JP4311082B2 - Thin film solar cell and manufacturing method thereof - Google Patents

Thin film solar cell and manufacturing method thereof Download PDF

Info

Publication number
JP4311082B2
JP4311082B2 JP2003151406A JP2003151406A JP4311082B2 JP 4311082 B2 JP4311082 B2 JP 4311082B2 JP 2003151406 A JP2003151406 A JP 2003151406A JP 2003151406 A JP2003151406 A JP 2003151406A JP 4311082 B2 JP4311082 B2 JP 4311082B2
Authority
JP
Japan
Prior art keywords
electrode layer
photoelectric conversion
processing line
layer
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003151406A
Other languages
Japanese (ja)
Other versions
JP2004356331A (en
Inventor
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003151406A priority Critical patent/JP4311082B2/en
Publication of JP2004356331A publication Critical patent/JP2004356331A/en
Application granted granted Critical
Publication of JP4311082B2 publication Critical patent/JP4311082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電気絶縁性を有する可撓性基板の表面にユニットセルを複数個直列接続した薄膜太陽電池とその製造方法に関する。
【0002】
【従来の技術】
原料ガスのグロー放電分解などにより形成されるアモルファスシリコンのようなアモルファス半導体膜は、気相成長であるため大面積化が容易で、低コスト太陽電池の光電変換膜として期待されている。こうした薄膜太陽電池は、太陽光の入射する側にSnO2膜やZnO膜等の透明な電極を設けている。しかし、このような透明電極は、シート抵抗が大きいために、電流が透明電極を流れることによる電力ロスが大きくなる問題がある。
【0003】
そのため従来は、前記太陽電池を複数の太陽電池(ユニットセル)に分割し、分割したユニットセルを隣接するユニットセルと電気的に接続する直列接続構造をとっていた。これに対し、特許文献1に記載された薄膜太陽電池では、反光入射側にある絶縁性基板に穴をあけ、この穴を利用して透明電極層を基板裏面の接続電極層と接続する構成とし、高シート抵抗の透明電極層を流れる電流の径路の距離を短縮し、これにより寸法の限定された単位太陽電池に分割することなく低電圧、大電流型にも構成できるようにした。これにより、ジュール損失が少なく、デッドスペースの部分を縮小して有効発電面積が増加した薄膜単位太陽電池を得ることができた。
【0004】
さらに、単位太陽電池の一部に光電変換層の下の接続電極層の露出する領域を形成し、それと基板を貫通する導体に接続される分離された接続電極層を、隣接単位太陽電池の接続電極層と連結することにより、直列接続構造が容易に形成できる。このような構成の薄膜太陽電池は、SCAF(Series Connection through Apertures on Film )型の薄膜太陽電池と呼ばれ、電極層と光電変換層の成膜と各層のパターニングおよびそれらの組み合わせ手順により形成される。上記薄膜太陽電池の構成および製造方法の一例は、本願出願人により出願された、例えば特許文献2に記載されている。
【0005】
図5は、構造の理解の容易化のために、上記SCAF型の薄膜太陽電池の構成を簡略化して斜視図で示したものである。図5において、基板61の表面に形成した単位光電変換素子62および基板61の裏面に形成した接続電極層63は、それぞれ複数の単位ユニットに完全に分離され、それぞれの分離位置をずらして形成されている。このため、素子62のアモルファス半導体部分である光電変換層65で発生した電流は、まず透明電極層66に集められ、次に該透明電極層領域に形成された集電孔67を介して背面の接続電極層63に通じ、さらに該接続電極層領域で素子の透明電極層領域の外側に形成された直列接続用の接続孔68を介して上記素子と隣り合う素子の透明電極層領域の外側に延びている下電極層64に達し、両素子の直列接続が行われている。
【0006】
上記薄膜太陽電池の簡略化した製造工程を図6(a)から(g)に示す。プラスチックフィルム71を基板として(工程(a))、これに接続孔78を形成し(工程(b))、基板の両面に第1電極層(下電極)74および第3電極層(接続電極の一部)73を形成(工程(c))した後、接続孔78と所定の距離離れた位置に集電孔77を形成する(工程(d))。工程(c)と工程(d)との間に、第1電極層(下電極)74を所定の形状にレーザ加工して、下電極をパターニングする工程があるが、ここではこの工程の図を省略している。
【0007】
次に、第1電極層74の上に、光電変換層となる半導体層75および第2電極層である透明電極層76を順次形成するとともに(工程(e)および工程(f))、第3電極層73の上に第4電極層(接続電極層)79を形成する(工程(g))。この後、レーザビームを用いて、基板71の両側の薄膜を分離加工して図5に示すような直列接続構造を形成する。
【0008】
なお、第3電極層と第4電極層は電気的には同一の電位であるので、説明の便宜上、併せて一層の接続電極層として扱われることもある。
【0009】
さらに、前記SCAF型の薄膜太陽電池の構成とは異なるものとして、発電の有効面積率を高めることを目的とした構成が特許文献3に開示されている。即ち、特許文献3は、「貫通孔を通じて接続される下電極層(特許文献3では背後電極層と呼ぶ)と接続電極層を形成したのちに下電極層上に非晶質半導体層を形成する際、基板裏面の貫通孔周辺部まで非晶質半導体層の延長部が広がるようにし、この延長した非晶質半導体層によって、透明電極層が貫通孔内に形成されても接続電極層と短絡するのをぎ、これにより透明電極層の全面成膜を可能として、発電の有効面積率を高めた薄膜太陽電池」を開示する(詳細は、特許文献3参照)。
【0010】
図4は、前記特許文献3に開示されたものとは若干異なるが、前記非晶質半導体層の延長部で絶縁する構成を採用し発電の有効面積率を高めた、従来の改良型SCAFの薄膜太陽電池の構成の一例を示す。図4(a)は薄膜太陽電池の受光面側からみた平面図、図4(b)は非受光面側からみた平面図、図4(c)は図4(a)におけるa−a断面図、図4(d)は図4(a)におけるb−b断面図である。
【0011】
図4に示す薄膜太陽電池は、光電変換層と透明電極層とを光電変換部の側端まで延長して設けることにより、発電の有効面積率を高めた構成となっており、そ作製は以下のようにして行なわれる。例えば、プラスチックフィルムからなる基板1に、接続孔7を開け、表面に金属よりなる下電極層2、裏面に金属よりなる接続電極層としての第3電極層3を形成したのち、集電孔8を開ける。従って、接続孔7の内壁には下電極層2と第3電極層3の延長部が形成されるが、集電孔8の内部にはこれらの電極層は形成されていない。
【0012】
次に、下電極層2にレーザー加工を行い、ユニットセル間下電極加工ライン9aおよびセル端部下電極加工ライン10aを形成する。つづいて、下電極層2上にpin構造のアモルファスシリコン(a-Si)、アモルファスシリコンゲルマニウム(a-SiGe)あるいは微結晶シリコンからなる光電変換層4をプラズマCVDにより形成する。この際、同時に基板裏面の集電孔8や接続孔7の内壁および外周部にも回り込んで光電変換層4が形成される。
【0013】
つづいて、透明電極層5をスパッタリングにより形成する。ここで、基板裏面への前記回り込みは光電変換層4に比べて透明電極層5の方が少ないため、透明電極層5は接続孔7、集電孔8周辺で電極層と短絡されることはない。次に、接続孔7の周辺をライン状のマスクで覆った状態で接続電極層としての第4電極層6を形成する。これにより、集電孔8をとおして透明電極層5が第4電極層6に接続される。
【0014】
次に、透明電極層5の上からユニットセル間下電極加工ライン9aおよびセル端部下電極加工ライン10aよりも加工幅を細くして、これらのラインをトレースするようにユニットセル間透明電極加工ライン9bおよびセル端部透明電極加工ライン10bを形成する。この際、前記透明電極加工ラインが下電極加工ラインをはみ出すと透明電極層5と下電極層2は表面が合金化した光電変換層4で電気的につながってしまいリークが発生するため、高精度の加工が要求される。最後に接続電極層にレーザー加工を行い、ユニットセル間接続電極加工ライン11およびセル端部接続電極加工ライン12を形成し直列接続構造が完成する。
【0015】
【特許文献1】
特開平6−342924号公報
【特許文献2】
特開平10−233517号公報
【特許文献3】
特開平8−186279号公報
【0016】
【発明が解決しようとする課題】
ところで、上記図4に示す改良型のSCAF構造の薄膜太陽電池においては、下記のような問題があった。
【0017】
前述のように、列間および端部の透明電極層加工ラインは、下電極層をトレースしてはみ出さないように加工する必要があり、高い精度が要求される。さらに、下電極層加工と透明電極層加工の間に、製膜温度200〜300℃の高温の光電変換層および透明電極層製膜プロセスが入るため、基板の熱変形が生じる。通常、長方形に加工したラインは平行四辺形に歪むことになり、そのときの角度は0〜0.001radになる。例えば、1m角の太陽電池を作製する場合、平行四辺形に歪むことによる位置ずれは最大1mmであり、数μmの下電極加工ライン幅よりも大きい。従って、こうした大面積の太陽電池を作製するには透明電極層加工時に角度補正を行う必要があり、制御が複雑になり装置コストが高くなり、かつ位置合わせの時間が長くなるためスループットが低下するという問題があった。
【0018】
この発明の課題は、上記のような問題点、即ち、前記基板の熱変形に伴う絶縁不良の問題を解消するためになされたものである。特に、透明電極層加工ラインを設ける場合には、フィルム基板の熱歪に伴う透明電極層加工時の角度補正を不要とし、製造コストの低減を図った薄膜太陽電池とその製造方法を提供することにある。
【0019】
【課題を解決するための手段】
前述の課題を解決するため、請求項1の発明によれば、電気絶縁性を有する可撓性基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にパターニングしてなり、前記光電変換層形成領域内に形成した接続孔ならびに集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分(ユニットセル)を電気的に直列に接続してなる薄膜太陽電池において、前記光電変換部の前記直列接続方向に沿った外側端部に、前記第1電極層を光電変換層により電気的に絶縁するためのパターニング用のセル端部下電極加工ラインを設け、かつ、前記光電変換層と透明電極層とは、前記セル端部下電極加工ラインの外側に光電変換部の側端まで延長して設けてなり、さらに、前記セル端部下電極加工ラインの外側に、前記透明電極層を電気的に絶縁分離するためのセル端部透明電極加工ラインを、前記透明電極層と光電変換層と第1電極層とにまたがって設け、かつ前記両加工ラインの中心間距離は、前記両加工ラインの中心が重ならないような所定寸法を有するものとする(請求項1の発明)。
【0020】
前記構成によれば、詳細は後述するように、前記両加工ラインの中心間距離を所定寸法とすることにより、基板に熱変形が生じても、両加工ラインの中心が重ならないようにすることが可能となり、透明電極層と下電極層との絶縁が確保できる。従って、フィルム基板の熱歪に伴う透明電極層加工時の角度補正が不要となり、製造コストが低減できる。
【0021】
また、フィルム基板の熱歪が、前述のように、0.001rad以下であることから、前記請求項1の発明の実施態様としては、下記請求項2の発明が好ましい。即ち、請求項1に記載の薄膜太陽電池において、前記中心間距離の所定寸法は、前記直列接続された光電変換部の直列接続方向に沿った長さ寸法の0.05%以上とする(請求項2の発明)。
【0022】
上記のように、前記中心間距離を0.05%以上とすることにより、前記基板の熱変形に伴う絶縁不良の問題は解消する。一方、発電の有効発電面積を増加する観点からは、前記中心間距離はできる限り小とする方が望ましい。従って、多少の裕度は考慮するものの、0.05%に限りなく近い寸法が望ましく、従来の有効発電面積率90〜94%より小とならない範囲で選定する。
【0023】
さらに、前記薄膜太陽電池の製造方法としては、前記加工ラインの加工の容易化の観点から、下記請求項3の発明が好ましい。即ち、前記請求項1または2に記載の薄膜太陽電池の製造方法であって、前記セル端部下電極加工ラインおよびセル端部透明電極加工ラインは、レーザー加工により形成する。
【0024】
また、前記フィルム基板の熱歪に伴う絶縁不良の問題を解消するために、セル端部透明電極加工ラインを設けずに、下記ような構成とすることもできる。即ち、電気絶縁性を有する基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にパターニングしてなり、前記光電変換層形成領域内に形成した接続孔ならびに集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分(ユニットセル)を電気的に直列に接続してなる薄膜太陽電池において、前記光電変換部の前記直列接続方向に沿った外側端部に、パターニング用のセル端部下電極加工ラインを設け、かつ、前記光電変換層と透明電極層とは、前記セル端部下電極加工ラインの外側に光電変換部の側端まで延長して設けてなり、さらに、前記接続電極層は、前記側端から所定寸法幅の領域を、前記基板の裏面から除去してなるものとする。
【0025】
セル端部透明電極加工ラインを設けない場合、透明電極層と接続電極層はフィルム基板を介して近接するため、実使用時に電極のマイグレーションが発生して絶縁不良を引き起こす恐れがあるが、これを避けるため、上記のように、側端部から接続電極層を完全に除去する。なお、図4に示した例のように、接続電極層としての第4電極層が第3電極層よりも、充分小幅に形成される場合には、第3電極層のみを除去加工すればよい。
【0026】
除去加工幅の実施態様としては前記接続電極層の除去される領域の所定寸法幅は、少なくとも0.5mmとするのが好適である
【0027】
また、前記薄膜太陽電池の製造方法としては前記セル端部下電極加工ラインは、レーザー加工により形成するのが好ましく、前記接続電極層の除去される領域は、レーザー加工,超音波振動子による加工,サンドブラスト加工の内のいずれかの方法により形成するのが好ましい。特に、超音波振動子あるいはサンドブラストによる加工によれば、幅広加工が容易に行えるため好ましい。
【0028】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下に述べる。
【0029】
図1は、本発明の第1の実施例に関わる薄膜太陽電池の構成図であり、図1(a)は薄膜太陽電池の受光面側からみた平面図、図1(b)は非受光面側からみた平面図、図1(c)は図1(a)におけるa−a断面図、図1(d)は図1(a)におけるb−b断面図である。
【0030】
図1において、図4と同一機能部材には同一番号を付して示す。図1と図4との基本的相違点は、セル端部下電極加工ライン10aの外側にセル端部透明電極加工ライン10bを設け、かつ前記両加工ラインの中心間距離Xを、前記両加工ラインの中心が重ならないような所定寸法とした点である。
【0031】
図1に示す太陽電池の作製手順については後述するが、先に、図2に基づき、中心間距離Xの意義について詳述する。図2は、説明の便宜上、図1(a)の平面図を模式的に示し、前記セル端部下電極加工ライン10aとセル端部透明電極加工ライン10bとの関係を誇張して示す。
【0032】
図2において、Lはユニットセル4個を直列接続した光電変換部の直列接続方向に沿った長さ寸法を示し、θはフィルム基板の熱歪に基く歪の角度を示す。基準点を図示のように、直列接続方向の中央にとると、前記両加工ラインの中心間距離Xが、前記両加工ラインの中心が重ならないようにするための加工条件は、X≧1/2×Lθである。なお、図2の左下方もしくは右上方において、前セル端部下電極加工ライン10aとセル端部透明電極加工ライン10bとは一部重なっているが、両加工ラインの中心が重ならない場合には、光電変換層により絶縁が確保できる。なお、図2において、A,Bで示す両加工ラインの内側が接すると電気的リークが発生する。
【0033】
次に、図1に示す太陽電池の作製手順について、一部図4の説明と重複するが、以下に述べる。ポリイミド、アラミド等の耐熱性プラスチックフィルムからなる基板1に、パンチによる加工で接続孔7を開け、表面に金属よりなる下電極層2、裏面に金属よりなる第3電極層3を形成したのち、集電孔8を開ける。従って、接続孔7の内壁には下電極2と第3電極層3の延長部が形成されているが、集電孔8の内部にはこれらの電極層は形成されていない。次に、下電極層2にレーザー加工を行い、ユニットセル間下電極加工ライン9aおよびこれと直交あるいは任意の角度を保ってセル端部下電極加工ライン10aを形成する。
【0034】
つづいて、基板1をステッピングロール方式の製膜装置に搬入し、光電変換層4、透明電極層5、第4電極層6を製膜する。その際、光電変換層4はpin構造のアモルファスシリコン(a−Si)、アモルファスシリコンゲルマニウム(a−SiGe)あるいは微結晶シリコンからなり、プラズマCVDにより基板温度200〜300℃で形成される。また、透明電極層5としてはITO,SnO2,ZnO等が、第4電極層6としてはNi,Cu等が用いられ、それぞれスパッタリングあるいは蒸着により、それぞれ150〜250℃の温度で製膜される。この際、同時に、前述のように基板裏面にも回り込んだ光電変換層4が形成される。裏面への回り込みは光電変換層4に比べて透明電極層5の方が少ないため、透明電極層5は接続孔7、集電孔8周辺で電極層と短絡されることはない。また、第4電極層6は接続孔7の周辺をライン状のマスクで覆った状態で製膜される。これにより、集電孔8をとおして透明電極層5が第4電極層6に接続される。
【0035】
次に、ユニットセル間下電極加工ライン9aについて1本ごとに画像認識を行い、トレースするようにしてユニットセル間透明電極加工ライン9bを形成する。その後、直列接続方向の中央付近の交点(1)、(2)を基準点として直列接続方向のセル長さの0.05%以上の距離を置き、端部側にセル端部透明電極加工ライン10bを形成する。このときのユニットセル間透明電極加工ライン9bとセル端部透明電極加工ライン10bのなす角は下電極加工時と同じとし、特に歪みを考慮した角度補正は行わない。
【0036】
前述のとおり、フィルム基板の歪みθは0.001rad以下であるので、基準点を直列接続方向の中央付近にとれば薄膜太陽電池の長さ(図2のL)の0.05%以上の距離(図2のX)を置くことで加工ラインの電気的リークを防ぐことができる。この場合、透明電極層5はセル端部透明電極加工ライン10bを通して直下の下電極層2と電気的につながることになるが、セル端部下電極加工ライン10aによって発電領域内の下電極層との絶縁は保たれる。最後に接続電極層(第3電極層3)にレーザー加工を行い、ユニットセル間接続電極加工ライン11およびセル端部接続電極加工ライン12を形成し直列接続構造が完成する。セルはこの時点で長尺のフィルムの中に作り込まれた状態になっているので加工ラインの外側でフィルムを裁断することによりセルが分離される。
【0037】
次に、図3実施例について述べる。図3(a)〜(d)は、図1(a)〜(d)と類似した図を示し、同一機能部材には同一番号を付して、その詳細説明を省略する。図3の実施例は、セル端部透明電極加工ラインを設けないような構成とするものである。
【0038】
この場合、透明電極層5と接続電極層としての第3電極層3はフィルム基板1の厚さを介して近接するため、実使用時に電極のマイグレーションが発生して絶縁不良を引き起こす恐れがあり、これを避けるため、端部から少なくとも0.5mmもしくはそれ以上の第3電極層3の一部領域(図3のh部)を完全に除去して、セル端部接続電極層除去領域12aとする。この除去方法としては、レーザー、超音波振動子あるいはサンドブラスト加工により、0.5mmより大きい、例えば1mm以上の幅広加工を行い、最後にその加工ライン上を裁断すると良い。
【0039】
以上述べたこれらの実施例によれば、セル面の端部付近の下電極加工ラインがa−Si系の膜で覆われるため、フィルム基板ヘの水分の進入をブロックすることによる対候性向上の効果もある。
【0040】
【発明の効果】
この発明によれば前述のように、前記SCAF型の薄膜太陽電池において、光電変換部の直列接続方向に沿った外側端部に、前記第1電極層を光電変換層により電気的に絶縁するためのパターニング用のセル端部下電極加工ラインを設け、かつ、光電変換層と透明電極層とは、前記セル端部下電極加工ラインの外側に光電変換部の側端まで延長して設けてなり、さらに、前記セル端部下電極加工ラインの外側に、前記透明電極層を電気的に絶縁分離するためのセル端部透明電極加工ラインを、前記透明電極層と光電変換層と第1電極層とにまたがって設け、かつ前記両加工ラインの中心間距離は、前記両加工ラインの中心が重ならないような所定寸法を有するものとする(請求項1の発明)したので、
基板の熱変形に伴う絶縁不良の問題を解消することができる。
また、請求項1の発明の場合、前記セル端部下電極加工ラインおよびセル端部透明電極加工ラインは、レーザー加工により形成し、また、前記接続電極層の除去される領域は、レーザー加工,超音波振動子による加工,サンドブラスト加工の内のいずれかの方法により形成することとしたので、
フィルム基板の熱歪に伴うセル端部透明電極加工ライン加工時の制御が簡素化(角度補正不要化)がなされ低コストで信頼性の高い太陽電池を提供することが可能となる。
【図面の簡単な説明】
【図1】この発明の実施例に関わる薄膜太陽電池の構成図
【図2】図1におけるセル端部下電極加工ラインとセル端部透明電極加工ラインとの関係を拡大して模式的に示す説明図
【図3】 1とは異なる実施例に関わる薄膜太陽電池の構成図
【図4】従来の改良型SCAF構成に関わる薄膜太陽電池の構成図
【図5】SCAF型薄膜太陽電池の概略構成を示す斜視図
【図6】SCAF型薄膜太陽電池の製造工程の概略を示す図
【符号の説明】
1:基板、2:第1電極層(下電極層)、3:第3電極層、4:光電変換層、5:第2電極層(透明電極層)、6:第4電極層、7:接続孔、8:集電孔、9a:ユニットセル間下電極加工ライン、9b:ユニットセル間透明電極加工ライン、10a:セル端部下電極加工ライン、10b:セル端部透明電極加工ライン、11:ユニットセル間接続電極加工ライン、12:セル端部接続電極加工ライン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film solar cell in which a plurality of unit cells are connected in series on the surface of a flexible substrate having electrical insulation, and a method for manufacturing the same.
[0002]
[Prior art]
An amorphous semiconductor film such as amorphous silicon formed by glow discharge decomposition of a source gas is easily grown because of vapor phase growth, and is expected as a photoelectric conversion film for a low-cost solar cell. Such a thin film solar cell is provided with a transparent electrode such as a SnO 2 film or a ZnO film on the side on which sunlight is incident. However, since such a transparent electrode has a large sheet resistance, there is a problem that a power loss due to a current flowing through the transparent electrode increases.
[0003]
Therefore, conventionally, the solar cell is divided into a plurality of solar cells (unit cells), and a series connection structure is employed in which the divided unit cells are electrically connected to adjacent unit cells. On the other hand, in the thin film solar cell described in Patent Document 1, a hole is formed in the insulating substrate on the light incident side, and the transparent electrode layer is connected to the connection electrode layer on the back surface of the substrate using this hole. The distance of the path of the current flowing through the transparent electrode layer having a high sheet resistance is shortened, so that it can be configured as a low voltage, high current type without being divided into unit solar cells with limited dimensions. As a result, it was possible to obtain a thin-film unit solar cell with a low Joule loss and an increased effective power generation area by reducing the dead space.
[0004]
Further, an exposed region of the connection electrode layer under the photoelectric conversion layer is formed in a part of the unit solar cell, and the separated connection electrode layer connected to the conductor penetrating the substrate is connected to the adjacent unit solar cell. By connecting to the electrode layer, a series connection structure can be easily formed. The thin film solar cell having such a structure is called a SCAF (Series Connection through Apertures on Film) type thin film solar cell, and is formed by forming an electrode layer and a photoelectric conversion layer, patterning each layer, and a combination procedure thereof. . An example of the configuration and manufacturing method of the thin film solar cell is described in, for example, Patent Document 2 filed by the applicant of the present application.
[0005]
FIG. 5 is a perspective view showing a simplified configuration of the SCAF type thin film solar cell for easy understanding of the structure. In FIG. 5, the unit photoelectric conversion element 62 formed on the surface of the substrate 61 and the connection electrode layer 63 formed on the back surface of the substrate 61 are completely separated into a plurality of unit units, and are formed by shifting the separation positions. ing. For this reason, the current generated in the photoelectric conversion layer 65, which is an amorphous semiconductor portion of the element 62, is first collected in the transparent electrode layer 66, and then on the back surface through the current collecting holes 67 formed in the transparent electrode layer region. It leads to the connection electrode layer 63, and further to the outside of the transparent electrode layer region of the element adjacent to the element through the connection hole 68 for series connection formed outside the transparent electrode layer region of the element in the connection electrode layer region. The extended lower electrode layer 64 is reached, and both elements are connected in series.
[0006]
6 (a) to 6 (g) show a simplified manufacturing process of the thin film solar cell. Using the plastic film 71 as a substrate (step (a)), a connection hole 78 is formed in this (step (b)), and a first electrode layer (lower electrode) 74 and a third electrode layer (connection electrode) are formed on both sides of the substrate. After (part) 73 is formed (step (c)), a current collecting hole 77 is formed at a position away from the connection hole 78 by a predetermined distance (step (d)). There is a step of patterning the lower electrode by laser processing the first electrode layer (lower electrode) 74 into a predetermined shape between the step (c) and the step (d). Omitted.
[0007]
Next, the semiconductor layer 75 to be a photoelectric conversion layer and the transparent electrode layer 76 to be the second electrode layer are sequentially formed on the first electrode layer 74 (step (e) and step (f)), and the third A fourth electrode layer (connection electrode layer) 79 is formed on the electrode layer 73 (step (g)). Thereafter, a thin film on both sides of the substrate 71 is separated using a laser beam to form a series connection structure as shown in FIG.
[0008]
Since the third electrode layer and the fourth electrode layer are electrically at the same potential, they may be treated as a single connection electrode layer for convenience of explanation.
[0009]
Furthermore, Patent Document 3 discloses a configuration aimed at increasing the effective area ratio of power generation, which is different from the configuration of the SCAF type thin film solar cell. That is, Patent Document 3 states that “a lower electrode layer connected through a through hole (referred to as a back electrode layer in Patent Document 3) and a connection electrode layer are formed, and then an amorphous semiconductor layer is formed on the lower electrode layer. At this time, the extension of the amorphous semiconductor layer extends to the periphery of the through hole on the back surface of the substrate, and even if the transparent electrode layer is formed in the through hole by this extended amorphous semiconductor layer, the connection electrode layer is short-circuited. proof technique from being, thereby as possible the entire deposition of the transparent electrode layer, discloses a thin-film solar cell "with enhanced effective area ratio of the power (for details, see Patent Document 3).
[0010]
FIG. 4 is slightly different from that disclosed in Patent Document 3, but the conventional improved SCAF in which the effective area ratio of power generation is increased by adopting a structure in which the amorphous semiconductor layer is insulated by an extension portion. An example of a structure of a thin film solar cell is shown. 4A is a plan view seen from the light-receiving surface side of the thin-film solar cell, FIG. 4B is a plan view seen from the non-light-receiving surface side, and FIG. 4C is a cross-sectional view taken along line aa in FIG. 4 (d) is a cross-sectional view taken along line bb in FIG. 4 (a).
[0011]
Thin-film solar cell shown in FIG. 4, by providing extended a photoelectric conversion layer and the transparent electrode layer to the side edge of the photoelectric conversion unit has a configuration having an increased effective area ratio of the power generation, the production of its is This is done as follows. For example, the connection hole 7 is formed in the substrate 1 made of a plastic film, the lower electrode layer 2 made of metal is formed on the surface, and the third electrode layer 3 as the connection electrode layer made of metal is formed on the back surface. Open. Therefore, although the extension part of the lower electrode layer 2 and the 3rd electrode layer 3 is formed in the inner wall of the connection hole 7, these electrode layers are not formed in the current collection hole 8. FIG.
[0012]
Next, laser processing is performed on the lower electrode layer 2 to form a unit electrode lower electrode processing line 9a and a cell end lower electrode processing line 10a. Subsequently, a photoelectric conversion layer 4 made of amorphous silicon (a-Si), amorphous silicon germanium (a-SiGe) or microcrystalline silicon having a pin structure is formed on the lower electrode layer 2 by plasma CVD. At this time, the photoelectric conversion layer 4 is formed by simultaneously wrapping around the current collecting holes 8 and the inner walls and the outer peripheral portions of the connection holes 7 on the back surface of the substrate.
[0013]
Subsequently, the transparent electrode layer 5 is formed by sputtering. Here, since the wraparound to the back surface of the substrate is less in the transparent electrode layer 5 than in the photoelectric conversion layer 4, the transparent electrode layer 5 is short-circuited with the electrode layer around the connection hole 7 and the current collecting hole 8. Absent. Next, a fourth electrode layer 6 as a connection electrode layer is formed in a state where the periphery of the connection hole 7 is covered with a line mask. Thereby, the transparent electrode layer 5 is connected to the fourth electrode layer 6 through the current collecting holes 8.
[0014]
Next, the unit electrode transparent electrode processing line is formed so that the processing width is made narrower than the lower electrode processing line 9a between unit cells and the cell end lower electrode processing line 10a from above the transparent electrode layer 5, and these lines are traced. 9b and cell edge transparent electrode processing line 10b are formed. At this time, if the transparent electrode processing line protrudes from the lower electrode processing line, the transparent electrode layer 5 and the lower electrode layer 2 are electrically connected by the photoelectric conversion layer 4 whose surface is alloyed, and leakage occurs. Is required. Finally, laser processing is performed on the connection electrode layer to form the inter-unit cell connection electrode processing line 11 and the cell end connection electrode processing line 12 to complete the series connection structure.
[0015]
[Patent Document 1]
JP-A-6-342924 [Patent Document 2]
JP-A-10-233517 [Patent Document 3]
JP-A-8-186279 [0016]
[Problems to be solved by the invention]
Incidentally, the improved SCAF structure thin film solar cell shown in FIG. 4 has the following problems.
[0017]
As described above, the transparent electrode layer processing lines between the columns and at the ends need to be processed so as not to protrude and trace the lower electrode layer, and high accuracy is required. Furthermore, since a high-temperature photoelectric conversion layer and transparent electrode layer film forming process with a film forming temperature of 200 to 300 ° C. is inserted between the lower electrode layer processing and the transparent electrode layer processing, thermal deformation of the substrate occurs. Normally, a line processed into a rectangle is distorted into a parallelogram, and the angle at that time is 0 to 0.001 rad. For example, when a 1 m square solar cell is manufactured, the positional displacement due to distortion into a parallelogram is 1 mm at the maximum, which is larger than the lower electrode processing line width of several μm. Therefore, in order to manufacture such a large area solar cell, it is necessary to perform angle correction at the time of processing the transparent electrode layer, the control is complicated, the apparatus cost is increased, and the alignment time is increased, resulting in a decrease in throughput. There was a problem.
[0018]
An object of the present invention is to solve the above-mentioned problems , that is, the problem of insulation failure accompanying thermal deformation of the substrate . In particular, when a transparent electrode layer processing line is provided, a thin-film solar cell and a method for manufacturing the same that eliminates the need for angle correction at the time of processing the transparent electrode layer due to thermal distortion of the film substrate and reduces the manufacturing cost are provided. It is in.
[0019]
[Means for Solving the Problems]
In order to solve the above-described problem, according to the invention of claim 1, a first electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode) as lower electrode layers are formed on the surface of a flexible substrate having electrical insulation. Layer) and a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, the photoelectric conversion unit and the connection electrode layer being positioned with respect to each other. The unit photoelectric conversion portions (unit cells) that are patterned and adjacent to each other on the surface are electrically connected through the connection holes and the current collecting holes formed in the photoelectric conversion layer forming region. In a thin film solar cell connected in series, a patterning for electrically insulating the first electrode layer by a photoelectric conversion layer at an outer end along the series connection direction of the photoelectric conversion unit. Cell edge lower power A processing line is provided, and the photoelectric conversion layer and the transparent electrode layer are provided outside the cell end lower electrode processing line so as to extend to a side end of the photoelectric conversion unit, and further, the cell end lower electrode processing A cell end transparent electrode processing line for electrically insulating and separating the transparent electrode layer is provided outside the line across the transparent electrode layer, the photoelectric conversion layer, and the first electrode layer. The distance between the centers of the lines has a predetermined dimension such that the centers of the two processing lines do not overlap (invention of claim 1).
[0020]
According to the configuration, as will be described in detail later, by setting the distance between the centers of the two processing lines to a predetermined dimension, the centers of the two processing lines do not overlap even if thermal deformation occurs in the substrate. Thus, insulation between the transparent electrode layer and the lower electrode layer can be secured. Therefore, the angle correction at the time of processing the transparent electrode layer due to the thermal strain of the film substrate becomes unnecessary, and the manufacturing cost can be reduced.
[0021]
Moreover, since the thermal strain of the film substrate is 0.001 rad or less as described above, the invention of claim 2 is preferable as an embodiment of the invention of claim 1. That is, in the thin film solar cell according to claim 1, the predetermined dimension of the center-to-center distance is 0.05% or more of the length dimension along the series connection direction of the series-connected photoelectric conversion units (invoice). Item 2).
[0022]
As described above, by setting the distance between the centers to 0.05% or more, the problem of insulation failure due to thermal deformation of the substrate is solved. On the other hand, from the viewpoint of increasing the effective power generation area of power generation, it is desirable to make the distance between the centers as small as possible. Therefore, although some margin is taken into consideration, a dimension as close as possible to 0.05% is desirable, and it is selected in a range that does not become smaller than the conventional effective power generation area ratio of 90 to 94%.
[0023]
Furthermore, as a method for manufacturing the thin film solar cell, the invention of claim 3 is preferable from the viewpoint of facilitating processing of the processing line. That is, in the method for manufacturing a thin-film solar cell according to claim 1 or 2, the cell end lower electrode processing line and the cell end transparent electrode processing line are formed by laser processing.
[0024]
Further, in order to eliminate the insulation failure problems due to thermal distortion of the film substrate, without providing the cell ends transparent electrode processing line may be a as follows configuration. That is, a photoelectric conversion part formed by sequentially laminating a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) on the surface of an electrically insulating substrate, and a back surface of the substrate A third electrode layer and a fourth electrode layer as the formed connection electrode layers, wherein the photoelectric conversion part and the connection electrode layer are patterned into unit parts while being shifted from each other, and within the photoelectric conversion layer formation region In the thin film solar cell in which unit photoelectric conversion portions (unit cells) that are patterned and adjacent to each other on the surface are electrically connected in series through the formed connection hole and the current collection hole, A cell end lower electrode processing line for patterning is provided on the outer end along the serial connection direction, and the photoelectric conversion layer and the transparent electrode layer are arranged outside the cell end lower electrode processing line. Be provided to extend up to the side end, further, the connection electrode layer, the region having the predetermined width dimension from the end, and made by removing from the back surface of the substrate.
[0025]
When the cell edge transparent electrode processing line is not provided, the transparent electrode layer and the connection electrode layer are close to each other through the film substrate, so that migration of the electrode may occur during actual use and cause insulation failure. In order to avoid this, as described above, the connection electrode layer is completely removed from the side end portion. In the case where the fourth electrode layer as the connection electrode layer is formed sufficiently smaller than the third electrode layer as in the example shown in FIG. 4, only the third electrode layer may be removed. .
[0026]
The embodiments of the removal processing width, predetermined dimension width of the area to be removed of the connection electrode layer, it is preferable to at least 0.5 mm.
[0027]
In addition, as a method for manufacturing the thin film solar cell , the cell end lower electrode processing line is preferably formed by laser processing, and the region where the connection electrode layer is removed is processed by laser processing or an ultrasonic transducer. , It is preferably formed by any one of sandblasting methods. In particular, processing by an ultrasonic vibrator or sandblast is preferable because wide processing can be easily performed.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0029]
FIG. 1 is a configuration diagram of a thin film solar cell according to the first embodiment of the present invention, FIG. 1 (a) is a plan view seen from the light receiving surface side of the thin film solar cell, and FIG. 1 (b) is a non-light receiving surface. FIG. 1C is a sectional view taken along the line aa in FIG. 1A, and FIG. 1D is a sectional view taken along the line bb in FIG. 1A.
[0030]
In FIG. 1, the same functional members as those in FIG. The basic difference between FIG. 1 and FIG. 4 is that a cell end transparent electrode processing line 10b is provided outside the cell end lower electrode processing line 10a, and the center-to-center distance X between the two processing lines is set to the both processing lines. It is the point made into the predetermined dimension so that the center of may not overlap.
[0031]
The manufacturing procedure of the solar cell shown in FIG. 1 will be described later. First, the significance of the center-to-center distance X will be described in detail based on FIG. FIG. 2 schematically shows a plan view of FIG. 1A for convenience of explanation, and exaggerates the relationship between the cell end lower electrode processing line 10a and the cell end transparent electrode processing line 10b.
[0032]
In FIG. 2, L represents the length along the direction of the series connection of the photoelectric conversion unit connected in series four unit cells, theta denotes the angle of the base Dzu rather strain thermal strain of the film substrate. As shown in the figure, when the reference point is at the center in the series connection direction, the distance X between the centers of the two processing lines is X ≧ 1/1 so that the centers of the two processing lines do not overlap. 2 × Lθ. Note that when the lower left or upper right of FIG. 2, before SL has partially overlaps the cell end part electrode processing lines 10a and the cell end transparent electrode processing line 10b, the centers of the processing line do not overlap Insulation can be ensured by the photoelectric conversion layer. In FIG. 2, an electrical leak occurs when the insides of both processing lines indicated by A and B contact each other.
[0033]
Next, although the manufacturing procedure of the solar cell shown in FIG. 1 partially overlaps with the description of FIG. 4, it will be described below. After forming a connection hole 7 in a substrate 1 made of a heat-resistant plastic film such as polyimide or aramid by punching and forming a lower electrode layer 2 made of metal on the surface and a third electrode layer 3 made of metal on the back surface, Open the current collecting hole 8. Accordingly, the extension portions of the lower electrode 2 and the third electrode layer 3 are formed on the inner wall of the connection hole 7, but these electrode layers are not formed inside the current collection hole 8. Next, laser processing is performed on the lower electrode layer 2 to form a lower electrode processing line 10a between unit cells and a cell end lower electrode processing line 10a while maintaining an orthogonal or arbitrary angle thereto.
[0034]
Subsequently, the substrate 1 is carried into a stepping roll type film forming apparatus, and the photoelectric conversion layer 4, the transparent electrode layer 5, and the fourth electrode layer 6 are formed. At this time, the photoelectric conversion layer 4 is made of amorphous silicon (a-Si) having a pin structure, amorphous silicon germanium (a-SiGe), or microcrystalline silicon, and is formed at a substrate temperature of 200 to 300 ° C. by plasma CVD. The transparent electrode layer 5 is made of ITO, SnO 2 , ZnO or the like, and the fourth electrode layer 6 is made of Ni, Cu or the like, and each is formed at a temperature of 150 to 250 ° C. by sputtering or vapor deposition. . At this time, at the same time, the photoelectric conversion layer 4 is formed so as to go around the back surface of the substrate as described above. Since the transparent electrode layer 5 has less wraparound to the back surface than the photoelectric conversion layer 4, the transparent electrode layer 5 is not short-circuited with the electrode layer around the connection hole 7 and the current collection hole 8. The fourth electrode layer 6 is formed in a state where the periphery of the connection hole 7 is covered with a line mask. Thereby, the transparent electrode layer 5 is connected to the fourth electrode layer 6 through the current collecting holes 8.
[0035]
Next, image recognition is performed for each lower electrode processing line 9a between unit cells, and a transparent electrode processing line 9b between unit cells is formed so as to be traced. After that, set a distance of 0.05% or more of the cell length in the series connection direction with the intersection (1), (2) near the center in the series connection direction as the reference point, and the cell edge transparent electrode processing line on the end side 10b is formed. At this time, the angle formed by the unit cell transparent electrode processing line 9b and the cell edge transparent electrode processing line 10b is the same as that at the time of processing the lower electrode, and no angle correction considering distortion is performed.
[0036]
As described above, since the distortion θ of the film substrate is 0.001 rad or less, the distance of 0.05% or more of the length of the thin-film solar cell (L in FIG. 2) if the reference point is near the center in the series connection direction. By placing (X in FIG. 2), electrical leakage in the processing line can be prevented. In this case, the transparent electrode layer 5 is electrically connected to the lower electrode layer 2 directly below through the cell edge transparent electrode processing line 10b, but the cell electrode lower electrode processing line 10a is connected to the lower electrode layer in the power generation region. Insulation is maintained. Finally, laser processing is performed on the connection electrode layer (third electrode layer 3) to form the inter-unit cell connection electrode processing line 11 and the cell end connection electrode processing line 12 to complete the series connection structure. Since the cell is in a state of being built in a long film at this point, the cell is separated by cutting the film outside the processing line.
[0037]
Next, the embodiment of FIG. 3 will be described. 3 (a) to 3 (d) are views similar to FIGS. 1 (a) to 1 (d). The same functional members are denoted by the same reference numerals, and detailed description thereof is omitted. In the embodiment of FIG. 3, the cell edge transparent electrode processing line is not provided.
[0038]
In this case, since the transparent electrode layer 5 and the third electrode layer 3 as the connection electrode layer are close to each other through the thickness of the film substrate 1, there is a possibility that migration of the electrode occurs during actual use and causes insulation failure. In order to avoid this, a partial region (the h portion in FIG. 3) of the third electrode layer 3 at least 0.5 mm or more from the end portion is completely removed to form a cell end connection electrode layer removal region 12a . . As this removal method, it is preferable to perform a wide processing of 0.5 mm or more, for example, 1 mm or more by laser, ultrasonic vibrator or sandblasting, and finally cut the processing line.
[0039]
It mentioned above, according to these embodiments, since the lower electrode processing line near the end of the cell surface is covered with a film of a-Si-based, pair by blocking the entry of moisture of the film substrate F climate There is also an effect of improving the performance.
[0040]
【The invention's effect】
According to the present invention, as described above, in the SCAF type thin film solar cell, the first electrode layer is electrically insulated by the photoelectric conversion layer at the outer end along the series connection direction of the photoelectric conversion units. The cell end lower electrode processing line for patterning is provided, and the photoelectric conversion layer and the transparent electrode layer are provided outside the cell end lower electrode processing line so as to extend to the side end of the photoelectric conversion unit, and A cell end transparent electrode processing line for electrically insulating and separating the transparent electrode layer outside the cell end lower electrode processing line extends across the transparent electrode layer, the photoelectric conversion layer, and the first electrode layer. Te provided, and the distance between the centers of the two processing lines, since the assumed to have a predetermined dimension such that they do not overlap the center of the two processing lines (the invention of claim 1),
The problem of insulation failure due to thermal deformation of the substrate can be solved.
In the invention of claim 1, the cell end lower electrode processing line and the cell end transparent electrode processing line are formed by laser processing, and the region where the connection electrode layer is removed is formed by laser processing, Because we decided to form by either method of processing with a sound wave vibrator or sandblasting,
Control during cell edge transparent electrode processing line processing accompanying thermal strain of the film substrate is simplified (no angle correction is required), and a low-cost and highly reliable solar cell can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a thin film solar cell according to an embodiment of the present invention. FIG. 2 is an enlarged schematic view of the relationship between a cell end lower electrode processing line and a cell end transparent electrode processing line in FIG. FIG. 3 is a block diagram of a thin film solar cell according to an embodiment different from FIG . 1. FIG. 4 is a block diagram of a thin film solar cell according to a conventional improved SCAF configuration. FIG. 6 is a perspective view showing the outline of the manufacturing process of the SCAF type thin film solar cell.
1: substrate, 2: first electrode layer (lower electrode layer), 3: third electrode layer, 4: photoelectric conversion layer, 5: second electrode layer (transparent electrode layer), 6: fourth electrode layer, 7: Connection hole, 8: Current collecting hole, 9a: Lower electrode processing line between unit cells, 9b: Transparent electrode processing line between unit cells, 10a: Cell end lower electrode processing line, 10b: Cell end transparent electrode processing line, 11: Unit cell connection electrode processing line, 12: cell end connection electrode processing line.

Claims (3)

電気絶縁性を有する可撓性基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にパターニングしてなり、前記光電変換層形成領域内に形成した接続孔ならびに集電孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分(ユニットセル)を電気的に直列に接続してなる薄膜太陽電池において、
前記光電変換部の前記直列接続方向に沿った外側端部に、前記第1電極層を光電変換層により電気的に絶縁するためのパターニング用のセル端部下電極加工ラインを設け、かつ、前記光電変換層と透明電極層とは、前記セル端部下電極加工ラインの外側に光電変換部の側端まで延長して設けてなり、
さらに、前記セル端部下電極加工ラインの外側に、前記透明電極層を電気的に絶縁分離するためのセル端部透明電極加工ラインを、前記透明電極層と光電変換層と第1電極層とにまたがって設け、かつ前記両加工ラインの中心間距離は、前記両加工ラインの中心が重ならないような所定寸法を有することを特徴とする薄膜太陽電池。
A photoelectric conversion part in which a first electrode layer as a lower electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are sequentially laminated on the surface of a flexible substrate having electrical insulation; and a back surface of the substrate A third electrode layer and a fourth electrode layer as connection electrode layers formed on the substrate, wherein the photoelectric conversion portion and the connection electrode layer are patterned into unit portions while being shifted from each other, In the thin film solar cell formed by electrically connecting in series the unit photoelectric conversion portions (unit cells) adjacent to each other patterned on the surface through the connection hole and the current collecting hole formed in
A cell end lower electrode processing line for patterning for electrically insulating the first electrode layer by the photoelectric conversion layer is provided at an outer end along the series connection direction of the photoelectric conversion unit, and the photoelectric conversion unit The conversion layer and the transparent electrode layer are provided to extend to the side end of the photoelectric conversion portion outside the cell end lower electrode processing line,
Furthermore, outside the cell end lower electrode processing line, a cell end transparent electrode processing line for electrically insulating and separating the transparent electrode layer is provided on the transparent electrode layer, the photoelectric conversion layer, and the first electrode layer. The thin-film solar cell is provided so as to have a predetermined dimension such that the distance between the centers of the two processing lines does not overlap the centers of the two processing lines.
請求項1に記載の薄膜太陽電池において、前記中心間距離の所定寸法は、前記直列接続された光電変換部の直列接続方向に沿った長さ寸法の0.05%以上とすることを特徴とする薄膜太陽電池。  The thin film solar cell according to claim 1, wherein the predetermined dimension of the center-to-center distance is 0.05% or more of the length dimension along the series connection direction of the series-connected photoelectric conversion units. Thin film solar cell. 請求項1または2に記載の薄膜太陽電池の製造方法であって、前記セル端部下電極加工ラインおよびセル端部透明電極加工ラインは、レーザー加工により形成することを特徴とする薄膜太陽電池の製造方法。  3. The method of manufacturing a thin film solar cell according to claim 1, wherein the cell end lower electrode processing line and the cell end transparent electrode processing line are formed by laser processing. Method.
JP2003151406A 2003-05-28 2003-05-28 Thin film solar cell and manufacturing method thereof Expired - Fee Related JP4311082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151406A JP4311082B2 (en) 2003-05-28 2003-05-28 Thin film solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151406A JP4311082B2 (en) 2003-05-28 2003-05-28 Thin film solar cell and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009065509A Division JP4508285B2 (en) 2009-03-18 2009-03-18 Thin film solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004356331A JP2004356331A (en) 2004-12-16
JP4311082B2 true JP4311082B2 (en) 2009-08-12

Family

ID=34046939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151406A Expired - Fee Related JP4311082B2 (en) 2003-05-28 2003-05-28 Thin film solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4311082B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3449155B2 (en) * 1997-02-21 2003-09-22 株式会社富士電機総合研究所 Photoelectric conversion device and method of manufacturing the same
JP3825585B2 (en) * 1999-07-26 2006-09-27 三洋電機株式会社 Photovoltaic element manufacturing method
JP2002314106A (en) * 2001-04-09 2002-10-25 Sinto Brator Co Ltd Method of finishing solar cell panel
JP2002353481A (en) * 2001-05-30 2002-12-06 Canon Inc Photovoltaic element and manufacturing method therefor

Also Published As

Publication number Publication date
JP2004356331A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP2755281B2 (en) Thin film solar cell and method of manufacturing the same
JP2006228876A (en) Solar cell and manufacturing method thereof
JP3449155B2 (en) Photoelectric conversion device and method of manufacturing the same
JP2007305876A (en) Solar cell module
US20110030758A1 (en) Photovoltaic device and manufacturing method thereof
JP4379560B2 (en) Thin film solar cell and manufacturing method thereof
JPH0851229A (en) Integrated solar battery and its manufacture
JP4171959B2 (en) Method for manufacturing thin film solar cell
JP4311082B2 (en) Thin film solar cell and manufacturing method thereof
JP4508285B2 (en) Thin film solar cell and manufacturing method thereof
JP4112202B2 (en) Method for manufacturing thin film solar cell
JPH11261086A (en) Photovoltaic device and solar battery module
JP4534331B2 (en) Method for manufacturing thin film solar cell
JPH07321355A (en) Thin film for solar cell and manufacture
JPH06268241A (en) Thin-film solar cell and manufacture thereof
JP2000323732A (en) Thin film solar cell and its manufacture
JP3655027B2 (en) Integrated thin film photoelectric converter
JP3685964B2 (en) Photoelectric conversion device
JP4432236B2 (en) Thin film solar cell
JP2001111084A (en) Thin film solar cell module
JP4986087B2 (en) Thin film solar cell and manufacturing method thereof
JPH06177408A (en) Thin film solar battery and its manufacture
JP2002231982A (en) Method for forming flexible solar battery module
JPH02307278A (en) Manufacture of thin film solar battery
JP2002252360A (en) Method for manufacturing thin-film solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees