JP4316060B2 - Spark plug manufacturing method and spark plug - Google Patents

Spark plug manufacturing method and spark plug Download PDF

Info

Publication number
JP4316060B2
JP4316060B2 JP23469299A JP23469299A JP4316060B2 JP 4316060 B2 JP4316060 B2 JP 4316060B2 JP 23469299 A JP23469299 A JP 23469299A JP 23469299 A JP23469299 A JP 23469299A JP 4316060 B2 JP4316060 B2 JP 4316060B2
Authority
JP
Japan
Prior art keywords
tip
resistant
alloy
wear
welded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23469299A
Other languages
Japanese (ja)
Other versions
JP2001060488A (en
Inventor
浩史 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP23469299A priority Critical patent/JP4316060B2/en
Publication of JP2001060488A publication Critical patent/JP2001060488A/en
Application granted granted Critical
Publication of JP4316060B2 publication Critical patent/JP4316060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spark Plugs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はスパークプラグの製造方法及びスパークプラグに関する。
【0002】
【従来の技術】
内燃機関の点火用に使用されるスパークプラグにおいては、近年、耐火花消耗性向上のために、電極の先端にPtやIr等を主体とする貴金属チップを溶接して貴金属発火部を形成したタイプのものが使用されている。例えば中心電極の先端面に貴金属チップを接合する場合、その製造方法として、円板状又は円柱状の貴金属チップを中心電極先端に重ね合わせ、中心電極を回転させながら重ね合せ面の外周に沿ってレーザー光を照射することにより、レーザー溶接部を形成する方法が提案されている(例えば、特開平6−45050号、特開平10−112374号の各公報)。
【0003】
中心電極の先端面に貴金属チップを接合する場合、従来の製造方法の一例を図7に示す。Ni又はFeを主成分とする耐熱合金によって、中心部の芯体31’を覆うように形成された電極母材32’の先端面に、PtやIr等を主成分とする円板状又は円柱状の貴金属チップ33’を重ね合わせる。そして、電極母材32’と貴金属チップ33’とを回転させながら貴金属チップ33’と電極母材32’との境界位置に向けてレーザー光源LからレーザービームLBを照射する。これにより、貴金属チップ33’と電極母材32’とが溶融・凝固し、この両者に跨ってレーザー溶接部B’が形成され、貴金属発火部33a’を有する中心電極3’が得られる。
【0004】
【発明が解決しようとする課題】
ところで、レーザービームLBの照射位置を、貴金属チップ33’と電極母材32’との境界位置付近(図5(a)のa位置)に選ぶことによって、図5(a)に示すように、レーザー溶接部B’の貴金属チップ33’との境界近傍における成分分布は電極母材成分が低く貴金属チップ成分が高くなる。また、電極母材32’との境界近傍における成分分布は電極母材成分が高く貴金属チップ成分が低くなる。これは、貴金属チップ33’と電極母材32’とが短時間で溶融・凝固して、充分な拡散が行われずにレーザー溶接部B’が形成されるためであると考えられる。しかるに、レーザービームLBの照射位置が、例えば図5(a)のb位置やc位置のように、スパークプラグ個体間で電極軸線方向(溶接ビード幅方向)にばらついた(上下動した)とき、レーザー溶接部B’における成分分布は個体間で、貴金属チップ33’又は電極母材32’とレーザー溶接部B’との境界付近において、電極軸線方向(溶接ビード幅方向)に著しく変動する傾向がある。
【0005】
一方、熱膨張率は一般に、貴金属チップ33’>レーザー溶接部B’>電極母材32’である。また、レーザー溶接部B’の合金層における熱膨張率は、上記成分分布及びその変動幅に比例していると考えられる。したがって、レーザー溶接部B’における貴金属チップ33’との境界近傍及び電極母材32’との境界近傍は、熱膨張率等の物理的特性ができうる限り近いことが望ましい。レーザービームLBの照射位置を、貴金属チップ33’と電極母材32’との境界位置付近(図5(a)のa位置)に選ぶことによって、上述のような成分分布を示すため、レーザー溶接部B’における貴金属チップ33’との境界近傍及び電極母材32’との境界近傍の熱膨張率等の物理的特性が近くなる。これに対し、レーザービームLBの照射位置が個体間で上下動すると、レーザー溶接部B’における熱膨張率は、貴金属チップ33’又は電極母材32’とレーザー溶接部B’との境界付近において、電極軸線方向(溶接ビード幅方向)に急激に変化することになる。即ち、レーザービームLBの照射位置が、図5(a)のb位置に来たときには、電極軸線方向の下の方にまで貴金属チップ成分が多く存在するため、レーザー溶接部B’と電極母材32’との境界付近において、貴金属チップ成分が多く存在する部分が有る。また、逆に図5(a)のc位置に来たときには、電極軸線方向の上の方にまで電極母材成分が多く存在するため、レーザー溶接部B’と貴金属チップ33’との境界付近において、電極母材成分が多く存在する部分が有る。したがって、このような部分では熱膨張率等の物理的特性は大きく異なってくる。
【0006】
このような状況下において、内燃機関のように冷熱サイクルに繰り返し晒されると、熱膨張率(熱収縮率)の違いにより貴金属チップ33’又は電極母材32’とレーザー溶接部B’との境界付近にクラックK’が発生する恐れがある。クラックK’が成長すると貴金属チップ33’が電極母材32’から脱落する場合もある。
【0007】
例えば、レーザー溶接部B’が電極母材32’の中心にまで達し、貴金属チップ33’をすべて溶融して径方向中央部に未溶接領域を残さないときは、レーザー溶接部B’のビードの幅や深さが大きくなるので強固な溶着力が得られる。その反面、この構成では溶接熱源からの入熱が大きいため、貴金属チップ33’に比べて熱変化を起こし易い電極母材32’や芯体31’は、過剰な熱吸収によりブローホールやクラックが発生し易くなる問題がある。そこで、溶接に要する熱量を抑えつつ、電極母材32’や芯体31’へ悪影響を及ぼさないよう配慮して、図7の如く電極母材32’の少なくとも径方向中央部に未溶接領域を残し、貴金属チップ33’は溶接接合後も一部が残存しているように溶接する場合がある。しかし、この場合は、未溶接領域では電極母材32と貴金属チップ33’とが未接合であるか、又は精々抵抗溶接による仮止めが行われている程度であるから、貴金属チップ33’又は電極母材32’とレーザー溶接部B’との境界に発生したクラックが未溶接領域に到達すると、チップの脱落等が非常に起こりやすくなる問題がある。
【0008】
本発明の課題は、スパークプラグ個体間で、レーザービームの照射位置が電極軸線方向にずれて(ばらついて)も、レーザー溶接部の電極軸線方向(溶接ビード幅方向)における成分分布や熱膨張率が大きく変動することなく、クラックの発生・成長を抑制できるスパークプラグの製造方法、及びスパークプラグを提供することにある。
【0009】
【課題を解決するための手段及び作用・効果】
上記課題を解決するために本発明のスパークプラグの製造方法は、
中心電極と、その中心電極の先端面に自身の側面が対向して火花放電ギャップを形成するように配置された接地電極とを備え、前記火花放電ギャップに対応する位置において前記中心電極は、その電極母材に、Ir,Rh,Pt,Pd,Ru,Re,W,Os,Mo,Auのうちの少なくとも1種を主成分とし、円板状又は円柱状の耐火花消耗性金属チップである耐消耗性チップをレーザー溶接によって接合することにより耐火花消耗性金属発火部が形成されたスパークプラグの製造方法であって、
前記電極母材の、少なくとも前記耐消耗性チップの被溶接部を耐熱合金にて構成し、
前記耐消耗性チップと前記被溶接部の先端面との間に、前記耐消耗性チップの主成分と前記被溶接部の主成分とを含むことにより両者の中間の熱膨張率をもち、かつ厚さl が0.1≦l ≦0.4[mm]で円板状又は円柱状の合金チップを積層状に重ね合わせて、
レーザービームを前記耐消耗性チップと合金チップとの境界位置に向けて照射し、前記耐消耗性チップ、前記合金チップ及び前記被溶接部に跨るレーザー溶接部を外周面に沿って形成することにより、前記耐消耗性チップを前記被溶接部に固着することを特徴とする。
【0010】
また、上記課題を解決するために本発明のスパークプラグは、
中心電極と、その中心電極の先端面に自身の側面が対向して火花放電ギャップを形成するように配置された接地電極とを備え、前記火花放電ギャップに対応する位置において前記中心電極は、その電極母材に、Ir,Rh,Pt,Pd,Ru,Re,W,Os,Mo,Auのうちの少なくとも1種を主成分とし、円板状又は円柱状の耐火花消耗性金属チップである耐消耗性チップをレーザー溶接によって接合することにより耐火花消耗性金属発火部が形成されたスパークプラグであって、
前記電極母材の、少なくとも前記耐消耗性チップの被溶接部を耐熱合金にて構成し、
前記耐消耗性チップと前記被溶接部の先端面との間に、前記耐消耗性チップの主成分と前記被溶接部の主成分とを含むことにより両者の中間の熱膨張率をもち、かつ厚さl が0.1≦l ≦0.4[mm]で円板状又は円柱状の合金チップが積層状に重ね合わされ、
レーザービームを前記耐消耗性チップと合金チップとの境界位置に向けて照射し、前記耐消耗性チップ、前記合金チップ及び前記被溶接部に跨るレーザー溶接部が外周面に沿って形成されていることを特徴とする。
【0011】
本発明では、耐消耗性チップと被溶接部との間に、耐消耗性チップと被溶接部との中間の熱膨張率をもつ合金チップを積層状に重ね合わせ、耐消耗性チップ、合金チップ及び被溶接部に跨るレーザー溶接部を外周面に沿って形成した。このことにより、スパークプラグ個体間で、レーザービームの照射位置が電極軸線方向にずれた(ばらついた)場合でも、レーザー溶接部の電極軸線方向(溶接ビード幅方向)における成分分布の変動幅が相対的に小さく抑えられる。これに伴い、レーザー溶接部と貴金属チップ又は電極母材との境界付近における熱膨張率の変化は相対的に小さくなり、クラックの発生・成長を抑制できる。
【0012】
なお、電極母材は、少なくとも被溶接部となる部分をFe又はNiを主体とする耐熱金属で構成できる。本明細書において「主成分」とは、最も重量含有率の高い成分を意味し、必ずしも「50重量%以上を占める成分」を意味するものではない。
【0013】
さらに本発明の合金チップは、溶接接合時に、被溶接部及び/又は耐消耗性チップに固定しておくとよい。レーザー溶接前に、合金チップを抵抗溶接等によって耐消耗性チップ及び/又は被溶接部に仮止めしたり、又はレーザー溶接時に、耐消耗性チップの先端面を押圧して、合金チップを耐消耗性チップ及び被溶接部に保持固定したりすることによって、レーザービームにより溶融した合金の凝固時に合金チップが位置ズレや偏心等を起こしにくくなり、電極が傾いたり(偏心)、レーザービームの照射位置にズレを生じにくくなる。これにより、レーザー溶接部と貴金属チップ又は電極母材との境界付近における熱膨張率の変化を極力抑えることができる。
【0014】
さらに本発明の合金チップは、被溶接部の主成分を10〜50重量%含むものとすることができる。合金チップが、被溶接部すなわち電極母材の主成分を所定量含有することにより、電極母材とレーザー溶接部との境界付近において、レーザー溶接部と貴金属チップ又は電極母材との境界付近における熱膨張率の変化はさらに小さくなり、クラックの発生・成長を抑制できる。
【0015】
さらに本発明の合金チップは、耐消耗性チップ及び被溶接部の主成分原料を配合・溶解して形成したものが使用できる。合金チップの均質性が保たれるので、レーザー溶接部における熱膨張率の変化が相対的に小さくなり、クラックの発生・成長の抑制に寄与する。
【0016】
さらに本発明の合金チップは、耐消耗性チップ及び被溶接部の主成分を含有する金属粉末を焼結したものが使用できる。この方法によっても、合金チップの均質性が保たれるので、レーザー溶接部における熱膨張率の変化が相対的に小さくなり、クラックの発生・成長の抑制が図れる。
【0017】
さらに本発明は、溶接接合後のレーザー溶接部に焼鈍処理を行うことができる。合金チップ、耐消耗性チップ及び被溶接部の相互間の境界付近は成分分布が不連続となり熱収縮率の違いによりクラックが発生する恐れが大きい。レーザー溶接部に焼鈍処理を行うことで、これらの境界付近に拡散層を生成させて、クラックの発生を抑制できる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
図1に示す本発明の一例たるスパークプラグ100は、筒状の主体金具1、先端部21が突出するようにその主体金具1の内側に嵌め込まれた絶縁体2、先端に形成された耐火花消耗性金属発火部としての貴金属発火部(以下、単に発火部ともいう)33aを突出させた状態で絶縁体2の内側に設けられた中心電極3、及び主体金具1に一端が溶接等により結合されるとともに他端側が側方に曲げ返されて、その側面が中心電極3の先端部と対向するように配置された接地電極4等を備えている。また、接地電極4には上記発火部33aに対向する、耐火花消耗性金属発火部としての貴金属発火部(以下、単に発火部ともいう)43aが形成されており、それら発火部33aと、対向する発火部43aとの間の隙間が火花放電ギャップgとされている。
【0019】
絶縁体2は、例えばアルミナあるいは窒化アルミニウム等のセラミック焼結体により構成され、その内部には自身の軸方向に沿って中心電極3を嵌め込むための孔部6を有している。また、主体金具1は、低炭素鋼等の金属により円筒状に形成されており、スパークプラグ100のハウジングを構成するとともに、その外周面には、プラグ100を図示しないエンジンブロックに取り付けるためのねじ部7が形成されている。
【0020】
なお、発火部33a及び対向する発火部43aのいずれか一方を省略する構成としてもよい。この場合には、発火部33aと、発火部を有さない接地電極4の側面との間、又は対向する発火部43aと、発火部を有さない中心電極3の先端面との間で火花放電ギャップgが形成されることとなる。以下、中心電極3に本発明に係る発火部33aを設ける場合の実施形態について説明するが、接地電極4に本発明に係る発火部43aを設ける場合にも同様に実施できる。
【0021】
中心電極3及び接地電極4のチップ被固着面形成部位として図2(a)では電極部材32の小径部32c、この実施例では少なくともその表層部としての先端面32dが、Ni又はFeを主成分とする耐熱合金にて構成されている。Ni又はFe主成分とする耐熱合金としては、次のようなものが使用可能である。
▲1▼Ni基耐熱合金:本明細書では、Niを40〜85重量%含有し、残部の主体が、Cr、Co、Mo、W、Nb、Al、Ti及びFeの1種又は2種以上からなる耐熱合金を総称する。具体的には、次のようなものが使用できる(いずれも商品名;なお、合金組成については、文献(改訂3版金属データブック(丸善);p138)に記載されているので、詳細な説明は行わない):
ASTROLOY、CABOT 214、D-979、HASTELLOY C22、HASTELLOY C276、HASTELLOY G30、HASTELLOY S、HASTELLOY X、HAYNES 230、INCONEL 587、INCONEL 597、INCONEL 600、INCONEL 601、INCONEL 617、INCONEL 625、INCONEL 706、INCONEL 718、INCONEL X750、KSN、M-252、NIMONIC 75、NIMONIC 80A、NIMONIC 90、NIMONIC 105、NIMONIC 115、NIMONIC 263、NIMONIC 942、NIMONIC PE11、NIMONIC PE16、NIMONIC PK33、PYROMET 860、RENE 41、RENE 95、SSS 113MA、UDIMET 400、UDIMET 500、UDIMET 520、UDIMET 630、UDIMET 700、UDIMET 710、UDIMET 720、UNITEP AF2-1 DA6、WASPALOY。
【0022】
▲2▼Fe基耐熱合金:本明細書では、Feを20〜60重量%含有し、残部の主体が、Cr、Co、Mo、W、Nb、Al、Ti及びNiの1種又は2種以上からなる耐熱合金を総称する。具体的には、次のようなものが使用できる(いずれも商品名;なお、合金組成については、文献(改訂3版金属データブック(丸善)、p138)に記載されているので、詳細な説明は行わない);
A-286、ALLOY 901、DISCALOY、HAYNES 556、INCOLOY 800、INCOLOY 801、INCOLOY 802、INCOLOY 807、INCOLOY 825、INCOLOY 903、INCOLOY 907、INCOLOY 909、N-155、PYROMET CTX-1、PYROMET CTX-3、S-590、V-57、PYROMET CTX-1、16-25-6、17-14CuMo、19-9DL、20-Cb3。
【0023】
一方、上記発火部33a及び対向する発火部43aは、Ir,Rh,Pt,Pd,Ru,Re,W,Os,Mo,Auのうちの少なくとも1種を主成分とする耐火花消耗性金属、この実施例では、Ir又はPtのいずれかを主成分とする貴金属を主体に構成されている。これらの貴金属の使用により、中心電極の温度が上昇しやすい環境下においても、発火部の耐消耗性を良好なものとすることができる。また、上記のような耐熱合金に対する溶接性も良好である。例えばPtをベースにした貴金属を使用する場合には、Pt単体の他、Pt−Ni合金(例えばPt−1〜30重量%Ni合金)、Pt−Ir合金、Pt−Ir−Ni合金等を好適に使用できる。また、Irを主成分とするものとしては、Ir−Pt合金、Ir−Rh合金等を使用できる。
【0024】
なお、Ir系の貴金属材料を使用する場合には、元素周期律表の3A族(いわゆる希土類元素)及び4A族(Ti、Zr、Hf)に属する金属元素の酸化物(複合酸化物を含む)を0.1〜15重量%の範囲内で含有させることができる。これにより、Ir成分の酸化・揮発による消耗が効果的に抑制できる。上記酸化物としてはYが好適に使用されるが、このほかにもLa、ThO、ZrO等を好ましく使用することができる。この場合、金属成分はIr合金のほか、Ir単体を使用してもよい。
【0025】
図2は、この発明に係るスパークプラグの中心電極側発火部の製造工程を示す。
図2(a)において、中心電極3は、Ni又はFeを主成分とする耐熱合金にて構成される円柱状の電極母材32と、電極母材32の中心部に埋め込まれ、Cu又はAgを主成分とする良熱伝導性金属にて構成される芯体31とを含む。電極母材32は、大径部32aから縮径部32bを経て先端側の小径部32cに至るまで連続的に設けられ、切削又は塑性加工により形成される。小径部32cの先端面32dに耐消耗性チップとしての貴金属チップ33を載置し、小径部32cに貴金属チップ33をレーザー溶接により接合することにより、耐火花消耗性金属発火部としての貴金属発火部33aを形成する。
【0026】
次に、貴金属発火部33aを形成するまでを説明する。図2(b)において、先端面32dと円板状又は円柱状の貴金属チップ33(耐消耗性チップ)との間に、貴金属チップ33の主成分と小径部32c(被溶接部)の主成分とを含み、円板状又は円柱状を呈する合金チップ34を積層状に重ね合わせて重ね合せ組立体Aを形成する。なお、この合金チップ34は貴金属チップ33及び小径部32cの主成分を含むため、その熱膨張率は両者の中間の値を有している。また、貴金属チップ33は、上記発火部33aを構成する合金組成からなる。さらに、小径部32cと合金チップ34(又は合金チップ34と貴金属チップ33)との重ね合わせの際、先端面32d(又は合金チップ34の上面)に凹部を設けてこの凹部に合金チップ34(又は貴金属チップ33)の下面を載置しても良い。
【0027】
図2(c)に示すように、この重ね合せ組立体Aに対し、レーザー光源Lから発射されるYAG(イットリウム、アルミニウム、ガーネット)レーザービームLBを、貴金属チップ33と合金チップ34との境界位置に向けて略水平方向に間欠的に照射する。このとき、中心電極3を所定方向に回転させてその照射面が互いに重なる間隔で全周にわたって照射が行われる。これによって、重ね合せ組立体Aを構成する貴金属チップ33、合金チップ34及び小径部32cに跨る全周レーザー溶接部B(レーザー溶接部)が外周面に沿って形成され、貴金属チップ33は先端面32dに固着される。このとき全周レーザー溶接部Bでは、電極母材32、貴金属チップ33及び合金チップ34の各成分が溶融・凝固した状態にある。
【0028】
レーザービームLBに関して、照射方向は、電極母材32、貴金属チップ33及び合金チップ34の形状等によっては、図2(c)の斜め上方から斜め下方へ向かうように設定しても良い。中心電極3の代わりにレーザー光源Lを回転させたり、レーザー光源Lと中心電極3とを互いに逆方向に回転させたりすることも可能である。さらに、レーザー光源Lを複数設けても差し支えない。
【0029】
