JP3449155B2 - Photoelectric conversion device and method of manufacturing the same - Google Patents

Photoelectric conversion device and method of manufacturing the same

Info

Publication number
JP3449155B2
JP3449155B2 JP03720797A JP3720797A JP3449155B2 JP 3449155 B2 JP3449155 B2 JP 3449155B2 JP 03720797 A JP03720797 A JP 03720797A JP 3720797 A JP3720797 A JP 3720797A JP 3449155 B2 JP3449155 B2 JP 3449155B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode
electrode layer
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03720797A
Other languages
Japanese (ja)
Other versions
JPH10233517A (en
Inventor
清雄 齋藤
Original Assignee
株式会社富士電機総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士電機総合研究所 filed Critical 株式会社富士電機総合研究所
Priority to JP03720797A priority Critical patent/JP3449155B2/en
Publication of JPH10233517A publication Critical patent/JPH10233517A/en
Application granted granted Critical
Publication of JP3449155B2 publication Critical patent/JP3449155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数の光電変換素
子が直列接続されてなる光電変換装置およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device having a plurality of photoelectric conversion elements connected in series and a method for manufacturing the same.

【0002】[0002]

【従来の技術】同一基板上に形成された複数の光電変換
素子が直列接続されてなる光電変換装置の代表例は薄膜
太陽電池である。薄膜太陽電池は、フレキシブルな絶縁
性基板に単一の第1電極、薄膜半導体層からなる光電変
換層および第2電極が積層されてなる光電変換素子(ま
たはセル)が複数形成されている。ある光電変換素子の
第1電極と隣接する光電変換素子の第2電極を電気的に
接続することを繰り返すことにより、最初の光電変換素
子の第1電極と最後の光電変換素子の第2電極とに必要
な電圧を出力させることができる。例えばインバータに
より交流化し商用電力源として交流100V を得るため
には、100V 以上が望ましく、実際には数10個以上
の素子が直列接続される。
2. Description of the Related Art A typical example of a photoelectric conversion device in which a plurality of photoelectric conversion elements formed on the same substrate are connected in series is a thin film solar cell. A thin film solar cell has a plurality of photoelectric conversion elements (or cells) formed by laminating a single first electrode, a photoelectric conversion layer including a thin film semiconductor layer, and a second electrode on a flexible insulating substrate. By repeatedly electrically connecting the first electrode of a certain photoelectric conversion element and the second electrode of the adjacent photoelectric conversion element, the first electrode of the first photoelectric conversion element and the second electrode of the last photoelectric conversion element are formed. The required voltage can be output. For example, in order to make AC by an inverter and obtain AC 100V as a commercial power source, 100V or more is desirable, and several tens or more elements are actually connected in series.

【0003】このような光電変換素子とその直列接続
は、電極層と光電変換層の成膜と各層のパターニングお
よびそれらの組み合わせ手順により形成される。少数の
光電変換素子を直列接続した薄膜太陽電池により従来技
術を説明する。図5は従来の直列接続の薄膜太陽電池を
示し(a)は平面図、(b)は(a)におけるAA断面
図であり、(c)は(a)におけるBB断面図である。
この場合は、6個の光電変換素子が直列接続されてお
り、両端の電力取り出し電極o1、o2は基板1の1辺
で隣接している。従って、電圧差の大きい電極が隣接す
ることになる。
Such a photoelectric conversion element and its series connection are formed by film formation of the electrode layer and the photoelectric conversion layer, patterning of each layer, and a combination procedure thereof. A conventional technique will be described by using a thin film solar cell in which a small number of photoelectric conversion elements are connected in series. FIG. 5 shows a conventional series-connected thin-film solar cell, (a) is a plan view, (b) is an AA sectional view in (a), and (c) is a BB sectional view in (a).
In this case, six photoelectric conversion elements are connected in series, and the power extraction electrodes o1 and o2 at both ends are adjacent to each other on one side of the substrate 1. Therefore, the electrodes having a large voltage difference are adjacent to each other.

【0004】基板1に第1電極層を成膜し、レーザー加
工により個別の下電極l1〜l6をパターニングする。
以下、光電変換素子の基板側の電極を下電極、光電変換
層を挟んで下電極に対向する電極を上電極とする。レー
ザー加工によるパターニングとは、0.4mm程度の幅の
膜を直線状に除去し、個別の単一領域(電極)を形成す
ることである。以下、レーザ加工または他の加工方法に
より除去した線を分離線という。下電極l1〜l6は分
離線により囲まれる。またレーザー加工の特徴としてレ
ーザビームが基板の端部を通過しても、基板の端部では
電極層が除去しきれずに残留するので、基板の周縁は細
い電極層によって囲まれる。
A first electrode layer is formed on the substrate 1, and individual lower electrodes 11 to 16 are patterned by laser processing.
Hereinafter, the substrate-side electrode of the photoelectric conversion element will be referred to as a lower electrode, and the electrode facing the lower electrode with the photoelectric conversion layer interposed therebetween will be referred to as an upper electrode. The patterning by laser processing is to linearly remove a film having a width of about 0.4 mm to form individual single regions (electrodes). Hereinafter, a line removed by laser processing or another processing method is referred to as a separation line. The lower electrodes 11 to 16 are surrounded by separation lines. Further, as a characteristic of the laser processing, even if the laser beam passes through the end portion of the substrate, the electrode layer is not completely removed and remains at the end portion of the substrate, so that the periphery of the substrate is surrounded by the thin electrode layer.

【0005】次に、a-Siからなる光電変換層pを成膜
し、レーザー加工により、次に成膜する第2電極層と下
電極との接続のための上記分離線と同様な直線状の孔g
pを開ける。最後に第2電極層を成膜し、レーザー加工
により第1電極の形状を全体に直列接続方向に少しずら
した形状の個別の上電極u1〜u6および電力取り出し
電極o1をパターニングする。基板周縁部には3層の細
い導電部が残る。この様な基板周縁部の導電部(単層、
積層共に)を周縁導電部fということにする。全ての薄
膜太陽電池素子を一括して囲う周縁、および2列の直列
接続薄膜太陽電池素子の隣接する境界には(周縁導電部
fの内側)分離線g1がある。分離線g1の内側には基
板表面の光電変換層pが残っている。
Next, a photoelectric conversion layer p made of a-Si is formed, and by laser processing, a linear shape similar to the above separating line for connecting the second electrode layer to be formed next and the lower electrode is formed. Hole g
open p. Finally, a second electrode layer is formed, and individual upper electrodes u1 to u6 and a power extraction electrode o1 having a shape in which the shape of the first electrode is slightly shifted in the serial connection direction are patterned by laser processing. Three thin conductive portions remain on the peripheral portion of the substrate. Such conductive parts (single layer,
The laminated conductive layer) will be referred to as a peripheral conductive portion f. There is a separation line g1 (inside the peripheral conductive portion f) at the peripheral edge that collectively encloses all the thin film solar cell elements and at the adjacent boundaries between the two rows of series-connected thin film solar cell elements. The photoelectric conversion layer p on the surface of the substrate remains inside the separation line g1.

【0006】こうして、電力取り出し電極o1−最初の
光電変換素子の下電極l1、光電変換層p、上電極u1
−第2の光電変換素子の下電極l2、・・−最後の光電
変換素子の下電極l6、光電変換層p、上電極u6(電
力取り出し電極o2でもある)なる直列接続が完成す
る。以上6直列で説明したが、実用上は数10直列接続
以上が必要である。
Thus, the power extraction electrode o1-the lower electrode 11 of the first photoelectric conversion element, the photoelectric conversion layer p, and the upper electrode u1.
A series connection of the lower electrode 12 of the second photoelectric conversion element, ..., The lower electrode 16 of the last photoelectric conversion element, the photoelectric conversion layer p, and the upper electrode u6 (which is also the power extraction electrode o2) is completed. Although 6 series are described above, several tens of series connections or more are practically required.

【0007】図6は従来の電極を基板の両面に有する直
列接続の薄膜太陽電池を示し(a)は平面図、(b)は
(a)における線ABCDおよび線BQCに沿っての断
面図であり、(c)は(a)におけるEE断面図であ
る。フレキシブルな絶縁材料からなる基板1には第1電
極層、光電変換層および第2電極層が積層され(基板の
この面を表側とする)光電変換素子が形成され、基板の
反対側面(裏面)には第3電極層および第4電極層が積
層され、裏面電極が形成されている。
FIGS. 6A and 6B show a series-connected thin film solar cell having conventional electrodes on both sides of a substrate. FIG. 6A is a plan view, and FIG. 6B is a sectional view taken along line ABCD and line BQC in FIG. Yes, (c) is an EE sectional view in (a). A first electrode layer, a photoelectric conversion layer, and a second electrode layer are laminated on a substrate 1 made of a flexible insulating material to form a photoelectric conversion element (this surface of the substrate is the front side), and the opposite side surface (back surface) of the substrate is formed. A third electrode layer and a fourth electrode layer are laminated on each other to form a back surface electrode.

【0008】先ず、接続孔h1が開けられた基板1に第
1電極層その反対面に第3電極層を成膜する、接続孔h
1の内壁で第1電極層と第3電極層とが重なり、導通す
る。第1電極層を所定の形状にレーザ加工して、下電極
l1〜l6を形成した後、集電孔h2を開ける。次に、
a-Siからなる光電変換層の成膜とレーザ加工、第2電極
層の成膜(基板両端部と中央の2列の直列接続光電変換
素子の隣接する部分にはマスクを被せ、接続孔h1に第
2電極層が成膜されないようにする)および第4電極層
の成膜(裏側全面)を行なう。集電孔h2の内壁で第2
電極層と第4電極層とが重なり、導通する。次いで第2
電極層、および第3電極層と第4電極層の積層をレーザ
加工し、それぞれ上電極u1〜u6、電力取り出し電極
o1、o1および接続電極e12〜e56を形成する。
全ての薄膜太陽電池素子を一括して囲う周縁、および2
列の直列接続薄膜太陽電池素子の隣接する境界には(周
縁導電部fの内側)分離線g1がある。分離線g1の中
には基板表面の光電変換層pが残っている。裏側では、
全ての電極を一括して囲う周縁、および2列の直列接続
電極の隣接する境界には(周縁導電部fの内側)分離線
g2がある。分離線g2の中にはどの層も無い。
First, a third electrode layer is formed on the surface opposite to the first electrode layer on the substrate 1 in which the connection hole h1 is opened.
The first electrode layer and the third electrode layer overlap with each other on the inner wall of 1 and are electrically connected. The first electrode layer is laser processed into a predetermined shape to form the lower electrodes 11 to 16 and then the current collecting hole h2 is opened. next,
Film formation and laser processing of a photoelectric conversion layer made of a-Si, film formation of a second electrode layer (cover adjacent portions of two rows of serially connected photoelectric conversion elements at both ends and the center of the substrate with a mask, and connect holes h1 To prevent the second electrode layer from being formed) and to form the fourth electrode layer (the entire back surface). The inner wall of the current collecting hole h2 is second
The electrode layer and the fourth electrode layer overlap with each other and become conductive. Second then
The electrode layers and the stacked layers of the third electrode layer and the fourth electrode layer are laser-processed to form the upper electrodes u1 to u6, the power extraction electrodes o1 and o1, and the connection electrodes e12 to e56, respectively.
A peripheral edge that encloses all thin-film solar cell elements at once, and 2
A separation line g1 (inside the peripheral conductive portion f) is provided at the adjacent boundary of the series-connected thin film solar cell elements. The photoelectric conversion layer p on the surface of the substrate remains in the separation line g1. On the back side,
Separation lines g2 (inside the peripheral conductive portion f) are provided at the peripheral edges that collectively surround all the electrodes and at the adjacent boundaries between the two rows of series-connected electrodes. There are no layers in the separation line g2.

【0009】以上の工程の結果、裏側の電力取り出し電
極o1−集電孔h2−上電極u1、光電変換層、下電極
l1−接続孔h1−接続電極e12−集電孔h2−上電
極u2、光電変換層、下電極l2−・・・−接続電極e
56−集電孔h2−上電極u6、光電変換層、下電極l
6−接続孔h1−電力取り出し電極o2の順の光電変換
素子の直列接続が完成する。
As a result of the above steps, the power take-out electrode o1-the current collecting hole h2-the upper electrode u1 on the back side, the photoelectric conversion layer, the lower electrode l1-the connecting hole h1-the connecting electrode e12-the current collecting hole h2-the upper electrode u2, Photoelectric conversion layer, lower electrode 12 -... Connection electrode e
56-collecting hole h2-upper electrode u6, photoelectric conversion layer, lower electrode l
The serial connection of the photoelectric conversion elements in the order of 6-connection hole h1-power extraction electrode o2 is completed.

【0010】[0010]

【発明が解決しようとする課題】以上2種の薄膜太陽電
池を例として説明したが、いずれも基板周縁部に一体と
なっている周縁導電部fが残っている。また、これらの
光電変換装置は、同一基板上で複数の薄膜太陽電池を数
10個直列接続するために、基板内部の電力取り出し電
極間には、数10ないし100V以上の電位差が生じて
いる。
Although two types of thin-film solar cells have been described above as examples, the peripheral conductive portions f that are integral with the peripheral portion of the substrate remain in both cases. In addition, in these photoelectric conversion devices, several tens of thin-film solar cells are connected in series on the same substrate, so a potential difference of several tens to 100 V or more occurs between the power extraction electrodes inside the substrate.

【0011】いずれの場合にも、電力取り出し電極o
1、o2には、はんだ付けまたは導電テープの粘着等に
より外部リードが接続される。この接続工程の際に、分
離線およびその周辺の電極が損傷し、微細な破片が分離
線を跨ぎ、周縁導電部と電力取り出し電極間が電気的に
接続され、周縁導電部は電力取り出し電極と同電位にな
ることがあった。すなわち、周縁導電部と、他の電力取
り出し電極および光電変換素子の電極との間にはかなり
の高電圧差が生じ、周縁導電部と他の電力取り出し電極
および光電変換素子の電極とが短絡する危険性があっ
た。
In either case, the power extraction electrode o
External leads are connected to 1 and o2 by soldering or adhesion of a conductive tape. During this connection step, the separation line and the electrodes around it are damaged, fine fragments straddle the separation line, and the peripheral conductive part and the power extraction electrode are electrically connected, and the peripheral conductive part is connected to the power extraction electrode. It could have the same potential. That is, a considerable high voltage difference is generated between the peripheral conductive portion and the other power extraction electrode and the electrode of the photoelectric conversion element, and the peripheral conductive portion and the other power extraction electrode and the electrode of the photoelectric conversion element are short-circuited. There was a risk.

【0012】また、分離線にa-Si膜があると、これらの
間のa-Si膜には100V を超える高電圧が印加される場
合もあり、薄膜半導体であるa-Si膜中にも電流が流れ、
光電変換効率が低下する場合があった。高湿度下では、
レーザ加工の不安定性により生じた分離線の幅の狭い部
分では銀電極にマイグレーションが起こりやすく、電極
間短絡の危険性があった。
Further, if there are a-Si films on the separation lines, a high voltage exceeding 100 V may be applied to the a-Si films between them, and even in the a-Si film which is a thin film semiconductor. Current flows,
The photoelectric conversion efficiency may decrease. In high humidity,
In the narrow part of the separation line caused by the instability of the laser processing, migration was likely to occur in the silver electrode, and there was a risk of short circuit between the electrodes.

【0013】他の問題点として、レーザ加工の位置精度
が悪い場合がある。基板を挟んで同じ位置に有るべき分
離線の位置がずれ、隣接する電極の縁が基板を挟んで対
向すると、基板の耐圧以上の電圧が両電極に生じている
場合には基板の絶縁破壊がおこり光電変換装置が使用不
能になる。上記の問題点に鑑み、本発明の目的は、周縁
導電部と光電変換素子との間、光電変換素子間あるいは
裏面電極間の外部リード取り付け時の短絡の危険性の少
ない、また高湿度下での電極材のマイグレーションの起
こりにくい光電変換装置およびその製造方法を提供する
ことにある。
Another problem is that the positional accuracy of laser processing is poor. If the separation lines should be in the same position across the substrate and the edges of adjacent electrodes face each other across the substrate, dielectric breakdown of the substrate may occur if a voltage higher than the withstand voltage of the substrate occurs on both electrodes. The photoelectric conversion device becomes unusable. In view of the above problems, the object of the present invention is between the peripheral conductive portion and the photoelectric conversion element, there is little risk of a short circuit when attaching external leads between photoelectric conversion elements or between back electrodes, and also under high humidity. Another object of the present invention is to provide a photoelectric conversion device in which migration of the electrode material does not easily occur and a method for manufacturing the photoelectric conversion device.

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
めに、絶縁性の基板上の少なくとも片側に第1電極層、
光電変換層および第2電極層が積層されてなり、個別化
されている光電変換素子が複数直列接続されてなる光電
換装置において、直列接続されていなくて、互いに隣
接している前記光電変換素子の電極間には、および直列
接続された光電変換素子と前記基板の周縁部にあり、こ
れらの光電変換素子を囲む電極層または電極層と光電変
換層の積層の周縁導電部との間には、電極層および光電
変換層のいずれの層も介在しない第1の分離線が1また
は複数介在しているとともに、前記分離線の幅(mm)
の合計は、光電変換素子の全直列接続の両端に発生する
光発生電圧をV(V)として、V/400(mm)以上
あり、且つ、前記光電変換素子が形成されている基板
面と反対側の基板面に光電変換素子の直列接続用の電極
または電力取り出し用電極である裏面電極が形成されて
おり、直列接続されていなくて、互いに隣接している前
記裏面電極間には、および直列接続された裏面電極と前
記基板の周縁部にあり、これらの裏面電極を囲む電極層
の周縁導電部との間には、裏面電極層が存在しない第2
の分離線が1または複数介在しており、前記第1の分離
線と前記第2の分離線とは、基板を挟んで同じ位置に有
ることとする。
In order to achieve the above object, a first electrode layer is provided on at least one side of an insulating substrate,
Becomes photoelectric conversion layer and the second electrode layer are stacked, in the photoelectric <br/> varying retrofit location of the photoelectric conversion element is formed by a plurality series connection being individualized, not be connected in series, adjacent to each other Between the electrodes of the photoelectric conversion element and in the peripheral portion of the photoelectric conversion element and the substrate connected in series, the peripheral conductive portion of the electrode layer surrounding these photoelectric conversion elements or a laminate of the electrode layer and the photoelectric conversion layer. and between, the first separation line none of the layers of the electrode layer and the photoelectric conversion layer is not interposed is 1 or more intervening of the separation line width (mm)
Is V / 400 (mm) or more, where V (V) is the light generation voltage generated across all series connections of the photoelectric conversion elements, and the substrate on which the photoelectric conversion elements are formed.
Electrodes for series connection of photoelectric conversion elements on the substrate surface opposite to the surface
Or a backside electrode that is an electrode for extracting power is formed
, Not in series and adjacent to each other
Between the back electrodes and between the back electrodes connected in series and the front
An electrode layer on the periphery of the substrate surrounding the backside electrodes
No second electrode layer exists between the peripheral conductive portion of the second
1 or more intervening separation lines are present, and the first separation
The line and the second separation line are located at the same position with the substrate sandwiched therebetween .

【0015】[0015]

【0016】上記の光電変換装置の製造方法において、
前記第1の分離線は第1電極層、光電変換層または第2
電極層の少なくともいずれかの層をレーザ加工により除
去されると良い。
In the above method for manufacturing a photoelectric conversion device,
The first separation line is a first electrode layer, a photoelectric conversion layer, or a second
At least one of the electrode layers may be removed by laser processing.

【0017】前記分離線は第1電極層、光電変換層また
は第2電極層の少なくともいずれかの層をリフトオフに
より除去されると良い。
The separation line may be removed by lift-off of at least one of the first electrode layer, the photoelectric conversion layer and the second electrode layer.

【0018】[0018]

【発明の実施の形態】上記のように、従来よりも幅の広
い、電極層および光電変換層のいずれの層も存在しない
1ないし複数の分離線が隣接する電極間を隔てるので、
外部リード取り付け時の損傷により生ずる電極層の破片
は分離線を跨ぐことはなく、また、電極間を電極材のマ
イグレーションも起こらない。従って、外部リード取り
付け時の短絡や長期放置後の短絡も起こらないことが期
待できる。 実施例1 図1は本発明に係る電極を基板の両面に有する直列接続
の薄膜太陽電池を示し、(a)は平面図、(b)は
(a)における線ABCDおよび線BQCに沿っての断
面図であり、(c)(a)におけるEE断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, since one or a plurality of separation lines, which are wider than conventional ones and in which neither an electrode layer nor a photoelectric conversion layer is present, separate adjacent electrodes,
Fragments of the electrode layer caused by damage when attaching the external leads do not cross the separation line, and migration of the electrode material does not occur between the electrodes. Therefore, it can be expected that neither a short circuit at the time of attaching the external lead nor a short circuit after leaving for a long time will occur. Example 1 FIG. 1 shows a series-connected thin-film solar cell having electrodes according to the present invention on both sides of a substrate. (A) is a plan view, (b) is a line along line ABCD and line BQC in (a). It is a sectional view, and is an EE sectional view in (c) and (a).

【0019】本実施例では、基板1として耐熱性樹脂で
ある厚さ50μm のポリイミドシートを用いた。先ず、
基板1にパンチを用いて、接続孔h1を開け、基板1の
片側(表側とする)に第1電極層として、スパッタによ
り銀を0.1μm 成膜し、これと反対の面(裏側とす
る)には、第3電極層として、同じく銀電極を0.2μ
m 成膜した。接続孔h1の内壁で第1電極層と第3電極
層とは重なり、導通する。成膜後、表側では、レーザ加
工を行い、下電極l1ないしl6の隣接部は1本の分離
線g2,2列の直列接続の光電変換素子間および周縁導
電部fとの分離のためには2本の分離線g2を形成し
た。レーザ加工はダブルビームを用いて分離線1本の幅
を0.4mmとした。
In this embodiment, a polyimide sheet having a thickness of 50 μm, which is a heat resistant resin, is used as the substrate 1. First,
A connection hole h1 is opened in the substrate 1 using a punch, and 0.1 μm of silver is sputtered as a first electrode layer on one side (the front side) of the substrate 1 on the opposite side (the back side). ) Also has a silver electrode of 0.2 μm as a third electrode layer.
m deposited. The first electrode layer and the third electrode layer overlap with each other on the inner wall of the connection hole h1 and are electrically connected. After the film formation, laser processing is performed on the front side, and the adjacent portions of the lower electrodes l1 to l6 are separated by one separation line g2 and two rows of photoelectric conversion elements connected in series and from the peripheral conductive portion f. Two separation lines g2 were formed. In laser processing, the width of one separation line was 0.4 mm using a double beam.

【0020】再度パンチを用いて、集電孔h2を開けた
後、表側に、光電変換層としてa-Si層をプラズマCVD
により成膜した。マスクを用いて幅W2の成膜とし、レ
ーザ加工により2列素子の間だけに第1電極層と同じ分
離線を形成した。さらに第2電極層として表側にITO
層を0.07μm 成膜した。但し、2つの素子列の間と
これに平行な基板の両側端部にはマスクを掛け接続孔h
1には成膜しないようにし、素子部のみに成膜した。次
いで裏側全面に第4電極層として銀電極を0.2μm 成
膜した。第4電極層の成膜により、集電孔h2の内壁で
第2電極層と第4電極層とが重なり、導通する。表側で
は、レーザ加工により下電極と同じパターンの分離線を
入れ、個別の第2電極とを形成し、裏側では、第3電極
層と第4電極層とを同時にレーザ加工し接続電極e12
ないしe56、および電力取り出し電極o1、o2を個
別化し、基板1の周縁部では表側の分離線g3と重なる
ように分離線g2を形成し、隣接電極間には1本の分離
線を形成した。
After the current collector hole h2 was opened again using the punch, an a-Si layer as a photoelectric conversion layer was formed on the front side by plasma CVD.
The film was formed by. A film having a width W2 was formed using a mask, and the same separation line as the first electrode layer was formed only between the two-row elements by laser processing. Further, ITO is formed on the front side as a second electrode layer.
The layer was deposited to 0.07 μm. However, a mask is laid between the two element rows and both end portions of the substrate parallel to the two element rows to connect holes h.
The film was not formed on No. 1 and was formed only on the element part. Then, a 0.2 μm silver electrode was formed as a fourth electrode layer on the entire back surface. Due to the film formation of the fourth electrode layer, the second electrode layer and the fourth electrode layer overlap with each other on the inner wall of the current collecting hole h2 and are electrically connected. On the front side, a separation line having the same pattern as that of the lower electrode is formed by laser processing to form an individual second electrode, and on the back side, the third electrode layer and the fourth electrode layer are simultaneously laser processed to form the connection electrode e12.
To e56 and the power extraction electrodes o1 and o2 are separated, a separation line g2 is formed so as to overlap the separation line g3 on the front side at the peripheral portion of the substrate 1, and one separation line is formed between adjacent electrodes.

【0021】全ての薄膜太陽電池素子を一括して囲う周
縁、および2列の直列接続薄膜太陽電池素子の隣接する
境界には(周縁導電部fの内側)分離線g3がある。分
離線g3の中にはどの層も無い。裏側では、全ての電極
を一括して囲う周縁、および2列の直列接続電極の隣接
する境界には(周縁導電部fの内側)分離線g2があ
る。分離線g2の中にはどの層も無い。
There is a separation line g3 (inside the peripheral conductive portion f) at the peripheral edge that collectively encloses all the thin film solar cell elements and at the adjacent boundaries between the two rows of thin film solar cell elements connected in series. There are no layers in the separation line g3. On the back side, there is a separation line g2 (inside the peripheral conductive portion f) at the peripheral edge that collectively encloses all the electrodes and at the adjacent boundary between the two rows of series-connected electrodes. There are no layers in the separation line g2.

【0022】こうして、電力取り出し電極o1−集電孔
h2−上電極u1、光電変換層、下電極l1−接続孔h
1−接続電極e12−上電極u2、光電変換層、下電極
l2−接続電極e23−・・・−上電極u6、光電変換
層、下電極l6−接続孔h1−電力取り出し電極o2な
る直列接続が完成する。このように、少なくとも、1個
の光電変換素子の光発生電圧以上の電圧差が生ずる領域
(電極と光電変換層)の境界を2本の分離線g3によっ
て隔てるようにしたので、電力取り出し電極o1、o2
へのリード接続工程時にどちらかの電極から生じた破片
は2本の分離線を同時に接続してしまう確率は極めて小
さく、両電極の短絡または周縁導電部fと電力取り出し
電極との短絡することはなくなった。
Thus, the power take-out electrode o1-the current collecting hole h2-the upper electrode u1, the photoelectric conversion layer, the lower electrode l1-the connecting hole h.
1-connection electrode e12-upper electrode u2, photoelectric conversion layer, lower electrode l2-connection electrode e23 -...- upper electrode u6, photoelectric conversion layer, lower electrode l6-connection hole h1-power extraction electrode o2 Complete. In this way, at least the boundary of the region (electrode and photoelectric conversion layer) in which a voltage difference equal to or higher than the light generation voltage of one photoelectric conversion element is separated by the two separation lines g3, the power extraction electrode o1 , O2
It is extremely unlikely that a debris generated from either electrode during the lead connection process will connect the two separation lines at the same time, and short-circuiting of both electrodes or short-circuiting between the peripheral conductive portion f and the power extraction electrode is not possible. lost.

【0023】また、別途、基板表面に沿って電極材料
(銀)のマイグレーションの起こる臨界電界が400V/
mm程度であることが推定できたので、分離線の幅が0.
4mmの場合、レーザ加工の不安定性から局所的に0.2
5mmの場所でも、100V 程度までは電極材料のマイグ
レーションは起こらない。必要電圧に応じて分離線の幅
を広くすることは可能である。
Separately, the critical electric field at which the migration of the electrode material (silver) occurs along the substrate surface is 400 V /
Since it was estimated that the width of the separation line was about 0.
In the case of 4 mm, 0.2 is locally generated due to instability of laser processing.
Electrode material migration does not occur up to about 100 V even at a location of 5 mm. It is possible to increase the width of the separation line according to the required voltage.

【0024】また、分離線g3にはa-Si層を残さなかっ
たので、発生電力がa-Si層を通じてリークすることもな
くなくなり、光電変換効率の低下は生じなくなった。 実施例2 本実施例は、電極の個別化や分離線の形成を、レーザ加
工によらず、マスク成膜とマスク剥離によるリフトオフ
によった場合である。
Since no a-Si layer was left on the separation line g3, the generated power did not leak through the a-Si layer, and the photoelectric conversion efficiency did not decrease. Example 2 In this example, individualization of electrodes and formation of separation lines are performed by mask film formation and lift-off by mask peeling, not by laser processing.

【0025】図2は本発明に係る電極を基板の両面に有
する他の直列接続の薄膜太陽電池を示し、(a)は平面
図、(b)は(a)における線ABCDおよび線BQC
に沿っての断面図であり、(c)(a)におけるEE断
面図である。基板1として耐熱性樹脂であるポリイミド
シートを用いた。先ず、基板1の両面にポリイミドシー
トマスクを接着し、直列接続光電変換素子群の周縁部と
直列接続素子列の隣接境界に分離線には、電極層と光電
変換層が成膜されないようにした。レーザ加工の場合と
は異なり、分離線の幅(マスク幅)をあまり細くするこ
とは任意とすることができまた形状の自由度もある。分
離線の幅は銀電極のマイグレーションの防止とマスク位
置設定精度を考慮して1mmとした。
2A and 2B show another series-connected thin film solar cell having electrodes according to the present invention on both sides of a substrate. FIG. 2A is a plan view and FIG. 2B is a line ABCD and a line BQC in FIG.
It is a sectional view taken along the line EE, and is an EE sectional view in (c) and (a). A polyimide sheet which is a heat resistant resin was used as the substrate 1. First, polyimide sheet masks were adhered to both surfaces of the substrate 1 so that the electrode layer and the photoelectric conversion layer were not formed on the separation line at the peripheral edge of the series-connected photoelectric conversion element group and the adjacent boundary between the series-connected element rows. . Unlike in the case of laser processing, it is possible to make the width of the separation line (mask width) too small, and there is also the freedom of shape. The width of the separation line is set to 1 mm in consideration of migration of the silver electrode and mask position setting accuracy.

【0026】次に、基板1にパンチを用いて、接続孔h
1を開け、基板1の片側(表側とする)に第1電極層と
して、スパッタにより銀を0.1μm 成膜し、これと反
対の面(裏側とする)には、第3電極層として、同じく
銀電極を0.2μm 成膜した。接続孔h1の内壁で第1
電極層と第3電極層とは重なり導通する。再度パンチを
用いて、集電孔h2を開け、第1電極層側に、光電変換
層としてa-Si層をプラズマCVDにより成膜した。但
し、2つの素子列の間とこれに平行な基板の両側端部に
はマスクを掛け素子部のみに成膜した。さらに第2電極
層としてITO層を0.07μm 成膜した。
Next, a punch is used on the substrate 1 to form a connection hole h.
1 is opened, a first electrode layer is formed on one side (front side) of the substrate 1, a silver film of 0.1 μm is formed by sputtering, and a third electrode layer is formed on the opposite side (back side). Similarly, a silver electrode having a thickness of 0.2 μm was formed. The inner wall of the connection hole h1 is first
The electrode layer and the third electrode layer overlap with each other and are electrically connected. The punch was used again to open the current collecting hole h2, and an a-Si layer as a photoelectric conversion layer was formed on the first electrode layer side by plasma CVD. However, a mask was applied between the two element rows and both end portions of the substrate parallel to the two element rows to form a film only on the element portion. Further, an ITO layer having a thickness of 0.07 μm was formed as a second electrode layer.

【0027】最後に、マスクを剥離し、マスク上の積層
膜を除去し、太陽電池の直列接続と電力取り出し電極、
分離線等をパターニングした。実施例1と同様の直列接
続された薄膜太陽電池を作製した。このように、少なく
とも、1個の光電変換素子の光発生電圧以上が現れる領
域は幅広の分離線g4によって隔てられるようにしたの
で、電力取り出し電極o1、o2へのリード接続工程時
に電力取り出し電極が損傷して生じた破片が分離線を跨
いで両電極間を短絡することはなくなった。
Finally, the mask is peeled off, the laminated film on the mask is removed, and the solar cells are connected in series and the power take-out electrode,
The separation line and the like were patterned. The same thin-film solar cells connected in series as in Example 1 were produced. In this way, at least the region where the light generation voltage or more of one photoelectric conversion element appears is separated by the wide separation line g4, so that the power extraction electrode may be separated during the lead connection process to the power extraction electrodes o1 and o2. The damaged fragments no longer shorted across the electrodes across the separation line.

【0028】また、マスクフィルムを用いたリフトオフ
パターニングを行うと、膜形成時に起こる、基板の寸法
変化による基板両面のパターンズレがなくなり、パター
ンずれに伴う表裏電極の重なりは生じないので、表裏電
極間のマイグレーションによる短絡は起こらなくなっ
た。 実施例3 図3は本発明に係る単純な直列接続の薄膜太陽電池を示
し、(a)は平面図であり、(b)は(a)におけるA
A断面図である。
Further, when the lift-off patterning using the mask film is performed, the pattern deviation on both surfaces of the substrate due to the dimensional change of the substrate which occurs at the time of film formation is eliminated, and the front and back electrodes are not overlapped due to the pattern shift. The short circuit due to migration did not occur. Example 3 FIG. 3 shows a simple series-connected thin-film solar cell according to the present invention, in which (a) is a plan view and (b) is A in (a).
FIG.

【0029】本実施例では、厚さ50μm のポリエチレ
ンナフタレート(以下にPENと記す)を基板1とし
た。この基板1上に、スパッタにより酸化インジウム膜
(以下にIT0と記す)を0.1μm 形成し、レーザ加
工によりパターニングし、個別の下電極l1〜l3とし
た。また、基板周縁部には二重に分離線を入れた。次
に、プラズマCVDにより、光電変換層としてa-Si層を
成膜し、レーザ加工により個別の光電変換層と下電極の
分離線に重なる分離線をパターニングした。最後に第2
電極層として銀を0.2μm 形成し、同じく、レーザ加
工によりパターニングし、個別の上電極u1〜u3、電
力取り出し電極o1および下電極の分離線に重なる分離
線をパターニングした。上電極u3は電力取り出し電極
o2でもある。こうして隣接する下電極と上電極の1辺
が重なることによって薄膜太陽電池素子が直列接続さ
れ、同時に電力取り出し電極o1、と周縁導電部fおよ
び分離線g3が形成される。分離線g3の中にはどの層
も無い。
In this example, the substrate 1 was polyethylene naphthalate (hereinafter referred to as PEN) having a thickness of 50 μm. An indium oxide film (hereinafter referred to as IT0) having a thickness of 0.1 μm was formed on the substrate 1 by sputtering, and patterned by laser processing to form individual lower electrodes 11 to 13. In addition, a double separating line was provided on the peripheral portion of the substrate. Next, an a-Si layer was formed as a photoelectric conversion layer by plasma CVD, and a separation line that overlaps the separation line between the individual photoelectric conversion layer and the lower electrode was patterned by laser processing. Finally the second
Silver having a thickness of 0.2 μm was formed as an electrode layer, and similarly, patterning was performed by laser processing, and a separation line overlapping the separation lines of the individual upper electrodes u1 to u3, the power extraction electrode o1 and the lower electrode was patterned. The upper electrode u3 is also the power extraction electrode o2. Thus, the thin film solar cell elements are connected in series by overlapping one side of the lower electrode and the upper electrode adjacent to each other, and at the same time, the power extraction electrode o1, the peripheral conductive portion f, and the separation line g3 are formed. There are no layers in the separation line g3.

【0030】このように、少なくとも、1個の光電変換
素子の光発生電圧以上の電圧差が生ずる領域(電極と光
電変換層)の境界を2本の分離線によって隔てるように
したので、電力取り出し電極o1、o2へのリード接続
工程時にどちらかの電極から生じた破片は2本の分離線
を同時に接続してしまう確率は極めて小さく、両電極の
短絡または周縁導電部fと電力取り出し電極とが短絡す
ることはなくなった。
As described above, at least the boundary between the regions (electrodes and photoelectric conversion layers) where a voltage difference equal to or higher than the light-generated voltage of one photoelectric conversion element is separated by the two separating lines. The probability that a debris generated from either electrode during the lead connection process to the electrodes o1 and o2 will connect the two separation lines at the same time is very small, and the short circuit between the two electrodes or the peripheral conductive part f and the power extraction electrode may be separated. It is no longer short circuited.

【0031】また、分離線の中にはa-Si層を残さなかっ
たので、発生電力がa-Si層を通じてリークすることもな
くなくなり、光電変換効率の低下は生じなくなった。ま
た、高い光発生電圧が1本の分離線に印加されることは
無くなり、高電圧薄膜太陽電池装置で問題となってい
た、高電圧下における電極材料のマイグレーションがな
くなった。 実施例4 図4は本発明に係る往復直列接続の薄膜太陽電池を示
し、(a)は平面図であり、(b)は(a)におけるA
A断面図である。
Further, since the a-Si layer was not left in the separation line, the generated power did not leak through the a-Si layer, and the photoelectric conversion efficiency did not decrease. Further, the high photo-generated voltage is no longer applied to one separation line, and the migration of the electrode material under high voltage, which is a problem in the high voltage thin film solar cell device, is eliminated. Example 4 FIG. 4 shows a reciprocating series-connected thin film solar cell according to the present invention, (a) is a plan view, and (b) is A in (a).
FIG.

【0032】本実施例では発明では、基板にガラスを用
い、このガラス基板1上に、第1電極層として、熱CV
Dにより酸化錫膜(以下にSnO2と記す)を0.6μm 成
膜し、レーザ加工により個別の第1電極l1ないしl6
および基板1周縁部の2本の分離線と2列の直列接続さ
れた光電変換素子の境界に2本の分離線をパターニング
した。以下、実施例3と同じ工程に従って、往復直列接
続の薄膜太陽電池を作製した。
In the present embodiment, glass is used as the substrate in the present invention, and thermal CV is used as the first electrode layer on the glass substrate 1.
A tin oxide film (hereinafter referred to as SnO 2 ) having a thickness of 0.6 μm is formed by D, and individual first electrodes 11 to 16 are formed by laser processing.
Then, two separation lines were patterned on the boundary between the two separation lines at the peripheral portion of the substrate 1 and the two rows of serially connected photoelectric conversion elements. Then, a reciprocal series-connected thin-film solar cell was manufactured according to the same process as in Example 3.

【0033】実施例3と同様に、高電圧差の生ずる電極
間または周縁導電部と電極間が短絡することはなくなっ
た。このように、少なくとも、1個の光電変換素子の光
発生電圧以上の電圧差が生ずる領域(電極と光電変換
層)の境界を2本の分離線によって隔てるようにしたの
で、電力取り出し電極o1、o2へのリード接続工程時
にどちらかの電極から生じた破片は2本の分離線を同時
に接続してしまう確率は極めて小さく、両電極の短絡ま
たは周縁導電部fと電力取り出し電極との短絡すること
はなくなった。
As in the third embodiment, short-circuiting between the electrodes or between the peripheral conductive portion and the electrodes where a high voltage difference occurs is eliminated. In this way, at least the boundary of the region (electrode and photoelectric conversion layer) in which a voltage difference equal to or higher than the light generation voltage of one photoelectric conversion element is separated by the two separation lines, the power extraction electrode o1, The probability that a debris generated from either electrode during the lead connection process to o2 will connect two separation lines at the same time is very small. Short circuit both electrodes or short circuit between the peripheral conductive part f and the power extraction electrode. Is gone.

【0034】また、分離線にはa-Si層を残さなかったの
で、発生電力がa-Si層を通じてリークすることもなくな
くなり、光電変換効率の低下は生じなくなった。また、
高い光発生電圧が1本の分離線に印加されることは無く
なり、高電圧薄膜太陽電池装置で問題となっていた、高
電圧下における電極材料のマイグレーションは起こらな
くなった。
Further, since the a-Si layer was not left on the separation line, the generated power did not leak through the a-Si layer, and the photoelectric conversion efficiency did not decrease. Also,
The high photo-generated voltage is no longer applied to one separation line, and migration of the electrode material under high voltage, which has been a problem in high voltage thin film solar cell devices, no longer occurs.

【0035】[0035]

【発明の効果】本発明によれば、絶縁性の基板上の少な
くとも片側表面に第1電極層、光電変換層および第2電
極層が積層されてなる、個別化されている光電変換素子
が複数直列接続されてなる光電変換素子装置において、
光電変換素子1個の最大光発生電圧を越える電圧差の生
じ得る互いに隣接している光電変換素子の電極の間に
は、または製造工程の都合上残された電極層または光電
変換層が連結されてなる周縁導電部と前記光電変換素子
の電極との間には、電極層および光電変換層のいずれの
層も存在しない所定の幅の分離線を介在させ、また前記
光電変換素子が形成されている基板表面と反対側の基板
表面に光電変換素子の直列接続用の電極または電力取り
出し用電極である裏面電極が形成されて要る場合も、同
様に分離線を介在させたため、電力取り出し電極へのリ
ード接続工程時に電極から生じた破片は2本の分離線を
同時に接続してしまう確率は極めて小さく、両電極の短
絡または周縁導電部fと電力取り出し電極との短絡する
ことはなくなる。
According to the present invention, a plurality of individualized photoelectric conversion elements each having a first electrode layer, a photoelectric conversion layer and a second electrode layer laminated on at least one surface of an insulating substrate are provided. In the photoelectric conversion device that is connected in series,
Between the electrodes of the photoelectric conversion elements adjacent to each other where a voltage difference exceeding the maximum light generation voltage of one photoelectric conversion element may occur, or an electrode layer or a photoelectric conversion layer left for the convenience of the manufacturing process is connected. A separation line having a predetermined width, in which neither the electrode layer nor the photoelectric conversion layer is present, is interposed between the peripheral conductive portion formed by and the electrode of the photoelectric conversion element, and the photoelectric conversion element is formed. Even if the electrode for serial connection of the photoelectric conversion element or the back electrode which is the power extraction electrode is formed on the surface of the substrate opposite to the surface of the substrate where the separation line is interposed, the power extraction electrode is also used. The probability that fragments generated from the electrodes during the lead connection step will connect the two separation lines at the same time is extremely small, and short-circuiting of both electrodes or short-circuit between the peripheral conductive part f and the power extraction electrode will not occur.

【0036】また、分離線の中にa-Si層を残さなかった
ので、発生電力がa-Si層を通じてリークすることもなく
なくなり、光電変換効率の低下は生じなくなる。また、
分離線の幅(mm)の合計を、前記光電変換素子の直列接続
の両端に発生する最大光発生電圧をV(V)として、V/
400(mm) 以上としたため、分離線を挟む電極材料の
マイレーションは起こらず、電極間の短絡は起こらな
い。
Further, since the a-Si layer is not left in the separation line, the generated power does not leak through the a-Si layer and the photoelectric conversion efficiency does not decrease. Also,
The total width (mm) of the separation lines is V /, where V (V) is the maximum light generation voltage generated at both ends of the series connection of the photoelectric conversion elements.
Since the thickness is 400 (mm) or more, the electrode material sandwiching the separation line does not migrate, and no short circuit occurs between the electrodes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電極を基板の両面に有する直列接
続の薄膜太陽電池を示し、(a)は平面図、(b)は
(a)における線ABCDおよび線BQCに沿っての断
面図であり、(c)(a)におけるEE断面図
FIG. 1 shows a series-connected thin-film solar cell having electrodes according to the present invention on both sides of a substrate, (a) is a plan view, and (b) is a cross-sectional view taken along line ABCD and line BQC in (a). And (e) cross section of (c) and (a)

【図2】本発明に係る電極を基板の両面に有する他の直
列接続の薄膜太陽電池を示し、(a)は平面図、(b)
は(a)における線ABCDおよび線BQCに沿っての
断面図であり、(c)(a)におけるEE断面図
FIG. 2 shows another series-connected thin-film solar cell having electrodes according to the present invention on both sides of a substrate, (a) being a plan view, (b).
FIG. 6A is a cross-sectional view taken along line ABCD and line BQC in (a), and (c) is an EE cross-sectional view in (a).

【図3】本発明に係る単純な直列接続の薄膜太陽電池を
示し、(a)は平面図であり、(b)は(a)における
AA断面図、(c)は(a)におけるBB断面図
3A and 3B show a simple series-connected thin film solar cell according to the present invention, FIG. 3A is a plan view, FIG. 3B is a sectional view taken along line AA in FIG. 3A, and FIG. 3C is a sectional view taken along line BB in FIG. Figure

【図4】本発明に係る往復直列接続の薄膜太陽電池を示
し、(a)は平面図であり、(b)は(a)におけるA
A断面図、(c)は(a)におけるBB断面図
FIG. 4 shows a reciprocal series-connected thin film solar cell according to the present invention, (a) is a plan view, and (b) is A in (a).
A sectional view, (c) is a BB sectional view in (a)

【図5】従来の直列接続の薄膜太陽電池を示し(a)は
平面図、(b)は(a)におけるAA断面図であり、
(c)は(a)におけるBB断面図
5A and 5B show a conventional series-connected thin film solar cell, FIG. 5A is a plan view, and FIG. 5B is a sectional view taken along line AA in FIG.
(C) is a BB sectional view in (a)

【図6】従来の電極を基板の両面に有する直列接続の薄
膜太陽電池を示し(a)は平面図、(b)は(a)にお
ける線ABCDおよび線BQCに沿っての断面図であ
り、(c)は(a)におけるEE断面図
6A and 6B show a series-connected thin film solar cell having conventional electrodes on both surfaces of a substrate, FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view taken along line ABCD and line BQC in FIG. (C) is an EE sectional view in (a)

【符号の説明】[Explanation of symbols]

1 基板 l1…l6 第1電極 u1…u6 第2電極 o1 電力取り出し電極 o2 電力取り出し電極 g1…g3 分離線 h1 接続孔 h2 集電孔 f 周縁導電部 1 substrate l1 ... l6 first electrode u1 ... u6 second electrode o1 Power extraction electrode o2 Power extraction electrode g1 ... g3 Separation line h1 connection hole h2 collector hole f Edge conductive part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−334206(JP,A) 特開 平8−83919(JP,A) 特開 平6−342924(JP,A) 特開 平7−263733(JP,A) 特開 平1−152767(JP,A) 特開 昭63−261883(JP,A) 特開 昭59−3981(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-6-334206 (JP, A) JP-A-8-83919 (JP, A) JP-A-6-342924 (JP, A) JP-A-7- 263733 (JP, A) JP-A 1-152767 (JP, A) JP-A 63-261883 (JP, A) JP-A 59-3981 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 31/04-31/078

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性の基板上の少なくとも片側に第1電
極層、光電変換層および第2電極層が積層されてなり、
個別化されている光電変換素子が複数直列接続されてな
る光電変換装置において、直列接続されていなくて、互
いに隣接している前記光電変換素子の電極間には、およ
び直列接続された光電変換素子と前記基板の周縁部にあ
り、これらの光電変換素子を囲む電極層または電極層と
光電変換層の積層の周縁導電部との間には、電極層およ
び光電変換層のいずれの層も介在しない第1の分離線が
1または複数介在しているとともに、前記分離線の幅
(mm)の合計は、光電変換素子の全直列接続の両端に
発生する光発生電圧をV(V)として、V/400(m
m)以上であり、且つ、前記光電変換素子が形成されて
いる基板面と反対側の基板面に光電変換素子の直列接続
用の電極または電力取り出し用電極である裏面電極が形
成されており、直列接続されていなくて、互いに隣接し
ている前記裏面電極間には、および直列接続された裏面
電極と前記基板の周縁部にあり、これらの裏面電極を囲
む電極層の周縁導電部との間には、裏面電極層が存在し
ない第2の分離線が1または複数介在しており、前記第
1の分離線と前記第2の分離線とは、基板を挟んで同じ
位置に有ることを特徴とする光電変換装置。
1. A first electrode layer, a photoelectric conversion layer, and a second electrode layer are laminated on at least one side of an insulating substrate,
In photoelectric conversion retrofit location of photoelectric conversion elements that are individualized, which are more series-connected, not be connected in series between the electrodes of the photoelectric conversion elements that are adjacent to each other, and connected in series photoelectric conversion Any of the electrode layer and the photoelectric conversion layer is interposed between the element and the peripheral portion of the substrate, and between the electrode layer surrounding the photoelectric conversion element or the peripheral conductive portion of the laminate of the electrode layer and the photoelectric conversion layer. together with the first separation lines not is 1 or more intervening the total width of the separation line (mm) is a light generated voltage generated across the entire series connection of the photoelectric conversion elements as V (V), V / 400 (m
m) or more, and the photoelectric conversion element is formed
The photoelectric conversion element is connected in series on the surface of the substrate opposite to the surface of the substrate
The back electrode, which is the
Are not connected in series and are adjacent to each other
Between the back electrodes, and the back surface connected in series
These electrodes are located on the periphery of the substrate and the electrodes, and surround these backside electrodes.
There is a backside electrode layer between the peripheral conductive part of the electrode layer.
There is one or more intervening second separation lines,
The first separation line and the second separation line are the same with the substrate interposed therebetween.
The photoelectric conversion device according to claim chromatic Rukoto in position.
【請求項2】請求項1に記載の光電変換装置の製造方法
において、前記第1の分離線は第1電極層、光電変換層
または第2電極層の少なくともいずれかの層をレーザ加
工により除去することを特徴とする光電変換装置の製造
方法。
2. The method for manufacturing a photoelectric conversion device according to claim 1, wherein at least one of the first electrode layer, the photoelectric conversion layer and the second electrode layer is removed by laser processing from the first separation line. A method for manufacturing a photoelectric conversion device, comprising:
【請求項3】請求項1に記載の光電変換装置の製造方法
において、前記第1の分離線は第1電極層、光電変換層
または第2電極層の少なくともいずれかの層をリフトオ
フにより除去することを特徴とする光電変換装置の製造
方法。
3. The method for manufacturing a photoelectric conversion device according to claim 1, wherein at least one of the first electrode layer, the photoelectric conversion layer and the second electrode layer is removed by lift-off from the first separation line. A method for manufacturing a photoelectric conversion device, comprising:
JP03720797A 1997-02-21 1997-02-21 Photoelectric conversion device and method of manufacturing the same Expired - Lifetime JP3449155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03720797A JP3449155B2 (en) 1997-02-21 1997-02-21 Photoelectric conversion device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03720797A JP3449155B2 (en) 1997-02-21 1997-02-21 Photoelectric conversion device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10233517A JPH10233517A (en) 1998-09-02
JP3449155B2 true JP3449155B2 (en) 2003-09-22

Family

ID=12491151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03720797A Expired - Lifetime JP3449155B2 (en) 1997-02-21 1997-02-21 Photoelectric conversion device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3449155B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584750B2 (en) * 1998-09-22 2004-11-04 富士電機ホールディングス株式会社 Thin film solar cell and method for manufacturing the same
JP2000208794A (en) * 1999-01-19 2000-07-28 Fuji Electric Co Ltd Method of laser patterning pattern-shaped thin film of thin-film solar cell or the like
US6380478B1 (en) * 1999-07-16 2002-04-30 Sanyo Electric Co., Ltd. Solar cell module
JP2001177136A (en) * 1999-10-05 2001-06-29 Fuji Electric Co Ltd Method of manufacturing thin-film solar battery, and equipment of processing through hole and equipment of patterning the same by powder jetting method for thin-film substrate
JP4086218B2 (en) * 1999-10-29 2008-05-14 富士電機アドバンストテクノロジー株式会社 Method for forming patterned thin film layer
JP4432236B2 (en) * 2000-08-31 2010-03-17 富士電機システムズ株式会社 Thin film solar cell
JP4379557B2 (en) * 2000-11-07 2009-12-09 富士電機システムズ株式会社 Thin film solar cell manufacturing method and manufacturing apparatus
JP4461625B2 (en) * 2001-03-13 2010-05-12 富士電機ホールディングス株式会社 Method and apparatus for continuous automatic measurement of solar cell characteristics
JP2003060219A (en) * 2001-06-04 2003-02-28 Fuji Electric Corp Res & Dev Ltd Thin film solar cell and manufacturing method therefor
AUPR719701A0 (en) 2001-08-23 2001-09-13 Pacific Solar Pty Limited Chain link metal interconnect structure
JP4082651B2 (en) * 2001-10-17 2008-04-30 富士電機アドバンストテクノロジー株式会社 Manufacturing method of solar cell module
JP4417941B2 (en) * 2002-06-21 2010-02-17 リコーマイクロエレクトロニクス株式会社 Laser processing method
JP2004128110A (en) * 2002-10-01 2004-04-22 Fuji Electric Holdings Co Ltd Manufacturing method of thin film solar cell
JP4311082B2 (en) * 2003-05-28 2009-08-12 富士電機システムズ株式会社 Thin film solar cell and manufacturing method thereof
JP2009206235A (en) * 2008-02-27 2009-09-10 Fuji Electric Holdings Co Ltd Method of manufacturing thin film solar battery
EP2159846A1 (en) * 2008-08-29 2010-03-03 ODERSUN Aktiengesellschaft Thin film solar cell and photovoltaic string assembly
JP4508285B2 (en) * 2009-03-18 2010-07-21 富士電機システムズ株式会社 Thin film solar cell and manufacturing method thereof
KR102039215B1 (en) * 2016-03-28 2019-10-31 주식회사 엘지화학 Organic solar cell modules and method for manufacturing organic solar cell modules
JP6920978B2 (en) * 2017-12-18 2021-08-18 浜松ホトニクス株式会社 Image acquisition device and image acquisition method

Also Published As

Publication number Publication date
JPH10233517A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
JP3449155B2 (en) Photoelectric conversion device and method of manufacturing the same
JP2755281B2 (en) Thin film solar cell and method of manufacturing the same
US5733381A (en) Thin-film solar cell array and method of manufacturing same
US4315096A (en) Integrated array of photovoltaic cells having minimized shorting losses
US5626686A (en) Thin-film solar cell and method of manufacturing the same
EP0482511B1 (en) Integrated photovoltaic device
JP4518973B2 (en) Solar cell and method for manufacturing the same
JPS63232376A (en) Manufacture of photovoltaic device
JP3613851B2 (en) Integrated thin film solar cell
JP3747096B2 (en) Solar cell module and manufacturing method thereof
JP4171959B2 (en) Method for manufacturing thin film solar cell
JP3237621B2 (en) Photoelectric conversion device and method of manufacturing the same
JP3111805B2 (en) Thin film solar cell and method of manufacturing the same
JPH0779004A (en) Thin film solar cell
JPH07297436A (en) Thin film solar battery sub-module and thin film solar battery module
JPH06268241A (en) Thin-film solar cell and manufacture thereof
JP5530372B2 (en) Manufacturing method of electric module
JP3170914B2 (en) Thin film solar cell and method of manufacturing the same
JP2598967B2 (en) Method for manufacturing photovoltaic device
JP2006185979A (en) Thin-film solar battery module and its manufacturing method
JP3111813B2 (en) Method for manufacturing flexible solar cell module
JP2550697B2 (en) Thin film solar cell
JP4534331B2 (en) Method for manufacturing thin film solar cell
JP2000323732A (en) Thin film solar cell and its manufacture
JP2001077395A (en) Solar battery module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term