JP4310422B2 - Method for producing hydrogen - Google Patents

Method for producing hydrogen Download PDF

Info

Publication number
JP4310422B2
JP4310422B2 JP2001283097A JP2001283097A JP4310422B2 JP 4310422 B2 JP4310422 B2 JP 4310422B2 JP 2001283097 A JP2001283097 A JP 2001283097A JP 2001283097 A JP2001283097 A JP 2001283097A JP 4310422 B2 JP4310422 B2 JP 4310422B2
Authority
JP
Japan
Prior art keywords
catalyst
nickel
reaction
carbon
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001283097A
Other languages
Japanese (ja)
Other versions
JP2003095605A (en
Inventor
仁 稲葉
和久 村田
昌弘 斉藤
功 高原
直樹 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001283097A priority Critical patent/JP4310422B2/en
Publication of JP2003095605A publication Critical patent/JP2003095605A/en
Application granted granted Critical
Publication of JP4310422B2 publication Critical patent/JP4310422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素の接触熱分解による水素の製法に関するものである。
【0002】
【従来の技術】
従来より水素はアンモニアやメタノールの製造原料等として化学工業分野において幅広く利用されてきているが、近年における環境規制の高まりに伴い、今後はクリーンなエネルギー源として燃料電池等の分野にも幅広く大量に使用される方向にある。
水素の製法としては、メタン等の炭化水素を水蒸気改質する方法や空気により部分酸化する方法等が知られているが、これらの方法は、地球温暖化の原因物質である二酸化炭素を多量に副生するという問題がある。従って、炭化水素から二酸化炭素の副生を極力抑えて水素を製造できる方法の開発が望まれている。
【0003】
炭化水素から水素を製造する別法として、メタン等を熱分解させて水素と固体状炭素を製造する方法がある。この方法には金属酸化物に担持されたニッケル触媒が用いられることが多く、その中でも、シリカ(Cab-O-Sil)担持触媒は最も高活性で、かつ長寿命であることが報告されている〔Chemistry Letters, 1179-1180 (1999)〕。ところが、この方法では、メタンの分解により生成するカーボンが触媒上に蓄積し、やがて触媒活性が低下するという欠点があることから、カーボンが生成しても長時間活性を保持できる触媒の開発が求められている。
【0004】
【発明が解決しようとする課題】
本発明は、従来の技術における上記した実状に鑑みてなされたものである。すなわち、本発明の目的は、炭化水素を比較的穏和な反応条件で分解させることができ、長期間に亘り触媒活性が持続される触媒を用い、炭化水素の転化率を向上させて高効率で水素を製造する炭化水素の分解方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、炭化水素の分解による水素の製法について鋭意研究を重ねた結果、特定の固体酸性担体に担持された触媒を用いると同時に、反応系に共存ガスを導入して反応させると、長時間に亘り触媒活性が保持されるとともに水素が高収率で得られることを見出し、本発明を完成するに至った。
すなわち、本発明によれば、シリカ/アルミナ比が14〜360のUSY型ゼオライトにニッケルを担持させた触媒の存在下、低級炭化水素に二酸化炭素を添加して熱分解させることを特徴とする水素の製造方法が提供される。その際、原料の低級炭化水素としては、メタンを用いることが好ましい。
【0006】
【発明の実施の形態】
本発明は、低級炭化水素原料に二酸化炭素を共存ガスとして添加し、固体酸性担体であるゼオライトに活性成分としてニッケルを担持した触媒と接触させて加熱条件下に反応させ、水素と炭素に分解させるものである。
本発明において触媒担体として用いるゼオライトは、酸性の固体状ゼオライトであるUSY型ゼオライトであって、シリカ/アルミナ比が14〜360のものである。
【0007】
また、上記ゼオライト担体に活性成分として担持されるニッケルとしては、ニッケル金属単体及びニッケル化合物、ニッケル錯体のいずれも使用可能であるが、具体的には、硝酸ニッケル、塩基性炭酸ニッケル、塩化ニッケル、蓚酸ニッケル、ニッケルアセチルアセトナート、ニッケルカルボニル、シクロペンタジエニルニッケルなどを適宜用いられるが、なかでも、硝酸ニッケルを用いることが好ましい。
【0008】
本発明に用いる触媒を調製するには、上記したニッケル成分を活性物質としてゼオライト担体に担持させることにより行う。その担持方法としては、定法が用いられ、含浸法、混練法、沈殿法、物理混合法、インシピエントウェットネス法などが挙げられる。担体に対し、活性物質であるニッケルの担持量は1〜100重量%、好ましくは5〜20重量%である。
【0009】
その調製法の1例としては、一晩溶液中で担持させた後、100℃程度のオーブン中で乾燥させ、その後、セラミックス等の耐熱性物質からなる焼成管中、空気を通しながら焼成を行う。空気の流速は、得られる触媒の性能に殆ど影響を及ぼすことがないため、特に限定されない。その焼成温度としては500〜900℃、好ましくは500〜600℃、焼成時間としては1〜10時間、好ましくは3〜5時間である。また、昇温速度としては100〜500℃/時、好ましくは200〜250℃/時である。
【0010】
このようにして得た触媒0.2gを内径12mmの石英などの耐熱性反応管の中央に充填して触媒層を形成する。この場合、触媒層の下流側に石英ウール等を充填して反応中に触媒が移動しないように配置することが望ましい。また、析出したカーボンによる反応管の閉塞を防ぐため、反応管を電気炉内に横向きに装填するのが望ましい。
【0011】
この分解反応の開始前、触媒の前処理として、予め触媒層に水素を流して触媒の還元処理を行うこともできる。その還元条件には特に制限はないが、水素流通下に5℃/分の速度で反応の最高温度まで昇温させ、最高温度で2時間還元を行った後、反応を開始させることが望ましい。
【0012】
本発明において熱分解の対象として用いる反応原料としては、メタン、エタン、プロパンなどの単独或いは2種以上を混合した低級炭化水素であるが、特にメタンを単独で使用することが好ましい。
【0013】
本発明における水素製造には、原料ガスとして低級炭化水素に二酸化炭素を共存させることが必要である。 低級炭化水素の熱分解反応系に二酸化炭素を添加することにより触媒活性を持続させることができる。その二酸化炭素の添加量としては、原料ガス中に0.1〜30容量%、好ましくは1〜20容量%、より好ましくは3〜10容量%である。また、上記熱分解反応系には、二酸化炭素の他に、一酸化炭素、酸素のように、反応生成物である炭素と反応性を有するガスを適宜添加することが好ましい。
さらに、原料ガスには、必要に応じて、不活性ガスが添加される。このようなガスとしては、窒素、ヘリウム、アルゴンな等が挙げられる。
【0014】
本発明における熱分解の反応温度は特に限定されないが、400〜800℃の範囲、好ましくは550〜700℃である。反応温度が高すぎると触媒上への炭素析出が顕著となって十分な量の水素が得られない状態で触媒の失活が起こり、他方、低すぎると十分な転化率を達成できない。
【0015】
【実施例】
以下、本発明を実施例等によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
参考例1
硝酸ニッケル1.6516gをイオン交換水に溶解させ、この中にUSY型ゼオライト(商品名:HSZ−330HUA、東ソ−社製、シリカ/アルミナ比:6.3、粒径:0.5〜1μm)3gを入れて含浸させ、一晩放置した。 その後、100℃のオーブン中で乾燥させることにより前駆体を得た。この前駆体をセラミックス製の焼成管中、空気を通しながら700℃で3時間の焼成を行った。これにより、ニッケルを10重量%含むニッケル担持ゼオライト触媒を調製した。
参考例2〜4及び実施例1、2
参考例1に用いたUSY型ゼオライト担体に代えて、参考例2及び実施例1,2では、順にシリカ/アルミナ比が10.4、14.0、360のもの、また参考ではシリカ/アルミナ比が29のZSM−5型ゼオライト、また参考ではシリカ/アルミナ比が240のモルデナイト型ゼオライト担体を用いたこと以外は、全て参考例1と同様にして、それぞれニッケル担持ゼオライト触媒を調製した。
【0016】
次に、得られた触媒0.2gを内径12mmの石英製反応管の中央に充填した。この場合、触媒層の下流側のみに石英ウールを充填して反応中に触媒が移動しないようにした。析出したカーボンによる反応管の閉塞を防ぐため、反応管を電気炉内に横向きに装填した。
次に、触媒の前処理として、反応管内に水素ガスを流しながら5℃/分の速度で反応の最高温度である650℃まで昇温し、この温度で2時間の還元を行った後、反応を開始した。
原料ガスにはメタン/二酸化炭素/窒素の体積比が92.5/5/2.5の混合ガスを用い、その混合ガスの流速を25cm/分として650℃で熱分解反応を行った。
【0017】
これらの反応における触媒活性の測定は、650℃における反応において、活性の経時変化を一定時間の経過後に逐次測定する方法を採用した。すなわち、反応開始後より、30分毎に生成ガスをサンプリングし、ガスクロマトグラフを用いてガス組成を分析した。
なお、メタン転化率(%)は、[(原料メタン)−(未反応メタン)]×100/(原料メタン)で計算される。
この反応のガス状生成物は、水素と一酸化炭素であり、エタン、エチレン、ベンゼン等の炭化水素の生成は全く認められなかった。
反応の初期には、未反応の二酸化炭素は殆ど認められず、析出炭素によって触媒が失活するに伴い、未反応の二酸化炭素が認められるようになった。一方、一酸化炭素は、各段階で生成が認められ、時間の経過につれて一酸化炭素の選択率は向上した。
【0018】
さらに、反応終了後の触媒表面に析出している炭素の重量を測定した。測定方法は、熱重量分析装置(マックサイエンス、TG DTA 2000)を用い、空気を通しながら加熱昇温を行なって、炭素の燃焼に伴う重量減少を測定することによった。この結果から反応終了後のサンプル中に占める、触媒や析出炭素の割合を計算し、触媒中のニッケル担持量から求めたニッケル量と比較し、ニッケル原子1個に蓄積した炭素原子の個数を計算した。
実施例1,2及び参考例1〜におけるメタン転化率の経時変化は、それぞれ表1に示した。また、熱重量分析による重量減少及びその結果から求めた炭素/ニッケル比も、それぞれ表1に示した。
シリカ/アルミナ比が14.0及び360のUSY型ゼオライト担体では、メタン転化活性が8時間以上の長時間にわたって持続され、また、360のUSY型ゼオライト担体ではニッケル原子に蓄積した炭素原子数も多くなった。これに対し、シリカ/アルミナ比が6.3と10.4のUSY型ゼオライト担体及びZSM−5型ゼオライト担体では、5時間後に失活し、炭素の蓄積は比較的少なかった。また、モルデナイト型ゼオライト担体では、4時間後に失活し、炭素の蓄積は更に少なくなった。
【0019】
【表1】

Figure 0004310422
【0020】
比較例1〜6
比較例1〜6では、それぞれ参考例1、参考例2、実施例1、実施例2、参考例3、及び参考例4と同じ触媒を用い、原料ガスに二酸化炭素を添加しないで、メタン/窒素の体積比が95/5の混合ガスを用いたこと以外は、同様にして反応を行った。これらの反応で得られた結果を表2に示す。
各実施例及び参考例と比較例との比較から、原料ガスに二酸化炭素を添加すると、触媒活性が長時間持続すること及び炭素の析出量が増えることが判明した。また、二酸化炭素の添加によって触媒活性が維持される時間が増加する程度は、どのゼオライト担体においてもほぼ同程度であった。すなわち、二酸化炭素が存在しない状態では他のゼオライト担体より活性寿命の短いゼオライト担体が、二酸化炭素の添加によって他のゼオライト担体より活性寿命が長くなる、という例は殆ど見られなかった。
【0021】
【表2】
Figure 0004310422
【0022】
実施例及び比較例7
ここでは、それぞれ実施例及び比較例3の触媒を用い、500℃から50℃昇温させる毎に、メタン転化率の温度変化を測定する方法により、反応ガスの違いによる活性の差異を検討した。得られた結果を表3に示す。
両例とも、700℃以上になるとメタンの転化率は低下するものの、いずれの温度においてもメタンの転化率は、実施例が比較例7よりも高く、二酸化炭素の添加はメタンの転化活性を向上させることが分かった。
【0023】
【表3】
Figure 0004310422
【0024】
【発明の効果】
本発明によれば、炭化水素の接触熱分解によって水素を製造する際、その反応系に二酸化炭素を添加することにより、炭化水素の転化率が向上し、触媒活性を維持しながら、比較的穏和な反応条件で水素を効率よく製造することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing hydrogen by catalytic pyrolysis of hydrocarbons.
[0002]
[Prior art]
Conventionally, hydrogen has been widely used in the chemical industry as a raw material for ammonia and methanol. However, with the recent increase in environmental regulations, in the future, it will be widely used in the field of fuel cells as a clean energy source. In the direction used.
As methods for producing hydrogen, methods such as steam reforming of hydrocarbons such as methane and partial oxidation with air are known. However, these methods involve a large amount of carbon dioxide, which is a cause of global warming. There is a problem of by-product. Therefore, development of a method capable of producing hydrogen from hydrocarbons while minimizing by-products of carbon dioxide is desired.
[0003]
As another method for producing hydrogen from hydrocarbons, there is a method for producing hydrogen and solid carbon by thermally decomposing methane or the like. This method often uses a nickel catalyst supported on a metal oxide, and among them, a silica (Cab-O-Sil) supported catalyst is reported to have the highest activity and long life. [Chemistry Letters, 1179-1180 (1999)]. However, this method has the disadvantage that carbon produced by the decomposition of methane accumulates on the catalyst, and the catalytic activity eventually decreases, so it is necessary to develop a catalyst that can maintain the activity for a long time even if carbon is produced. It has been.
[0004]
[Problems to be solved by the invention]
This invention is made | formed in view of the above-mentioned actual condition in a prior art. That is, the object of the present invention is to use a catalyst that can decompose hydrocarbons under relatively mild reaction conditions and maintain catalytic activity for a long period of time, and improve the conversion rate of hydrocarbons with high efficiency. An object of the present invention is to provide a hydrocarbon cracking method for producing hydrogen.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on a method for producing hydrogen by cracking hydrocarbons, the present inventors have used a catalyst supported on a specific solid acidic support and simultaneously introduced a coexisting gas into the reaction system to cause a reaction. The inventors have found that the catalytic activity is maintained for a long time and that hydrogen can be obtained in a high yield, and the present invention has been completed.
That is, according to the present invention, hydrogen is characterized in that carbon dioxide is added to lower hydrocarbons and thermally decomposed in the presence of a catalyst in which nickel is supported on a USY-type zeolite having a silica / alumina ratio of 14 to 360. A manufacturing method is provided. At that time, methane is preferably used as the lower hydrocarbon of the raw material.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, carbon dioxide is added as a coexisting gas to a lower hydrocarbon raw material, brought into contact with a catalyst supporting nickel as an active ingredient on a zeolite that is a solid acidic carrier, reacted under heating conditions, and decomposed into hydrogen and carbon. Is.
Zeolite used as a catalyst carrier in the present invention is a USY-type zeolite is an acid of the solid zeolite, a silica / alumina ratio is of from 14 to 360.
[0007]
In addition, as nickel supported as an active ingredient on the zeolite carrier, any of nickel metal alone, nickel compounds, and nickel complexes can be used. Specifically, nickel nitrate, basic nickel carbonate, nickel chloride, Nickel oxalate, nickel acetylacetonate, nickel carbonyl, cyclopentadienyl nickel, and the like can be used as appropriate. Among these, nickel nitrate is preferably used.
[0008]
The catalyst used in the present invention is prepared by supporting the above-described nickel component as an active substance on a zeolite carrier. As the supporting method, a conventional method is used, and examples thereof include an impregnation method, a kneading method, a precipitation method, a physical mixing method, and an incipient wetness method. The supported amount of nickel as the active substance is 1 to 100% by weight, preferably 5 to 20% by weight, based on the carrier.
[0009]
As an example of the preparation method, it is supported in a solution overnight, dried in an oven at about 100 ° C., and then fired in a firing tube made of a heat resistant material such as ceramics while passing air. . The air flow rate is not particularly limited because it hardly affects the performance of the resulting catalyst. The firing temperature is 500 to 900 ° C., preferably 500 to 600 ° C., and the firing time is 1 to 10 hours, preferably 3 to 5 hours. The rate of temperature rise is 100 to 500 ° C./hour, preferably 200 to 250 ° C./hour.
[0010]
0.2 g of the catalyst thus obtained is filled in the center of a heat-resistant reaction tube such as quartz having an inner diameter of 12 mm to form a catalyst layer. In this case, it is desirable to fill the downstream side of the catalyst layer with quartz wool or the like so that the catalyst does not move during the reaction. Moreover, in order to prevent the reaction tube from being blocked by the deposited carbon, it is desirable to load the reaction tube horizontally in the electric furnace.
[0011]
Prior to the start of the decomposition reaction, as a pretreatment of the catalyst, it is possible to reduce the catalyst by flowing hydrogen through the catalyst layer in advance. There are no particular limitations on the reduction conditions, but it is desirable to raise the temperature to the maximum temperature of the reaction at a rate of 5 ° C./min under a hydrogen flow, perform the reduction at the maximum temperature for 2 hours, and then start the reaction.
[0012]
In the present invention, the reaction raw material used as the target of thermal decomposition is methane, ethane, propane or the like, or a lower hydrocarbon in which two or more kinds are mixed, but it is particularly preferable to use methane alone.
[0013]
In the hydrogen production in the present invention, it is necessary to allow carbon dioxide to coexist in the lower hydrocarbon as a raw material gas. The catalytic activity can be maintained by adding carbon dioxide to the thermal decomposition reaction system of the lower hydrocarbon. The amount of carbon dioxide added is 0.1 to 30% by volume, preferably 1 to 20% by volume, more preferably 3 to 10% by volume in the raw material gas. In addition to carbon dioxide, a gas having reactivity with carbon as a reaction product, such as carbon monoxide and oxygen, is preferably added to the thermal decomposition reaction system as appropriate.
Furthermore, an inert gas is added to the raw material gas as necessary. Examples of such a gas include nitrogen, helium, and argon.
[0014]
Although the reaction temperature of the thermal decomposition in this invention is not specifically limited, It is the range of 400-800 degreeC, Preferably it is 550-700 degreeC. If the reaction temperature is too high, carbon deposition on the catalyst becomes remarkable and the catalyst is deactivated in a state where a sufficient amount of hydrogen cannot be obtained. On the other hand, if the reaction temperature is too low, sufficient conversion cannot be achieved.
[0015]
【Example】
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further more concretely, this invention is not limited at all by these Examples.
Reference example 1
1.6516 g of nickel nitrate was dissolved in ion-exchanged water, and in this, USY-type zeolite (trade name: HSZ-330HUA, manufactured by Tosoh Corporation, silica / alumina ratio: 6.3, particle size: 0.5 to 1 μm) ) 3 g was impregnated and left overnight. Then, the precursor was obtained by making it dry in 100 degreeC oven. This precursor was fired at 700 ° C. for 3 hours while passing air through a ceramic firing tube. As a result, a nickel-supported zeolite catalyst containing 10% by weight of nickel was prepared.
Reference Examples 2 to 4 and Examples 1 and 2
Instead of the USY type zeolite carrier used in Reference Example 1, in Reference Example 2 and Examples 1 and 2, in order that the silica / alumina ratio of 10.4,14.0,360 and Reference Example 3, the silica / Prepare a nickel-supported zeolite catalyst in the same manner as in Reference Example 1 except that ZSM-5 type zeolite with an alumina ratio of 29 and mordenite type zeolite carrier with a silica / alumina ratio of 240 in Reference Example 4 were used. did.
[0016]
Next, 0.2 g of the obtained catalyst was packed in the center of a quartz reaction tube having an inner diameter of 12 mm. In this case, only the downstream side of the catalyst layer was filled with quartz wool so that the catalyst did not move during the reaction. In order to prevent clogging of the reaction tube due to the deposited carbon, the reaction tube was loaded sideways in the electric furnace.
Next, as a pretreatment of the catalyst, the temperature is raised to 650 ° C., which is the maximum temperature of the reaction, at a rate of 5 ° C./min while flowing hydrogen gas into the reaction tube. Started.
A mixed gas having a volume ratio of methane / carbon dioxide / nitrogen of 92.5 / 5 / 2.5 was used as the raw material gas, and the thermal decomposition reaction was performed at 650 ° C. with a flow rate of the mixed gas being 25 cm 3 / min.
[0017]
For the measurement of the catalytic activity in these reactions, a method of sequentially measuring the change with time of the activity after a certain time in the reaction at 650 ° C. was adopted. That is, the product gas was sampled every 30 minutes from the start of the reaction, and the gas composition was analyzed using a gas chromatograph.
The methane conversion rate (%) is calculated by [(raw methane)-(unreacted methane)] × 100 / (raw methane).
The gaseous products of this reaction were hydrogen and carbon monoxide, and formation of hydrocarbons such as ethane, ethylene and benzene was not observed at all.
At the beginning of the reaction, almost no unreacted carbon dioxide was observed, and as the catalyst was deactivated by the precipitated carbon, unreacted carbon dioxide was recognized. On the other hand, the generation of carbon monoxide was recognized at each stage, and the selectivity of carbon monoxide improved with the passage of time.
[0018]
Furthermore, the weight of carbon deposited on the catalyst surface after completion of the reaction was measured. The measurement method was based on measuring the weight loss associated with carbon combustion by using a thermogravimetric analyzer (Mac Science, TG DTA 2000) and heating and raising the temperature while passing air. From this result, calculate the ratio of the catalyst and precipitated carbon in the sample after the completion of the reaction, and compare it with the amount of nickel obtained from the amount of nickel supported in the catalyst, and calculate the number of carbon atoms accumulated in one nickel atom. did.
The time-dependent changes in methane conversion in Examples 1 and 2 and Reference Examples 1 to 4 are shown in Table 1, respectively. Table 1 also shows the weight loss by thermogravimetric analysis and the carbon / nickel ratio determined from the results.
In the USY-type zeolite carrier having silica / alumina ratios of 14.0 and 360, the methane conversion activity is maintained for a long time of 8 hours or more, and in the 360-USY type zeolite carrier, the number of carbon atoms accumulated in nickel atoms is large. became. On the other hand, USY type zeolite carrier and ZSM-5 type zeolite carrier having silica / alumina ratios of 6.3 and 10.4 were deactivated after 5 hours, and carbon accumulation was relatively small. Further, the mordenite-type zeolite carrier was deactivated after 4 hours, and the accumulation of carbon was further reduced.
[0019]
[Table 1]
Figure 0004310422
[0020]
Comparative Examples 1-6
In Comparative Examples 1 to 6, the same catalysts as Reference Example 1, Reference Example 2, Example 1, Example 2, Reference Example 3, and Reference Example 4 were used, respectively, and methane / The reaction was carried out in the same manner except that a mixed gas having a nitrogen volume ratio of 95/5 was used. The results obtained from these reactions are shown in Table 2.
From a comparison between each example and reference example and comparative example, it was found that when carbon dioxide was added to the raw material gas, the catalytic activity was maintained for a long time and the amount of carbon deposited increased. Further, the extent to which the catalyst activity is maintained by the addition of carbon dioxide was almost the same in any zeolite carrier. In other words, in the absence of carbon dioxide, there was almost no example that a zeolite carrier having a shorter active life than other zeolite carriers has a longer active life than other zeolite carriers due to the addition of carbon dioxide.
[0021]
[Table 2]
Figure 0004310422
[0022]
Example 3 and Comparative Example 7
Here, each of the catalysts of Example 1 and Comparative Example 3 was used, and each time the temperature was raised from 500 ° C. to 50 ° C., the difference in activity due to the difference in the reaction gas was examined by measuring the temperature change of the methane conversion rate. . The obtained results are shown in Table 3.
In both cases, although the conversion rate of methane decreases at 700 ° C. or higher, the conversion rate of methane at any temperature is higher in Example 3 than in Comparative Example 7, and the addition of carbon dioxide increases the conversion activity of methane. It turns out that it improves.
[0023]
[Table 3]
Figure 0004310422
[0024]
【The invention's effect】
According to the present invention, when hydrogen is produced by catalytic pyrolysis of hydrocarbons, by adding carbon dioxide to the reaction system, the conversion rate of hydrocarbons is improved and the catalytic activity is maintained while being relatively mild. It is possible to efficiently produce hydrogen under various reaction conditions.

Claims (2)

シリカ/アルミナ比が14〜360のUSY型ゼオライトにニッケルを担持させた触媒の存在下、低級炭化水素に二酸化炭素を添加して熱分解させることを特徴とする水素の製造方法。 A method for producing hydrogen, wherein carbon dioxide is added to lower hydrocarbons and thermally decomposed in the presence of a catalyst in which nickel is supported on a USY zeolite having a silica / alumina ratio of 14 to 360 . 低級炭化水素が、メタンであることを特徴とする請求項1に記載の水素の製造方法。  The method for producing hydrogen according to claim 1, wherein the lower hydrocarbon is methane.
JP2001283097A 2001-09-18 2001-09-18 Method for producing hydrogen Expired - Lifetime JP4310422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283097A JP4310422B2 (en) 2001-09-18 2001-09-18 Method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283097A JP4310422B2 (en) 2001-09-18 2001-09-18 Method for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2003095605A JP2003095605A (en) 2003-04-03
JP4310422B2 true JP4310422B2 (en) 2009-08-12

Family

ID=19106643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283097A Expired - Lifetime JP4310422B2 (en) 2001-09-18 2001-09-18 Method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP4310422B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013712A1 (en) 2008-07-28 2010-02-04 Nakahara Masaru Process for production of hydrogen
JP2019182733A (en) 2018-04-01 2019-10-24 株式会社伊原工業 Hydrogen generator, method for separating solid product material, system for discharging and collecting solid product material and method for manufacturing nickel based metal structure
EP4049751A4 (en) 2019-10-23 2023-11-08 Ihara Co., Ltd. Catalyst for hydrocarbon decomposition use

Also Published As

Publication number Publication date
JP2003095605A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
US8158837B2 (en) Method for selective hydrogenation of acetylene to ethylene
JP2516676B2 (en) Process for producing monoolefin by catalytic oxidative dehydrogenation of gaseous paraffinic hydrocarbon having two or more carbon atoms
JP2000300987A (en) Process of converting small carbon number aliphatic hydrocarbon into greater carbon number hydrocarbon, and catalyst therefor
JP2011116707A (en) Method for producing lower hydrocarbon and aromatic compound and production catalyst
JPWO2018056250A1 (en) Method for producing oligosilane
Higo et al. Perovskite lattice oxygen contributes to low-temperature catalysis for exhaust gas cleaning
JP2006517957A (en) Paraxylene production process
JP4310422B2 (en) Method for producing hydrogen
JP3849007B2 (en) Method for producing hydrogen
KR101480801B1 (en) Monolith type reforming catalyst, preparation method thereof and process for syn gas
JP2001334151A (en) Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material
JP2012012340A (en) Method for producing aromatic hydrocarbon
JP5009109B2 (en) Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same
JP5757058B2 (en) Zeolite-palladium complex, method for producing the complex, catalyst containing the complex, and method for producing a coupling compound using the catalyst
JP2003519106A (en) Olefin production method
JP2003519105A (en) Olefin production method
JP4302954B2 (en) Method for producing lower hydrocarbon aromatic compound catalyst
JP3918048B2 (en) Method for producing lower alkene
JPH0463140A (en) Zeolite catalyst
JP5286815B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
KR100787117B1 (en) Supported nickel catalyst and a method for hydrogen generation using it
JPH0312933B2 (en)
KR100371089B1 (en) Preparation of Hybrid Molecular Sieve de-NOx Catalyst Containing Highly Dispersed Noble Metals
Gawthrope et al. Support-Mediated Alkane Activation over Pt–SO 4/Al 2 O 3 Catalysts
KR100622027B1 (en) Mixed-Metal Oxide de-NOx Catalyst Containing Highly Dispersed Noble Metals and Preparation thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4310422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term