratio of the metal fine particles can be increased by adding an alkali within a range of a predetermined addition amount. On the other hand, in the method that combines chemical reduction and light irradiation, the aspect ratio of the metal fine particles is increased by adding an acid within a predetermined addition amount range, or an alkali is added within a predetermined addition amount range. By doing so, the aspect ratio of the metal fine particles can be reduced. The range of the predetermined addition amount varies depending on the type of acid and alkali and the amount of other additives.

本発明の製造方法において、液温を調整して還元反応を行うことによって金属ナノロッドのアスペクト比を制御する方法としては、例えば、電気化学的還元法においては電解液の液温を所定の範囲に維持して電解反応を進め、あるいは化学還元法や光還元法、または化学還元と光照射を組み合わせた方法においては、反応溶液の液温を所定の範囲に維持して反応を進めることによって金属ナノロッドのアスペクト比を制御することができる。   In the production method of the present invention, as a method for controlling the aspect ratio of the metal nanorods by adjusting the liquid temperature and performing the reduction reaction, for example, in the electrochemical reduction method, the liquid temperature of the electrolytic solution is set within a predetermined range. In the case of maintaining the electrolytic reaction, or in the chemical reduction method, the photoreduction method, or the method combining chemical reduction and light irradiation, the metal nanorods are maintained by advancing the reaction while maintaining the liquid temperature of the reaction solution within a predetermined range. The aspect ratio can be controlled.

具体的には、例えば、界面活性剤を含む金属塩水溶液に還元剤を添加した溶液を反応溶液として用い、これに紫外線を照射して金属ナノロッドを製造する方法において、還元剤添加して透明になった反応溶液の液温を所定範囲に維持して紫外線を照射することによって金属ナノロッドのアスペクト比を制御する。   Specifically, for example, in a method of producing a metal nanorod by irradiating an ultraviolet ray on a solution obtained by adding a reducing agent to a metal salt aqueous solution containing a surfactant as a reaction solution, the reducing agent is added and made transparent. The aspect ratio of the metal nanorods is controlled by irradiating with ultraviolet rays while maintaining the liquid temperature of the resulting reaction solution within a predetermined range.

液温を調整する上記製造方法においては、液温を高くすることによって金属微粒子のアスペクト比を小さくし、または、液温を低くすることによって金属微粒子のアスペクト比を大きくすることができる。具体的には、界面活性剤の析出する温度よりも液温が高いほどアスペクト比が小さくなり、球状微粒子の生成量が多くなる。一方、析出温度付近ではアスペクト比が大きくなる。さらに、液温が界面活性剤の析出温度よりも低くなると金属ナノロッドの生成量が少なくなる。例えば、CTABの場合には、析出温度が約25℃であり、従って、液温の上限は40℃〜60℃が適当であり、下限は26℃〜30℃が適当である。   In the above production method for adjusting the liquid temperature, the aspect ratio of the metal fine particles can be decreased by increasing the liquid temperature, or the aspect ratio of the metal fine particles can be increased by decreasing the liquid temperature. Specifically, as the liquid temperature is higher than the temperature at which the surfactant is deposited, the aspect ratio becomes smaller and the amount of spherical fine particles generated increases. On the other hand, the aspect ratio increases near the deposition temperature. Furthermore, when the liquid temperature is lower than the deposition temperature of the surfactant, the amount of metal nanorods produced decreases. For example, in the case of CTAB, the precipitation temperature is about 25 ° C., and therefore the upper limit of the liquid temperature is suitably 40 ° C. to 60 ° C., and the lower limit is suitably 26 ° C. to 30 ° C.

本発明の製造方法によれば、金属ナノロッドのアスペクト比を容易に制御することができ、目的のアスペクト比を有する金属ナノロッドを効率よく製造することができる。本発明の範囲はこのような方法によって製造した金属ナノロッドを含有する組成物を含む。   According to the production method of the present invention, the aspect ratio of the metal nanorod can be easily controlled, and the metal nanorod having the target aspect ratio can be efficiently produced. The scope of the present invention includes compositions containing metal nanorods produced by such methods.

上記金属ナノロッドを含有する組成物によって形成されたコーティング組成物、塗膜、透明被膜、またはフィルムを得ることができる。また、本発明の方法によって製造された金属微粒子は、これを含む光学フィルター材料、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収材、偽造防止インク、電磁波シールド材、表面増強蛍光センサー、生体マーカ、またはナノ導波路として利用することができる。   A coating composition, a coating film, a transparent film, or a film formed by the composition containing the metal nanorods can be obtained. In addition, the metal fine particles produced by the method of the present invention include optical filter materials, wiring materials, electrode materials, catalysts, colorants, cosmetics, near-infrared absorbing materials, anti-counterfeiting inks, electromagnetic wave shielding materials, surface-enhanced fluorescence containing the same. It can be used as a sensor, biomarker, or nanowaveguide.

以下に本発明を実施例によって具体的に示す。   The present invention will be specifically described below with reference to examples.

(A液)濃度480mmol/lのCTAB水溶液405mlに濃度24mmol/lの塩化金酸水溶液34ml、アセトン6ml、シクロヘキサノン0.7ml、および10mmol/lの硝酸銀水溶液25mlを加えて反応溶液とした。この反応溶液に濃度40mmol/lのアスコルビン酸水溶液33mlを添加して化学還元を行った。アスコルビン酸水溶液を添加した直後に反応溶液はオレンジ色から透明な溶液に変化した。透明になった溶液の上部から10mW/cm2以下の高圧水銀ランプの紫外線を5分間直接照射した。
(B液)A液と同一条件で調製し、かつ化学還元を行った反応溶液に市販濃度(約60%)の硝酸を150μl添加し、溶液の上部から10mW/cm2以下の高圧水銀ランプの紫外線を5分間直接照射した。
(C液)A液と同一条件で調製し、かつ化学還元を行った反応溶液に1mol/lの水酸化ナトリウム水溶液を2.5ml添加し、溶液の上部から10mW/cm2以下の高圧水銀ランプの紫外線を5分間直接照射した。
(Solution A) To 405 ml of CTAB aqueous solution having a concentration of 480 mmol / l, 34 ml of chloroauric acid aqueous solution having a concentration of 24 mmol / l, 6 ml of acetone, 0.7 ml of cyclohexanone, and 25 ml of 10 mmol / l aqueous silver nitrate solution were added to prepare a reaction solution. To this reaction solution, 33 ml of an ascorbic acid aqueous solution having a concentration of 40 mmol / l was added for chemical reduction. Immediately after the ascorbic acid aqueous solution was added, the reaction solution changed from orange to a clear solution. Ultraviolet light from a high-pressure mercury lamp of 10 mW / cm 2 or less was directly irradiated from the upper part of the transparent solution for 5 minutes.
(Liquid B) To the reaction solution prepared under the same conditions as liquid A and subjected to chemical reduction, 150 μl of nitric acid with a commercial concentration (about 60%) was added, and a high-pressure mercury lamp of 10 mW / cm 2 or less was added from the top of the solution. UV light was directly irradiated for 5 minutes.
(Liquid C) To the reaction solution prepared under the same conditions as liquid A and subjected to chemical reduction, 2.5 ml of a 1 mol / l sodium hydroxide aqueous solution was added, and a high-pressure mercury lamp of 10 mW / cm 2 or less from the top of the solution. Were directly irradiated for 5 minutes.

A液、B液、C液の吸光スペクトルを図1に示した。図示するように、A液に比べて硝酸を添加したB液の吸光ピークは長波長側にシフトしており、金ナノロットのアスペクト比がA液の4.7(長軸42.3nm)からB液の5.0(長軸45.0nm)に大きくなったことを示している。また、水酸化ナトリウム水溶液を添加したC液の吸光ピークは短波長側にシフトしており金ナノロッドのアスペクト比が3.0(長軸27.0nm)と小さくなったことを示している。   Absorption spectra of liquid A, liquid B and liquid C are shown in FIG. As shown in the figure, the absorption peak of solution B with nitric acid added is shifted to the longer wavelength side compared to solution A, and the aspect ratio of gold nanolot is 4.7 (major axis 42.3 nm) of solution A. It has shown that it became large to 5.0 (major axis 45.0nm). In addition, the absorption peak of solution C to which an aqueous sodium hydroxide solution was added shifted to the short wavelength side, indicating that the aspect ratio of the gold nanorods was reduced to 3.0 (major axis 27.0 nm).

(A液)濃度480mmol/lのCTAB水溶液405mlに濃度24mmol/lの塩化金酸水溶液34ml、アセトン6ml、シクロヘキサノン0.7ml、および10mmol/lの硝酸銀水溶液25mlを加えて反応溶液とした。この反応溶液に濃度40mmol/lのアスコルビン酸水溶液33mlを添加して化学還元を行った。アスコルビン酸水溶液を添加した直後に反応溶液はオレンジ色から透明な溶液に変化した。透明になった溶液を40℃に保持し、溶液の上部から10mW/cm2以下の高圧水銀ランプの紫外線を5分間直接照射した。
(B液)A液と同一条件で調製し、かつ化学還元を行った反応溶液を26℃に保持し、溶液の上部から10mW/cm2以下の高圧水銀ランプの紫外線を5分間直接照射した。
(Solution A) To 405 ml of CTAB aqueous solution having a concentration of 480 mmol / l, 34 ml of chloroauric acid aqueous solution having a concentration of 24 mmol / l, 6 ml of acetone, 0.7 ml of cyclohexanone, and 25 ml of 10 mmol / l aqueous silver nitrate solution were added to prepare a reaction solution. To this reaction solution, 33 ml of an ascorbic acid aqueous solution having a concentration of 40 mmol / l was added for chemical reduction. Immediately after the ascorbic acid aqueous solution was added, the reaction solution changed from orange to a clear solution. The transparent solution was kept at 40 ° C., and ultraviolet rays from a high-pressure mercury lamp of 10 mW / cm 2 or less were directly irradiated for 5 minutes from the top of the solution.
(Liquid B) A reaction solution prepared under the same conditions as liquid A and subjected to chemical reduction was kept at 26 ° C., and was directly irradiated with ultraviolet rays from a high-pressure mercury lamp of 10 mW / cm 2 or less for 5 minutes from the top of the solution.

A液、B液の吸光スペクトルを図2に示した。図示するように、溶液温度が高いA液に比べて溶液温度が低いB液の吸光ピークは長波長側にシフトしており、金ナノロッドのアスペクト比がA液の4.6(長軸41.4nm)からB液の5.3(長軸47.7nm)に大きくなったことを示している。   The absorption spectra of liquid A and liquid B are shown in FIG. As shown in the figure, the absorption peak of solution B, which has a lower solution temperature than that of solution A, which has a higher solution temperature, has shifted to the longer wavelength side, and the gold nanorod has an aspect ratio of 4.6 (long axis 41.4 nm). ) To 5.3 of B liquid (major axis 47.7 nm).

水1リットルに界面活性剤およびアセトン、シクロヘキサン、シクロヘキサノン、市販濃度(約60%)の硝酸、あるいは1mol/lの水酸化ナトリウム水溶液を加えて表に示す組成の電解液A、B、Cを調整した。これに3.0mol/lの硝酸銀水溶液を80μ/minの割合で添加しながら、アノードを金板、カソード板をステンレス板(SUS304板)とし、5.0mAで4時間定電流電解を行った。電解後のA液、B液、C液の吸光スペクトルを図3に示した。図示するように、A液に比べて硝酸を添加したB液の吸光ピークは短波長側にシフトしており、金ナノロッドのアスペクト比がA液の5.5(長軸49.5nm)からB液の4.8(長軸43.2nm)に小さくなったことを示している。また、水酸化ナトリウム水溶液を添加したC液の吸光ピークは長波長側にシフトしており金ナノロッドのアスペクト比は5.8(長軸52.2nm)に大きくなったことを示している。   Add 1 liter of water with surfactant, acetone, cyclohexane, cyclohexanone, commercial concentration (about 60%) nitric acid, or 1 mol / l sodium hydroxide aqueous solution to prepare electrolytes A, B, and C having the composition shown in the table. did. While adding a 3.0 mol / l aqueous silver nitrate solution at a rate of 80 μ / min, the anode was a gold plate and the cathode plate was a stainless plate (SUS304 plate), and constant current electrolysis was performed at 5.0 mA for 4 hours. The absorption spectra of the liquid A, liquid B and liquid C after electrolysis are shown in FIG. As shown in the figure, the absorption peak of B solution added with nitric acid is shifted to the short wavelength side compared to A solution, and the aspect ratio of gold nanorods is 5.5 (major axis 49.5nm) of A solution. It is shown that it became smaller to 4.8 (major axis 43.2 nm). Further, the absorption peak of solution C to which an aqueous sodium hydroxide solution was added was shifted to the longer wavelength side, indicating that the aspect ratio of the gold nanorod was increased to 5.8 (major axis 52.2 nm).

Figure 2005298891
Figure 2005298891

実施例1の結果を示す吸光スペクトル図Absorption spectrum diagram showing the results of Example 1 実施例2の結果を示す吸光スペクトル図Absorption spectrum diagram showing the results of Example 2 実施例3の結果を示す吸光スペクトル図Absorption spectrum diagram showing the results of Example 3

Claims (11)

界面活性剤を含む水溶液中で金属イオンを還元して金属微粒子を製造する方法において、酸またはアルカリを添加した環境下で金属微粒子を製造することによって金属微粒子のアスペクト比を制御することを特徴とする金属微粒子の製造方法。
In a method for producing metal fine particles by reducing metal ions in an aqueous solution containing a surfactant, the aspect ratio of the metal fine particles is controlled by producing the metal fine particles in an environment to which an acid or alkali is added. A method for producing fine metal particles.
酸として硝酸、硫酸、塩酸、臭化水素酸の何れか、アルカリとして水酸化ナトリウム、水酸化カリウム、アンモニア水の何れかを用いる請求項1に記載する金属微粒子の製造方法。
The method for producing fine metal particles according to claim 1, wherein any one of nitric acid, sulfuric acid, hydrochloric acid, and hydrobromic acid is used as the acid, and any one of sodium hydroxide, potassium hydroxide, and aqueous ammonia is used as the alkali.
界面活性剤を含む水溶液中で金属イオンを還元して金属微粒子を製造する方法において、液温を調整して還元反応を行うことによって金属微粒子のアスペクト比を制御することを特徴とする金属微粒子の製造方法。
In a method for producing metal fine particles by reducing metal ions in an aqueous solution containing a surfactant, the aspect ratio of the metal fine particles is controlled by performing a reduction reaction by adjusting the liquid temperature. Production method.
界面活性剤を含む水溶液中で金属イオンを還元する方法が化学還元、電気化学的還元、光還元、または化学還元と光照射を組み合わせた何れかの方法であって、ナノサイズのロッド状金属微粒子(金属ナノロッドと云う)を製造する方法である請求項1〜3の何れかに記載する金属微粒子の製造方法。
The method of reducing metal ions in an aqueous solution containing a surfactant is any one of chemical reduction, electrochemical reduction, photoreduction, or a combination of chemical reduction and light irradiation, and nano-sized rod-shaped metal fine particles The method for producing metal fine particles according to any one of claims 1 to 3, which is a method for producing (referred to as metal nanorods).
化学式(1)(2)(3)で示される界面活性剤の1種または2種以上を添加した水溶液を電解液として用いる電気化学的還元法によって金属微粒子を製造する方法において、酸を添加することによって金属微粒子のアスペクト比を小さくし、またはアルカリを添加することによって金属微粒子のアスペクト比を大きくする請求項1または2の製造方法。
CH3(CH2)n +(CH3)3Br- (nは1〜15の整数) …(1)
〔CH3(CH2)n4+Br- (nは1〜15の整数) …(2)
〔CH3(CH2)n2+(CH3)2Br- (nは7〜17の整数) …(3)
In the method for producing metal fine particles by an electrochemical reduction method using an aqueous solution to which one or more of the surfactants represented by the chemical formulas (1), (2) and (3) are added as an electrolytic solution, an acid is added. The method according to claim 1 or 2, wherein the aspect ratio of the metal fine particles is reduced by reducing the aspect ratio of the metal fine particles, or the aspect ratio of the metal fine particles is increased by adding an alkali.
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15) (1)
[CH 3 (CH 2 ) n ] 4 N + Br (n is an integer of 1 to 15) (2)
[CH 3 (CH 2 ) n ] 2 N + (CH 3 ) 2 Br (n is an integer from 7 to 17) (3)
化学還元と光照射を組み合わせた方法によって金属微粒子を製造する方法において、酸を添加することによって金属微粒子のアスペクト比を大きくし、またはアルカリを添加することによって金属微粒子のアスペクト比を小さくする請求項1または2の製造方法。
A method for producing metal fine particles by a method combining chemical reduction and light irradiation, wherein the aspect ratio of the metal fine particles is increased by adding an acid, or the aspect ratio of the metal fine particles is decreased by adding an alkali. 1 or 2 manufacturing method.
還元剤としてアスコルビン酸、クエン酸、またはその塩、塩酸ヒドロキシルアミン、ヒドラジン化合物、コハク酸あるいはその塩、またはアミン類を添加した金属イオン水溶液に、さらに酸として硝酸、硫酸、塩酸、臭化水素酸の何れか、アルカリとして水酸化ナトリウム、水酸化カリウム、アンモニア水の何れか添加する請求項6の製造方法。
Metal ion aqueous solution to which ascorbic acid, citric acid or its salt, hydroxylamine hydrochloride, hydrazine compound, succinic acid or its salt or amines are added as a reducing agent, and nitric acid, sulfuric acid, hydrochloric acid, hydrobromic acid as acids The method according to claim 6, wherein any one of sodium hydroxide, potassium hydroxide, and aqueous ammonia is added as an alkali.
金属イオンを含む水溶液の液温を高くすることによって金属微粒子のアスペクト比を小さくし、または液温を低くすることによって金属微粒子のアスペクト比を大きくする請求項3または4の製造方法。
The method according to claim 3 or 4, wherein the aspect ratio of the metal fine particles is decreased by increasing the liquid temperature of the aqueous solution containing metal ions, or the aspect ratio of the metal fine particles is increased by decreasing the liquid temperature.
請求項1〜8の何れかの製造方法によって製造された金属微粒子を含有する金属微粒子含有組成物。
A metal fine particle-containing composition comprising metal fine particles produced by the production method according to claim 1.
請求項9の組成物によって形成されたコーティング組成物、塗膜、透明被膜、またはフィルム。
A coating composition, coating film, transparent film, or film formed by the composition of claim 9.
請求項1〜8の何れかに記載する方法によって製造された金属微粒子を含む光学フィルター材料、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収材、偽造防止インク、電磁波シールド材、表面増強蛍光センサー、生体マーカ、またはナノ導波路。   An optical filter material containing fine metal particles produced by the method according to any one of claims 1 to 8, a wiring material, an electrode material, a catalyst, a colorant, a cosmetic, a near-infrared absorbing material, an anti-counterfeit ink, an electromagnetic shielding material, Surface enhanced fluorescence sensor, biomarker, or nanowaveguide.
JP2004116254A 2003-09-05 2004-04-09 Process for producing metal microparticle and composition containing the same Pending JP2005298891A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2004116254A JP2005298891A (en) 2004-04-09 2004-04-09 Process for producing metal microparticle and composition containing the same
CN2008100929050A CN101284313B (en) 2003-09-05 2004-09-02 Composition containing metal fine particles, and production method for producing metal fine particles
PCT/JP2004/013087 WO2005023466A1 (en) 2003-09-05 2004-09-02 Metal microparticle, composition containing the same and process for producing metal microparticle
EP08162064A EP2189232A1 (en) 2003-09-05 2004-09-02 Metal microparticle, composition containing the same and process for producing metal microparticle
EP04772901A EP1661648A4 (en) 2003-09-05 2004-09-02 Metal microparticle, composition containing the same and process for producing metal microparticle
KR1020077023867A KR20070104954A (en) 2003-09-05 2004-09-02 Metal microparticle, composition containing the same and process for producing metal microparticle
CN2010105902456A CN102019434A (en) 2003-09-05 2004-09-02 Process for producing metal microparticle and composition containing the same
EP08162067.6A EP2165791B1 (en) 2003-09-05 2004-09-02 Method for producing gold nanorods
KR1020067004310A KR100861899B1 (en) 2003-09-05 2004-09-02 Metal microparticle, composition containing the same and process for producing metal microparticle
TW093126733A TWI347925B (en) 2003-09-05 2004-09-03 Metal fine particle, composition containing the same, and production method for the same
US12/730,776 US8182574B2 (en) 2003-09-05 2010-03-24 Metal fine particles, composition containing the same, and production method for producing metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116254A JP2005298891A (en) 2004-04-09 2004-04-09 Process for producing metal microparticle and composition containing the same

Publications (1)

Publication Number Publication Date
JP2005298891A true JP2005298891A (en) 2005-10-27

Family

ID=35330803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116254A Pending JP2005298891A (en) 2003-09-05 2004-04-09 Process for producing metal microparticle and composition containing the same

Country Status (1)

Country Link
JP (1) JP2005298891A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270128A (en) * 2008-04-30 2009-11-19 Osaka Prefecture Univ Method for producing gold nanorod
JP2011516721A (en) * 2008-02-28 2011-05-26 コーニング インコーポレイテッド Electrochemical methods for fabricating nanostructures
JP2011195951A (en) * 2010-03-23 2011-10-06 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle, ink composition using the same, and method for producing the composition
JP4865873B2 (en) * 2007-03-15 2012-02-01 ユン,ウイ−シク Method for producing colloidal solution of metal nanoparticles and metal nanoparticles produced thereby
RU2496920C1 (en) * 2012-03-11 2013-10-27 Сергей Дмитриевич Терентьев Method of preparation of nanomaterials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855169A (en) * 1971-11-08 1973-08-02
JPH04323310A (en) * 1991-04-12 1992-11-12 Daido Steel Co Ltd Production of fine metal powder
JPH04323309A (en) * 1991-04-12 1992-11-12 Daido Steel Co Ltd Production of fine metal powder
JP2003225899A (en) * 2002-01-31 2003-08-12 Sangaku Renkei Kiko Kyushu:Kk Functional element using spectral characteristic of metal nano-rod

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855169A (en) * 1971-11-08 1973-08-02
JPH04323310A (en) * 1991-04-12 1992-11-12 Daido Steel Co Ltd Production of fine metal powder
JPH04323309A (en) * 1991-04-12 1992-11-12 Daido Steel Co Ltd Production of fine metal powder
JP2003225899A (en) * 2002-01-31 2003-08-12 Sangaku Renkei Kiko Kyushu:Kk Functional element using spectral characteristic of metal nano-rod

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865873B2 (en) * 2007-03-15 2012-02-01 ユン,ウイ−シク Method for producing colloidal solution of metal nanoparticles and metal nanoparticles produced thereby
JP2011516721A (en) * 2008-02-28 2011-05-26 コーニング インコーポレイテッド Electrochemical methods for fabricating nanostructures
JP2009270128A (en) * 2008-04-30 2009-11-19 Osaka Prefecture Univ Method for producing gold nanorod
JP2011195951A (en) * 2010-03-23 2011-10-06 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle, ink composition using the same, and method for producing the composition
US8728350B2 (en) 2010-03-23 2014-05-20 Samsung Electro-Mechanics Co., Ltd. Method for producing metal nanoparticles, ink composition using the same and method for producing the same
RU2496920C1 (en) * 2012-03-11 2013-10-27 Сергей Дмитриевич Терентьев Method of preparation of nanomaterials

Similar Documents

Publication Publication Date Title
Niidome et al. Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes
Lee et al. Preparation of nonaggregated silver nanoparticles by the liquid phase plasma reduction method
Roldán et al. Electrochemical method for Ag-PEG nanoparticles synthesis
Nakamura et al. Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution
WO2004101430A1 (en) Method for preparation of metal nano-rod and use thereof
EP2735390B1 (en) Suspension of nanoparticles of gold or of metal from the group of platin, apparatus and method for the manufacture thereof.
Hsu et al. Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting
Hormozi-Nezhad et al. A simple shape-controlled synthesis of gold nanoparticles using nonionic surfactants
JP6112508B2 (en) Method for producing metal nanoparticles
Zhu et al. Room-temperature synthesis of cuprous oxide and its heterogeneous nanostructures for photocatalytic applications
Cloud et al. A simple and effective method for controllable synthesis of silver and silver oxide nanocrystals
Nishimoto et al. Effect of H2O2 on Au nanoparticle preparation using microwave-induced plasma in liquid
Tang et al. Preparation, photo-catalytic activity of cuprous oxide nano-crystallites with different sizes
JP6090773B2 (en) Method for producing alloy nanoparticles
Almomani et al. Broadband visible emission from photoelectrochemical etched porous silicon quantum dots containing zinc
Tanaka et al. Photochemical deposition of Ag nanoparticles on multiwalled carbon nanotubes
CN111215636A (en) Preparation method of Ag nano particles
JP2005298891A (en) Process for producing metal microparticle and composition containing the same
Ashkarran et al. Rapid and efficient synthesis of colloidal gold nanoparticles by arc discharge method
JP5163843B2 (en) Method for producing silver fine particles
JP4320756B2 (en) Method for producing silver-containing gold nanorods
Hurtado et al. Nanowire networks and hollow nanospheres of Ag–Au bimetallic alloys at room temperature
Bamola et al. Effect of nanotube diameter on the photocatalytic activity of bimetallic AgAu nanoparticles grafted 1D-TiO 2 nanotubes
Ashkarran Synthesis and characterization of gold nanoparticles via submerged arc discharge based on a seed-mediated approach
Qazi et al. Formation and growth of silver nanocubes upon nanosecond pulsed laser irradiation: effects of laser intensity and irradiation time

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070406

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100616

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110824

Free format text: JAPANESE INTERMEDIATE CODE: A02