貴金属チップ33及び合金チップ34は、それぞれ所定の組成となるように各合金成分を配合・溶解することにより得られる溶解合金を熱間圧延により板状に加工し、その板材を熱間打抜き加工により所定のチップ形状に打ち抜いて形成したものや、合金を熱間圧延又は熱間鍛造により線状あるいはロッド状の素材に加工した後、これを長さ方向に所定長に切断して形成したものを使用できる。また、貴金属チップ33及び合金チップ34は、それぞれ所定の組成となるように各金属粉末を配合して加熱し、粉末粒子を焼結させて、体積収縮を伴って緻密化した
材料を使用できる。
【0030】
特に、合金チップ34は、電極母材32及び貴金属チップ33の主成分原料を配合・溶解して形成したものを使用したり、また、電極母材32及び貴金属チップ33の主成分を含有する金属粉末を焼結したものを使用するとよい。合金チップの均質性が保たれるので、全周レーザー溶接部Bにおける熱膨張率の変化が相対的に小さくなり、クラックKの発生・成長の抑制に寄与する。さらに合金チップ34は、電極母材32の主成分を10〜50重量%含んでいるため、全周レーザー溶接部Bと貴金属チップ33又は電極母材32との境界付近における熱膨張率の変化がさらに小さくなり、クラックKの発生・成長を抑制できる。
【0031】
また、合金チップ34は、溶接接合時に、貴金属チップ33及び/又は先端面32dに固定されている。レーザービームLBにより溶融した合金の凝固時に合金チップ34が位置ズレや偏心等を起こしやすく、電極が傾いたり(偏心)、レーザービームLBの照射位置にズレを生じて、全周レーザー溶接部Bの成分分布が変動する。そこで、レーザー溶接前に、合金チップ34を抵抗溶接等によって貴金属チップ33及び/又は先端面32dに仮止めしたり、又はレーザー溶接時に、貴金属チップ33の先端面を押圧して、合金チップ34を貴金属チップ33及び先端面32dに保持固定したりすることによって、この成分分布の変動を極力抑えることができる。
【0032】
さらに、溶接接合後の全周レーザー溶接部Bに焼鈍処理を行っている。合金チップ34、貴金属チップ33及び小径部32c(電極母材32)の相互間の境界付近は成分分布が不連続となり熱収縮率の違いによりクラックが発生する恐れがある。全周レーザー溶接部Bに焼鈍処理を行うことで、この境界付近に拡散層を生成させて、クラックの発生を抑制している。なお、焼鈍処理条件としては、例えば溶接後、10−5Torr以下の真空中で、950±50℃に2時間加熱したのち徐冷する方法がある。
【0033】
図3は、中心電極側発火部の溶接接合前の正面図を示す。図において、各部の寸法は次の通りである。貴金属チップ33の外径をd、合金チップ34の外径をd、小径部32cの外径をd、大径部32aの外径をDとしたとき、
0.3≦d≦1.8 [mm]
≦d≦d≦d+0.3 [mm]
1.5≦D≦3 [mm]
である。
【0034】
貴金属チップ33の厚さをl、合金チップ34の厚さをl、小径部32cの厚さをlとしたとき、
≦0.5 [mm]
0.1≦l≦0.4 [mm]
0≦l≦0.3 [mm]
0.1≦(l+l)≦0.4 [mm]
である。また、縮径部32bの開先角θは、
θ≦110゜
である。
【0035】
図4は、中心電極側発火部の縦半断面図を示し、貴金属チップ33と先端面32dとの間に、この両者の主成分を含む合金チップ34を積層状に重ね合わせ、これら三層に跨る全周レーザー溶接部Bが、外周面に沿って形成されている。その結果、スパークプラグ個体間で、レーザービームLBの照射位置が電極軸線方向にずれた(ばらついた)場合でも、全周レーザー溶接部Bの電極軸線方向(溶接ビード幅方向)における成分分布の変動幅が相対的に小さく抑えられる。これに伴い、全周レーザー溶接部Bと貴金属チップ33又は電極母材32との境界付近における熱膨張率の変化は相対的に小さくなり、クラックKの発生・成長を抑制できる。
【0036】
また、図3との対比から明らかなように、この実施例の重ね合せ組立体Aには、少なくともその径方向中央部に未溶接領域が存在するとともに、貴金属チップ33、合金チップ34及び小径部32cは溶接接合後もそれぞれ一部が残存している。仮に、全周レーザー溶接部Bが重ね合せ組立体Aの中心にまで達し、合金チップ34をすべて溶融して径方向中央部に未溶接領域を残さないときは、全周レーザー溶接部Bのビードの幅や深さが大きくなるので強固な溶着力が得られる。しかし一方で、レーザー光源Lには多量の熱量(エネルギー)を要し、また、貴金属チップ33や合金チップ34に比べて熱変化を起こし易い電極母材32や芯体31がこの熱を吸収し過ぎてブローホールやクラックが発生し易くなる。そこで、溶接に要する熱量を抑えつつ、電極母材32や芯体31へ悪影響を及ぼさないよう配慮して、重ね合せ組立体Aの少なくとも径方向中央部に未溶接領域を残すようにしている。重ね合せ組立体Aの未溶接領域においては、貴金属チップ33、合金チップ34及び小径部32c(電極母材32)の残存部分は溶接による影響を全く受けていないか少なくともほとんど受けていないので、溶接接合前の成分分布をほぼそのままの状態で保っていると考えられる。
【0037】
図5は、全周レーザー溶接部Bの成分分布を表し、図5(a)の従来例の場合にはレーザービームLBの照射位置aが電極軸線方向のb又はcに僅かにずれただけで、全周レーザー溶接部Bの成分分布は電極軸線方向に相対的に大きく変動する。しかし、図5(b)の本実施例の場合にはレーザービームLBの照射位置aが電極軸線方向のb又はcに多少ずれても、全周レーザー溶接部Bの成分分布の変動幅は相対的に小さい。貴金属チップ33は、電極母材32(本実施例ではNi又はFeを主成分とする)に比べて一般に融点が高く溶けにくいため、全周レーザー溶接部Bの合金層は溶融・凝固の際混ざりにくく成分分布に変動を生じ易い。ここでは、合金チップ34を両者の間に挟み、かつ、貴金属チップ33と合金チップ34との境界位置にレーザービームLBを照射することで、合金チップ34を媒介として貴金属チップ33が溶け易くしかも電極母材32と混ざり易くなって、全周レーザー溶接部Bの成分分布の変動幅は相対的に小さくなると考えられる。
【0038】
そして、全周レーザー溶接部Bの成分分布の変動幅が相対的に小さくなるとクラックKの発生・成長が抑制されることを冷熱サイクルの繰り返し耐久試験により確認した。図1のスパークプラグの中心電極側発火部33aを950±20℃に二分間加熱し、その後一分間徐冷する。この冷熱サイクルを1,000回繰り返し、クラックの進展率を測定した。なお、クラックの進展率は、図4において、全周レーザー溶接部Bの上端から貴金属チップ33の下端までの軸線方向の距離をt、クラックKの軸線方向の高さをtとしたとき、t/tで表される。
【0039】
図6において、合金チップ34を用いないとき100%近い値を示したクラック進展率は、合金チップ34を貴金属チップ33と小径部32cとの間に挟み、かつ、貴金属チップ33と合金チップ34との境界位置にレーザービームLBを照射することで、半分以下に減少した。全周レーザー溶接部Bの成分分布の変動幅が相対的に小さくなって、クラックKの発生・成長が抑制されたと考えられる。クラック進展率は、溶接接合後の全周レーザー溶接部Bに焼鈍処理を行うことでさらに低下した。焼鈍処理により、合金チップ34、貴金属チップ33及び小径部32c(電極母材32)の相互間の境界付近に拡散層が生成され、クラックKの発生・成長がさらに抑制されると考えられる。
【0040】
以上の実施例において、合金チップ34は1個(1層)のみ用いたが、複数個(複層)としても良い。その際、合金チップ34各層の成分組成に段階的な差を設けておけば、全周レーザー溶接部Bの成分分布の変動幅が一層小さくなることが期待できる。また、本発明は中心電極3と共に、または、中心電極3に代えて、接地電極4にも適用できる。なお、貴金属チップ33の被溶接部は、小径部32cに限定されない。小径部32cを設けないとき、貴金属チップ33の被溶接部は縮径部32bとなる。
【図面の簡単な説明】
【図1】本発明のスパークプラグの一実施例を示す縦断面図及びその要部拡大図。
【図2】図1のスパークプラグの中心電極側発火部の製造工程説明図。
【図3】中心電極側発火部の溶接接合前の正面図。
【図4】中心電極側発火部の縦半断面図。
【図5】全周レーザー溶接部の成分分布を表す概念説明図。
【図6】クラック進展率の変化を表す説明図。
【図7】中心電極側発火部の従来の製造工程を示す説明図。
【符号の説明】
3 中心電極
31 芯体
32 電極母材
32a 大径部
32b 縮径部
32c 小径部(被溶接部)
32d 先端面
33 貴金属チップ(耐火花消耗性金属チップ;耐消耗性チップ)
33a 貴金属発火部(耐火花消耗性金属発火部;発火部)
34 合金チップ
4 接地電極
A 重ね合せ組立体
B 全周レーザー溶接部(レーザー溶接部)
L レーザー光源
LB レーザービーム
g 火花放電ギャップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spark plug manufacturing method and a spark plug.
[0002]
[Prior art]
In recent years, a spark plug used for ignition of an internal combustion engine is a type in which a noble metal ignition part is formed by welding a noble metal tip mainly composed of Pt, Ir or the like to the tip of an electrode in order to improve spark wear resistance. Things are used. For example, when joining a noble metal tip to the tip surface of the center electrode, as a manufacturing method thereof, a disc-shaped or columnar noble metal tip is placed on the tip of the center electrode, and the center electrode is rotated along the outer periphery of the overlapping surface. There have been proposed methods for forming a laser welded portion by irradiating laser light (for example, JP-A-6-45050 and JP-A-10-112374).
[0003]
FIG. 7 shows an example of a conventional manufacturing method when a noble metal tip is bonded to the tip surface of the center electrode. A disc-shaped or circular shape mainly composed of Pt, Ir or the like is formed on the tip surface of the electrode base material 32 ′ formed so as to cover the core 31 ′ at the center by a heat-resistant alloy mainly composed of Ni or Fe. Columnar noble metal tips 33 ′ are overlaid. The laser light source L irradiates the laser beam LB toward the boundary position between the noble metal tip 33 ′ and the electrode base material 32 ′ while rotating the electrode base material 32 ′ and the noble metal tip 33 ′. As a result, the noble metal tip 33 ′ and the electrode base material 32 ′ are melted and solidified, and the laser weld B ′ is formed across both of them, and the center electrode 3 ′ having the noble metal ignition part 33a ′ is obtained.
[0004]
[Problems to be solved by the invention]
By the way, by selecting the irradiation position of the laser beam LB near the boundary position between the noble metal tip 33 ′ and the electrode base material 32 ′ (position a in FIG. 5A), as shown in FIG. The component distribution in the vicinity of the boundary between the laser weld B ′ and the noble metal tip 33 ′ is such that the electrode base material component is low and the noble metal tip component is high. Further, the component distribution in the vicinity of the boundary with the electrode base material 32 ′ is high in the electrode base material component and low in the noble metal tip component. This is presumably because the noble metal tip 33 ′ and the electrode base material 32 ′ are melted and solidified in a short time, and the laser weld B ′ is formed without sufficient diffusion. However, when the irradiation position of the laser beam LB fluctuates (moves up and down) in the electrode axial direction (weld bead width direction) between the spark plugs, for example, the b position and the c position in FIG. The component distribution in the laser welded portion B ′ tends to vary significantly between individuals, in the vicinity of the boundary between the noble metal tip 33 ′ or the electrode base material 32 ′ and the laser welded portion B ′ in the electrode axis direction (weld bead width direction). is there.
[0005]
On the other hand, the coefficient of thermal expansion is generally noble metal tip 33 ′> laser weld B ′> electrode base material 32 ′. Moreover, it is thought that the thermal expansion coefficient in the alloy layer of laser welding part B 'is proportional to the said component distribution and its fluctuation range. Therefore, it is desirable that the vicinity of the boundary with the noble metal tip 33 ′ and the vicinity of the boundary with the electrode base material 32 ′ in the laser weld B ′ are as close as possible to physical characteristics such as a coefficient of thermal expansion. By selecting the irradiation position of the laser beam LB in the vicinity of the boundary position between the noble metal tip 33 ′ and the electrode base material 32 ′ (position a in FIG. 5A), the above-described component distribution is shown. The physical characteristics such as the coefficient of thermal expansion in the vicinity of the boundary with the noble metal tip 33 ′ and the boundary with the electrode base material 32 ′ in the part B ′ become close. On the other hand, when the irradiation position of the laser beam LB moves up and down between individuals, the thermal expansion coefficient in the laser welded portion B ′ is near the boundary between the noble metal tip 33 ′ or the electrode base material 32 ′ and the laser welded portion B ′. , It changes rapidly in the electrode axis direction (weld bead width direction). That is, when the irradiation position of the laser beam LB comes to the position b in FIG. 5A, there are many noble metal tip components in the lower part of the electrode axial direction, so the laser weld B ′ and the electrode base material In the vicinity of the boundary with 32 ', there is a portion where a lot of noble metal tip components exist. On the other hand, when the position “c” in FIG. 5A is reached, since there are many electrode base material components up to the upper side in the electrode axis direction, the vicinity of the boundary between the laser weld B ′ and the noble metal tip 33 ′. , There are portions where many electrode base material components exist. Therefore, in such a part, physical characteristics such as a coefficient of thermal expansion greatly differ.
[0006]
Under such circumstances, when repeatedly exposed to a cooling cycle as in an internal combustion engine, the boundary between the noble metal tip 33 ′ or the electrode base material 32 ′ and the laser weld B ′ due to the difference in thermal expansion coefficient (thermal contraction rate). There is a risk that a crack K ′ may occur in the vicinity. When the crack K ′ grows, the noble metal tip 33 ′ may fall off from the electrode base material 32 ′.
[0007]
For example, when the laser weld B ′ reaches the center of the electrode base material 32 ′ and all the noble metal tips 33 ′ are melted to leave no unwelded area in the radial center, the bead of the laser weld B ′ Since the width and depth increase, a strong welding force can be obtained. On the other hand, since heat input from the welding heat source is large in this configuration, the electrode base material 32 ′ and the core body 31 ′, which are likely to undergo a heat change as compared with the noble metal tip 33 ′, have blowholes and cracks due to excessive heat absorption. There is a problem that is likely to occur. Accordingly, in consideration of suppressing the amount of heat required for welding and not adversely affecting the electrode base material 32 ′ and the core 31 ′, an unwelded region is provided at least in the central portion in the radial direction of the electrode base material 32 ′ as shown in FIG. In some cases, the noble metal tip 33 ′ may be welded so that a part of the noble metal tip 33 ′ remains after welding. However, in this case, since the electrode base material 32 and the noble metal tip 33 ′ are not joined in the unwelded region, or are temporarily fixed by resistance welding, the noble metal tip 33 ′ or the electrode When the crack generated at the boundary between the base material 32 ′ and the laser welded portion B ′ reaches the unwelded area, there is a problem that the chip is very easily dropped.
[0008]
The problem of the present invention is that the distribution of components and the thermal expansion coefficient in the electrode axial direction (weld bead width direction) of the laser welded portion even when the irradiation position of the laser beam is shifted (varied) between the individual spark plugs. It is an object of the present invention to provide a spark plug manufacturing method and a spark plug capable of suppressing the generation and growth of cracks without greatly changing.
[0009]
[Means for solving the problems and actions / effects]
In order to solve the above problems, a method for manufacturing a spark plug of the present invention includes:
A center electrode, and side surfaces opposite own front end surface of the center electrode and an arranged ground electrode to form a spark discharge gap, the center electrode at a position corresponding to the spark discharge gap, the the electrode base material, Ir, Rh, Pt, Pd , Ru, Re, W, Os, Mo, as a main component at least one of Au, a disc-shaped or cylindrical spark erosion resistant metal tip A method of manufacturing a spark plug in which a spark-resistant consumable metal ignition part is formed by joining a certain consumable chip by laser welding,
The electrode base material, at least the welded portion of the wear-resistant tip is composed of a heat-resistant alloy,
Between the wear-resistant tip and the tip end surface of the welded portion , the main component of the wear-resistant tip and the principal component of the welded portion are included so as to have a thermal expansion coefficient between them , and The thickness l 2 is 0.1 ≦ l 2 ≦ 0.4 [mm], and disk-shaped or column-shaped alloy chips are stacked in a stack,
By irradiating a laser beam toward a boundary position between the wear-resistant tip and the alloy tip, and forming a laser weld portion straddling the wear-resistant tip, the alloy tip, and the welded portion along an outer peripheral surface. The wear-resistant tip is fixed to the welded portion.
[0010]
Further, in order to solve the above problems, the spark plug of the present invention is
A center electrode, and side surfaces opposite own front end surface of the center electrode and an arranged ground electrode to form a spark discharge gap, the center electrode at a position corresponding to the spark discharge gap, the The electrode base material is a spark consumable metal chip having a disk shape or a columnar shape mainly containing at least one of Ir, Rh, Pt, Pd, Ru, Re, W, Os, Mo, and Au. It is a spark plug in which a spark-resistant consumable metal ignition part is formed by joining a wear-resistant tip by laser welding,
The electrode base material, at least the welded portion of the wear-resistant tip is composed of a heat-resistant alloy,
Between the wear-resistant tip and the tip end surface of the welded portion , the main component of the wear-resistant tip and the principal component of the welded portion are included so as to have a thermal expansion coefficient between them , and The thickness l 2 is 0.1 ≦ l 2 ≦ 0.4 [mm], and the disk-shaped or columnar alloy chips are stacked in a stacked manner,
A laser beam is irradiated toward a boundary position between the wear-resistant tip and the alloy tip, and a laser welded portion straddling the wear-resistant tip, the alloy tip, and the welded portion is formed along the outer peripheral surface. It is characterized by that.
[0011]
In the present invention, an alloy chip having an intermediate coefficient of thermal expansion between the wear-resistant tip and the welded portion is laminated in a stacked manner between the wear-resistant tip and the welded portion, and the wear-resistant tip and the alloy tip are stacked. And the laser welding part straddling the to-be-welded part was formed along the outer peripheral surface. As a result, even when the laser beam irradiation position deviates (scatters) between the individual spark plugs in the electrode axis direction, the fluctuation width of the component distribution in the electrode axis direction (weld bead width direction) of the laser weld is relative. Can be kept small. Accordingly, the change in the coefficient of thermal expansion near the boundary between the laser weld and the noble metal tip or the electrode base material becomes relatively small, and the generation and growth of cracks can be suppressed.
[0012]
In the electrode base material, at least a portion to be welded can be made of a heat-resistant metal mainly composed of Fe or Ni. In the present specification, the “main component” means a component having the highest weight content, and does not necessarily mean “a component occupying 50% by weight or more”.
[0013]
Furthermore, the alloy tip of the present invention is preferably fixed to the welded part and / or the wear-resistant tip at the time of welding joining. Before laser welding, the alloy tip is temporarily attached to the wear-resistant tip and / or welded part by resistance welding or the like, or the tip of the wear-resistant tip is pressed during laser welding to wear the alloy tip By holding and fixing to the weldable tip and the welded part, the alloy tip is less likely to be displaced or decentered when the alloy melted by the laser beam is solidified, the electrode is tilted (eccentric), and the laser beam irradiation position It becomes difficult to produce a gap. Thereby, the change of the thermal expansion coefficient in the vicinity of the boundary between the laser weld and the noble metal tip or the electrode base material can be suppressed as much as possible.
[0014]
Furthermore, the alloy chip of the present invention may contain 10 to 50% by weight of the main component of the welded part. The alloy tip contains a predetermined amount of the main component of the welded part, that is, the electrode base material, so that the vicinity of the boundary between the electrode base material and the laser welded part is near the boundary between the laser welded part and the noble metal tip or the electrode base material. The change in the thermal expansion coefficient is further reduced, and crack generation / growth can be suppressed.
[0015]
Furthermore, the alloy tip of the present invention can be formed by blending and melting the wear-resistant tip and the main component material of the welded portion. Since the homogeneity of the alloy tip is maintained, the change in the coefficient of thermal expansion in the laser welded portion becomes relatively small, contributing to the suppression of crack generation and growth.
[0016]
Furthermore, as the alloy tip of the present invention, a sintered metal powder containing a wear-resistant tip and the main component of the welded portion can be used. Also by this method, the homogeneity of the alloy tip is maintained, so that the change in the coefficient of thermal expansion in the laser welded portion becomes relatively small, and crack generation / growth can be suppressed.
[0017]
Furthermore, this invention can perform an annealing process to the laser welding part after welding joining. In the vicinity of the boundary between the alloy tip, the wear-resistant tip and the welded portion, the component distribution becomes discontinuous, and there is a high risk of cracks due to the difference in thermal shrinkage rate. By performing annealing treatment on the laser welded portion, it is possible to generate a diffusion layer in the vicinity of these boundaries and suppress the occurrence of cracks.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A spark plug 100 as an example of the present invention shown in FIG. 1 includes a cylindrical metal shell 1, an insulator 2 fitted inside the metal shell 1 so that the tip 21 protrudes, and a refractory spark formed at the tip. One end of the noble metal ignition part (hereinafter also referred to simply as the ignition part) 33a as a consumable metal ignition part is coupled to the center electrode 3 provided inside the insulator 2 and the metal shell 1 by welding or the like. The other end side is bent back to the side, and a ground electrode 4 or the like is provided so that the side surface thereof faces the tip of the center electrode 3. Further, the ground electrode 4 is formed with a noble metal ignition part (hereinafter also simply referred to as an ignition part) 43a as a spark-resistant consumable metal ignition part facing the ignition part 33a, and opposed to the ignition part 33a. A gap between the ignition part 43a and the ignition part 43a is a spark discharge gap g.
[0019]
The insulator 2 is made of a ceramic sintered body such as alumina or aluminum nitride, for example, and has a hole 6 for fitting the center electrode 3 along its own axial direction. The metal shell 1 is formed in a cylindrical shape from a metal such as low carbon steel, and constitutes a housing of the spark plug 100, and a screw for attaching the plug 100 to an engine block (not shown) on its outer peripheral surface. Part 7 is formed.
[0020]
In addition, it is good also as a structure which abbreviate | omits any one of the ignition part 33a and the opposing ignition part 43a. In this case, a spark is generated between the ignition part 33a and the side surface of the ground electrode 4 that does not have the ignition part, or between the opposing ignition part 43a and the tip surface of the center electrode 3 that does not have the ignition part. A discharge gap g is formed. Hereinafter, although the embodiment in the case of providing the ignition part 33a according to the present invention in the center electrode 3 will be described, the same can be applied to the case in which the ignition part 43a according to the present invention is provided in the ground electrode 4.
[0021]
In FIG. 2A, the small-diameter portion 32c of the electrode member 32, and in this embodiment, at least the front end surface 32d as the surface layer portion of the center electrode 3 and the ground electrode 4 are formed of Ni or Fe as a main component. It is comprised with the heat-resistant alloy. As the heat-resistant alloy containing Ni or Fe as a main component, the following can be used.
(1) Ni-base heat-resistant alloy: In this specification, Ni is contained in an amount of 40 to 85% by weight, and the main component of the balance is one or more of Cr, Co, Mo, W, Nb, Al, Ti and Fe. The heat-resistant alloy consisting of Specifically, the following can be used (all are trade names; the alloy composition is described in the literature (Revised 3rd edition Metal Data Book (Maruzen); p138)). Do not do):
ASTROLOY, CABOT 214, D-979, HASTELLOY C22, HASTELLOY C276, HASTELLOY G30, HASTELLOY S, HASTELLOY X, HAYNES 230, INCONEL 587, INCONEL 597, INCONEL 600, INCONEL 601, INCONEL 617, INCONEL 706, INCONEL 706, INCONEL 706 , INCONEL X750, KSN, M-252, NIMONIC 75, NIMONIC 80A, NIMONIC 90, NIMONIC 105, NIMONIC 115, NIMONIC 263, NIMONIC 942, NIMONIC PE11, NIMONIC PE16, NIMONIC PK33, PYROMET 860, RENE 41, RENE 95, SSS 113MA, UDIMET 400, UDIMET 500, UDIMET 520, UDIMET 630, UDIMET 700, UDIMET 710, UDIMET 720, UNITEP AF2-1 DA6, WASPALOY.
[0022]
(2) Fe-based heat-resistant alloy: In the present specification, Fe is contained in an amount of 20 to 60% by weight, and the balance is mainly one or more of Cr, Co, Mo, W, Nb, Al, Ti and Ni. The heat-resistant alloy consisting of Specifically, the following can be used (all are trade names; the alloy composition is described in the literature (Revised 3rd edition Metal Data Book (Maruzen), p138)). Do not do);
A-286, ALLOY 901, DISCALOY, HAYNES 556, INCOLOY 800, INCOLOY 801, INCOLOY 802, INCOLOY 807, INCOLOY 825, INCOLOY 903, INCOLOY 907, INCOLOY 909, N-155, PYROMET CTX-1, PYROMET CTX-3, S-590, V-57, PYROMET CTX-1, 16-25-6, 17-14CuMo, 19-9DL, 20-Cb3.
[0023]
On the other hand, the ignition part 33a and the opposing ignition part 43a are a fire-resistant consumable metal mainly composed of at least one of Ir, Rh, Pt, Pd, Ru, Re, W, Os, Mo, Au, In this embodiment, the main constituent is a noble metal containing either Ir or Pt as a main component. Use of these noble metals can improve the wear resistance of the ignition part even in an environment where the temperature of the center electrode is likely to rise. Moreover, the weldability with respect to the above heat-resistant alloys is also favorable. For example, when using a noble metal based on Pt, a Pt—Ni alloy (for example, Pt-1 to 30 wt% Ni alloy), a Pt—Ir alloy, a Pt—Ir—Ni alloy, etc. are preferable in addition to Pt alone. Can be used for Moreover, as what has Ir as a main component, an Ir-Pt alloy, an Ir-Rh alloy, etc. can be used.
[0024]
In the case where an Ir-based noble metal material is used, oxides (including complex oxides) of metal elements belonging to Group 3A (so-called rare earth elements) and Group 4A (Ti, Zr, Hf) of the periodic table of elements are used. In the range of 0.1 to 15% by weight. Thereby, consumption by oxidation and volatilization of the Ir component can be effectively suppressed. As the oxide, Y 2 O 3 is preferably used, but La 2 O 3 , ThO 2 , ZrO 2 and the like can also be preferably used. In this case, the metal component may be Ir alone or Ir.
[0025]
FIG. 2 shows a manufacturing process of the center electrode side ignition part of the spark plug according to the present invention.
In FIG. 2A, the center electrode 3 is embedded in a cylindrical electrode base material 32 made of a heat-resistant alloy containing Ni or Fe as a main component, and the center part of the electrode base material 32, and Cu or Ag. And a core body 31 made of a highly heat conductive metal containing as a main component. The electrode base material 32 is continuously provided from the large diameter portion 32a through the reduced diameter portion 32b to the small diameter portion 32c on the distal end side, and is formed by cutting or plastic working. A noble metal tip 33 as a wear-resistant tip is placed on the tip surface 32d of the small-diameter portion 32c, and the noble metal tip 33 is joined to the small-diameter portion 32c by laser welding, so that a noble metal ignition portion as a spark-resistant consumable metal ignition portion. 33a is formed.
[0026]
Next, the process until the noble metal ignition part 33a is formed will be described. In FIG. 2B, the main component of the noble metal tip 33 and the main component of the small diameter portion 32c (the welded portion) are provided between the tip surface 32d and the disc-shaped or columnar noble metal tip 33 (consumable chip). And an alloy chip 34 having a disk shape or a columnar shape is laminated in a laminated shape to form a laminated assembly A. Since the alloy tip 34 includes the main components of the noble metal tip 33 and the small diameter portion 32c, the coefficient of thermal expansion has an intermediate value between the two. Further, the noble metal tip 33 is made of an alloy composition that constitutes the ignition portion 33a. Further, when the small-diameter portion 32c and the alloy tip 34 (or the alloy tip 34 and the noble metal tip 33) are superposed, a recess is provided on the tip end surface 32d (or the upper surface of the alloy tip 34), and the alloy tip 34 (or The lower surface of the noble metal tip 33) may be placed.
[0027]
As shown in FIG. 2 (c), a YAG (yttrium, aluminum, garnet) laser beam LB emitted from the laser light source L is applied to the overlap assembly A to the boundary position between the noble metal tip 33 and the alloy tip 34. Irradiated intermittently in the substantially horizontal direction. At this time, the center electrode 3 is rotated in a predetermined direction, and irradiation is performed over the entire circumference at intervals where the irradiation surfaces overlap each other. As a result, a noble metal tip 33, an alloy tip 34, and an all-around laser welded portion B (laser welded portion) straddling the small-diameter portion 32c forming the overlap assembly A are formed along the outer peripheral surface. It is fixed to 32d. At this time, in the all-around laser welded portion B, the components of the electrode base material 32, the noble metal tip 33, and the alloy tip 34 are in a melted and solidified state.
[0028]
Regarding the laser beam LB, the irradiation direction may be set so as to go from diagonally upward to diagonally downward in FIG. 2C depending on the shapes of the electrode base material 32, the noble metal tip 33, and the alloy tip. It is also possible to rotate the laser light source L instead of the center electrode 3 or rotate the laser light source L and the center electrode 3 in opposite directions. Further, a plurality of laser light sources L may be provided.
[0029]
The noble metal tip 33 and the alloy tip 34 are processed into a plate shape by hot rolling a molten alloy obtained by blending and melting each alloy component so as to have a predetermined composition, and the plate material is hot punched. What was formed by punching into a predetermined chip shape, or what was formed by processing an alloy into a linear or rod-shaped material by hot rolling or hot forging and then cutting it into a predetermined length in the length direction Can be used. In addition, the noble metal tip 33 and the alloy tip 34 can be made of a material that is compacted with volume shrinkage by blending and heating each metal powder so as to have a predetermined composition and sintering the powder particles.
[0030]
In particular, the alloy tip 34 is formed by mixing and melting the main component materials of the electrode base material 32 and the noble metal tip 33, or a metal containing the main components of the electrode base material 32 and the noble metal tip 33. It is good to use what sintered powder. Since the homogeneity of the alloy tip is maintained, the change in the coefficient of thermal expansion in the all-around laser weld B is relatively small, contributing to the suppression of the generation and growth of cracks K. Furthermore, since the alloy tip 34 contains 10 to 50% by weight of the main component of the electrode base material 32, the thermal expansion coefficient changes near the boundary between the all-around laser weld B and the noble metal tip 33 or the electrode base material 32. Further, the generation and growth of cracks K can be suppressed.
[0031]
The alloy tip 34 is fixed to the noble metal tip 33 and / or the tip surface 32d at the time of welding joining. When the alloy melted by the laser beam LB is solidified, the alloy tip 34 is liable to be displaced or decentered, the electrode is inclined (eccentric), or the irradiation position of the laser beam LB is displaced, and the laser beam LB is displaced. Component distribution fluctuates. Therefore, before laser welding, the alloy tip 34 is temporarily fixed to the noble metal tip 33 and / or the tip surface 32d by resistance welding or the like, or the tip surface of the noble metal tip 33 is pressed during laser welding, so that the alloy tip 34 is attached. The fluctuation of the component distribution can be suppressed as much as possible by holding and fixing the noble metal tip 33 and the tip surface 32d.
[0032]
Furthermore, the all-around laser welded part B after welding joining is annealed. In the vicinity of the boundary between the alloy tip 34, the noble metal tip 33, and the small diameter portion 32c (electrode base material 32), the component distribution becomes discontinuous, and there is a risk of cracking due to the difference in thermal contraction rate. By performing an annealing process on the entire circumference of the laser welded portion B, a diffusion layer is generated in the vicinity of the boundary to suppress the generation of cracks. In addition, as annealing treatment conditions, for example, after welding, there is a method of heating at 950 ± 50 ° C. for 2 hours in a vacuum of 10 −5 Torr or less and then gradually cooling.
[0033]
FIG. 3 shows a front view of the central electrode side ignition part before welding joining. In the figure, the dimensions of each part are as follows. When the outer diameter of the noble metal tip 33 is d 1 , the outer diameter of the alloy tip 34 is d 2 , the outer diameter of the small diameter portion 32c is d 3 , and the outer diameter of the large diameter portion 32a is D,
0.3 ≦ d 1 ≦ 1.8 [mm]
d 1 ≦ d 2 ≦ d 3 ≦ d 1 +0.3 [mm]
1.5 ≦ D ≦ 3 [mm]
It is.
[0034]
When the thickness of the noble metal tip 33 is l 1 , the thickness of the alloy tip 34 is l 2 , and the thickness of the small diameter portion 32c is l 3 ,
l 1 ≦ 0.5 [mm]
0.1 ≦ l 2 ≦ 0.4 [mm]
0 ≦ l 3 ≦ 0.3 [mm]
0.1 ≦ (l 2 + l 3 ) ≦ 0.4 [mm]
It is. The groove angle θ of the reduced diameter portion 32b is
θ ≦ 110 °.
[0035]
FIG. 4 shows a longitudinal half cross-sectional view of the center electrode side ignition portion. Between the noble metal tip 33 and the tip surface 32d, an alloy tip 34 containing the main components of both is laminated in a laminated manner, and these three layers are stacked. An all-around laser welded portion B is formed along the outer peripheral surface. As a result, even when the irradiation position of the laser beam LB is deviated (varied) between the individual spark plugs in the electrode axis direction, the component distribution varies in the electrode axis direction (weld bead width direction) of the all-around laser weld B. The width is relatively small. Accordingly, the change in the coefficient of thermal expansion near the boundary between the all-around laser weld B and the noble metal tip 33 or the electrode base material 32 becomes relatively small, and the generation and growth of cracks K can be suppressed.
[0036]
As is clear from comparison with FIG. 3, the overlap assembly A of this embodiment has an unwelded region at least in the radial center portion, and the noble metal tip 33, the alloy tip 34, and the small diameter portion. Part of 32c remains even after welding. If the all-around laser weld B reaches the center of the overlap assembly A and all the alloy chips 34 are melted to leave no unwelded area at the radial center, the bead of the all-around laser weld B Since the width and depth of the steel become large, a strong welding force can be obtained. On the other hand, however, the laser light source L requires a large amount of heat (energy), and the electrode base material 32 and the core 31 that easily undergo thermal changes as compared with the noble metal tip 33 and the alloy tip 34 absorb this heat. After that, blow holes and cracks are likely to occur. Therefore, in consideration of not adversely affecting the electrode base material 32 and the core body 31 while suppressing the amount of heat required for welding, an unwelded region is left at least in the central portion in the radial direction of the overlap assembly A. In the unwelded region of the overlap assembly A, the remaining portions of the noble metal tip 33, the alloy tip 34, and the small diameter portion 32c (electrode base material 32) are not affected at all or at least hardly affected by welding. It is considered that the component distribution before joining is maintained almost as it is.
[0037]
FIG. 5 shows the component distribution of the all-around laser weld B. In the case of the conventional example of FIG. 5A, the irradiation position a of the laser beam LB is slightly shifted to b or c in the electrode axis direction. The component distribution of the all-around laser weld B varies relatively greatly in the electrode axis direction. However, in the case of the present embodiment shown in FIG. 5B, even if the irradiation position a of the laser beam LB slightly deviates to b or c in the electrode axis direction, the fluctuation width of the component distribution of the all-around laser weld B is relative. Small. Since the noble metal tip 33 generally has a high melting point and is difficult to melt as compared with the electrode base material 32 (mainly Ni or Fe in this embodiment), the alloy layer of the all-around laser weld B is mixed during melting and solidification. It is difficult to change the component distribution. Here, the alloy tip 34 is sandwiched between the two, and the laser beam LB is irradiated to the boundary position between the noble metal tip 33 and the alloy tip 34, so that the noble metal tip 33 is easily melted through the alloy tip 34 as an electrode. It becomes easy to mix with the base material 32, and it is considered that the fluctuation range of the component distribution of the all-around laser weld B is relatively small.
[0038]
Then, it was confirmed by repeated endurance tests of the thermal cycle that the generation and growth of cracks K were suppressed when the fluctuation range of the component distribution of the entire circumference laser weld B became relatively small. 1 is heated to 950 ± 20 ° C. for 2 minutes and then gradually cooled for 1 minute. This cooling cycle was repeated 1,000 times, and the progress rate of cracks was measured. The crack growth rate in FIG. 4 is t when the distance in the axial direction from the upper end of the all-around laser weld B to the lower end of the noble metal tip 33 is t, and the height in the axial direction of the crack K is t 0 . It is represented by t 0 / t.
[0039]
In FIG. 6, when the alloy tip 34 is not used, the crack growth rate, which shows a value close to 100%, sandwiches the alloy tip 34 between the noble metal tip 33 and the small diameter portion 32c, and the noble metal tip 33 and the alloy tip 34 By irradiating the laser beam LB to the boundary position, the number was reduced to less than half. It is considered that the fluctuation range of the component distribution of the entire circumference laser weld B is relatively small, and the generation / growth of cracks K is suppressed. The crack growth rate was further reduced by performing annealing treatment on the entire circumference laser welded portion B after welding joining. It is considered that a diffusion layer is generated near the boundary between the alloy tip 34, the noble metal tip 33, and the small diameter portion 32c (electrode base material 32) by the annealing treatment, and the generation and growth of cracks K are further suppressed.
[0040]
In the above embodiment, only one alloy chip 34 (one layer) is used, but a plurality (multiple layers) may be used. At that time, if a stepwise difference is provided in the component composition of each layer of the alloy tip 34, it can be expected that the fluctuation range of the component distribution of the all-around laser welded portion B is further reduced. The present invention can also be applied to the ground electrode 4 together with the center electrode 3 or instead of the center electrode 3. The welded part of the noble metal tip 33 is not limited to the small diameter part 32c. When the small diameter portion 32c is not provided, the welded portion of the noble metal tip 33 becomes the reduced diameter portion 32b.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a spark plug of the present invention and an enlarged view of a main part thereof.
2 is a manufacturing process explanatory diagram of a center electrode side ignition portion of the spark plug of FIG. 1; FIG.
FIG. 3 is a front view of a central electrode side ignition portion before welding joining.
FIG. 4 is a longitudinal half sectional view of a central electrode side ignition part.
FIG. 5 is a conceptual explanatory diagram showing a component distribution of an all-around laser weld.
FIG. 6 is an explanatory diagram showing a change in crack progress rate.
FIG. 7 is an explanatory view showing a conventional manufacturing process of a central electrode side ignition portion.
[Explanation of symbols]
3 Center electrode 31 Core body 32 Electrode base material 32a Large diameter part 32b Reduced diameter part 32c Small diameter part (welded part)
32d tip surface 33 noble metal tip (spark-resistant metal tip; wear-resistant tip)
33a Precious metal ignition part (spark wear-resistant metal ignition part; ignition part)
34 Alloy tip 4 Ground electrode A Superposition assembly B All-around laser weld (laser weld)
L Laser light source LB Laser beam g Spark discharge gap

Claims (7)

中心電極と、その中心電極の先端面に自身の側面が対向して火花放電ギャップを形成するように配置された接地電極とを備え、前記火花放電ギャップに対応する位置において前記中心電極は、その電極母材に、Ir,Rh,Pt,Pd,Ru,Re,W,Os,Mo,Auのうちの少なくとも1種を主成分とし、円板状又は円柱状の耐火花消耗性金属チップである耐消耗性チップをレーザー溶接によって接合することにより耐火花消耗性金属発火部が形成されたスパークプラグの製造方法であって、
前記電極母材の、少なくとも前記耐消耗性チップの被溶接部を耐熱合金にて構成し、
前記耐消耗性チップと前記被溶接部の先端面との間に、前記耐消耗性チップの主成分と前記被溶接部の主成分とを含むことにより両者の中間の熱膨張率をもち、かつ厚さl が0.1≦l ≦0.4[mm]で円板状又は円柱状の合金チップを積層状に重ね合わせて、
レーザービームを前記耐消耗性チップと合金チップとの境界位置に向けて照射し、前記耐消耗性チップ、前記合金チップ及び前記被溶接部に跨るレーザー溶接部を外周面に沿って形成することにより、前記耐消耗性チップを前記被溶接部に固着することを特徴とするスパークプラグの製造方法。
A center electrode, and side surfaces opposite own front end surface of the center electrode and an arranged ground electrode to form a spark discharge gap, the center electrode at a position corresponding to the spark discharge gap, the the electrode base material, Ir, Rh, Pt, Pd , Ru, Re, W, Os, Mo, as a main component at least one of Au, a disc-shaped or cylindrical spark erosion resistant metal tip A method of manufacturing a spark plug in which a spark-resistant consumable metal ignition part is formed by joining a certain consumable chip by laser welding,
The electrode base material, at least the welded portion of the wear-resistant tip is composed of a heat-resistant alloy,
Between the wear-resistant tip and the tip end surface of the welded portion , the main component of the wear-resistant tip and the principal component of the welded portion are included so as to have a thermal expansion coefficient between them , and The thickness l 2 is 0.1 ≦ l 2 ≦ 0.4 [mm], and disk-shaped or column-shaped alloy chips are stacked in a stack,
By irradiating a laser beam toward a boundary position between the wear-resistant tip and the alloy tip, and forming a laser weld portion straddling the wear-resistant tip, the alloy tip, and the welded portion along an outer peripheral surface. The method of manufacturing a spark plug, wherein the wear-resistant tip is fixed to the welded portion.
前記合金チップは、溶接接合時に、前記被溶接部及び/又は前記耐消耗性チップに固定されている請求項1記載のスパークプラグの製造方法。The spark plug manufacturing method according to claim 1, wherein the alloy tip is fixed to the welded portion and / or the wear-resistant tip during welding joining. 前記合金チップは、前記被溶接部の主成分を10〜50重量%含む請求項1又は2に記載のスパークプラグの製造方法。The spark plug manufacturing method according to claim 1, wherein the alloy tip includes 10 to 50% by weight of a main component of the welded portion. 前記合金チップは、前記耐消耗性チップ及び前記被溶接部の主成分原料を配合・溶解して形成したものが使用される請求項1ないし3のいずれかに記載のスパークプラグの製造方法。The spark plug manufacturing method according to any one of claims 1 to 3, wherein the alloy tip is formed by mixing and melting the wear-resistant tip and a main component material of the welded portion. 前記合金チップは、前記耐消耗性チップ及び前記被溶接部の主成分を含有する金属粉末を焼結したものが使用される請求項1ないし3のいずれかに記載のスパークプラグの製造方法。The spark plug manufacturing method according to any one of claims 1 to 3, wherein the alloy tip is obtained by sintering a metal powder containing the wear-resistant tip and a main component of the welded portion. 溶接接合後の前記レーザー溶接部に焼鈍処理が行われる請求項1ないし5のいずれかに記載のスパークプラグの製造方法。The method for manufacturing a spark plug according to any one of claims 1 to 5, wherein an annealing treatment is performed on the laser welded portion after the welding joint. 中心電極と、その中心電極の先端面に自身の側面が対向して火花放電ギャップを形成するように配置された接地電極とを備え、前記火花放電ギャップに対応する位置において前記中心電極は、その電極母材に、Ir,Rh,Pt,Pd,Ru,Re,W,Os,Mo,Auのうちの少なくとも1種を主成分とし、円板状又は円柱状の耐火花消耗性金属チップである耐消耗性チップをレーザー溶接によって接合することにより耐火花消耗性金属発火部が形成されたスパークプラグであって、
前記電極母材の、少なくとも前記耐消耗性チップの被溶接部を耐熱合金にて構成し、
前記耐消耗性チップと前記被溶接部の先端面との間に、前記耐消耗性チップの主成分と前記被溶接部の主成分とを含むことにより両者の中間の熱膨張率をもち、かつ厚さl が0.1≦l ≦0.4[mm]で円板状又は円柱状の合金チップが積層状に重ね合わされ、
レーザービームを前記耐消耗性チップと合金チップとの境界位置に向けて照射し、前記耐消耗性チップ、前記合金チップ及び前記被溶接部に跨るレーザー溶接部が外周面に沿って形成されていることを特徴とするスパークプラグ。
A center electrode, and side surfaces opposite own front end surface of the center electrode and an arranged ground electrode to form a spark discharge gap, the center electrode at a position corresponding to the spark discharge gap, the The electrode base material is a spark consumable metal chip having a disk shape or a columnar shape mainly containing at least one of Ir, Rh, Pt, Pd, Ru, Re, W, Os, Mo, and Au. It is a spark plug in which a spark-resistant consumable metal ignition part is formed by joining a wear-resistant tip by laser welding,
The electrode base material, at least the welded portion of the wear-resistant tip is composed of a heat-resistant alloy,
Between the wear-resistant tip and the tip end surface of the welded portion , the main component of the wear-resistant tip and the principal component of the welded portion are included so as to have a thermal expansion coefficient between them , and The thickness l 2 is 0.1 ≦ l 2 ≦ 0.4 [mm], and the disk-shaped or columnar alloy chips are stacked in a stacked manner,
A laser beam is irradiated toward a boundary position between the wear-resistant tip and the alloy tip, and a laser welded portion straddling the wear-resistant tip, the alloy tip, and the welded portion is formed along the outer peripheral surface. A spark plug characterized by that.
JP23469299A 1999-08-20 1999-08-20 Spark plug manufacturing method and spark plug Expired - Fee Related JP4316060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23469299A JP4316060B2 (en) 1999-08-20 1999-08-20 Spark plug manufacturing method and spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23469299A JP4316060B2 (en) 1999-08-20 1999-08-20 Spark plug manufacturing method and spark plug

Publications (2)

Publication Number Publication Date
JP2001060488A JP2001060488A (en) 2001-03-06
JP4316060B2 true JP4316060B2 (en) 2009-08-19

Family

ID=16974934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23469299A Expired - Fee Related JP4316060B2 (en) 1999-08-20 1999-08-20 Spark plug manufacturing method and spark plug

Country Status (1)

Country Link
JP (1) JP4316060B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304843B2 (en) * 2000-08-02 2009-07-29 株式会社デンソー Spark plug
US7666047B2 (en) 2003-11-21 2010-02-23 Ngk Spark Plug Co., Ltd. Method for securing a metal noble tip to an electrode of a spark plug using a resistance and laser welding process
JP4680513B2 (en) * 2004-01-13 2011-05-11 日本特殊陶業株式会社 Spark plug manufacturing method and spark plug
KR101191107B1 (en) * 2005-11-18 2012-10-15 페더럴-모걸 코오포레이숀 Method of forming a spark plug with multi-layer firing tip
US8378560B2 (en) 2007-11-15 2013-02-19 Ngk Spark Plug Co., Ltd. Spark plug
JP4965422B2 (en) * 2007-12-27 2012-07-04 日本特殊陶業株式会社 Spark plug
JP4714249B2 (en) * 2008-09-08 2011-06-29 日本特殊陶業株式会社 Spark plug
JP4964281B2 (en) * 2009-09-11 2012-06-27 日本特殊陶業株式会社 Spark plug
JP4759090B1 (en) * 2010-02-18 2011-08-31 日本特殊陶業株式会社 Spark plug

Also Published As

Publication number Publication date
JP2001060488A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
JP3361479B2 (en) Manufacturing method of spark plug
JP3265067B2 (en) Spark plug
JP5119268B2 (en) Spark plug and manufacturing method thereof
JP3196601B2 (en) Method of manufacturing spark plug for internal combustion engine
JP4928596B2 (en) Spark plug and manufacturing method thereof
EP2193582B1 (en) Ignition device having an induction welded and laser weld reinforced firing tip and method of construction
EP1309053B1 (en) Spark plug
JP4316060B2 (en) Spark plug manufacturing method and spark plug
JPH0696837A (en) Manufacture of spark plug
JPH11204233A (en) Spark plug
JP2002280145A (en) Spark plug and method for manufacturing the same
JP2009070810A (en) Spark plug for internal combustion engine
JP6637452B2 (en) Spark plug
JP3426051B2 (en) Manufacturing method of spark plug
US20240063610A1 (en) Spark plug electrode and method of manufacturing the same
JPWO2011129439A1 (en) Spark plug for internal combustion engine and method of manufacturing spark plug
JP6320354B2 (en) Spark plug and manufacturing method thereof
JP2002289319A (en) Spark plug
JP3878807B2 (en) Manufacturing method of spark plug
JP2001043955A (en) Manufacture of spark plug
JP4017416B2 (en) Manufacturing method of spark plug
JP4291484B2 (en) Spark plug and method of manufacturing spark plug
JP2853109B2 (en) Spark plug manufacturing method
JP2011501377A (en) Spark plug electrode tip welding method
JP2002237370A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees