JP4304760B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4304760B2
JP4304760B2 JP13227999A JP13227999A JP4304760B2 JP 4304760 B2 JP4304760 B2 JP 4304760B2 JP 13227999 A JP13227999 A JP 13227999A JP 13227999 A JP13227999 A JP 13227999A JP 4304760 B2 JP4304760 B2 JP 4304760B2
Authority
JP
Japan
Prior art keywords
semiconductor light
light emitting
electrodes
lead frame
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13227999A
Other languages
Japanese (ja)
Other versions
JP2000323755A (en
Inventor
誠 野添
俊秀 前田
祐二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13227999A priority Critical patent/JP4304760B2/en
Publication of JP2000323755A publication Critical patent/JP2000323755A/en
Application granted granted Critical
Publication of JP4304760B2 publication Critical patent/JP4304760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フリップチップ型の半導体発光素子を備える半導体発光装置に係り、特に半導体発光素子の小型化に対応できるリードフレームとのアセンブリを可能とした半導体発光装置に関する。
【0002】
【従来の技術】
GaN,GaAlN,InGaN及びInAlGaN等のGaN系化合物半導体を利用した青色発光の発光素子は、結晶成長のための基板として現在ではサファイアが最も一般的なものとして利用されている。この絶縁性のサファイアを基板とする発光素子では、p側及びn側の両方の電極は基板と反対側の面であって半導体の積層膜の表面に形成される。このようにp側及びn側の電極が同一面にあることを利用して、これらの電極のそれぞれにバンプ電極を形成し、基板側が発光方向を向く姿勢としたフリップチップ型のアセンブリとするものが従来から知られている。
【0003】
図5はGaN系化合物半導体を利用した半導体発光素子をフリップチップ型としてリードフレームに搭載したLEDランプの概略図であって、同図の(a)は縦断面図、同図の(b)は横断面図である。
【0004】
図5において、プリント配線基板(図示せず)に導通固定されるリードフレーム51の一対のリード51a,51bのそれぞれの上端にマウント部51c,51dが形成され、これらのマウント部51c,51dに半導体発光素子1を跨がせて搭載するとともに、全体をエポキシ樹脂を用いた樹脂ヘッド52によって封止している。
【0005】
半導体発光素子1は、図6に示すように、絶縁性であって光透過性のサファイアを利用した基板1aにGaNのn型層1b及びp型層1cを順に積層してこれらの層の間を活性層とし、n型層1bの表面にはn側電極パッド1d及びp型層1cの表面にはp側電極パッド1eを金属蒸着法によって形成したものである。そして、n側及びp側の電極パッド1d,1eにはバンプ電極2a,2bがそれぞれ形成されている。
【0006】
半導体発光素子1は、バンプ電極2a,2bをマウント部51d,51cの上に載せて超音波圧着と加熱圧着を加えることで接合され、リード51b,51aにそれぞれ導通固定される。そして、活性層からの光は基板1aを抜けて図6において上向きに発光され、この基板1aの上端面を主光取出し面とする。
【0007】
【発明が解決しようとする課題】
図示の例の半導体発光素子1も含めて、素子の一般的な製造は、基板材料にGaNのn型層やp型層をウエハー状態で積層するとともにn側及びp側の電極パッドを蒸着形成し、ダイサーによってダイシングすることでチップ状の発光素子を得るというものである。そして、近来ではダイシング技術の進歩や電極形成のためのパターニングの精度の向上等によって、発光素子のより一層の小型化が可能となった。このような発光素子の小型化は、小型で薄型化が最も重要な設計課題となっている電子機器への対応の面で非常に有効とされている。
【0008】
一方、半導体発光素子1を搭載するためのリードフレーム51の製造では、p側とn側との導通のためにマウント部51c,51dを分断する加工が必要である。すなわちリードフレーム51の先端側すなわちマウント部51c,51dが最終的に形成される部分を一体にしてリード51a,51bが延びた二股状の部品として製作しておき、一体となっている部分の中央を切開してマウント部51c,51dに分離する工程によって加工される。
【0009】
ところが、切り開かれたマウント部51c,51dとの間のギャップ51eの切開幅は、リードフレーム51の肉厚にも関係するが、従来では最小で0.4mm程度である。そして、加工誤差等を含むと0.4mm以上となってしまうことが殆どである。
【0010】
このようにリードフレーム51の加工の面から、マウント部51c,51dとの間のギャップ51eの幅には下限がある。その一方で半導体発光素子1は小型化が更に進み、バンプ電極2a,2bどうしの間隔もより短くなる傾向にある。したがって、バンプ電極2a,2bの間隔がギャップ51eの幅よりも短くなると、これらのバンプ電極2a,2bのいずれか一方しかマウント部51c,51dに接合できず、アセンブリできないことになる。
【0011】
以上のように、半導体発光素子1は小型化が進んでいる一方で、リードフレーム51についてはその製造上の制約からマウント部51c,51dの間のギャップ51eを狭めることができない状況にある。このため、二つに分離されたマウント部51c,51dに搭載してLEDランプ型とする場合では、半導体発光素子1とリードフレーム51とのマッチングが採れず、装置の小型化の大きな障害となっている。
【0012】
本発明において解決すべき課題は、半導体発光素子の小型化に対応できるリードフレームへの導通搭載のためのアセンブリ構造を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、光透過性の基板の上に半導体薄膜層を積層するとともにこの積層膜の表面側にp側及びn側の電極をそれぞれ形成し且つ前記基板側を主光取出し面とする半導体発光素子と、前記p側及びn側の電極にそれぞれ導通する一対の電極のパターンを一体に形成するとともに前記半導体発光素子を搭載する合成樹脂製のマウントカップと、一対のリードのそれぞれの先端に前記マウントカップを搭載し且つ前記一対の電極パターンにそれぞれ導通するステーを形成したリードフレームとを含み、前記マウントカップに形成する一対の電極の間の間隔を前記リードフレームのステーどうしの間隔より短くしたことを特徴とする。
【0014】
この構成では、ステーどうしの間の距離がリードフレームの製造上から或る値以上としなければならなくても、合成樹脂製のマウントカップに備える電極どうしの間の間隔を狭くすることによって、小型化されてp側及びn側の電極間の距離が短い半導体発光素子でも導通搭載が可能となる。
【0015】
【発明の実施の形態】
請求項1に記載の発明は、光透過性の基板の上に半導体薄膜層を積層するとともにこの積層膜の表面側にp側及びn側の電極をそれぞれ形成し且つ前記基板側を主光取出し面とする半導体発光素子と、前記p側及びn側の電極にそれぞれ導通する一対の電極のパターンを一体に形成するとともに前記半導体発光素子を搭載する合成樹脂製のマウントカップと、一対のリードのそれぞれの先端に前記マウントカップを搭載し且つ前記一対の電極パターンにそれぞれ導通するステーを形成したリードフレームとを含み、前記マウントカップに形成する一対の電極の間の間隔を前記リードフレームのステーどうしの間隔より短くしたことを特徴とする半導体発光装置であり、リードフレームの形状や大きさの態様に関係なくp側及びn側の電極間の距離が短い半導体発光素子でも導通搭載できるという作用を有する。
【0016】
請求項2の発明は、前記マウントカップは、その素材の合成樹脂の中に光反射性のフィラーを混入したことを特徴とする請求項1記載の半導体発光装置であり、樹脂製のマウントカップであってもフィラーによる光反射が利用できるという作用を有する。
【0017】
以下に、本発明の実施の形態の具体例を図面を参照しながら説明する。
【0018】
図1は本発明の一実施の形態による半導体発光装置の要部を示す縦断面図、図2及び図3は図1の平面図及び底面図である。なお、半導体発光素子は図6に示したものと同様であり、同じ構成部材については共通の符号で指示する。
【0019】
図1において、プリント配線基板(図示せず)等に基端を導通固定されるリードフレーム3の一対のリード3a,3bのそれぞれの上端には直角に曲げたステー3a−1,3b−1をそれぞれ形成し、これらのステー3a−1,3b−1の上面に半導体発光素子1を導通固定したマウントカップ4を固定している。
【0020】
リードフレーム3は従来例と同様に先端側すなわちステー3a−1,3b−1部分を一体として二股状に形成していき、この一体部分を分断してステー3a−1,3b−1に分離してその間をギャップ3cとしたものである。そして、このギャップ3cの開口幅Wは、現在の製造技術では0.4mm程度である。
【0021】
マウントカップ4はたとえば白色系の液晶ポリマー(LCP)を素材とし、半導発光素子1の周りを囲むすり鉢状に型製作されたものである。そして、半導体発光素子1から下方及び側方から抜ける光を発光方向に反射させるために、光反射性のたとえばTiO2等の化合物をフィラーとして混入している。
【0022】
マウントカップ4の底部4aには半導体発光素子1とリードフレーム3とを導通させるための一対の電極5,6を設ける。これらの電極5,6は、フィラーを混入したマウントカップ4とともに型製作するときに一体に封止されるもので、図2及び図3に示すように、長方形の平面形状を持つ。すなわち、電極5,6は底部4aの中心部分にこの底部4aよりも上に突き出る素子側導通部5a,6aを形成するとともに、底部4aの下面と同じ面内で露出するリード側導通部5b,6bを備えている。
【0023】
ここで、電極5,6はマウントカップ4を樹脂によって型成形するときに一体に封止するので、製造用の型に対するこれらの電極5,6の位置を正しく設定することで、互いの間の距離を小さくできる。すなわち、図1に示すように、電極5,6の素子側導通部5a,6aどうしの間の間隔をリードフレーム3のギャップ3cの開口幅Wよりも短くした成形が可能である。したがって、半導体発光素子1のn側及びp側のバンプ電極2a,2bどうしの距離がたとえばギャップ3cの開口幅Wより短くても、素子側導通部5a,6aにマウントできる。
【0024】
電極5,6を一体に備えたマウントカップ4は、リード3a,3bのステー3a−1,3b−1に図1及び図3の位置関係となるように搭載する。そして、ステー3a−1,3b−1よりもリード側導通部5b,6bの平面形状を大きくしておくことによって、図3に示すようにこれらのステー3a−1,3b−1とリード側導通部5b,6bとを半田7付けでき、これによってリードフレーム3にマウントカップ4が固定されると同時に、電極5,6とリード3a,3bとの導通が得られる。
【0025】
このようにマウントカップ4をリードフレーム3に一体とすることで、マウントカップ4に予め設けた電極5,6はリード3a,3bに導通する。したがって、素子側導通部5a,6aの上にバンプ電極2a,2bを載せて超音波圧着及び加熱圧着すれば、これらが接合して半導体発光素子1が実装される。この実装に際しては、先に述べたように素子側導通部5a,6aの間の間隔がリードフレーム3のギャップ3cよりも短いので、半導体発光素子1が小型であってバンプ電極2a,2bの間隔が狭いものでも対応できる。
【0026】
また、マウントカップ4にはTiO2等の光反射性の高いフィラーを混入しているので、半導体発光素子1から底部4a及び内周面4b側に抜ける光を図1において基板1aの上面の主光取出し面からの発光方向へ反射させて回収できる。したがって、マウントカップ4を合成樹脂製としていても、反射光による発光輝度の向上も可能となる。
【0027】
図4はマウントカップ4に設ける電極5,6の形成パターンの別の例を示す要部の平面図である。
【0028】
図示の例では、n側及びp側の電極パッド1d,1eは半導体発光素子1の平面外郭の中で対角線方向に離れて位置しているので、電極5,6の素子側導通部5a,6aにはこれらの電極パッド1d,1eに接合するバンプ電極2a,2bを含めるように展開させた形状を持たせている。このように、半導体発光素子1のp側及びn側の電極の配置や位置関係が変わっても、電極5,6のマウントカップ4内でのパターンを変更するだけの対応で済み、各種の半導体発光素子の搭載にも対応できる。
【0029】
【発明の効果】
請求項1の発明では、合成樹脂製のマウントカップに電極を形成するときにはそのパターン形成が自在なので電極どうしの間の間隔を短くでき、p側及びn側の電極の間の距離が短い小型の半導体発光素子でも支障なくアセンブリでき、装置の小型化が更に促進される。
【0030】
請求項2の発明では、マウントカップに光反射性のフィラーを混入することで、光反射機能を持たせることができるので、マウントカップを合成樹脂製としていても発光輝度の低下を招くことがない。
【図面の簡単な説明】
【図1】本発明の一実施の形態による半導体発光装置の要部の縦断面図
【図2】マウントカップに設ける電極のパターンと半導体発光素子との位置関係を示すための概略平面図
【図3】マウントカップに設ける電極のリード側導通部とリードとの位置関係を示す概略底面図
【図4】マウントカップに設ける電極パターンの別の例を示す概略平面図
【図5】従来のフリップチップ型の半導体発光素子を備えたLEDランプの例であって、
(a)はその縦断面図
(b)はその横断面図
【図6】従来例における半導体発光素子のリードフレームへの導通搭載構造を示す要部の縦断面図
【符号の説明】
1 半導体発光素子
1a 基板
1b n型層
1c p型層
1d n側電極パッド
1e p側電極パッド
2a,2b バンプ電極
3 リードフレーム
3a,3b リード
3a−1,3b−1 ステー
3c ギャップ
4 マウントカップ
4a 底部
4b 内周面
5,6 電極
5a,6a 素子側導通部
5b,6b リード側導通部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light-emitting device including a flip-chip type semiconductor light-emitting element, and more particularly to a semiconductor light-emitting device capable of being assembled with a lead frame that can cope with downsizing of the semiconductor light-emitting element.
[0002]
[Prior art]
In blue light emitting devices using GaN-based compound semiconductors such as GaN, GaAlN, InGaN, and InAlGaN, sapphire is currently the most commonly used substrate for crystal growth. In this light-emitting element using insulating sapphire as a substrate, both the p-side and n-side electrodes are formed on the surface opposite to the substrate and on the surface of the semiconductor laminated film. In this way, using the fact that the p-side and n-side electrodes are on the same plane, a bump electrode is formed on each of these electrodes, and a flip-chip type assembly in which the substrate side faces the light emitting direction is formed. Is conventionally known.
[0003]
FIG. 5 is a schematic view of an LED lamp in which a semiconductor light emitting element using a GaN-based compound semiconductor is mounted on a lead frame as a flip chip type, in which (a) is a longitudinal sectional view, and (b) is the same figure. It is a cross-sectional view.
[0004]
In FIG. 5, mount portions 51c and 51d are formed at the upper ends of a pair of leads 51a and 51b of a lead frame 51 that is conductively fixed to a printed wiring board (not shown), and a semiconductor is formed on these mount portions 51c and 51d. The light-emitting element 1 is mounted across the board, and the whole is sealed by a resin head 52 using an epoxy resin.
[0005]
As shown in FIG. 6, the semiconductor light emitting device 1 is formed by sequentially laminating a GaN n-type layer 1 b and a p-type layer 1 c on an insulating and light-transmitting sapphire substrate 1 a. Is an active layer, and an n-side electrode pad 1d is formed on the surface of the n-type layer 1b and a p-side electrode pad 1e is formed on the surface of the p-type layer 1c by a metal vapor deposition method. Bump electrodes 2a and 2b are formed on the n-side and p-side electrode pads 1d and 1e, respectively.
[0006]
The semiconductor light emitting device 1 is bonded by placing the bump electrodes 2a and 2b on the mount portions 51d and 51c and applying ultrasonic pressure bonding and heat pressure bonding, and is electrically conductively fixed to the leads 51b and 51a, respectively. Then, light from the active layer passes through the substrate 1a and is emitted upward in FIG. 6, and the upper end surface of the substrate 1a is used as a main light extraction surface.
[0007]
[Problems to be solved by the invention]
In general manufacturing of the device including the semiconductor light emitting device 1 of the illustrated example, an n-type layer and a p-type layer of GaN are laminated on a substrate material in a wafer state, and n-side and p-side electrode pads are formed by vapor deposition. The chip-shaped light emitting device is obtained by dicing with a dicer. Recently, the light emitting device can be further reduced in size due to the progress of dicing technology and the improvement of patterning accuracy for electrode formation. Such downsizing of the light emitting element is considered to be very effective in terms of dealing with an electronic device in which miniaturization and thinning are the most important design issues.
[0008]
On the other hand, in manufacturing the lead frame 51 for mounting the semiconductor light emitting element 1, it is necessary to divide the mount parts 51 c and 51 d for conduction between the p side and the n side. That is, the tip end side of the lead frame 51, that is, the part where the mount parts 51c and 51d are finally formed is integrated and manufactured as a bifurcated part in which the leads 51a and 51b extend, and the center of the integrated part Is cut out and separated into mount parts 51c and 51d.
[0009]
However, the incision width of the gap 51e between the cut-off mount portions 51c and 51d is related to the thickness of the lead frame 51, but is conventionally about 0.4 mm at the minimum. And it is almost 0.4mm or more including a processing error.
[0010]
Thus, from the processing surface of the lead frame 51, there is a lower limit on the width of the gap 51e between the mount portions 51c and 51d. On the other hand, the semiconductor light emitting device 1 is further miniaturized, and the distance between the bump electrodes 2a and 2b tends to be shorter. Therefore, when the interval between the bump electrodes 2a and 2b is shorter than the width of the gap 51e, only one of the bump electrodes 2a and 2b can be bonded to the mount portions 51c and 51d, and assembly is impossible.
[0011]
As described above, while the semiconductor light emitting device 1 is being reduced in size, the lead frame 51 is in a situation where the gap 51e between the mount portions 51c and 51d cannot be narrowed due to manufacturing restrictions. For this reason, in the case where the LED lamp type is mounted on the two mount parts 51c and 51d separated from each other, the matching between the semiconductor light emitting element 1 and the lead frame 51 cannot be achieved, which is a major obstacle to downsizing the apparatus. ing.
[0012]
The problem to be solved in the present invention is to provide an assembly structure for conductive mounting on a lead frame that can cope with the miniaturization of a semiconductor light emitting element.
[0013]
[Means for Solving the Problems]
The present invention provides a semiconductor light emitting device in which a semiconductor thin film layer is laminated on a light-transmitting substrate, p-side and n-side electrodes are formed on the surface side of the laminated film, and the substrate side is the main light extraction surface. An element, a pair of electrode patterns that are electrically connected to the p-side electrode and the n-side electrode, respectively, and a synthetic resin mount cup on which the semiconductor light-emitting element is mounted, and a tip of each of a pair of leads A lead frame on which a mount cup is mounted and a stay that is electrically connected to the pair of electrode patterns is formed, and the distance between the pair of electrodes formed on the mount cup is made shorter than the distance between the stays of the lead frame. It is characterized by that.
[0014]
In this configuration, even if the distance between the stays has to be a certain value or more from the manufacturing of the lead frame, the distance between the electrodes provided in the synthetic resin mount cup is reduced, thereby reducing the size. Therefore, even a semiconductor light emitting device having a short distance between the p-side and n-side electrodes can be mounted on the conductive side.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, a semiconductor thin film layer is laminated on a light-transmitting substrate, and p-side and n-side electrodes are formed on the surface side of the laminated film, respectively, and the substrate side is taken out of the main light. A semiconductor light-emitting element as a surface, a pair of electrode patterns respectively conducting to the p-side and n-side electrodes, and a synthetic resin mount cup on which the semiconductor light-emitting element is mounted, and a pair of leads A lead frame on which the mount cup is mounted at each tip and a stay that is electrically connected to the pair of electrode patterns is formed, and a distance between the pair of electrodes formed on the mount cup is defined between the stays of the lead frame. The semiconductor light emitting device is characterized in that it is shorter than the distance between the electrodes on the p side and n side regardless of the shape and size of the lead frame. It has the effect that release can conduct also equipped with a short semiconductor light-emitting device.
[0016]
The invention according to claim 2 is the semiconductor light emitting device according to claim 1, wherein the mount cup is obtained by mixing a light-reflective filler in a synthetic resin of the material. Even if it exists, it has the effect | action that the light reflection by a filler can be utilized.
[0017]
Specific examples of embodiments of the present invention will be described below with reference to the drawings.
[0018]
FIG. 1 is a longitudinal sectional view showing a main part of a semiconductor light emitting device according to an embodiment of the present invention, and FIGS. 2 and 3 are a plan view and a bottom view of FIG. The semiconductor light emitting device is the same as that shown in FIG. 6, and the same constituent members are indicated by common reference numerals.
[0019]
In FIG. 1, stays 3a-1 and 3b-1 bent at right angles are provided at upper ends of a pair of leads 3a and 3b of a lead frame 3 whose base ends are conductively fixed to a printed wiring board (not shown) or the like. The mount cup 4 is formed and fixed to the upper surface of the stays 3a-1 and 3b-1, respectively.
[0020]
The lead frame 3 is formed in a bifurcated shape by integrating the tip side, that is, the stays 3a-1 and 3b-1 portions as in the conventional example, and the integrated portion is divided into the stays 3a-1 and 3b-1. The gap between them is the gap 3c. The opening width W of the gap 3c is about 0.4 mm in the current manufacturing technique.
[0021]
The mount cup 4 is made of, for example, a white liquid crystal polymer (LCP) and is formed into a mortar shape surrounding the semiconductor light emitting element 1. And in order to reflect the light which escapes from the semiconductor light emitting element 1 from the lower side and the side in the light emitting direction, a compound such as a light reflective compound such as TiO 2 is mixed as a filler.
[0022]
A pair of electrodes 5 and 6 for conducting the semiconductor light emitting element 1 and the lead frame 3 are provided on the bottom 4 a of the mount cup 4. These electrodes 5 and 6 are integrally sealed when the mold is manufactured together with the mount cup 4 mixed with the filler, and have a rectangular planar shape as shown in FIGS. That is, the electrodes 5 and 6 form element-side conductive portions 5a and 6a protruding above the bottom portion 4a at the central portion of the bottom portion 4a, and are exposed in the same plane as the lower surface of the bottom portion 4a. 6b.
[0023]
Here, since the electrodes 5 and 6 are integrally sealed when the mount cup 4 is molded with resin, by properly setting the positions of these electrodes 5 and 6 with respect to the mold for manufacturing, the electrodes 5 and 6 are placed between each other. The distance can be reduced. That is, as shown in FIG. 1, it is possible to mold the electrodes 5 and 6 so that the distance between the element-side conducting portions 5 a and 6 a is shorter than the opening width W of the gap 3 c of the lead frame 3. Therefore, even if the distance between the n-side and p-side bump electrodes 2a, 2b of the semiconductor light emitting element 1 is shorter than the opening width W of the gap 3c, for example, it can be mounted on the element-side conducting portions 5a, 6a.
[0024]
The mount cup 4 integrally including the electrodes 5 and 6 is mounted on the stays 3a-1 and 3b-1 of the leads 3a and 3b so as to have the positional relationship shown in FIGS. Then, by making the lead-side conductive portions 5b and 6b larger in plan shape than the stays 3a-1 and 3b-1, the stays 3a-1 and 3b-1 are connected to the lead-side conductive portions as shown in FIG. The parts 5 b and 6 b can be soldered 7, whereby the mount cup 4 is fixed to the lead frame 3 and at the same time conduction between the electrodes 5 and 6 and the leads 3 a and 3 b is obtained.
[0025]
By integrating the mount cup 4 with the lead frame 3 in this way, the electrodes 5 and 6 previously provided on the mount cup 4 are electrically connected to the leads 3a and 3b. Therefore, if the bump electrodes 2a and 2b are placed on the element-side conductive portions 5a and 6a and are subjected to ultrasonic pressure bonding and thermocompression bonding, they are bonded to mount the semiconductor light emitting element 1. In this mounting, the distance between the element-side conducting portions 5a and 6a is shorter than the gap 3c of the lead frame 3 as described above, so that the semiconductor light-emitting element 1 is small and the distance between the bump electrodes 2a and 2b. Can handle even narrower objects.
[0026]
Further, since the mount cup 4 is mixed with a highly light-reflective filler such as TiO 2, the light that passes from the semiconductor light emitting element 1 to the bottom 4a and the inner peripheral surface 4b side in FIG. The light can be collected by being reflected in the light emission direction from the light extraction surface. Therefore, even if the mount cup 4 is made of a synthetic resin, it is possible to improve the light emission luminance due to the reflected light.
[0027]
FIG. 4 is a plan view of the main part showing another example of the formation pattern of the electrodes 5 and 6 provided on the mount cup 4.
[0028]
In the illustrated example, the n-side and p-side electrode pads 1d and 1e are located in the diagonal direction within the plane outline of the semiconductor light emitting element 1, and therefore, the element-side conducting portions 5a and 6a of the electrodes 5 and 6 are used. Has a developed shape so as to include the bump electrodes 2a and 2b bonded to the electrode pads 1d and 1e. Thus, even if the arrangement and positional relationship of the p-side and n-side electrodes of the semiconductor light emitting device 1 are changed, it is only necessary to change the pattern in the mount cup 4 of the electrodes 5 and 6. It can also accommodate mounting of light emitting elements.
[0029]
【The invention's effect】
According to the first aspect of the present invention, when the electrodes are formed on the synthetic resin mount cup, the pattern can be freely formed, so the distance between the electrodes can be shortened, and the distance between the p-side and n-side electrodes is short. Even a semiconductor light emitting element can be assembled without any trouble, and further downsizing of the apparatus is further promoted.
[0030]
In the invention of claim 2, since a light reflecting function can be provided by mixing a light reflective filler in the mount cup, the light emission luminance is not lowered even if the mount cup is made of synthetic resin. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a main part of a semiconductor light emitting device according to an embodiment of the present invention. FIG. 2 is a schematic plan view showing a positional relationship between an electrode pattern provided on a mount cup and a semiconductor light emitting element. 3] Schematic bottom view showing the positional relationship between the lead-side conductive portion of the electrode provided on the mount cup and the lead. [FIG. 4] Schematic plan view showing another example of the electrode pattern provided on the mount cup. [Fig. An example of an LED lamp provided with a semiconductor light emitting element of a type,
(A) is a longitudinal sectional view thereof (b) is a transverse sectional view thereof [FIG. 6] FIG. 6 is a longitudinal sectional view of a main part showing a structure for mounting a semiconductor light emitting element on a lead frame in a conventional example.
DESCRIPTION OF SYMBOLS 1 Semiconductor light emitting element 1a Substrate 1b N type layer 1c P type layer 1d N side electrode pad 1e P side electrode pad 2a, 2b Bump electrode 3 Lead frame 3a, 3b Lead 3a-1, 3b-1 Stay 3c Gap 4 Mount cup 4a Bottom part 4b Inner peripheral surface 5, 6 Electrodes 5a, 6a Element-side conduction parts 5b, 6b Lead-side conduction parts

Claims (2)

光透過性の基板の上に半導体薄膜層を積層するとともに、この積層膜の表面側にp側及びn側の電極をそれぞれ形成し、且つ前記基板側を主光取出し面とする半導体発光素子と、
前記p側及びn側の電極にそれぞれ導通する一対の電極のパターンを一体に形成するとともに、前記半導体発光素子を搭載する合成樹脂製のマウントカップと、
一対のリードのそれぞれの先端に前記マウントカップを搭載し且つ前記一対の電極パターンにそれぞれ導通するステーを形成したリードフレームとを含み、
前記マウントカップに形成する一対の電極の間の間隔を前記リードフレームのステーどうしの間隔より短くしたことを特徴とする半導体発光装置。
A semiconductor light-emitting element in which a semiconductor thin film layer is laminated on a light-transmitting substrate, p-side and n-side electrodes are formed on the surface side of the laminated film, and the substrate side is a main light extraction surface; ,
A synthetic resin mount cup on which the semiconductor light emitting element is mounted, and a pattern of a pair of electrodes respectively conducting to the p-side and n-side electrodes are integrally formed;
A lead frame on which the mount cup is mounted at each tip of a pair of leads and a stay that is electrically connected to each of the pair of electrode patterns is formed;
A semiconductor light emitting device characterized in that an interval between a pair of electrodes formed on the mount cup is shorter than an interval between stays of the lead frame.
前記マウントカップは、その素材の合成樹脂の中に光反射性のフィラーを混入したことを特徴とする請求項1記載の半導体発光装置。2. The semiconductor light emitting device according to claim 1, wherein a light reflective filler is mixed in the synthetic resin of the mount cup.
JP13227999A 1999-05-13 1999-05-13 Semiconductor light emitting device Expired - Fee Related JP4304760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13227999A JP4304760B2 (en) 1999-05-13 1999-05-13 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13227999A JP4304760B2 (en) 1999-05-13 1999-05-13 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2000323755A JP2000323755A (en) 2000-11-24
JP4304760B2 true JP4304760B2 (en) 2009-07-29

Family

ID=15077576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13227999A Expired - Fee Related JP4304760B2 (en) 1999-05-13 1999-05-13 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4304760B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246650A (en) 2001-02-13 2002-08-30 Agilent Technologies Japan Ltd Light-emitting diode and its manufacturing method
US6874910B2 (en) 2001-04-12 2005-04-05 Matsushita Electric Works, Ltd. Light source device using LED, and method of producing same
JP4757477B2 (en) * 2004-11-04 2011-08-24 株式会社 日立ディスプレイズ Light source unit, illumination device using the same, and display device using the same
GB2484713A (en) 2010-10-21 2012-04-25 Optovate Ltd Illumination apparatus
KR102013362B1 (en) * 2012-11-29 2019-10-21 서울반도체 주식회사 Light emitting diode and method of fabricating the same
GB201705364D0 (en) 2017-04-03 2017-05-17 Optovate Ltd Illumination apparatus
GB201705365D0 (en) 2017-04-03 2017-05-17 Optovate Ltd Illumination apparatus
GB201800574D0 (en) 2018-01-14 2018-02-28 Optovate Ltd Illumination apparatus
GB201803767D0 (en) 2018-03-09 2018-04-25 Optovate Ltd Illumination apparatus
GB201807747D0 (en) 2018-05-13 2018-06-27 Optovate Ltd Colour micro-LED display apparatus
TW202102883A (en) 2019-07-02 2021-01-16 美商瑞爾D斯帕克有限責任公司 Directional display apparatus
WO2021041202A1 (en) 2019-08-23 2021-03-04 Reald Spark, Llc Directional illumination apparatus and privacy display
CN114730044A (en) 2019-09-11 2022-07-08 瑞尔D斯帕克有限责任公司 Directional lighting device and privacy display
EP4028805A4 (en) 2019-09-11 2023-10-18 RealD Spark, LLC Switchable illumination apparatus and privacy display
EP4038668A4 (en) 2019-10-03 2024-01-24 Reald Spark Llc Illumination apparatus comprising passive optical nanostructures
WO2021067612A1 (en) 2019-10-03 2021-04-08 Reald Spark, Llc Illumination apparatus comprising passive optical nanostructures
EP4107580A4 (en) 2020-02-20 2024-03-20 Reald Spark Llc Illumination and display apparatus

Also Published As

Publication number Publication date
JP2000323755A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
JP4304760B2 (en) Semiconductor light emitting device
US10305005B2 (en) Semiconductor light-emitting device
US7977686B2 (en) Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
KR101092063B1 (en) Light emitting device package and method for fabricating the same
US9553243B2 (en) Light emitting device
US8735934B2 (en) Semiconductor light-emitting apparatus and method of fabricating the same
US8089092B2 (en) Semiconductor light emitting device
US20150228565A1 (en) Semiconductor device
JP2007073575A (en) Semiconductor light emitting device
JP2024069444A (en) Light emitting device and base
KR102100923B1 (en) Light emitting device and method of fabricating the same
US7126163B2 (en) Light-emitting diode and its manufacturing method
US9660150B2 (en) Semiconductor light-emitting device
JP2002009347A (en) Led light source and its manufacturing method
JP2001223391A (en) Forming method of light-emitting diode
JPH10163526A (en) Light-emitting element and light-emitting diode
JP3685633B2 (en) Chip-type light emitting device and manufacturing method thereof
KR20020070107A (en) Surface mountable chip type semiconductor device and manufacturing method
JP2005123657A (en) Chip-type light emitting device and its manufacturing method
JP4443397B2 (en) Optical semiconductor element, optical semiconductor device, and method of manufacturing optical semiconductor element
JPH11121797A (en) Chip type semiconductor light emitting device
JP2009272378A (en) Semiconductor device
JPH10150227A (en) Chip-type light emitting device
JP2000156527A (en) Semiconductor light emitting device
JP2000294833A (en) Surface mounting semiconductor light emitting device and method for mounting the same by vacuum chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees