JP2970423B2 - Manufacturing method of non-oriented electrical steel sheet - Google Patents

Manufacturing method of non-oriented electrical steel sheet

Info

Publication number
JP2970423B2
JP2970423B2 JP6223408A JP22340894A JP2970423B2 JP 2970423 B2 JP2970423 B2 JP 2970423B2 JP 6223408 A JP6223408 A JP 6223408A JP 22340894 A JP22340894 A JP 22340894A JP 2970423 B2 JP2970423 B2 JP 2970423B2
Authority
JP
Japan
Prior art keywords
steel sheet
cold rolling
annealing
rolling
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6223408A
Other languages
Japanese (ja)
Other versions
JPH0888114A (en
Inventor
光代 土居
裕義 屋鋪
智機 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6223408A priority Critical patent/JP2970423B2/en
Publication of JPH0888114A publication Critical patent/JPH0888114A/en
Application granted granted Critical
Publication of JP2970423B2 publication Critical patent/JP2970423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気機器の鉄心として
広く用いられる鉄損の低い無方向性電磁鋼板の製造方法
であって、とりわけ高周波条件下で使用される電気機器
の鉄心に適した無方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a low iron loss, which is widely used as an iron core of electric equipment, and is particularly suitable for an iron core of electric equipment used under high frequency conditions. The present invention relates to a method for manufacturing a non-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】電気機器を取り巻く環境として、機器の
効率化小型軽量化が叫ばれて久しく、より効率のよいイ
ンバータ制御も普及し始めている。周波数を高くするこ
とにより効率が向上し、小型化が可能になることから、
現在商用周波数で使用されている電気機器において、今
後高い周波数を適用するものが増加すると予想される。
2. Description of the Related Art As an environment surrounding electric equipment, it has been a long time since the efficiency and size and weight of the equipment have been called for, and more efficient inverter control has begun to spread. Increasing the frequency improves efficiency and reduces size,
It is anticipated that electric appliances currently used at commercial frequencies will use higher frequencies in the future.

【0003】そのため高周波条件下でのエネルギー損失
の低い電気機器が求められており、その鉄心に用いられ
る電磁鋼板も高周波域での鉄損の低いものが要望されて
いる。
[0003] For this reason, there is a demand for electrical equipment having low energy loss under high frequency conditions, and a magnetic steel sheet used for the iron core is also required to have low iron loss in a high frequency range.

【0004】電磁鋼板の鉄損は、周波数が高くなるにつ
れて増大する。これは、鉄損がヒシテリシス損と渦電流
損の和から構成されており、いずれも適用周波数に依存
して増大することによる。特に渦電流損は周波数の二乗
に比例して増大するため、高周波域では鉄損の大半は渦
電流損となる。つまり、渦電流損を抑制することが、高
周波鉄損を抑制することにつながる。
[0004] Iron loss of an electromagnetic steel sheet increases as the frequency increases. This is because the iron loss is composed of the sum of the hysteresis loss and the eddy current loss, and both increase depending on the applied frequency. In particular, since the eddy current loss increases in proportion to the square of the frequency, most of the iron loss is an eddy current loss in a high frequency range. That is, suppressing the eddy current loss leads to suppressing the high-frequency iron loss.

【0005】従来より、この渦電流損を低減させる方法
として、鋼板の電気抵抗を上昇させることや板厚の薄肉
化が行われてきた。電気抵抗を高める目的でのSiの添
加は他のどの元素よりも有効であるが、Siを 4%以上
添加すると、硬くなるばかりでなく極めて脆くなる。こ
のため通常の工業的プロセスにおける鋼板の冷間圧延方
法では割れが発生しやすく、それに加えて薄い板厚が必
要となればますます製造が困難になる。
Conventionally, as a method of reducing the eddy current loss, an increase in the electric resistance of the steel sheet and a reduction in the thickness of the steel sheet have been performed. The addition of Si for the purpose of increasing the electric resistance is more effective than any other element, but when Si is added at 4% or more, it becomes not only hard but also extremely brittle. For this reason, the cold rolling method of a steel sheet in an ordinary industrial process is liable to cracks, and in addition, the production becomes more and more difficult if a small thickness is required.

【0006】鋼中にSiを約 6.5%添加すると、磁歪は
殆どゼロになり、透磁率は極大を示し、ヒシテリシス損
が著しく低くなることは以前より知られており、それに
加えてSiが多量に添加されるので、電気抵抗が増し、
Fe−Si系においては最良の磁気特性を持つ材料にな
る。このような高Si含有鋼板の製造方法に溶湯超急冷
法や滲珪法が開発されているが、特殊な製造設備が必要
になる。
It has been known that when about 6.5% of Si is added to steel, the magnetostriction becomes almost zero, the magnetic permeability shows a maximum, and the hysteresis loss becomes extremely low. As it is added, the electrical resistance increases,
In the Fe-Si system, the material has the best magnetic properties. As a method for producing such a high-Si content steel sheet, a melt quenching method or a siliconizing method has been developed, but special production equipment is required.

【0007】このような加工性のよくない高Si鋼板
を、圧延にて製造する方法が特開昭 62-103321号公報に
示されており、熱間圧延の低温域で高圧下を加えて結晶
粒を微細化し、冷間圧延時の割れを抑制しようとしてい
る。しかし、製品鋼板にて良好な磁気特性を発揮させる
には充分に焼鈍して結晶粒を大きくしなければならず、
そうなると加工が困難な極めて脆い製品になり、これを
加工するとすれば特殊な工具や設備が必要になる。
Japanese Patent Application Laid-Open No. 62-103321 discloses a method of producing such a high-Si steel sheet having poor workability by rolling. The aim is to refine the grains and suppress cracking during cold rolling. However, in order to exhibit good magnetic properties in the product steel sheet, it is necessary to perform sufficient annealing to increase the crystal grains,
This would result in a very brittle product that would be difficult to machine, and would require special tools and equipment.

【0008】電気抵抗を増すには、Si添加とほぼ同等
の効果のあるAlを多量に添加する方法が考えられる。
電磁鋼板に対するのAlの添加は、方向性電磁鋼板では
各結晶粒子が 110 <001>方位に優先配向した金属組織
( 110 <001>集合組織)であるのに対し、Alを多く添
加すると、 100 <001>集合組織が得られやすいというこ
とで以前から検討されてきた。 100 <001>集合組織が増
した鋼板は板の面方向の磁気特性が向上し、しかも特定
の方向に偏らないことから、モータ等に使用される無方
向性電磁鋼板には理想的と言われるものであるが、現実
には製造コストと特性向上のバランスからその実用化に
は至っていない。
In order to increase the electric resistance, a method of adding a large amount of Al having almost the same effect as the addition of Si can be considered.
The addition of Al to the electrical steel sheet is as follows. In the grain-oriented electrical steel sheet, each crystal grain has a metal structure preferentially oriented in the 110 <001> direction (110 <001> texture). <001> The texture has been studied for a long time because it is easy to obtain. 100 <001> The steel sheet with increased texture improves the magnetic properties in the plane direction of the sheet, and is not biased in a specific direction, so it is said to be ideal for non-oriented electrical steel sheets used in motors, etc. However, in reality, it has not been put to practical use because of the balance between manufacturing cost and improvement in characteristics.

【0009】Si添加に加えて、電気抵抗を増したり、
磁壁の移動を阻害して磁化特性を悪くする微細なAlN
の析出を阻止する目的で、1%以下のAlの添加は、無
方向性電磁鋼板においてはよく行なわれる。このSi添
加鋼に、さらに積極的にAlを添加することを提案する
ものとして特開平 3-24251号公報がある。これにはSi
を 3.3%以下で、Alが 1.5〜 8%の無方向性電磁鋼板
が提示されており、Siの比率を下げてAlの比率を高
くすると、加工性が改善され磁気特性が向上し、特に 1
00 <001>集合組織が発達しやすいとしている。この公報
は先行引例としてフランス国特許出願第 2,316,338号の
Si: 2.5〜 3.5%にAl: 0.3〜 1.5%を添加した場
合を紹介し、このSi量ではAlが 1.5%を超えると合
金が極端に脆化すると指摘している。
[0009] In addition to the addition of Si, to increase the electrical resistance,
Fine AlN that hinders domain wall movement and deteriorates magnetization characteristics
Addition of 1% or less of Al is often performed in non-oriented electrical steel sheets for the purpose of preventing precipitation of Al. Japanese Patent Application Laid-Open No. 3-24251 discloses a proposal for further positively adding Al to the Si-added steel. This includes Si
A non-oriented electrical steel sheet with an Al content of less than 3.3% and an Al content of 1.5 to 8% is proposed. If the Si content is reduced and the Al content is increased, the workability is improved and the magnetic properties are improved.
00 <001> The texture is said to be easily developed. This publication introduces, as a prior reference, a case in which Al: 0.3 to 1.5% is added to Si: 2.5 to 3.5% in French Patent Application No. 2,316,338. He points out that it is embrittled.

【0010】このようにSi添加量を増せば、電気抵抗
が増して特に高周波領域の使用に適した性能の得られる
ことはわかっていても、材料の加工性が大幅に劣化する
と言う問題があり、その対策にSi量を増さずAlを添
加することが考えられる。しかしながら、充分に電気抵
抗を増した上で加工性を確保するには限界がある。
Although it is known that an increase in the amount of added Si results in an increase in electric resistance and a performance particularly suitable for use in a high frequency region, there is a problem that the workability of the material is greatly deteriorated. As a countermeasure, it is conceivable to add Al without increasing the amount of Si. However, there is a limit in securing workability after sufficiently increasing the electric resistance.

【0011】[0011]

【発明が解決しようとする課題】本発明はこのような問
題を解消することを課題としてなされたものであり、現
状の設備で実現可能な条件で鋼板を製造することがで
き、製品鋼板の打ち抜き加工が容易で、磁気特性に優れ
た、とりわけ高周波域において鉄損の低い、無方向性電
磁鋼板の製造方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve such a problem, and it is possible to manufacture a steel sheet under conditions achievable with existing equipment, and to punch out a product steel sheet. An object of the present invention is to provide a method for producing a non-oriented electrical steel sheet which is easy to process and has excellent magnetic properties, and particularly has a low iron loss in a high frequency range.

【0012】[0012]

【課題を解決するための手段】本発明者らは、特に高周
波域にて優れた磁気特性を有し、かつ製造時の冷間圧延
性や、鋼板製品の打ち抜き性の良好な無方向性電磁鋼板
の製造方法について、数多くの実験を積み重ねて詳細に
検討した結果、下記のような幾つかの新しい知見を得
た。
Means for Solving the Problems The present inventors have developed a non-directional electromagnetic device which has excellent magnetic properties, particularly in a high frequency range, and has good cold rolling properties during production and good punching properties of steel sheet products. As a result of conducting numerous experiments and conducting detailed studies on the method of manufacturing a steel sheet, the following new findings were obtained.

【0013】(a) 高周波鉄損の低減のため渦電流損を抑
制する目的で、Siの添加に加えて、それと同等の電気
抵抗増加効果のあるAlの添加を検討の結果、適切な量
のAlを複合添加することにより高周波域において良好
な磁気特性が得られることがわかった。
(A) In order to suppress eddy current loss in order to reduce high frequency iron loss, in addition to the addition of Si, the addition of Al, which has the same electrical resistance increasing effect, was examined. It has been found that good magnetic properties can be obtained in a high frequency range by adding Al in a composite manner.

【0014】(b) 同等の磁気特性を得るのに、Si単独
で添加量を増すよりもAlを複合添加する方が加工性が
良好であった。しかし、Alも添加量が増せば加工性は
劣化し改善効果に限界がある。この加工性と磁気特性に
およぼす複合添加の効果を種々調査の結果、磁気特性が
向上し、かつ加工性が良好である複合添加の範囲がある
ことが明らかになった。
(B) To obtain the same magnetic properties, the workability was better when Al was added in combination than when the addition amount was increased with Si alone. However, if the amount of Al added also increases, the workability deteriorates and the improvement effect is limited. As a result of various investigations on the effects of the composite addition on the workability and the magnetic properties, it was found that there was a range of the composite addition in which the magnetic properties were improved and the workability was good.

【0015】(C) このSiとAlの複合添加に加えてさ
らにMnを添加すると、冷間圧延時や打ち抜き時の耐割
れ性は改善され、その添加量を増していけば加工性を損
なうことなく高周波での磁気特性が向上することがわか
った。
(C) If Mn is further added in addition to the addition of Si and Al, crack resistance during cold rolling and punching is improved, and workability is impaired if the amount of addition is increased. It was found that the magnetic characteristics at high frequencies were improved.

【0016】(d) Si、AlおよびMnを複合添加した
素材による鋼板の製造方法として、熱間圧延後、冷間圧
延→中間焼鈍→冷間圧延→最終焼鈍と言う工程を取るこ
とが磁気特性に好ましい集合組織を得るのに最適であっ
た。
(D) As a method of manufacturing a steel sheet from a material to which Si, Al and Mn are added in a complex manner, it is necessary to take a process of cold rolling → intermediate annealing → cold rolling → final annealing after hot rolling. It was most suitable for obtaining a favorable texture.

【0017】(e) さらに上記 (d)に加えて熱間圧延後の
冷間圧延の前に熱延板焼鈍を入れた工程にすることによ
って、磁気特性はさらに向上し、製品の鋼板にてリジン
グが問題になる場合はその抑制にも有効であることがわ
かった。
(E) Further, in addition to the above (d), by adopting a process in which hot rolled sheet annealing is performed before cold rolling after hot rolling, the magnetic properties are further improved, and When ridging was a problem, it was found to be effective in controlling it.

【0018】このような知見に基づき、(1)重量%
で、C: 0.010%以下、Si: 2.0〜3.25%、Mn:
0.1〜 2.5%、P:0.02%以下、S: 0.006%以下、
N: 0.006%以下、Al: 1.5〜 2.5%およびB: 0〜
0.0050%を含有し、かつ Si(%)+Al(%)≧
4.5およびSi(%)+ 0.5Al(%)< 4.0を満足
し、残部はFeおよび不可避的不純物からなる鋼のスラ
ブを、熱間圧延後、圧延率40〜80%の冷間圧延を行な
い、ついで 650〜1000℃にて中間焼鈍して、さらに圧延
率40〜80%の冷間圧延後、仕上焼鈍を行う鉄損の低い無
方向性電磁鋼板の製造方法、および(2)上記(1)に
記載の組成の鋼のスラブを熱間圧延後、その熱延鋼板を
650〜1000℃にて焼鈍し、圧延率40〜80%の冷間圧延を
行ない、ついで 650〜1000℃にて中間焼鈍して、さらに
圧延率40〜80%の冷間圧延後、仕上焼鈍を行う鉄損の低
い無方向性電磁鋼板の製造方法、の発明を完成した。
Based on these findings, (1)
And C: 0.010% or less, Si: 2.0 to 3.25%, Mn:
0.1-2.5%, P: 0.02% or less, S: 0.006% or less,
N: 0.006% or less, Al: 1.5 to 2.5% and B: 0 to
0.0050%, and Si (%) + Al (%) ≧
4.5 and Si (%) + 0.5Al (%) <4.0 are satisfied, the balance being steel and a slab composed of Fe and inevitable impurities, after hot rolling, cold rolling is performed at a rolling reduction of 40 to 80%, Then, a method of producing a non-oriented electrical steel sheet with low iron loss, which is subjected to intermediate annealing at 650 to 1000 ° C., and further to cold rolling at a rolling reduction of 40 to 80%, followed by finish annealing, and (2) the above (1) After hot rolling a steel slab having the composition described in
Anneal at 650 to 1000 ° C, perform cold rolling at a rolling ratio of 40 to 80%, then perform intermediate annealing at 650 to 1000 ° C, and further perform cold rolling at a rolling ratio of 40 to 80%, and then finish annealing. The invention of a method for producing a non-oriented electrical steel sheet having a low iron loss to be performed has been completed.

【0019】[0019]

【作用】以下本発明の方法の構成要件ごとに作用効果お
よび限定理由を説明する。
The function and effect and the reasons for limitation will be described below for each component of the method of the present invention.

【0020】(1)素材スラブまたは製品鋼板の化学組
成 (1) C量 Cの存在は磁気特性を大幅に劣化し、容認できる範囲と
して 0.010%以下とするが、さらに低減できれば磁気特
性は向上するので、望ましくは 0.005%以下である。
(1) Chemical composition of the raw material slab or product steel sheet (1) C content The presence of C greatly deteriorates the magnetic properties, and the acceptable range is set to 0.010% or less. Therefore, it is desirably 0.005% or less.

【0021】(2) Si量 Siは、磁気特性に大きな影響を与える元素であり、含
有量が増加するほど鋼板の鉄損が減少する。これは電気
抵抗が上昇して渦電流損が低下することが主要な理由で
ある。しかし、Si含有量が3.25%を超えると冷間圧延
が困難になるとともに、打ち抜き性も悪くなる。一方、
2.0%未満の含有量では鉄損の低減が不十分である。し
たがって、Si含有量の範囲を 2.0〜3.25%とする。
(2) Si Content Si is an element that has a large effect on magnetic properties. As the content increases, the iron loss of the steel sheet decreases. This is mainly because the eddy current loss decreases due to the increase in the electric resistance. However, when the Si content exceeds 3.25%, cold rolling becomes difficult, and the punchability also deteriorates. on the other hand,
If the content is less than 2.0%, reduction of iron loss is insufficient. Therefore, the range of the Si content is set to 2.0 to 3.25%.

【0022】(3) Mn量 不可避的不純物元素の一つであるSの影響を低減するた
めに、最低限 0.1%の添加が必要である。そしてある程
度のMnの添加は、冷間圧延時のコイルエッジ部の割れ
低減に効果がある。これは、Mnの固溶により熱間圧延
時における結晶粒径の粗大化が抑制され、冷間の延性が
改善されたと考えられる。さらに添加量を増せば冷間加
工性を損なうことなく磁気特性が向上する。ただし過剰
の添加は材質が硬くなりすぎるので、 2.5%をこえるの
は好ましくない。
(3) Mn content In order to reduce the influence of S, which is one of the unavoidable impurity elements, it is necessary to add at least 0.1% of Mn. The addition of a certain amount of Mn is effective in reducing cracks at the coil edge during cold rolling. This is presumably because the solid solution of Mn suppressed the increase in the crystal grain size during hot rolling and improved the cold ductility. If the addition amount is further increased, the magnetic properties are improved without impairing the cold workability. However, excessive addition makes the material too hard, so it is not preferable to exceed 2.5%.

【0023】このような理由からMnの添加範囲を 0.2
〜 2.5%とするが、特に高周波における磁気特性を配慮
するなら、 0.6〜 2.5%とする方が好ましい。
For these reasons, the addition range of Mn is set to 0.2.
Although it is preferably set to 0.6 to 2.5%, particularly considering magnetic characteristics at high frequencies.

【0024】(4) S量 Sは鋼中でMnと結合してMnS析出物となり、磁気特
性や延性を劣化させるので少ないほどよい。本発明の効
果を発揮させる限度として 0.006%以下とするが、望ま
しくは 0.003%以下である。
(4) S Content S is preferred to be smaller as S is combined with Mn in the steel to form MnS precipitates and deteriorate magnetic properties and ductility. The lower limit for achieving the effect of the present invention is 0.006% or less, preferably 0.003% or less.

【0025】(5) Al量 Alは、Siとほぼ同等の電気抵抗の上昇効果を有す
る。そこで、加工性を害しない上限程度までSi量を含
有させたところへAlを添加し、磁気特性向上と加工性
劣化を調査した結果、単に電気抵抗が増加した以上に高
周波磁気特性の改善効果があること、および、Si量だ
けで同程度に電気抵抗を増した場合よりも加工性が良好
であることがわかった。Alの最適添加量はSi量によ
り異なり、1.5%以下では充分な磁気特性は得られな
い。一方、Alの多量添加は磁歪を増大させる傾向にあ
り、特に、 2.5%を超えると顕著に増大する。磁歪は騒
音の原因であると言われており、そのうえ、磁歪の増大
はヒシテリシス損を増加を招くことにもなる。このよう
な理由から、Alの添加の範囲は 1.5〜 2.5%とする。
(5) Al Content Al has approximately the same effect of increasing electrical resistance as Si. Then, Al was added to the point where the amount of Si was contained up to the upper limit that did not impair workability, and as a result of investigating the improvement of magnetic properties and the deterioration of workability, the effect of improving high-frequency magnetic properties was higher than simply increasing the electric resistance. It was found that the workability was better than the case where the electric resistance was increased to the same extent only by the amount of Si. The optimum amount of Al depends on the amount of Si, and if it is 1.5% or less, sufficient magnetic properties cannot be obtained. On the other hand, the addition of a large amount of Al tends to increase magnetostriction. Magnetostriction is said to be a cause of noise, and an increase in magnetostriction also leads to an increase in hysteresis loss. For these reasons, the range of addition of Al is set to 1.5 to 2.5%.

【0026】(6) N量 NはAlと結合して微細なAlN析出物となり磁気特性
を阻害する。したがって低ければ低いほど好ましい。
0.006%は許容上限値である。
(6) N Content N combines with Al to form fine AlN precipitates and impairs magnetic properties. Therefore, the lower the better, the better.
0.006% is the allowable upper limit.

【0027】(7) B量 Bは添加しなくてもよいが、添加すれば加工時の割れ、
特に急激に応力の加わる加工の際の割れ防止に有効であ
る。添加する場合:0.0003%以上が好ましく、0.0020%
以上では効果が飽和し、0.0050%以上では逆に脆化す
る。
(7) B content B may not be added, but if added, cracking during processing may cause
In particular, it is effective in preventing cracking during processing in which a sudden stress is applied. When adding: 0.0003% or more is preferable, and 0.0020%
Above, the effect saturates, and above 0.0050%, the embrittlement is reversed.

【0028】(8) SiとAlの複合効果 上記の様に、SiとAlの複合添加にMnを加えること
によって磁気特性と加工性が改善され、その添加量範囲
内にてさらに充分な磁気特性を確保するためには、Si
量とAl量が Si(%)+Al(%)≧ 4.5 であることが必要である。しかしながら、冷間圧延時の
割れあるいは製品鋼板の打ち抜き加工時の割れなど冷間
加工性の低下の点からは、SiとAlの含有量増大に限
界があり、充分な加工性を維持するには、 Si(%)+ 0.5Al(%)< 4.0 でなければならない。
(8) Combined effect of Si and Al As described above, the addition of Mn to the combined addition of Si and Al improves the magnetic properties and workability, and further improves the magnetic properties within the addition amount range. In order to secure
It is necessary that the amount of Al and the amount of Al satisfy Si (%) + Al (%) ≧ 4.5. However, from the viewpoint of deterioration in cold workability such as cracking during cold rolling or cracking during punching of a product steel sheet, there is a limit to increasing the content of Si and Al, and to maintain sufficient workability. , Si (%) + 0.5Al (%) <4.0.

【0029】(9) 不可避的不純物元素 上記の元素以外の不可避的不純物元素はいずれも磁気特
性を劣化させるので、少なければ少ないほど望ましい
が、特に磁気特性や加工性ににおよぼす影響の大きい元
素、例えばO、Ti、Nb、V等は充分な注意が必要で
ある。
(9) Inevitable impurity elements Inevitable impurity elements other than the above-mentioned elements all degrade magnetic properties. Therefore, the smaller the number, the more desirable. However, an element having a large effect on magnetic properties and workability is particularly desirable. For example, O, Ti, Nb, V and the like require careful attention.

【0030】(2)製造条件 (a) 熱間圧延 熱間圧延に供するスラブは連続鋳造スラブまたは分塊圧
延スラブの何れを用いてもよく、連続鋳造で得たスラブ
を直送圧延してもよいし一旦冷却されたスラブを再加熱
してもよい。また熱間圧延条件については特に限定しな
いが、磁気特性からはスラブ加熱温度は1200℃以下、仕
上温度は 750〜 850℃が望ましい。
(2) Manufacturing Conditions (a) Hot Rolling The slab to be subjected to hot rolling may be either a continuously cast slab or a slab rolled slab, and the slab obtained by continuous casting may be directly rolled. Then, the slab once cooled may be reheated. The hot rolling conditions are not particularly limited, but the slab heating temperature is preferably 1200 ° C or less and the finishing temperature is preferably 750 to 850 ° C from the viewpoint of magnetic properties.

【0031】巻取り温度は特に規制しないが、高温ほど
磁気特性は向上する傾向がある。しかし、巻取り温度を
高温にすると表面の酸化層が増大しその除去が困難にな
ってくる。ただし、請求項2に示した熱延板で焼鈍を行
なう方法においては低温で巻取るべきで、望ましくは 6
00℃以下とする。
Although the winding temperature is not particularly limited, the magnetic properties tend to improve as the temperature increases. However, when the winding temperature is increased, an oxide layer on the surface increases, and it becomes difficult to remove the oxide layer. However, in the method of annealing with a hot-rolled sheet according to claim 2, it should be wound at a low temperature.
It should be below 00 ° C.

【0032】(b) 冷間圧延 優れた磁気特性を得るため、熱延鋼板を冷間圧延した
後、焼鈍して充分再結晶させ、さらに冷間圧延を行ない
最終製品の板厚に仕上げる。始めの冷間圧延を一次冷
圧、中間の燒鈍後の冷間圧延を二次冷圧と言う。中間の
焼鈍を挟んで2回冷間圧延することによって、最終製品
の磁気特性が向上するが、これは、1回の高圧下率の冷
圧で最終製品の板厚にするよりも、 110 <001>方位や 1
00 <001>方位等の磁気特性に好ましい集合組織が発達し
やすいためである。
(B) Cold rolling In order to obtain excellent magnetic properties, a hot-rolled steel sheet is cold-rolled, then annealed and sufficiently recrystallized, and further cold-rolled to finish to a final product thickness. The first cold rolling is called primary cold pressure, and the cold rolling after intermediate annealing is called secondary cold pressure. Cold rolling twice with an intermediate anneal improves the magnetic properties of the final product, which is 110 <001> azimuth or 1
This is because a texture that is favorable for magnetic properties such as the <001> orientation is likely to develop.

【0033】冷間圧延の圧下率は一次冷圧、二次冷圧と
も40〜80%とするが、この圧下率の範囲を外れると充分
な磁気特性が得られない。
The rolling reduction of the cold rolling is 40-80% for both the primary cold rolling and the secondary cold rolling. However, if the rolling reduction is out of this range, sufficient magnetic properties cannot be obtained.

【0034】冷間圧延は室温でもよいが、割れ防止の観
点から鋼板を 350℃以下に加熱して実施してもよい。 3
50℃を超えると圧延時の鋼板の形状制御が困難になると
ともに、圧延油も特殊な性状のものを用いる必要があ
る。
The cold rolling may be performed at room temperature, but may be performed by heating the steel sheet to 350 ° C. or less from the viewpoint of preventing cracking. Three
If the temperature exceeds 50 ° C., it becomes difficult to control the shape of the steel sheet during rolling, and it is necessary to use a rolling oil having a special property.

【0035】(c) 中間焼鈍 中間焼鈍により、材料を再結晶させ軟化させることで、
二次冷延において冷延割れを防止することができ、かつ
磁気的に好ましい集合組織を発達させることができる。
焼鈍の方法は、箱焼鈍、連続焼鈍のいずれの方式でもよ
く、その温度に到達するなら均熱時間には特に制約はな
い。
(C) Intermediate annealing The intermediate annealing recrystallizes and softens the material,
Cold rolling cracks can be prevented in the secondary cold rolling, and a magnetically favorable texture can be developed.
The method of annealing may be any of box annealing and continuous annealing, and there is no particular limitation on the soaking time if the temperature is reached.

【0036】焼鈍温度が 650℃未満では、再結晶が十分
に進行せず、焼鈍の効果が得られない。一方、焼鈍温度
が1000℃を超えると、結晶粒が粗大化し過ぎて冷間圧延
時に割れが生じやすくなる。したがって、中間焼鈍温度
は、 650〜1000℃とした。箱焼鈍の場合には 650〜 900
℃が、連続焼鈍の場合には 750〜1000℃がそれぞれ望ま
しい。
If the annealing temperature is lower than 650 ° C., recrystallization does not proceed sufficiently, and the effect of annealing cannot be obtained. On the other hand, if the annealing temperature exceeds 1000 ° C., the crystal grains become too coarse, and cracks tend to occur during cold rolling. Therefore, the intermediate annealing temperature was set at 650 to 1000 ° C. 650 to 900 for box annealing
In the case of continuous annealing, the temperature is preferably from 750 to 1000 ° C.

【0037】(d) 仕上焼鈍 二次冷圧で所定の板厚に仕上げた後、製品としての電磁
鋼板を得るための仕上焼鈍を行なう。再結晶が充分行な
われ適度に結晶粒が成長するのであれば、その条件は特
には限定しないが、焼鈍温度として望ましくは 700℃〜
1250℃である。
(D) Finish Annealing After finishing to a predetermined thickness by secondary cold pressure, finish annealing is performed to obtain a magnetic steel sheet as a product. The condition is not particularly limited as long as the recrystallization is sufficiently performed and the crystal grains grow appropriately, but the annealing temperature is preferably 700 ° C.
1250 ° C.

【0038】また必要に応じ表面に、絶縁、防錆、また
は打ち抜き加工性向上を目的に、薄い被膜を塗布し焼き
付けてもよい。
If necessary, a thin film may be applied and baked on the surface for the purpose of insulation, rust prevention, or improvement in punching workability.

【0039】(e) 熱延板焼鈍 上述の製造工程において、熱間圧延後の冷間圧延の前
に、熱延板焼鈍を実施すると、磁気特性をさらに向上さ
せることができる。これは、磁気的に好ましい集合組織
が発達しやすくなるためと考えられる。また、熱延板焼
鈍を施すことで、表面に発生する凹凸状の欠陥であるリ
ジングを軽減することができる。リジングは、最終製品
の積層鉄心の占積率を低下させその磁気特性を悪くする
うえに、鋼板製品としての外観上も好ましくない。
(E) Hot Rolled Sheet Annealing In the above manufacturing process, if hot rolled sheet annealing is performed before cold rolling after hot rolling, magnetic properties can be further improved. It is considered that this is because a magnetically favorable texture is easily developed. In addition, by performing hot-rolled sheet annealing, ridging, which is an uneven defect generated on the surface, can be reduced. Ridging lowers the space factor of the laminated core of the final product, deteriorating its magnetic properties, and is not preferable in appearance as a steel sheet product.

【0040】このような効果を得るための熱延板焼鈍温
度は 650℃〜1000℃で、保持時間は材料がこの温度に到
達するなら特に制約はない。焼鈍温度が 650℃未満では
再結晶が不十分で磁気特性が改善されず、1000℃を超え
ると、結晶粒が粗大化し過ぎて機械的特性は劣化し、割
れやリジングの抑制に対して効果がなくなる。これらの
効果を充分発揮させるためには 700〜 900℃が望まし
い。
The hot-rolled sheet annealing temperature for obtaining such an effect is 650 ° C. to 1000 ° C., and the holding time is not particularly limited as long as the material reaches this temperature. If the annealing temperature is lower than 650 ° C, recrystallization is insufficient and the magnetic properties are not improved.If the temperature exceeds 1000 ° C, the crystal grains become too coarse and the mechanical properties deteriorate, and the effect of suppressing cracking and ridging is reduced. Disappears. In order to sufficiently exert these effects, 700 to 900 ° C is desirable.

【0041】[0041]

【実施例】【Example】

〔実施例1〕表1に示す組成の供試鋼を、高周波加熱真
空溶解炉で溶製し、それらの鋼片を1150℃に加熱後、仕
上げ温度 800℃の熱間圧延により厚さ 2.3mmの熱延板を
作製した。これを一次冷間圧延として圧下率65%で0.80
mm厚まで圧延した後、 750℃で 1時間以上均熱の箱焼鈍
による中間焼鈍を行ない、圧下率56%の二次冷間圧延に
て0.35mm厚にした。冷間圧延で割れが発生した試験片
は、 300℃の温間圧延にて所定の板厚まで圧延を実施し
た。
[Example 1] A test steel having the composition shown in Table 1 was melted in a high-frequency heating vacuum melting furnace, and the steel slabs were heated to 1150 ° C and then hot-rolled at a finishing temperature of 800 ° C to a thickness of 2.3 mm. Was prepared. This is used as primary cold rolling at a rolling reduction of 65% at 0.80.
After rolling to a thickness of mm, intermediate annealing was performed by box annealing at 750 ° C. for 1 hour or more, and the thickness was reduced to 0.35 mm by secondary cold rolling at a reduction of 56%. The test piece having a crack generated by cold rolling was rolled to a predetermined thickness by warm rolling at 300 ° C.

【0042】圧延後の鋼板は、1000℃で1分間均熱の焼
鈍を行なった後、室温にて打抜き加工により圧延方向お
よび圧延直角方向を長手方向とした、幅30mm、長さ 280
mmのエプスタイン磁気特性測定試験片を作製した。打抜
き時に割れが発生した試験片については、放電加工によ
り試験片を作製した。
The rolled steel sheet is annealed at 1000 ° C. for 1 minute, and then subjected to a punching process at room temperature, with the longitudinal direction being the rolling direction and the direction perpendicular to the rolling direction, having a width of 30 mm and a length of 280 mm.
A test piece for measuring Epstein magnetic properties of mm was prepared. For test pieces that had cracks during punching, test pieces were produced by electrical discharge machining.

【0043】これらの試験片を用いて、 800℃で2時間
の歪取り焼鈍を実施した後、磁気特性を測定した。通
常、無方向性電磁鋼板は50〜60ヘルツの商用周波数にて
鉄損の測定が行なわれるが、高周波での性能を知るた
め、 400ヘルツでの鉄損を測定した。これらの一連の試
験結果も表1に示す。なお、磁気特性としては、鉄損が
低く、磁束密度の高い方が優れていて、鉄損W10/400
(周波数 400Hzで 1.0テスラ(T) まで磁化した時の鉄
損)が16.0以下、磁束密度B8 (800A/mの磁場で磁化し
た時の磁束密度)が1.40以上を目標とする。
Using these test pieces, after performing strain relief annealing at 800 ° C. for 2 hours, magnetic properties were measured. Normally, non-oriented electrical steel sheets are measured for iron loss at a commercial frequency of 50 to 60 Hz, but in order to know the performance at high frequencies, the iron loss was measured at 400 Hz. Table 1 also shows the results of these series of tests. As for the magnetic properties, it is better that the iron loss is low and the magnetic flux density is high.
(Iron loss when magnetized to 1.0 Tesla (T) at a frequency of 400 Hz) is 16.0 or less, and magnetic flux density B8 (magnetic flux density when magnetized with a magnetic field of 800 A / m) is 1.40 or more.

【0044】本発明で定める条件を全て満たした鋼種A
〜Eは、良好な磁気特性を示すとともに、室温における
冷間圧延や打抜き加工時において割れの発生はなく、良
好な加工性を有していた。
Steel type A that satisfies all the conditions specified in the present invention
~ E exhibited good magnetic properties, had no cracks during cold rolling or punching at room temperature, and had good workability.

【0045】鋼種K〜NはSi(%)+Al(%)が
4.5を下まわっており、それらから製造された鋼板の磁
気特性は鉄損が大きく所要の性能が得られていなかっ
た。
The steel types K to N have Si (%) + Al (%)
Under 4.5, the magnetic properties of the steel sheets produced from them were large due to iron loss and the required performance could not be obtained.

【0046】また、Si(%)+ 0.5Al(%)が4.0
を超える鋼種F〜JおよびPから製造された鋼板は、鉄
損が低く磁気特性は良好ではあるが、冷間圧延にて割れ
が発生し、さらに打抜き加工時に、エッジ部より微細な
割れが発生した。
The ratio of Si (%) + 0.5 Al (%) is 4.0
The steel sheets manufactured from steel types F to J and P, which have higher iron loss, have lower iron loss and good magnetic properties, but cracks are generated by cold rolling. did.

【0047】本発明で定める量より高い量を有する鋼種
OおよびPは、磁歪が大きく実用的ではない。
Steel types O and P having an amount higher than the amount specified in the present invention have large magnetostriction and are not practical.

【0048】このように、鋼種A〜Eは、特性、製造お
よび加工性のいずれにおいても極めて優れた材料であ
る。
As described above, steel types A to E are extremely excellent in properties, production and workability.

【0049】[0049]

【表1】 [Table 1]

【0050】〔実施例2〕Mn量の影響を知るため、表
2に示すように、実施例1で用いた鋼種CおよびDに対
してSiおよびAl量は同等とし、Mn量を変えた鋼C1
〜C3およびD1〜D4を高周波加熱真空溶解炉で溶製し、実
施例1と同じ工程、同じ条件で板厚0.35mmの試験片を作
製し、同様な方法で磁気特性を調査した。これらの試験
結果を表2に示す。
Example 2 In order to know the influence of the Mn content, as shown in Table 2, steels having the same Si and Al content as the steel types C and D used in Example 1 and having different Mn content were used. C1
CC3 and D1〜D4 were melted in a high-frequency heating vacuum melting furnace, and a 0.35 mm-thick test piece was prepared in the same process and under the same conditions as in Example 1, and the magnetic properties were investigated by the same method. Table 2 shows the test results.

【0051】Mn量増加と共に鉄損は低減していくが、
多くなり過ぎると硬くなり、冷間圧延の圧下が困難にな
る。Mn量が本発明の範囲を超える鋼種C3およびD4は、
室温における一次、二次冷間圧延で減厚できなかった。
Although the iron loss decreases with an increase in the amount of Mn,
If the amount is too large, it becomes hard, and it becomes difficult to reduce the cold rolling. Steel types C3 and D4 whose Mn content exceeds the range of the present invention,
Primary and secondary cold rolling at room temperature could not reduce the thickness.

【0052】[0052]

【表2】 [Table 2]

【0053】〔実施例3〕実施例1および実施例2にて
用いた鋼種CおよびC1により、実施例1と同様の方法で
板厚 2.3mmの熱延板に仕上げた後、表3に示すように、
一次冷間圧延、中間焼鈍および二次冷間圧延を行ない、
0.35mm厚の鋼板に仕上げた。一次、二次冷間圧延はいず
れも室温とし、中間焼鈍は 850℃で1時間の均熱とし
た。二次冷間圧延の後、実施例1と同様の方法で試験片
を作製し、磁気測定を実施した。
Example 3 A hot-rolled steel sheet having a thickness of 2.3 mm was formed in the same manner as in Example 1 by using steel types C and C1 used in Examples 1 and 2, and the results are shown in Table 3. like,
Perform primary cold rolling, intermediate annealing and secondary cold rolling,
Finished to 0.35mm thick steel plate. Both the primary and secondary cold rolling were performed at room temperature, and the intermediate annealing was performed at 850 ° C. for 1 hour. After the secondary cold rolling, a test piece was prepared in the same manner as in Example 1, and a magnetic measurement was performed.

【0054】一次あるいは二次の冷間圧延において、本
発明の範囲外の圧下率で製造された鋼板はいずれも目標
とする磁気特性(鉄損W15/400≦16.0、かつ磁束密度B
8 ≧1.40)に到達しなかった。また、中間焼鈍なしに一
回の冷間圧延で目標の板厚に仕上げようとした条件7で
は、冷間圧延時に割れが発生した。
In the primary or secondary cold rolling, any steel sheet produced at a rolling reduction outside the range of the present invention has desired magnetic properties (iron loss W15 / 400 ≦ 16.0 and magnetic flux density B15).
8 ≧ 1.40). Further, under the condition 7 in which a single sheet of cold rolling was performed to achieve a target sheet thickness without intermediate annealing, cracks occurred during cold rolling.

【0055】[0055]

【表3】 [Table 3]

【0056】〔実施例4〕実施例1および実施例2にて
用いた鋼種CおよびC1により、実施例1と同様の方法で
板厚 2.3mmの熱延板に仕上げた後、一次冷間圧延の圧下
率を65%とし、中間焼鈍の温度を変え、さらに板厚0.35
mmに仕上げるため圧下率56%の二次冷間圧延行なった。
中間焼鈍は1分間均熱の連続焼鈍とした。中間焼鈍温度
が1030℃と高い場合、二次冷間圧延で割れが発生した。
これは焼鈍温度が高すぎ、結晶粒が粗大化して脆くなっ
たためと思われた。二次冷間圧延後、1000℃で1分間均
熱の焼鈍を行なって、実施例1と同様にして磁気特性を
調査した。
Example 4 A steel sheet C and C1 used in Examples 1 and 2 were used to finish a hot-rolled sheet having a thickness of 2.3 mm in the same manner as in Example 1, and then subjected to primary cold rolling. Of 65%, changing the temperature of intermediate annealing, and further increasing the thickness of 0.35
The secondary cold rolling was performed at a draft of 56% to finish to mm.
The intermediate annealing was a continuous annealing of soaking for 1 minute. When the intermediate annealing temperature was as high as 1030 ° C, cracks occurred in the secondary cold rolling.
This was thought to be because the annealing temperature was too high, and the crystal grains became coarse and brittle. After the secondary cold rolling, annealing was carried out at 1000 ° C. for 1 minute, and the magnetic properties were investigated in the same manner as in Example 1.

【0057】これらの結果をまとめて表4に示す。中間
焼鈍の温度が低すぎる場合、充分な磁気特性が得られな
かった。
Table 4 summarizes the results. If the temperature of the intermediate annealing was too low, sufficient magnetic properties could not be obtained.

【0058】[0058]

【表4】 [Table 4]

【0059】〔実施例5〕実施例1および実施例2にて
用いた鋼種CおよびC1により、実施例1と同様の方法で
板厚 2.3mmの熱延板に仕上げた後、表5に示す条件の熱
延板焼鈍を実施した。次いで、実施例1と同様の工程お
よび条件で一次冷延、中間焼鈍、二次冷延を経た後、10
00℃で1分間均熱の焼鈍を行なって試験片を作製し、磁
気測定とJISC2550に規定された占積率試験を行なった。
Example 5 A hot-rolled steel sheet having a thickness of 2.3 mm was formed in the same manner as in Example 1 by using steel types C and C1 used in Examples 1 and 2, and the results are shown in Table 5. The hot rolled sheet annealing under the conditions was performed. Next, after primary cold rolling, intermediate annealing and secondary cold rolling under the same steps and conditions as in Example 1, 10
A test piece was prepared by performing soaking annealing at 00 ° C. for 1 minute, and a magnetic measurement and a space factor test specified in JISC2550 were performed.

【0060】表5に示す条件11は、熱延板焼鈍を行なっ
ていない本発明例で、比較として示す。条件12は、熱延
板焼鈍温度を行なっているが温度が不十分でその効果は
現われていない。これら2つの条件は、本発明の請求項
2には該当せず、熱延板焼鈍の効果は得られていない
が、請求項1に含まれるもので、磁気特性としては充分
な値が得られている。
The condition 11 shown in Table 5 is a comparative example in the present invention example in which hot-rolled sheet annealing was not performed. In condition 12, the hot-rolled sheet annealing temperature is used, but the effect is not exhibited because the temperature is insufficient. These two conditions do not correspond to claim 2 of the present invention, and the effect of hot-rolled sheet annealing has not been obtained, but they are included in claim 1 and provide sufficient values for magnetic properties. ing.

【0061】本発明の請求項2に相当する条件の熱延板
焼鈍を行なった条件13では、磁気特性の向上ばかりでな
く、占積率も向上した。ただし、焼鈍温度の高すぎる条
件14では、脆くなって、冷間圧延時に割れが発生した。
Under the condition 13 in which the hot-rolled sheet annealing was performed under the conditions corresponding to claim 2 of the present invention, not only the magnetic properties were improved but also the space factor was improved. However, under the condition 14 where the annealing temperature was too high, the material became brittle and cracks occurred during cold rolling.

【0062】[0062]

【表5】 [Table 5]

【0063】[0063]

【発明の効果】本発明の方法によれば、冷間加工性を劣
化させることなく電磁鋼板の磁気特性の向上、特に高周
波領域における鉄損を低くすることができる。このた
め、このような低損失の無方向性電磁鋼板を特殊な設備
を用いることなく製造すること、および製品鋼板の所要
形状へ加工することが可能となる。
According to the method of the present invention, it is possible to improve the magnetic properties of the magnetic steel sheet without deteriorating the cold workability, and particularly to reduce the iron loss in a high frequency range. For this reason, it becomes possible to manufacture such a low-loss non-oriented electrical steel sheet without using special equipment and to process a product steel sheet into a required shape.

【0064】[0064]

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−66816(JP,A) 特開 平2−232319(JP,A) 特開 平5−186825(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 1/16 C21D 8/12 C22C 38/00 303 C22C 38/06 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-53-66816 (JP, A) JP-A-2-232319 (JP, A) JP-A-5-186825 (JP, A) (58) Field (Int.Cl. 6 , DB name) H01F 1/16 C21D 8/12 C22C 38/00 303 C22C 38/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C: 0.010%以下、Si: 2.0
〜3.25%、Mn: 0.1〜 2.5%、P:0.02%以下、S:
0.006%以下、N: 0.006%以下、Al: 1.5〜 2.5%
およびB: 0〜0.0050%を含有し、かつSi(%)+A
l(%)≧ 4.5およびSi(%)+ 0.5Al(%)<
4.0を満足し、残部はFeおよび不可避的不純物からな
る鋼のスラブを、熱間圧延後、圧延率40〜80%の冷間圧
延を行ない、ついで 650〜1000℃にて中間焼鈍して、さ
らに圧延率40〜80%の冷間圧延後、仕上焼鈍を行う鉄損
の低い無方向性電磁鋼板の製造方法。
(1) In weight%, C: 0.010% or less, Si: 2.0
-3.25%, Mn: 0.1-2.5%, P: 0.02% or less, S:
0.006% or less, N: 0.006% or less, Al: 1.5 to 2.5%
And B: containing 0 to 0.0050%, and Si (%) + A
l (%) ≧ 4.5 and Si (%) + 0.5Al (%) <
4.0, the remainder being a steel slab consisting of Fe and unavoidable impurities, after hot rolling, cold rolling at a rolling reduction of 40 to 80%, and then intermediate annealing at 650 to 1000 ° C. A method for producing a non-oriented electrical steel sheet with low iron loss, in which finish annealing is performed after cold rolling at a rolling ratio of 40 to 80%.
【請求項2】重量%で、C: 0.010%以下、Si: 2.0
〜3.25%、Mn: 0.1〜 2.5%、P:0.02%以下、S:
0.006%以下、N: 0.006%以下、Al: 1.5〜 2.5%
およびB: 0〜0.0050%を含有し、かつSi(%)+A
l(%)≧ 4.5およびSi(%)+ 0.5Al(%)<
4.0を満足し、残部はFeおよび不可避的不純物からな
る鋼のスラブを、熱間圧延後、その熱延鋼板を 650〜10
00℃にて焼鈍し、圧延率40〜80%の冷間圧延を行ない、
ついで 650〜1000℃にて中間焼鈍して、さらに圧延率40
〜80%の冷間圧延後、仕上焼鈍を行う鉄損の低い無方向
性電磁鋼板の製造方法。
2. C: 0.010% or less by weight, Si: 2.0% by weight
-3.25%, Mn: 0.1-2.5%, P: 0.02% or less, S:
0.006% or less, N: 0.006% or less, Al: 1.5 to 2.5%
And B: containing 0 to 0.0050%, and Si (%) + A
l (%) ≧ 4.5 and Si (%) + 0.5Al (%) <
4.0, with the balance being a steel slab consisting of Fe and unavoidable impurities.
Annealed at 00 ° C, cold-rolled at a rolling ratio of 40 to 80%,
Then, it is subjected to intermediate annealing at 650 to 1000 ° C,
A method for producing a non-oriented electrical steel sheet with low iron loss in which finish annealing is performed after cold rolling of up to 80%.
JP6223408A 1994-09-19 1994-09-19 Manufacturing method of non-oriented electrical steel sheet Expired - Fee Related JP2970423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6223408A JP2970423B2 (en) 1994-09-19 1994-09-19 Manufacturing method of non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6223408A JP2970423B2 (en) 1994-09-19 1994-09-19 Manufacturing method of non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH0888114A JPH0888114A (en) 1996-04-02
JP2970423B2 true JP2970423B2 (en) 1999-11-02

Family

ID=16797681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6223408A Expired - Fee Related JP2970423B2 (en) 1994-09-19 1994-09-19 Manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP2970423B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912796A (en) * 1996-11-15 1999-06-15 Illinois Tool Works, Inc. Metallized film capacitor and manufacturing process
JP4658840B2 (en) * 2006-03-20 2011-03-23 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet
JP5417689B2 (en) * 2007-03-20 2014-02-19 Jfeスチール株式会社 Non-oriented electrical steel sheet
EP2520681B1 (en) * 2009-12-28 2018-10-24 Posco Non-oriented electrical steel sheet having superior magnetic properties and a production method therefor
JP5447167B2 (en) * 2010-05-13 2014-03-19 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
BR112013002583B1 (en) * 2010-08-04 2018-07-10 Nippon Steel & Sumitomo Metal Corporation METHOD OF MANUFACTURING STEEL PLATE FOR NON-ORIENTED GRAIN ELECTRICAL PURPOSES
JP2012036459A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
KR20150073719A (en) 2013-12-23 2015-07-01 주식회사 포스코 Non-orinented electrical steel sheet and method for manufacturing the same
WO2023008513A1 (en) * 2021-07-30 2023-02-02 日本製鉄株式会社 Non-oriented electrical steel sheet, iron core, iron core manufacturing method, and motor manufacturing method
KR20230126730A (en) 2021-07-30 2023-08-30 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet, iron core, method for manufacturing iron core, motor, and method for manufacturing motor
WO2023008514A1 (en) 2021-07-30 2023-02-02 日本製鉄株式会社 Non-oriented electrical steel sheet, iron core, iron core manufacturing method, and motor manufacturing method

Also Published As

Publication number Publication date
JPH0888114A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JP6913683B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7153076B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5724824B2 (en) Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
JP2006501361A5 (en)
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2023507435A (en) Non-oriented electrical steel sheet and manufacturing method thereof
TWI641702B (en) Non-oriented electromagnetic steel sheet with excellent recyclability
KR19980063732A (en) Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof
JP7350069B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
KR20210080658A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2861787B2 (en) Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same
JP7445656B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP2970436B2 (en) Manufacturing method of full process non-oriented electrical steel sheet
JP6943544B2 (en) Inverter power supply Reactor Electromagnetic steel sheet for iron core and its manufacturing method
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees