JP4304404B2 - Non-aqueous electrolyte and lithium secondary battery using the same - Google Patents

Non-aqueous electrolyte and lithium secondary battery using the same Download PDF

Info

Publication number
JP4304404B2
JP4304404B2 JP2000302080A JP2000302080A JP4304404B2 JP 4304404 B2 JP4304404 B2 JP 4304404B2 JP 2000302080 A JP2000302080 A JP 2000302080A JP 2000302080 A JP2000302080 A JP 2000302080A JP 4304404 B2 JP4304404 B2 JP 4304404B2
Authority
JP
Japan
Prior art keywords
carbonate
group
secondary battery
methyl group
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000302080A
Other languages
Japanese (ja)
Other versions
JP2002110234A (en
Inventor
俊一 浜本
浩司 安部
和弘 三好
保男 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2000302080A priority Critical patent/JP4304404B2/en
Publication of JP2002110234A publication Critical patent/JP2002110234A/en
Application granted granted Critical
Publication of JP4304404B2 publication Critical patent/JP4304404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池のサイクル特性や電気容量、保存特性などの電池特性にも優れたリチウム二次電池を提供することができる非水電解液、およびそれを用いたリチウム二次電池に関する。
【0002】
【従来の技術】
近年、リチウム二次電池は小型電子機器などの駆動用電源として広く使用されている。リチウム二次電池は、主に正極、非水電解液及び負極から構成されており、特に、LiCoO2などのリチウム複合酸化物を正極とし、炭素材料又はリチウム金属を負極としたリチウム二次電池が好適に使用されている。そして、そのリチウム二次電池用の非水電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などのカーボネート類が好適に使用されている。
【0003】
しかしながら、電池のサイクル特性および保存特性などの電池特性について、さらに優れた特性を有する二次電池が求められている。
負極として、例えば天然黒鉛、人造黒鉛などの高結晶化した炭素材料を用いたリチウム二次電池は、炭素負極材料の剥離が観察され、現象の程度によって容量が不可逆となることがある。この剥離は、電解液中の溶媒が充電時に分解することにより起こるものであり、炭素負極材料と電解液との界面における溶媒の電気化学的還元に起因するものである。中でも、融点が低くて誘電率の高いPCを用いた電解液は低温においても高い電気伝導を有するが、黒鉛負極を用いる場合にはPCの分解が起こって、リチウム二次電池用には使用できないという問題点があった。また、ECも充放電を繰り返す間に一部分解が起こり、電池性能の低下が起こる。このため、電池のサイクル特性および電気容量などの電池特性は必ずしも満足なものではないのが現状である。
【0004】
本発明者らは、前記のようなリチウム二次電池用電解液に関する課題を解決して、電池のサイクル特性に優れ、さらに保存特性などの電池特性にも優れたリチウム電池を構成することができるリチウム二次電池用の電解液、およびそれを用いたリチウム二次電池を提供することを目的として、非水電解液中にアルキン誘導体を含有させることを特徴とするリチウム二次電池用の電解液、およびそれを用いたリチウム二次電池を提案した(特開2000−195545号公報)。
前記提案において、電解液中に含有される前記アルキン誘導体は、充電時に炭素負極表面で電解液中の非水溶媒より先に分解し、該分解物の一部が天然黒鉛や人造黒鉛などの高結晶化した活性な炭素負極表面に不働態皮膜を形成することにより、電解液中の非水溶媒の還元分解を未然に防ぐと推定される。
【0005】
しかしながら、前記提案のリチウム二次電池を、過酷な条件で充放電されたような場合、例えば長期にわたり4.3Vのように4.1Vを越える最大作動電圧まで充放電を繰り返したり、40℃を越える高温状態で長期にわたり充放電されるような場合には、徐々に容量低下がみられることが判明した。
この現象は、正極として、例えばLiCoO2、LiMn24、LiNiO2などを用いたリチウム二次電池は、4.1Vを越える最大作動電圧まで充放電が繰り返されると、非水電解液中の溶媒が局部的に一部酸化分解し、該分解物が電池の望ましい電気化学的反応を阻害するために電池性能の低下を生じるものであり、これは正極材料と非水電解液との界面における溶媒の電気化学的酸化に起因するものと思われる。
そこで、このような過酷な条件においても、さらに優れたサイクル特性を有し、しかも保存特性などの電池特性に優れた非水電解液、およびそれを用いたリチウム二次電池の提供が望まれている。
【0006】
一方、特開平7−302614号公報には、1,3,5−トリメトキシベンゼンなどを0.1〜0.25M(モル/リットル)添加することにより、過充電時にレドックスシャトルにより過充電電流を消費させ、電圧の上昇を抑制して、過充電から電池を保護する技術が提案されている。しかしながら、負極として、天然黒鉛、人造黒鉛などの高結晶化した炭素材料を用いたリチウム二次電池において、4.1−2.5Vでの充放電では100サイクルでも良好な充放電が繰り返されているものの、4.3Vの高電圧及び/又は40℃以上の高温状態のような過酷な充放電においては、サイクル特性が低かった。
【0007】
特開平9−106835号公報には、1,2−ジメトキシベンゼン、ビフェニル、チオフェン、フランなどを約1〜4容量%添加することにより、過充電が起きた時の異常に高い電圧で電気化学的に重合させて、電解液の抵抗を高くして電池を保護する技術が公開されている。しかし、1,2−ジメトキシベンゼンは、サイクル寿命に悪影響を与えるので好適ではなく、満足するサイクル特性が得られていないことが記載されている。
【0008】
特開平10−64591号公報には、LiBF4および/またはLiPF6を溶解した支持塩を用いた電解液に1,4−ジメトキシベンゼン、1,2−メチレンジオキシベンゼンなどを0.1〜50mM(ミリモル/リットル)添加することにより、容量、サイクル特性が向上することが記載されている。しかしながら、負極として、天然黒鉛、人造黒鉛などの高結晶化した炭素材料を用いた場合には、電池の充放電サイクル数と共に炭素負極上において、電解液として用いられる非水溶媒が一部還元分解して、該分解物が負極上に徐々に堆積して電池容量が次第に低下するという問題点があった。中でも、融点が低くて誘電率が高いPCを用いた電解液は、低温においても高い電気伝導を有するが、黒鉛負極を用いる場合にはPCの分解が起こって、リチウム電池用には使用できない問題点があった。また、ECも充放電を繰り返す間に一部分解が起こり、電池性能の低下が起こる。このため、電池のサイクル特性および保存特性などの電池特性は必ずしも満足でないのが現状である。
【0009】
また、特開2000−156243号公報には、ジフェニル、ナフタレン、4−フルオロアニソール、1,2−ジメトキシベンゼン、4−フルオロ−1,2−ジメトキシベンゼンなどの満充電時の正極電位よりも貴な電池電位に可逆的酸化還元電位を有する有機化合物を0.5M(モル/リットル)添加して、過充電状態になった場合に酸化分解が促進され高分子が生成し、過充電電流が遮断されて、電池の発熱を抑制する方法が提案されている。しかしながら、これら添加剤は、4.3Vのような高電圧及び/又は40℃以上の高温状態の充放電においては、サイクル特性が低かった。
【0010】
【発明が解決しようとする課題】
本発明は、前記のようなリチウム二次電池用電解液の正極および負極での分解に関する課題を同時に解決し、電池のサイクル特性に優れ、さらに電気容量や充電状態での保存特性などの電池特性にも優れたリチウム二次電池を構成することができるリチウム二次電池用の非水電解液、およびそれを用いたリチウム二次電池を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、前記のようなリチウム二次電池用電解液に関する課題を解決し、過酷な条件下において電池のサイクル特性に優れ、さらに保存特性などの電池特性に優れたリチウム電池を構成することができるリチウム二次電池用の電解液、およびそれを用いたリチウム二次電池を提供することを目的として、非水電解液中にアルキン誘導体およびアルコキシベンゼン誘導体を含有させることを特徴とするリチウム二次電池用の電解液、およびそれを用いたリチウム二次電池を見出した。
本発明は、正極、負極および非水溶媒に電解質が溶解されている非水電解液からなるリチウム二次電池において、正極がリチウム複合酸化物を含む材料であり、負極がグラファイトを含む材料であり、非水溶媒は環状カーボネートおよび鎖状カーボネートを主成分とし、且つ前記非水電解液中に下記一般式(I)、(II)
【0012】
【化13】

Figure 0004304404
【0013】
【化14】
Figure 0004304404
【0014】
(式中、R1、R2はそれぞれ独立してメチル基またはエチル基を示し、mは1〜3の置換基数を示す。ただし、m=2または3の場合は、R2はそれぞれ独立してメチル基またはエチル基を示す。n=1または2の整数を示す。)で表されるアルコキシベンゼン誘導体が0.001〜0.8重量%、および下記一般式(III)、(IV)、(V)、(VI)
【0015】
【化15】
Figure 0004304404
【0016】
【化16】
Figure 0004304404
【0017】
【化17】
Figure 0004304404
【0018】
【化18】
Figure 0004304404
【0019】
(式中、R3〜R19は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基、または水素原子を示す。また、R4とR5、R6とR7、R8とR9、R10とR11、R12とR13、R15とR16、R17とR18は、互いに結合して炭素数3〜6のシクロアルキル基を形成していても良い。式中、Y1は、−COOR20、−COR20または−SO220、Y2は、−COOR21、−COR21または−SO221、Y3は、−COOR22、−COR22または−SO222、Y4は、−COOR23、−COR23または−SO223、およびY5は、−COOR24、−COR24または−SO224を示し、前記R20、R21、R22、R23およびR24は、それぞれ独立して、炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。ただし、xは1または2の整数を示す。)で表されるアルキン誘導体が0.1〜10重量%含有されていることを特徴とするリチウム二次電池に関する。
【0020】
また、本発明は、リチウム複合酸化物を含む材料からなる正極およびグラファイトを含む材料からなる負極を備えたリチウム二次電池用非水電解液において、前記非水電解液は非水溶媒に電解質が溶解されている非水電解液であって、非水溶媒は環状カーボネートおよび鎖状カーボネートを主成分とし、且つ前記非水電解液中に前記一般式(I)、(II)
【0021】
【化19】
Figure 0004304404
【0022】
【化20】
Figure 0004304404
【0023】
(式中、R1、R2はそれぞれ独立してメチル基またはエチル基を示し、mは1〜3の置換基数を示す。ただし、m=2または3の場合は、R2はそれぞれ独立してメチル基またはエチル基を示す。n=1または2の整数を示す。)で表されるアルコキシベンゼン誘導体が0.001〜0.8重量%、および下記一般式(III)、(IV)、(V)、(VI)
【0024】
【化21】
Figure 0004304404
【0025】
【化22】
Figure 0004304404
【0026】
【化23】
Figure 0004304404
【0027】
【化24】
Figure 0004304404
【0028】
(式中、R3〜R19は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基、または水素原子を示す。また、R4とR5、R6とR7、R8とR9、R10とR11、R12とR13、R15とR16、R17とR18は、互いに結合して炭素数3〜6のシクロアルキル基を形成していても良い。式中、Y1は、−COOR20、−COR20または−SO220、Y2は、−COOR21、−COR21または−SO221、Y3は、−COOR22、−COR22または−SO222、Y4は、−COOR23、−COR23または−SO223、およびY5は、−COOR24、−COR24または−SO224を示し、前記R20、R21、R22、R23およびR24は、それぞれ独立して、炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。ただし、xは1または2の整数を示す。)で表されるアルキン誘導体が0.1〜10重量%含有されていることを特徴とするリチウム二次電池用非水電解液に関する。
【0029】
本発明において、電解液中に含有される前記アルコキシベンゼン誘導体を0.08重量%以下のごく少量添加することにより、充電時に正極材料表面の電位が過度に上昇した微小な過電圧部分において、電池内の非水溶媒電解液より前に該アルコキシベンゼン誘導体が優先的に酸化分解して、溶媒の酸化分解を未然に防ぐと推定される。このようにして、電池の正常な反応を損なうことなく電解液の分解を抑制する効果を有するものと考えられる。
【0030】
また、本発明の電解液中に含有される前記アルキン誘導体は、リチウムイオンがインターカレーションする際に非水溶媒電解液より先に該アルキン誘導体が優先的に還元分解して、電池内の非水溶媒電解液の還元分解を未然に防ぐと推定される。このように、天然黒鉛や人造黒鉛などの活性で高結晶化した炭素材料を不働態皮膜で被覆し、電池の正常な反応を損なうことなく電解液の分解を抑制する効果を有するものと考えられる。
【0031】
本発明の正極、負極、リチウム塩を含む非水電解液溶媒からなる非水電解液二次電池において、該アルコキシベンゼン誘導体および該アルキン誘導体のうち、いずれか一方でも存在しない場合、充電時に正極あるいは負極材料表面で電解液が一部酸化あるいは還元分解し、その電池特性は十分満足するものとはいえなくなる。電池内に該アルコキシベンゼン誘導体および該アルキン誘導体の両方を含有させることにより、該アルコキシベンゼン誘導体または該アルキン誘導体を単独で使用する場合と比較して、広い温度範囲でのサイクル特性や電気容量、更に保存特性などの電池特性に優れたリチウム二次電池を提供することができる。
【0032】
【発明の実施の形態】
本発明の非水電解液は、リチウム二次電池の構成部材として使用される。二次電池を構成する非水電解液以外の構成部材については特に限定されず、従来使用されている種々の構成部材を使用できる。
【0033】
非水溶媒に電解質が溶解されている電解液に含有される前記一般式(I)、(II)で表されるアルコキシベンゼン誘導体において、R1、R2はそれぞれ独立してメチル基、エチル基であることが好ましい。また、mは1〜3の置換基数であることが好ましい。ただし、m=2または3の場合は、R2はそれぞれ独立してメチル基またはエチル基を示す。例えば、全てメチル基またはエチル基だけのように同一であってもよく、また、メチル基とエチル基のように異なった置換基であっても良い。
【0034】
前記一般式(I)で表されるアルコキシベンゼン誘導体の具体例としては、例えば、1,2−ジメトキシベンゼン〔R1=R2=メチル基、m=1〕、1,3−ジメトキシベンゼン〔R1=R2=メチル基、m=1〕、1,4−ジメトキシベンゼン〔R1=R2=メチル基、m=1〕、1,2,3−トリメトキシベンゼン〔R1=メチル基、R2=全てメチル基、m=2〕、1,2,4−トリメトキシベンゼン〔R1=メチル基、R2=全てメチル基、m=2〕、1,3,5−トリメトキシベンゼン〔R1=メチル基、R2=全てメチル基、m=2〕、1,2,3,4−テトラメトキシベンゼン〔R1=メチル基、R2=全てメチル基、m=3〕、1,2,4,5−テトラメトキシベンゼン〔R1=メチル基、R2=全てメチル基、m=3〕、1,3,4,5−テトラメトキシベンゼン〔R1=メチル基、R2=全てメチル基、m=3〕、1,2−ジエトキシベンゼン〔R1=R2=エチル基、m=1〕、1,3−ジエトキシベンゼン〔R1=R2=エチル基、m=1〕、1,4−ジエトキシベンゼン〔R1=R2=エチル基、m=1〕、1,2,3−トリエトキシベンゼン〔R1=エチル基、R2=全てエチル基、m=2〕、1,2,4−トリエトキシベンゼン〔R1=エチル基、R2=全てエチル基、m=2〕、1,3,5−トリエトキシベンゼン〔R1=エチル基、R2=全てエチル基、m=2〕、1,2,3,4−テトラエトキシベンゼン〔R1=エチル基、R2=全てエチル基、m=3〕、1,2,4,5−テトラエトキシベンゼン〔R1=エチル基、R2=全てエチル基、m=3〕、1,3,4,5−テトラエトキシベンゼン〔R1=エチル基、R2=全てエチル基、m=3〕、2−エトキシアニソール〔R1=メチル基、R2=エチル基、m=1〕、4−エトキシアニソール〔R1=メチル基、R2=エチル基、n=1〕、1−エトキシ−3,4−ジメトキシベンゼン〔R1=エチル基、R2=全てメチル基、m=2〕、1−エトキシ−2,6−ジメトキシベンゼン〔R1=エチル基、R2=全てメチル基、m=2〕、1,4−ジエトキシ−2−メトキシベンゼン〔R1=メチル基、R2=全てエチル基、m=2〕、2,5−ジエトキシ−1,3−ジメトキシベンゼン〔R1=メチル基、R2=2位がエチル基、3位がメチル基、5位がエチル基、m=3〕などが挙げられる。
【0035】
前記一般式(II)で表されるアルコキシベンゼン誘導体の具体例としては、1,2−メチレンジオキシベンゼン〔n=1〕、1,2−エチレンジオキシベンゼン〔n=2〕が挙げられる。
【0036】
非水電解液中に含有される前記一般式(I)、(II)で表されるアルコキシベンゼン誘導体の含有量は、過度に多いと上限電圧が4.1Vより高電圧及び/又は40℃以上の高温状態の充放電において電池性能が低下する。また、過度に少ないと期待した十分な電池性能が得られない。したがって、その含有量は非水電解液の重量に対して0.001〜0.8重量%の範囲が好ましく、更に好ましくは、0.01〜0.5重量%、最も好ましくは0.03〜0.3重量%の範囲がサイクル特性が向上するのでよい。
【0037】
本発明のアルコキシベンゼン誘導体を0.001〜0.8重量%含有した電解液は、アルコキシベンゼン誘導体を全く添加しない電解液や0.8重量%を越えるアルコキシベンゼンを添加した電解液に比べて、上限電圧が4.1Vより高電圧及び/又は40℃以上の高温状態の充放電において、サイクル特性が飛躍的に向上する特異的かつ予期し得ない効果を示すことが分かった。この作用機構は、推測の域を脱しないが、充電時に添加剤が正極上で酸化分解し、高分子状の薄い重合被膜を形成するためであると考えられる。つまり、0.8重量%を越える量を添加すると、充電時に正極上で酸化分解する添加剤量が増大し、電池特性を損なうような厚い重合被膜を形成してしまうため、アルコキシベンゼン誘導体を全く添加しない電解液よりもサイクル特性などの電池特性が悪化するものと考えられる。このように、本発明の添加剤は、0.001〜0.8重量%添加することにより、サイクル特性が著しく向上する効果を有していることを見い出し、本発明に至った
【0038】
非水溶媒に電解質が溶解されている電解液に含有される前記一般式(III)、(IV)、(V)、(VI)で表されるアルキン誘導体において、R3〜R19は、それぞれ独立してメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような炭素数1〜12のアルキル基が好ましい。アルキル基はイソプロピル基、イソブチル基のような分枝アルキル基でもよい。また、シクロプロピル基、シクロヘキシル基のような炭素数3〜6のシクロアルキル基でもよい。また、フェニル基、ベンジル基、p−トリル基のような炭素数6〜12のアリール基を含有するものでもよい。さらに、水素原子でもよい。また、R4とR5、R6とR7、R8とR9、R10とR11、R12とR13、R15とR16、R17とR18は、互いに2〜5個のメチレン鎖で結合したシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基を形成していても良い。ただし、xは1または2の整数を示す。
【0039】
前記一般式(III)で表されるアルキン誘導体の具体例として、例えば、Y1=−COOR20の場合、2−プロピニルメチルカーボネート〔R3=R4=R5=水素原子、R20=メチル基、x=1〕、1−メチル−2−プロピニルメチルカーボネート〔R3=水素原子、R4=メチル基、R5=水素原子、R20=メチル基、x=1〕、2−プロピニルエチルカーボネート〔R3=R4=R5=水素原子、R20=エチル基、x=1〕、2−プロピニルプロピルカーボネート〔R3=R4=R5=水素原子、R20=プロピル基、x=1〕、2−プロピニルブチルカーボネート〔R3=R4=R5=水素原子、R20=ブチル基、x=1〕、2−プロピニルフェニルカーボネート〔R3=R4=R5=水素原子、R20=フェニル基、x=1〕、2−プロピニルシクルヘキシルカーボネート〔R3=R4=R5=水素原子、R20=シクロヘキシル基、x=1〕、2−ブチニルメチルカーボネート〔R3=メチル基、R4=R5=水素原子、R20=メチル基、x=1〕、3−ブチニルメチルカーボネート〔R3=R4=R5=水素原子、R20=メチル基、x=2〕、2−ペンチニルメチルカーボネート〔R3=エチル基、R4=R5=水素原子、R20=メチル基、x=1〕、1−メチル−2−ブチニルメチルカーボネート〔R3=R4=メチル基、R5=水素原子、R20=メチル基、x=1〕、1,1−ジメチル−2−プロピニルメチルカーボネート〔R3=水素原子、R4=R5=メチル基、R20=メチル基、x=1〕、1,1−ジエチル−2−プロピニルメチルカーボネート〔R3=水素原子、R4=R5=エチル基、R20=メチル基、x=1〕、1,1−エチルメチル−2−プロピニルメチルカーボネート〔R3=水素原子、R4=エチル基、R5=メチル基、R20=メチル基、x=1〕、1,1−イソブチルメチル−2−プロピニルメチルカーボネート〔R3=水素原子、R4=イソブチル基、R5=メチル基、R20=メチル基、x=1〕、1,1−ジメチル−2−ブチニルメチルカーボネート〔R3=R4=R5=メチル基、R20=メチル基、x=1〕、1−エチニルシクロヘキシルメチルカーボネート〔R3=水素原子、R4とR5が結合=ペンタメチレン基、R20=メチル基、x=1〕、1,1−フェニルメチル−2−プロピニルメチルカーボネート〔R3=水素原子、R4=フェニル基、R5=メチル基、R20=メチル基、x=1〕、1,1−ジフェニル−2−プロピニルメチルカーボネート〔R3=水素原子、R4=R5=フェニル基、R20=メチル基、x=1〕、1,1−ジメチル−2−プロピニルエチルカーボネート〔R3=水素原子、R4=R5=メチル基、R20=エチル基、x=1〕などが挙げられる。Y1=−COR20の場合、酢酸2−プロピニル〔R3=R4=R5=水素原子、R20=メチル基、x=1〕、酢酸1−メチル−2−プロピニル〔R3=水素原子、R4=メチル基、R5=水素原子、R20=メチル基、x=1〕、プロピオン酸2−プロピニル〔R3=R4=R5=水素原子、R20=エチル基、x=1〕、酪酸2−プロピニル〔R3=R4=R5=水素原子、R20=プロピル基、x=1〕、安息香酸2−プロピニル〔R3=R4=R5=水素原子、R20=フェニル基、x=1〕、シクロヘキシルカルボン酸2−プロピニル〔R3=R4=R5=水素原子、R20=シクロヘキシル基、x=1〕、酢酸2−ブチニル〔R3=メチル基、R4=R5=水素原子、R20=メチル基、x=1〕、酢酸3−ブチニル〔R3=R4=R5=水素原子、R20=メチル基、x=2〕、酢酸2−ペンチニル〔R3=エチル基、R4=R5=水素原子、R20=メチル基、x=1〕、酢酸1−メチル−2−ブチニル〔R3=R4=メチル基、R5=水素原子、R20=メチル基、x=1〕、酢酸1,1−ジメチル−2−プロピニル〔R3=水素原子、R4=R5=メチル基、R20=メチル基、x=1〕、酢酸1,1−ジエチル−2−プロピニル〔R3=水素原子、R4=R5=エチル基、R20=メチル基、x=1〕、酢酸1,1−エチルメチル−2−プロピニル〔R3=水素原子、R4=エチル基、R5=メチル基、R20=メチル基、x=1〕、酢酸1,1−イソブチルメチル−2−プロピニル〔R3=水素原子、R4=イソブチル基、R5=メチル基、R20=メチル基、x=1〕、酢酸1,1−ジメチル−2−ブチニル〔R3=R4=R5=メチル基、R20=メチル基、x=1〕、酢酸1−エチニルシクロヘキシル〔R3=水素原子、R4とR5が結合=ペンタメチレン基、R20=メチル基、x=1〕、酢酸1,1−フェニルメチル−2−プロピニル〔R3=水素原子、R4=フェニル基、R5=メチル基、R20=メチル基、x=1〕、酢酸1,1−ジフェニル−2−プロピニル〔R3=水素原子、R4=R5=フェニル基、R20=メチル基、x=1〕、プロピオン酸1,1−ジメチル−2−プロピニル〔R3=水素原子、R4=R5=メチル基、R20=エチル基、x=1〕などが挙げられる。Y1=−SO220の場合、メタンスルホン酸2−プロピニル〔R3=R4=R5=水素原子、R20=メチル基、x=1〕、メタンスルホン酸1−メチル−2−プロピニル〔R3=水素原子、R4=メチル基、R5=水素原子、R20=メチル基、x=1〕、エタンスルホン酸2−プロピニル〔R3=R4=R5=水素原子、R20=エチル基、x=1〕、プロパンスルホン酸2−プロピニル〔R3=R4=R5=水素原子、R20=プロピル基、x=1〕、p−トルエンスルホン酸2−プロピニル〔R3=R4=R5=水素原子、R20=p−トリル基、x=1〕、シクロヘキシルスルホン酸2−プロピニル〔R3=R4=R5=水素原子、R20=シクロヘキシル基、x=1〕、メタンスルホン酸2−ブチニル〔R3=メチル基、R4=R5=水素原子、R20=メチル基、x=1〕、メタンスルホン酸3−ブチニル〔R3=R4=R5=水素原子、R20=メチル基、x=2〕、メタンスルホン酸2−ペンチニル〔R3=エチル基、R4=R5=水素原子、R20=メチル基、x=1〕、メタンスルホン酸1−メチル−2−ブチニル〔R3=R4=メチル基、R5=水素原子、R20=メチル基、x=1〕、メタンスルホン酸1,1−ジメチル−2−プロピニル〔R3=水素原子、R4=R5=メチル基、R20=メチル基、x=1〕、メタンスルホン酸1,1−ジエチル−2−プロピニル〔R3=水素原子、R4=R5=エチル基、R20=メチル基、x=1〕、メタンスルホン酸1,1−エチルメチル−2−プロピニル〔R3=水素原子、R4=エチル基、R5=メチル基、R20=メチル基、x=1〕、メタンスルホン酸1,1−イソブチルメチル−2−プロピニル〔R3=水素原子、R4=イソブチル基、R5=メチル基、R20=メチル基、x=1〕、メタンスルホン酸1,1−ジメチル−2−ブチニル〔R3=R4=R5=メチル基、R20=メチル基、x=1〕、メタンスルホン酸1−エチニルシクロヘキシル〔R3=水素原子、R4とR5が結合=ペンタメチレン基、R20=メチル基、x=1〕、メタンスルホン酸1,1−フェニルメチル−2−プロピニル〔R3=水素原子、R4=フェニル基、R5=メチル基、R20=メチル基、x=1〕、メタンスルホン酸1,1−ジフェニル−2−プロピニル〔R3=水素原子、R4=R5=フェニル基、R20=メチル基、x=1〕、エタンスルホン酸1,1−ジメチル−2−プロピニル〔R3=水素原子、R4=R5=メチル基、R20=エチル基、x=1〕などが挙げられる。ただし、本発明はこれらの化合物に何ら限定されるものではない。
【0040】
前記一般式(IV)で表されるアルキン誘導体の具体例として、例えば、Y2=−COOR21およびY3=−COOR22の場合、2−ブチン−1,4−ジオール ジメチルカーボネート〔R6=R7=R8=R9=水素原子、R21=R22=メチル基、x=1〕、2−ブチン−1,4−ジオール ジエチルカーボネート〔R6=R7=R8=R9=水素原子、R21=R22=エチル基、x=1〕、3−ヘキシン−2,5−ジオール ジメチルジカーボネート〔R6=R8=メチル基、R7=R9=水素原子、R21=R22=メチル基、x=1〕、3−ヘキシン−2,5−ジオールジエチルジカーボネート〔R6=R8=メチル基、R7=R9=水素原子、R21=R22=エチル基、x=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジメチルジカーボネート〔R6=R7=R8=R9=メチル基、R21=R22=メチル基、x=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジエチルジカーボネート〔R6=R7=R8=R9=メチル基、R21=R22=エチル基、x=1〕などが挙げられる。Y2=−COR21およびY3=−COR22の場合、2−ブチン−1,4−ジオール ジアセテート〔R6=R7=R8=R9=水素原子、R21=R22=メチル基、x=1〕、2−ブチン−1,4−ジオール ジアセテート〔R6=R7=R8=R9=水素原子、R21=R22=メチル基、x=1〕、2−ブチン−1,4−ジオール ジプロピオネート〔R6=R7=R8=R9=水素原子、R21=R22=エチル基、x=1〕、3−ヘキシン−2,5−ジオール ジアセテート〔R6=R8=メチル基、R7=R9=水素原子、R21=R22=メチル基、x=1〕、3−ヘキシン−2,5−ジオール ジプロピオネート〔R6=R8=メチル基、R7=R9=水素原子、R21=R22=エチル基、x=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジアセテート〔R6=R7=R8=R9=メチル基、R21=R22=メチル基、x=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジプロピオネート〔R6=R7=R8=R9=メチル基、R121=R22=エチル基、x=1〕などが挙げられる。Y2=−SO221およびY3=−SO222の場合、2−ブチン−1,4−ジオール ジメタンスルホネート〔R6=R7=R8=R9=水素原子、R21=R22=メチル基、x=1〕、2−ブチン−1,4−ジオール ジエタンスルホネート〔R6=R7=R8=R9=水素原子、R21=R22=エチル基、x=1〕、3−ヘキシン−2,5−ジオール ジメタンスルホネート〔R6=R8=メチル基、R7=R9=水素原子、R21=R22=メチル基、x=1〕、3−ヘキシン−2,5−ジオール ジエタンスルホネート〔R6=R8=メチル基、R7=R9=水素原子、R21=R22=エチル基、x=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジメタンスルホネート〔R6=R7=R8=R9=メチル基、R21=R22=メチル基、x=1〕、2,5−ジメチル−3−ヘキシン−2,5−ジオール ジエタンスルホネート〔R6=R7=R8=R9=メチル基、R21=R22=エチル基、x=1〕などが挙げられる。ただし、本発明はこれらの化合物に何ら限定されるものではない。
【0041】
前記一般式(V)で表されるアルキン誘導体の具体例として、例えば、Y4=−COOR23およびY5=−COOR24の場合、2,4−ヘキサジイン−1,6−ジオール ジメチルジカーボネート〔R10=R11=R12=R13=水素原子、R23=R24=メチル基、x=1〕、2,4−ヘキサジイン−1,6−ジオール ジエチルジカーボネート〔R10=R11=R12=R13=水素原子、R23=R24=エチル基、x=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオールジメチルジカーボネート〔R10=R11=R12=R13=メチル基、R23=R24=メチル基、x=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオール ジエチルジカーボネート〔R10=R11=R12=R13=メチル基、R23=R24=エチル基、x=1〕などが挙げられる。Y4=−COR23およびY5=−COR24の場合、2,4−ヘキサジイン−1,6−ジオール ジアセテート〔R10=R11=R12=R13=水素原子、R23=R24=メチル基、x=1〕、2,4−ヘキサジイン−1,6−ジオール ジプロピオネート〔R10=R11=R12=R13=水素原子、R23=R24=エチル基、x=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオール ジアセテート〔R10=R11=R12=R13=メチル基、R23=R24=メチル基、x=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオール ジプロピオネート〔R10=R11=R12=R13=メチル基、R23=R24=エチル基、x=1〕などが挙げられる。Y4=−SO223およびY5=−SO224の場合、2,4−ヘキサジイン−1,6−ジオール ジメタンスルホネート〔R10=R11=R12=R13=水素原子、R23=R24=メチル基、x=1〕、2,4−ヘキサジイン−1,6−ジオール ジエタンスルホネート〔R10=R11=R12=R13=水素原子、R23=R24=エチル基、x=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオール ジメタンスルホネート〔R10=R11=R12=R13=メチル基、R23=R24=メチル基、x=1〕、2,7−ジメチル−3,5−オクタジイン−2,7−ジオール ジエタンスルホネート〔R10=R11=R12=R13=メチル基、R23=R24=エチル基、x=1〕などが挙げられる。ただし、本発明はこれらの化合物に何ら限定されるものではない。
【0042】
前記一般式(VI)で表されるアルキン誘導体の具体例としては、例えば、ジプロパルギルカーボネート〔R14=R15=R16=R17=R18=R19=水素原子、x=1〕、ジ(1−メチル−2−プロピニル)カーボネート〔R14=R16=R18=R19=水素原子、R15=R17=メチル基、x=1〕、ジ(2−ブチニル)カーボネート〔R14=R19=メチル基、R15=R16=R17=R18=水素原子、x=1〕、ジ(3−ブチニル)カーボネート〔R14=R15=R16=R17=R18=R19=水素原子、x=2〕、ジ(2−ペンチニル)カーボネート〔R14=R19=エチル基、R15=R16=R17=R18=水素原子、x=1〕、ジ(1−メチル−2−ブチニル)カーボネート〔R14=R15=R16=R19=メチル基、R17=R18=水素原子、x=1〕、2−プロピニル 2−ブチニルカーボネート〔R14=R15=R16=R17=R18=水素原子、R19=メチル基、x=1〕、ジ(1,1−ジメチル−2−プロピニル)カーボネート〔R14=R19=水素原子、R15=R16=R17=R18=メチル基、x=1〕、ジ(1,1−ジエチル−2−プロピニル)カーボネート〔R14=R19=水素原子、R15=R16=R17=R18=エチル基、x=1〕、ジ(1,1−エチルメチル−2−プロピニル)カーボネート〔R14=R19=水素原子、R15=R17=エチル基、R16=R18=メチル基、x=1〕、ジ(1,1−イソブチルメチル−2−プロピニル)カーボネート〔R14=R19=水素原子、R15=R17=イソブチル基、R16=R18=メチル基、x=1〕、ジ(1,1−ジメチル−2−ブチニル)カーボネート〔R14=R15=R16=R17=R18=R19=メチル基、x=1〕、ジ(1−エチニルシクロヘキシル)カーボネート〔R14=R19=水素原子、R15とR16が結合=ペンタメチレン基、R17とR18が結合=ペンタメチレン基、n=1〕が挙げられる。ただし、本発明はこれらの化合物に何ら限定されるものではない。
【0043】
前記アルキン誘導体類において、前記一般式(III)、(IV)、(V)、(VI)で表されるアルキン誘導体の含有量は、過度に多いと、電解液の電導度などが変わり電池性能が低下することがあり、また、過度に少ないと、十分な被膜が形成されず、期待した電池特性が得られないので、電解液の重量に対して0.1〜10重量%、特に0.5〜5重量%の範囲が好ましい。
【0044】
本発明で使用される非水溶媒としては、環状カーボネートと鎖状カーボネートを主成分とするものが好ましい。
環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類が好適に挙げられる。これらの高誘電率溶媒は、一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。
【0045】
鎖状カーボネートとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)などの鎖状カーボネート類が好適に挙げられる。これらの高誘電率溶媒は、一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。
非水溶媒中の環状カーボネートの含有量が10重量%以上70重量%以下であり、前記鎖状カーボネートの含有量が30重量%以上90重量%以下であるのが好ましい。
さらに、低粘度溶媒を含有させることもできる。低粘度溶媒の具体例としては、例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンなどのエーテル類、γ−ブチロラクトンなどのラクトン類、アセトニトリルなどのニトリル類、プロピオン酸メチル、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸オクチルなどのエステル類、ジメチルホルムアミドなどのアミド類、リン酸トリエチル、リン酸トリブチル、リン酸トリオクチルなどのリン酸エステル類などが挙げられる。これらの低粘度溶媒は一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。
【0046】
本発明で使用される電解質としては、例えば、LiPF6、LiBF4、LiAsF6、LiClO4、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiPF4(CF32、LiPF3(C253、LiPF3(CF33、LiPF3(iso−C373、LiPF5(iso−C37)などが挙げられる。これらの電解質は、一種類で使用してもよく、二種類以上組み合わせて使用してもよい。これら電解質は、前記の非水溶媒に通常0.1〜3M、好ましくは0.5〜1.5Mの濃度で溶解されて使用される。
【0047】
本発明の非水電解液は、例えば、高誘電率溶媒と低粘度溶媒を混合し、これに前記の電解質を溶解し、前記式(I)(II)で表されるアルコキシベンゼン誘導体および前記式(III)(IV)、(V)、(VI)で表されるアルキン誘導体を溶解することにより得られる。
【0048】
例えば、正極活物質としてはコバルト、マンガン、ニッケル、クロム、鉄およびバナジウムからなる群より選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物が使用される。このような複合金属酸化物としては、例えば、LiCoO2、LiMn24、LiNiO2などが挙げられる。
【0049】
正極は、前記の正極活物質をアセチレンブラック、カーボンブラックなどの導電剤、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤および溶剤と混練して正極合剤とした後、この正極材料を集電体としてのアルミニウム箔やステンレス製のラス板に塗布して、乾燥、加圧成型後、50℃〜250℃程度の温度で2時間程度真空下に加熱処理することにより作製される。
【0050】
負極活物質としては、リチウムを吸蔵・放出可能な黒鉛型結晶構造を有するグラファイトを含む材料、例えば天然黒鉛や人造黒鉛が使用される。特に、格子面(002)の面間隔(d002 )が0.335〜0.340nm(ナノメータ)である黒鉛型結晶構造を有する炭素材料を使用することが好ましい。なお、炭素材料のような粉末材料はエチレンプロピレンジエンターポリマー(EPDM)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して負極合剤として使用される。
【0051】
リチウム二次電池の構造は特に限定されるものではなく、正極、負極および単層又は複層のセパレータを有するコイン型電池、さらに、正極、負極およびロール状のセパレータを有する円筒型電池や角型電池などが一例として挙げられる。なお、セパレータとしては公知のポリオレフィンの微多孔膜、織布、不織布などが使用される。
【0052】
本発明におけるリチウム二次電池の充放電サイクルの電圧範囲は、最大作動電圧が4.1Vより大きいことが好ましく、更に好ましくは4.2Vより大きく、最も好ましくは4.3V以上である。カットオフ電圧は、2.0V以上が好ましく、更に好ましくは2.5V以上である。電流値については特に限定されるものではないが、通常0.1〜2Cの定電流放電で使用される。充放電サイクルの温度範囲は、−40〜100℃が好ましく、更に好ましくは、40〜80℃である。
【0053】
【実施例】
次に、実施例および比較例を挙げて、本発明を具体的に説明する。
実施例1
〔非水電解液の調製〕
PC:DMC(容量比)=1:2の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して非水電解液を調製した後、さらに非水電解液に対して1,2,4−トリメトキシベンゼン〔式(I)中、R1=メチル基、R2=全てメチル基、m=2〕を0.1重量%、およびメタンスルホン酸2−プロピニル〔式(III)中、Y1=−SO220、R3=R4=R5=水素原子、R20=メチル基、x=1〕を2.0重量%となるように加えた。
【0054】
〔リチウム二次電池の作製および電池特性の測定〕
LiCoO2(正極活物質)を80重量%、アセチレンブラック(導電剤)を10重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加えて混合したものをアルミニウム箔上に塗布し、乾燥、加圧成型、加熱処理して正極を調製した。天然黒鉛(負極活物質)を90重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、加圧成型、加熱処理して負極を調製した。そして、ポリプロピレン微多孔性フィルムのセパレータを用い、上記の非水電解液を注入させてコイン電池(直径20mm、厚さ3.2mm)を作製した。
このコイン電池を用いて、高温(40℃)下、0.8mAの定電流で4.3Vまで充電した後、終止電圧4.3Vとして定電圧下に合計6時間充電した。次に0.8mAの定電流下、終止電圧2.7Vまで放電し、この充放電を繰り返した。初期放電容量は、1M LiPF6+EC:PC:DEC(容量比)=3:1:6の非水電解液(比較例4;アルコキシベンゼン誘導体およびアルキン誘導体無添加)を1とした時の相対比で1.00であった。また、初期放電容量を100%としたときの100サイクル後の放電容量維持率は92.5%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。
【0055】
比較例1
PC:DMC(容量比)=1:2の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解した。このときアルコキシベンゼンベンゼン誘導体およびアルキン誘導体は全く添加しなかった。この非水電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定したが充放電しないことが分った。コイン電池の作製条件および電池特性を表1に示す。
【0056】
比較例2
添加剤として、1,2,4−トリメトキシベンゼンのみを非水電解液に対して0.1重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製した。この非水電解液を使用して終止電圧4.3Vまで6時間充電した以外は、実施例1と同様に電池特性を測定したが充放電はしないことが分った。コイン電池の作製条件および電池特性を表1に示す。
【0057】
比較例3
添加剤として、メタンスルホン酸2−プロピニルのみを非水電解液に対して2.0重量%使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表1に示す。
【0058】
【表1】
Figure 0004304404
【0059】
実施例2
EC/PC/DEC(容量比)=3/1/6の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して電解液を調製した後、さらに非水電解液に対して1,2,4−トリメトキシベンゼンを0.05重量%、およびジプロパルギルカーボネート〔式(VI)中、R14=R15=R16=R17=R18=R19=水素原子、x=1〕を1.0重量%添加剤として使用したほかは実施例1と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表2に示す。
【0060】
実施例3〜実施例5
1,2,4−トリメトキシベンゼンおよびジプロパルギルカーボネートの使用量をかえたほかは実施例2と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表2に示す。
【0061】
比較例4
1,2,4−トリメトキシベンゼンおよびジプロパルギルカーボネートを添加しなかったほかは実施例2と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表2に示す。
【0062】
比較例5
1,2,4−トリメトキシベンゼンの代わりに1,2−ジメトキシベンゼンを電解液に対して2.5重量%添加し、ジプロパルギルカーボネートを添加しなかったほかは実施例2と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表2に示す。
【0063】
比較例6
充電時の終止電圧を4.1Vとしたほかは比較例5と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表2に示す。
【0064】
比較例7
1,2,4−トリメトキシベンゼンの代わりに1,3,5−トリメトキシベンゼンを電解液に対して2.5重量%添加し、ジプロパルギルカーボネートを添加しなかったほかは実施例2と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表2に示す。
【0065】
比較例8
1,2,4−トリメトキシベンゼンの代わりに1,2−ジメトキシベンゼンを電解液に対して0.1重量%添加し、ジプロパルギルカーボネートを添加しなかったほかは実施例2と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表2に示す。
【0066】
比較例9
ジプロパルギルカーボネートを電解液に対して1.0重量%添加し、1,2,4−トリメトキシベンゼンを添加しなかったほかは実施例2と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表2に示す。
【0067】
【表2】
Figure 0004304404
【0068】
実施例6
非水電解液に対して1,2,4−トリメトキシベンゼンの代わりに1,2−ジエトキシベンゼン〔式(I)中、R1=R2=エチル基、m=1〕を0.1重量%添加し、ジプロパルギルカーボネートの代わりに1,1−ジメチル−2−プロピニルメチルカーボネート〔式(III)中、Y1=−COOR20、R3=水素原子、R4=R5=メチル基、R20=メチル基、x=1〕を2.0重量%添加したほかは実施例2と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表3に示す。
【0069】
実施例7〜実施例11
アルコキシベンゼン誘導体およびアルキン誘導体を表3記載のように代えたほかは実施例6と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表3に示す。
【0070】
実施例12〜実施例14
負極活物質として、天然黒鉛に代えて人造黒鉛を使用し、アルコキシベンゼン誘導体およびアルキン誘導体を表3記載のように代えたほかは実施例6と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表3に示す。
【0071】
【表3】
Figure 0004304404
【0072】
実施例15
正極活物質として、LiCoO2に代えてLiMn24を使用し、負極活物質として、天然黒鉛に代えて人造黒鉛を使用し、また非水電解液に対して1,2,4−トリメトキシベンゼンを0.1重量%、およびメタンスルホン酸2−プロピニルを2.0重量%使用したほかは実施例2と同様に非水電解液を調製してコイン電池を作製した。初期放電容量は、比較例4を1とした時の相対比で0.85であった。100サイクル後の電池特性を測定したところ、放電容量維持率は93.9%であった。コイン電池の作製条件および電池特性を表4に示す。
【0073】
実施例16および比較例10〜11
アルコキシベンゼン誘導体およびアルキン誘導体を表4記載のようにしたほかは実施例15と同様に非水電解液を調製してコイン電池を作製した。コイン電池の作製条件および電池特性を表4に示す。
【0074】
【表4】
Figure 0004304404
【0075】
以上のように、本発明におけるアルコキシベンゼン誘導体を0.001〜0.8重量%、およびアルキン誘導体を0.1〜10重量%添加すると、上限電圧が4.1Vより高電圧及び/又は40℃以上の高温状態の充放電においてサイクル特性が明らかに優れていることが分かった。
【0076】
なお、本発明は記載の実施例に限定されず、発明の趣旨から容易に類推可能な様々な組み合わせが可能である。特に、上記実施例の溶媒の組み合わせは限定されるものではない。更には、上記実施例はコイン電池に関するものであるが、本発明は円筒形、角柱形の電池、積層形のポリマーにも適用される。
【0077】
【発明の効果】
本発明によれば、電池のサイクル特性、電気容量、保存特性などの電池特性に優れたリチウム二次電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte that can provide a lithium secondary battery excellent in battery characteristics such as battery cycle characteristics, electric capacity, and storage characteristics, and a lithium secondary battery using the same.
[0002]
[Prior art]
In recent years, lithium secondary batteries have been widely used as driving power sources for small electronic devices and the like. A lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. 2 A lithium secondary battery having a lithium composite oxide such as a positive electrode and a carbon material or lithium metal as a negative electrode is preferably used. The non-aqueous electrolyte for the lithium secondary battery includes carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC). Are preferably used.
[0003]
However, there is a demand for a secondary battery having more excellent battery characteristics such as battery cycle characteristics and storage characteristics.
As a negative electrode, for example, in a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite, peeling of the carbon negative electrode material is observed, and the capacity may be irreversible depending on the degree of the phenomenon. This peeling occurs when the solvent in the electrolytic solution is decomposed during charging, and is caused by electrochemical reduction of the solvent at the interface between the carbon negative electrode material and the electrolytic solution. Among them, an electrolytic solution using a PC having a low melting point and a high dielectric constant has high electrical conductivity even at a low temperature. However, when a graphite negative electrode is used, the PC is decomposed and cannot be used for a lithium secondary battery. There was a problem. Moreover, EC also partially decomposes during repeated charging and discharging, resulting in a decrease in battery performance. For this reason, at present, battery characteristics such as battery cycle characteristics and electric capacity are not always satisfactory.
[0004]
The present inventors can solve the above-described problems relating to the electrolyte for a lithium secondary battery, and can constitute a lithium battery excellent in battery cycle characteristics and battery characteristics such as storage characteristics. An electrolytic solution for a lithium secondary battery, characterized by containing an alkyne derivative in a nonaqueous electrolytic solution for the purpose of providing an electrolytic solution for a lithium secondary battery and a lithium secondary battery using the same And a lithium secondary battery using the same (Japanese Patent Laid-Open No. 2000-195545).
In the proposal, the alkyne derivative contained in the electrolytic solution is decomposed on the surface of the carbon negative electrode prior to the nonaqueous solvent in the electrolytic solution at the time of charging, and a part of the decomposed product is a high product such as natural graphite or artificial graphite. By forming a passive film on the surface of the crystallized active carbon negative electrode, it is presumed that reductive decomposition of the nonaqueous solvent in the electrolytic solution is prevented.
[0005]
However, when the proposed lithium secondary battery is charged and discharged under severe conditions, for example, it is repeatedly charged and discharged up to a maximum operating voltage exceeding 4.1 V, such as 4.3 V over a long period of time. It was found that when the battery was charged / discharged over a long period of time at a temperature exceeding that, the capacity was gradually reduced.
This phenomenon is caused by, for example, LiCoO as the positive electrode. 2 , LiMn 2 O Four , LiNiO 2 When the lithium secondary battery using a battery is repeatedly charged and discharged to a maximum operating voltage exceeding 4.1 V, the solvent in the non-aqueous electrolyte is partially oxidized and decomposed, and the decomposition product is desirable for the battery. Inhibiting the electrochemical reaction causes a decrease in battery performance, which is considered to be caused by the electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte.
Therefore, it is desired to provide a non-aqueous electrolyte that has further excellent cycle characteristics and excellent battery characteristics such as storage characteristics under such severe conditions, and a lithium secondary battery using the same. Yes.
[0006]
On the other hand, in Japanese Patent Application Laid-Open No. 7-302614, by adding 0.1, 0.25 M (mol / liter) of 1,3,5-trimethoxybenzene and the like, an overcharge current is generated by a redox shuttle during overcharge. There has been proposed a technique for protecting a battery from overcharging by consuming and suppressing an increase in voltage. However, in a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode, charging and discharging at 4.1 to 2.5 V repeats good charging and discharging even in 100 cycles. However, in severe charge and discharge such as a high voltage of 4.3 V and / or a high temperature state of 40 ° C. or higher, the cycle characteristics were low.
[0007]
In JP-A-9-106835, by adding about 1 to 4% by volume of 1,2-dimethoxybenzene, biphenyl, thiophene, furan, etc., an electrochemical reaction is performed at an abnormally high voltage when overcharge occurs. A technology for protecting the battery by increasing the resistance of the electrolytic solution by polymerizing is described. However, it is described that 1,2-dimethoxybenzene is not suitable because it adversely affects the cycle life, and satisfactory cycle characteristics are not obtained.
[0008]
Japanese Laid-Open Patent Publication No. 10-64591 discloses LiBF Four And / or LiPF 6 The capacity and cycle characteristics are improved by adding 0.1 to 50 mM (mmol / liter) of 1,4-dimethoxybenzene, 1,2-methylenedioxybenzene, etc. to the electrolytic solution using the supporting salt in which is dissolved. It is described. However, when a highly crystallized carbon material such as natural graphite or artificial graphite is used as the negative electrode, the nonaqueous solvent used as the electrolyte is partially reduced and decomposed on the carbon negative electrode along with the number of charge / discharge cycles of the battery. As a result, the decomposition product gradually accumulates on the negative electrode, and the battery capacity gradually decreases. Among them, an electrolyte solution using a PC having a low melting point and a high dielectric constant has a high electrical conductivity even at a low temperature. However, when a graphite negative electrode is used, the PC is decomposed and cannot be used for a lithium battery. There was a point. Moreover, EC also partially decomposes during repeated charging and discharging, resulting in a decrease in battery performance. For this reason, at present, battery characteristics such as battery cycle characteristics and storage characteristics are not always satisfactory.
[0009]
In addition, JP 2000-156243 A discloses a more noble than the positive electrode potential at the time of full charge such as diphenyl, naphthalene, 4-fluoroanisole, 1,2-dimethoxybenzene, 4-fluoro-1,2-dimethoxybenzene. When 0.5M (mol / liter) of an organic compound having a reversible oxidation-reduction potential is added to the battery potential, when overcharged, oxidative decomposition is promoted to generate a polymer, and the overcharge current is cut off. Thus, a method for suppressing heat generation of the battery has been proposed. However, these additives have low cycle characteristics in charge and discharge at a high voltage such as 4.3 V and / or a high temperature state of 40 ° C. or higher.
[0010]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems related to the decomposition of the electrolyte for a lithium secondary battery at the positive electrode and the negative electrode at the same time, is excellent in the cycle characteristics of the battery, and further has battery characteristics such as electric capacity and storage characteristics in a charged state. Another object of the present invention is to provide a non-aqueous electrolyte for a lithium secondary battery that can constitute an excellent lithium secondary battery, and a lithium secondary battery using the same.
[0011]
[Means for Solving the Problems]
The present inventors have solved the above-mentioned problems relating to the electrolyte solution for a lithium secondary battery, and constitute a lithium battery excellent in battery cycle characteristics such as storage characteristics and excellent battery characteristics under severe conditions. Lithium characterized in that an alkyne derivative and an alkoxybenzene derivative are contained in a non-aqueous electrolyte for the purpose of providing an electrolyte for a lithium secondary battery and a lithium secondary battery using the same The present inventors have found an electrolytic solution for a secondary battery and a lithium secondary battery using the same.
The present invention relates to a lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the positive electrode is a material containing a lithium composite oxide, and the negative electrode is a material containing graphite. The non-aqueous solvent is mainly composed of a cyclic carbonate and a chain carbonate, and the non-aqueous electrolyte contains the following general formulas (I) and (II).
[0012]
Embedded image
Figure 0004304404
[0013]
Embedded image
Figure 0004304404
[0014]
(Wherein R 1 , R 2 Each independently represents a methyl group or an ethyl group, and m represents the number of substituents of 1 to 3. However, when m = 2 or 3, R 2 Each independently represents a methyl group or an ethyl group. n is an integer of 1 or 2. 0.001 to 0.8% by weight, and the following general formulas (III), (IV), (V), (VI)
[0015]
Embedded image
Figure 0004304404
[0016]
Embedded image
Figure 0004304404
[0017]
Embedded image
Figure 0004304404
[0018]
Embedded image
Figure 0004304404
[0019]
(Wherein R Three ~ R 19 Each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an aryl group, or a hydrogen atom. R Four And R Five , R 6 And R 7 , R 8 And R 9 , R Ten And R 11 , R 12 And R 13 , R 15 And R 16 , R 17 And R 18 May be bonded to each other to form a cycloalkyl group having 3 to 6 carbon atoms. Where Y 1 Is -COOR 20 , -COR 20 Or -SO 2 R 20 , Y 2 Is -COOR twenty one , -COR twenty one Or -SO 2 R twenty one , Y Three Is -COOR twenty two , -COR twenty two Or -SO 2 R twenty two , Y Four Is -COOR twenty three , -COR twenty three Or -SO 2 R twenty three And Y Five Is -COOR twenty four , -COR twenty four Or -SO 2 R twenty four R 20 , R twenty one , R twenty two , R twenty three And R twenty four Each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group. Here, x represents an integer of 1 or 2. The lithium secondary battery is characterized by containing 0.1 to 10% by weight of an alkyne derivative represented by the formula:
[0020]
The present invention also provides a non-aqueous electrolyte for a lithium secondary battery comprising a positive electrode made of a material containing a lithium composite oxide and a negative electrode made of a material containing graphite, wherein the non-aqueous electrolyte contains an electrolyte in a non-aqueous solvent. A nonaqueous electrolytic solution that is dissolved, wherein the nonaqueous solvent is composed mainly of a cyclic carbonate and a chain carbonate, and the general formulas (I) and (II) are contained in the nonaqueous electrolytic solution.
[0021]
Embedded image
Figure 0004304404
[0022]
Embedded image
Figure 0004304404
[0023]
(Wherein R 1 , R 2 Each independently represents a methyl group or an ethyl group, and m represents the number of substituents of 1 to 3. However, when m = 2 or 3, R 2 Each independently represents a methyl group or an ethyl group. n is an integer of 1 or 2. 0.001 to 0.8% by weight, and the following general formulas (III), (IV), (V), (VI)
[0024]
Embedded image
Figure 0004304404
[0025]
Embedded image
Figure 0004304404
[0026]
Embedded image
Figure 0004304404
[0027]
Embedded image
Figure 0004304404
[0028]
(Wherein R Three ~ R 19 Each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an aryl group, or a hydrogen atom. R Four And R Five , R 6 And R 7 , R 8 And R 9 , R Ten And R 11 , R 12 And R 13 , R 15 And R 16 , R 17 And R 18 May be bonded to each other to form a cycloalkyl group having 3 to 6 carbon atoms. Where Y 1 Is -COOR 20 , -COR 20 Or -SO 2 R 20 , Y 2 Is -COOR twenty one , -COR twenty one Or -SO 2 R twenty one , Y Three Is -COOR twenty two , -COR twenty two Or -SO 2 R twenty two , Y Four Is -COOR twenty three , -COR twenty three Or -SO 2 R twenty three And Y Five Is -COOR twenty four , -COR twenty four Or -SO 2 R twenty four R 20 , R twenty one , R twenty two , R twenty three And R twenty four Each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group. Here, x represents an integer of 1 or 2. The non-aqueous electrolyte for a lithium secondary battery is characterized by containing 0.1 to 10% by weight of an alkyne derivative represented by (II).
[0029]
In the present invention, by adding a very small amount of 0.08% by weight or less of the alkoxybenzene derivative contained in the electrolytic solution, in the minute overvoltage portion where the potential of the positive electrode material surface excessively increased during charging, It is presumed that the alkoxybenzene derivative is preferentially oxidatively decomposed before the nonaqueous solvent electrolyte solution to prevent oxidative decomposition of the solvent. Thus, it is thought that it has the effect which suppresses decomposition | disassembly of electrolyte solution, without impairing the normal reaction of a battery.
[0030]
The alkyne derivative contained in the electrolytic solution of the present invention is preferentially reduced and decomposed prior to the non-aqueous solvent electrolytic solution when lithium ions intercalate, so It is estimated to prevent reductive decomposition of the aqueous solvent electrolyte. In this way, it is considered that the carbon material highly active and highly crystallized such as natural graphite and artificial graphite is coated with a passive film and has an effect of suppressing the decomposition of the electrolyte without impairing the normal reaction of the battery. .
[0031]
In the non-aqueous electrolyte secondary battery comprising the positive electrode, negative electrode, and lithium salt solvent of the present invention, when either one of the alkoxybenzene derivative and the alkyne derivative is not present, the positive electrode or the The electrolyte solution partially oxidizes or reductively decomposes on the surface of the negative electrode material, and the battery characteristics are not sufficiently satisfactory. By including both the alkoxybenzene derivative and the alkyne derivative in the battery, compared with the case where the alkoxybenzene derivative or the alkyne derivative is used alone, cycle characteristics and electric capacity in a wide temperature range, A lithium secondary battery excellent in battery characteristics such as storage characteristics can be provided.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
The nonaqueous electrolytic solution of the present invention is used as a constituent member of a lithium secondary battery. The constituent members other than the non-aqueous electrolyte constituting the secondary battery are not particularly limited, and various conventionally used constituent members can be used.
[0033]
In the alkoxybenzene derivative represented by the general formulas (I) and (II) contained in the electrolytic solution in which the electrolyte is dissolved in the non-aqueous solvent, R 1 , R 2 Are preferably each independently a methyl group or an ethyl group. Moreover, it is preferable that m is the number of substituents of 1-3. However, when m = 2 or 3, R 2 Each independently represents a methyl group or an ethyl group. For example, all may be the same as only a methyl group or an ethyl group, or may be different substituents such as a methyl group and an ethyl group.
[0034]
Specific examples of the alkoxybenzene derivative represented by the general formula (I) include, for example, 1,2-dimethoxybenzene [R 1 = R 2 = Methyl group, m = 1], 1,3-dimethoxybenzene [R 1 = R 2 = Methyl group, m = 1], 1,4-dimethoxybenzene [R 1 = R 2 = Methyl group, m = 1], 1,2,3-trimethoxybenzene [R 1 = Methyl group, R 2 = All methyl groups, m = 2], 1,2,4-trimethoxybenzene [R 1 = Methyl group, R 2 = All methyl groups, m = 2], 1,3,5-trimethoxybenzene [R 1 = Methyl group, R 2 = All methyl groups, m = 2], 1,2,3,4-tetramethoxybenzene [R 1 = Methyl group, R 2 = All methyl groups, m = 3], 1,2,4,5-tetramethoxybenzene [R 1 = Methyl group, R 2 = All methyl groups, m = 3], 1,3,4,5-tetramethoxybenzene [R 1 = Methyl group, R 2 = All methyl groups, m = 3], 1,2-diethoxybenzene [R 1 = R 2 = Ethyl group, m = 1], 1,3-diethoxybenzene [R 1 = R 2 = Ethyl group, m = 1], 1,4-diethoxybenzene [R 1 = R 2 = Ethyl group, m = 1], 1,2,3-triethoxybenzene [R 1 = Ethyl group, R 2 = All ethyl groups, m = 2], 1,2,4-triethoxybenzene [R 1 = Ethyl group, R 2 = All ethyl groups, m = 2], 1,3,5-triethoxybenzene [R 1 = Ethyl group, R 2 = All ethyl groups, m = 2], 1,2,3,4-tetraethoxybenzene [R 1 = Ethyl group, R 2 = All ethyl groups, m = 3], 1,2,4,5-tetraethoxybenzene [R 1 = Ethyl group, R 2 = All ethyl groups, m = 3], 1,3,4,5-tetraethoxybenzene [R 1 = Ethyl group, R 2 = All ethyl groups, m = 3], 2-ethoxyanisole [R 1 = Methyl group, R 2 = Ethyl group, m = 1], 4-ethoxyanisole [R 1 = Methyl group, R 2 = Ethyl group, n = 1], 1-ethoxy-3,4-dimethoxybenzene [R 1 = Ethyl group, R 2 = All methyl groups, m = 2], 1-ethoxy-2,6-dimethoxybenzene [R 1 = Ethyl group, R 2 = All methyl groups, m = 2], 1,4-diethoxy-2-methoxybenzene [R 1 = Methyl group, R 2 = All ethyl groups, m = 2], 2,5-diethoxy-1,3-dimethoxybenzene [R 1 = Methyl group, R 2 = 2-position ethyl group, 3-position methyl group, 5-position ethyl group, m = 3] and the like.
[0035]
Specific examples of the alkoxybenzene derivative represented by the general formula (II) include 1,2-methylenedioxybenzene [n = 1] and 1,2-ethylenedioxybenzene [n = 2].
[0036]
When the content of the alkoxybenzene derivative represented by the general formulas (I) and (II) contained in the non-aqueous electrolyte is excessively large, the upper limit voltage is higher than 4.1 V and / or 40 ° C. or higher. Battery performance deteriorates during charge and discharge in a high temperature state. Moreover, sufficient battery performance expected to be too small cannot be obtained. Therefore, the content is preferably in the range of 0.001 to 0.8% by weight, more preferably 0.01 to 0.5% by weight, most preferably 0.03 to 0.03% by weight based on the weight of the non-aqueous electrolyte. A range of 0.3% by weight may improve cycle characteristics.
[0037]
The electrolytic solution containing 0.001 to 0.8% by weight of the alkoxybenzene derivative of the present invention is compared with an electrolytic solution to which no alkoxybenzene derivative is added or an electrolytic solution to which more than 0.8% by weight of alkoxybenzene is added. It has been found that, in charge / discharge in a high temperature state where the upper limit voltage is higher than 4.1 V and / or 40 ° C. or higher, a specific and unexpected effect that the cycle characteristics are dramatically improved is shown. This mechanism of action does not deviate from the speculated range, but it is considered that the additive is oxidized and decomposed on the positive electrode during charging to form a thin polymer film. In other words, if an amount exceeding 0.8% by weight is added, the amount of additive that is oxidatively decomposed on the positive electrode during charging increases, and a thick polymer film that impairs battery characteristics is formed. It is considered that battery characteristics such as cycle characteristics are deteriorated as compared with the electrolyte not added. Thus, the additive of the present invention has been found to have an effect of significantly improving the cycle characteristics by adding 0.001 to 0.8% by weight, leading to the present invention.
[0038]
In the alkyne derivative represented by the general formula (III), (IV), (V), or (VI) contained in the electrolytic solution in which the electrolyte is dissolved in the non-aqueous solvent, R Three ~ R 19 Are preferably independently an alkyl group having 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. The alkyl group may be a branched alkyl group such as isopropyl group or isobutyl group. Moreover, a C3-C6 cycloalkyl group like a cyclopropyl group and a cyclohexyl group may be sufficient. Moreover, you may contain a C6-C12 aryl group like a phenyl group, a benzyl group, and p-tolyl group. Furthermore, a hydrogen atom may be sufficient. R Four And R Five , R 6 And R 7 , R 8 And R 9 , R Ten And R 11 , R 12 And R 13 , R 15 And R 16 , R 17 And R 18 May form a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, or a cyclohexyl group bonded to each other by 2 to 5 methylene chains. Here, x represents an integer of 1 or 2.
[0039]
Specific examples of the alkyne derivative represented by the general formula (III) include, for example, Y 1 = -COOR 20 In the case of 2-propynylmethyl carbonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 1-methyl-2-propynylmethyl carbonate [R Three = Hydrogen atom, R Four = Methyl group, R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 2-propynylethyl carbonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Ethyl group, x = 1], 2-propynylpropyl carbonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Propyl group, x = 1], 2-propynylbutyl carbonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Butyl group, x = 1], 2-propynylphenyl carbonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Phenyl group, x = 1], 2-propynyl cyclyl hexyl carbonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Cyclohexyl group, x = 1], 2-butynylmethyl carbonate [R Three = Methyl group, R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 3-butynylmethyl carbonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 2], 2-pentynylmethyl carbonate [R Three = Ethyl group, R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 1-methyl-2-butynylmethyl carbonate [R Three = R Four = Methyl group, R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 1,1-dimethyl-2-propynylmethyl carbonate [R Three = Hydrogen atom, R Four = R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-diethyl-2-propynylmethyl carbonate [R Three = Hydrogen atom, R Four = R Five = Ethyl group, R 20 = Methyl group, x = 1], 1,1-ethylmethyl-2-propynylmethyl carbonate [R Three = Hydrogen atom, R Four = Ethyl group, R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-isobutylmethyl-2-propynylmethyl carbonate [R Three = Hydrogen atom, R Four = Isobutyl group, R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-dimethyl-2-butynylmethyl carbonate [R Three = R Four = R Five = Methyl group, R 20 = Methyl group, x = 1], 1-ethynylcyclohexylmethyl carbonate [R Three = Hydrogen atom, R Four And R Five Is a bond = pentamethylene group, R 20 = Methyl group, x = 1], 1,1-phenylmethyl-2-propynylmethyl carbonate [R Three = Hydrogen atom, R Four = Phenyl group, R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-diphenyl-2-propynylmethyl carbonate [R Three = Hydrogen atom, R Four = R Five = Phenyl group, R 20 = Methyl group, x = 1], 1,1-dimethyl-2-propynylethyl carbonate [R Three = Hydrogen atom, R Four = R Five = Methyl group, R 20 = Ethyl group, x = 1] and the like. Y 1 = -COR 20 In the case of 2-propynyl acetate [R Three = R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 1-methyl-2-propynyl acetate [R Three = Hydrogen atom, R Four = Methyl group, R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 2-propynyl propionate [R Three = R Four = R Five = Hydrogen atom, R 20 = Ethyl group, x = 1], 2-propynyl butyrate [R Three = R Four = R Five = Hydrogen atom, R 20 = Propyl group, x = 1], 2-propynyl benzoate [R Three = R Four = R Five = Hydrogen atom, R 20 = Phenyl group, x = 1], 2-propynyl cyclohexylcarboxylate [R Three = R Four = R Five = Hydrogen atom, R 20 = Cyclohexyl group, x = 1], 2-butynyl acetate [R Three = Methyl group, R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 3-butynyl acetate [R Three = R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 2], 2-pentynyl acetate [R Three = Ethyl group, R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 1-methyl-2-butynyl acetate [R Three = R Four = Methyl group, R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 1,1-dimethyl-2-propynyl acetate [R Three = Hydrogen atom, R Four = R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-diethyl-2-propynyl acetate [R Three = Hydrogen atom, R Four = R Five = Ethyl group, R 20 = Methyl group, x = 1], 1,1-ethylmethyl-2-propynyl acetate [R Three = Hydrogen atom, R Four = Ethyl group, R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-isobutylmethyl-2-propynyl acetate [R Three = Hydrogen atom, R Four = Isobutyl group, R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-dimethyl-2-butynyl acetate [R Three = R Four = R Five = Methyl group, R 20 = Methyl group, x = 1], 1-ethynylcyclohexyl acetate [R Three = Hydrogen atom, R Four And R Five Is a bond = pentamethylene group, R 20 = Methyl group, x = 1], 1,1-phenylmethyl-2-propynyl acetate [R Three = Hydrogen atom, R Four = Phenyl group, R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-diphenyl-2-propynyl acetate [R Three = Hydrogen atom, R Four = R Five = Phenyl group, R 20 = Methyl group, x = 1], 1,1-dimethyl-2-propynyl propionate [R Three = Hydrogen atom, R Four = R Five = Methyl group, R 20 = Ethyl group, x = 1] and the like. Y 1 = -SO 2 R 20 In the case of 2-propynyl methanesulfonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 1-methyl-2-propynyl methanesulfonate [R Three = Hydrogen atom, R Four = Methyl group, R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 2-propynyl ethanesulfonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Ethyl group, x = 1], 2-propynyl propanesulfonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Propyl group, x = 1], 2-propynyl p-toluenesulfonate [R Three = R Four = R Five = Hydrogen atom, R 20 = P-tolyl group, x = 1], 2-propynyl cyclohexyl sulfonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Cyclohexyl group, x = 1], 2-butynyl methanesulfonate [R Three = Methyl group, R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 3-butynyl methanesulfonate [R Three = R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 2], 2-pentynyl methanesulfonate [R Three = Ethyl group, R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 1-methyl-2-butynyl methanesulfonate [R Three = R Four = Methyl group, R Five = Hydrogen atom, R 20 = Methyl group, x = 1], 1,1-dimethyl-2-propynyl methanesulfonate [R Three = Hydrogen atom, R Four = R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-diethyl-2-propynyl methanesulfonate [R Three = Hydrogen atom, R Four = R Five = Ethyl group, R 20 = Methyl group, x = 1], 1,1-ethylmethyl-2-propynyl methanesulfonate [R Three = Hydrogen atom, R Four = Ethyl group, R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-isobutylmethyl-2-propynyl methanesulfonate [R Three = Hydrogen atom, R Four = Isobutyl group, R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-dimethyl-2-butynyl methanesulfonate [R Three = R Four = R Five = Methyl group, R 20 = Methyl group, x = 1], 1-ethynylcyclohexyl methanesulfonate [R Three = Hydrogen atom, R Four And R Five Is a bond = pentamethylene group, R 20 = Methyl group, x = 1], 1,1-phenylmethyl-2-propynyl methanesulfonate [R Three = Hydrogen atom, R Four = Phenyl group, R Five = Methyl group, R 20 = Methyl group, x = 1], 1,1-diphenyl-2-propynyl methanesulfonate [R Three = Hydrogen atom, R Four = R Five = Phenyl group, R 20 = Methyl group, x = 1], ethanesulfonic acid 1,1-dimethyl-2-propynyl [R Three = Hydrogen atom, R Four = R Five = Methyl group, R 20 = Ethyl group, x = 1] and the like. However, the present invention is not limited to these compounds.
[0040]
Specific examples of the alkyne derivative represented by the general formula (IV) include, for example, Y 2 = -COOR twenty one And Y Three = -COOR twenty two In the case of 2-butyne-1,4-diol dimethyl carbonate [R 6 = R 7 = R 8 = R 9 = Hydrogen atom, R twenty one = R twenty two = Methyl group, x = 1], 2-butyne-1,4-diol diethyl carbonate [R 6 = R 7 = R 8 = R 9 = Hydrogen atom, R twenty one = R twenty two = Ethyl group, x = 1], 3-hexyne-2,5-diol dimethyl dicarbonate [R 6 = R 8 = Methyl group, R 7 = R 9 = Hydrogen atom, R twenty one = R twenty two = Methyl group, x = 1], 3-hexyne-2,5-diol diethyldicarbonate [R 6 = R 8 = Methyl group, R 7 = R 9 = Hydrogen atom, R twenty one = R twenty two = Ethyl group, x = 1], 2,5-dimethyl-3-hexyne-2,5-diol dimethyl dicarbonate [R 6 = R 7 = R 8 = R 9 = Methyl group, R twenty one = R twenty two = Methyl group, x = 1], 2,5-dimethyl-3-hexyne-2,5-diol diethyl dicarbonate [R 6 = R 7 = R 8 = R 9 = Methyl group, R twenty one = R twenty two = Ethyl group, x = 1] and the like. Y 2 = -COR twenty one And Y Three = -COR twenty two In the case of 2-butyne-1,4-diol diacetate [R 6 = R 7 = R 8 = R 9 = Hydrogen atom, R twenty one = R twenty two = Methyl group, x = 1], 2-butyne-1,4-diol diacetate [R 6 = R 7 = R 8 = R 9 = Hydrogen atom, R twenty one = R twenty two = Methyl group, x = 1], 2-butyne-1,4-diol dipropionate [R 6 = R 7 = R 8 = R 9 = Hydrogen atom, R twenty one = R twenty two = Ethyl group, x = 1], 3-hexyne-2,5-diol diacetate [R 6 = R 8 = Methyl group, R 7 = R 9 = Hydrogen atom, R twenty one = R twenty two = Methyl group, x = 1], 3-hexyne-2,5-diol dipropionate [R 6 = R 8 = Methyl group, R 7 = R 9 = Hydrogen atom, R twenty one = R twenty two = Ethyl group, x = 1], 2,5-dimethyl-3-hexyne-2,5-diol diacetate [R 6 = R 7 = R 8 = R 9 = Methyl group, R twenty one = R twenty two = Methyl group, x = 1], 2,5-dimethyl-3-hexyne-2,5-diol dipropionate [R 6 = R 7 = R 8 = R 9 = Methyl group, R 121 = R twenty two = Ethyl group, x = 1] and the like. Y 2 = -SO 2 R twenty one And Y Three = -SO 2 R twenty two In the case of 2-butyne-1,4-diol dimethanesulfonate [R 6 = R 7 = R 8 = R 9 = Hydrogen atom, R twenty one = R twenty two = Methyl group, x = 1], 2-butyne-1,4-diol diethanesulfonate [R 6 = R 7 = R 8 = R 9 = Hydrogen atom, R twenty one = R twenty two = Ethyl group, x = 1], 3-hexyne-2,5-diol dimethanesulfonate [R 6 = R 8 = Methyl group, R 7 = R 9 = Hydrogen atom, R twenty one = R twenty two = Methyl group, x = 1], 3-hexyne-2,5-diol diethanesulfonate [R 6 = R 8 = Methyl group, R 7 = R 9 = Hydrogen atom, R twenty one = R twenty two = Ethyl group, x = 1], 2,5-dimethyl-3-hexyne-2,5-diol dimethanesulfonate [R 6 = R 7 = R 8 = R 9 = Methyl group, R twenty one = R twenty two = Methyl group, x = 1], 2,5-dimethyl-3-hexyne-2,5-diol diethanesulfonate [R 6 = R 7 = R 8 = R 9 = Methyl group, R twenty one = R twenty two = Ethyl group, x = 1] and the like. However, the present invention is not limited to these compounds.
[0041]
Specific examples of the alkyne derivative represented by the general formula (V) include, for example, Y Four = -COOR twenty three And Y Five = -COOR twenty four 2,4-hexadiyne-1,6-diol dimethyl dicarbonate [R Ten = R 11 = R 12 = R 13 = Hydrogen atom, R twenty three = R twenty four = Methyl group, x = 1], 2,4-hexadiyne-1,6-diol diethyl dicarbonate [R Ten = R 11 = R 12 = R 13 = Hydrogen atom, R twenty three = R twenty four = Ethyl group, x = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol dimethyldicarbonate [R Ten = R 11 = R 12 = R 13 = Methyl group, R twenty three = R twenty four = Methyl group, x = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol diethyl dicarbonate [R Ten = R 11 = R 12 = R 13 = Methyl group, R twenty three = R twenty four = Ethyl group, x = 1] and the like. Y Four = -COR twenty three And Y Five = -COR twenty four 2,4-hexadiyne-1,6-diol diacetate [R Ten = R 11 = R 12 = R 13 = Hydrogen atom, R twenty three = R twenty four = Methyl group, x = 1], 2,4-hexadiyne-1,6-diol dipropionate [R Ten = R 11 = R 12 = R 13 = Hydrogen atom, R twenty three = R twenty four = Ethyl group, x = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol diacetate [R Ten = R 11 = R 12 = R 13 = Methyl group, R twenty three = R twenty four = Methyl group, x = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol dipropionate [R Ten = R 11 = R 12 = R 13 = Methyl group, R twenty three = R twenty four = Ethyl group, x = 1] and the like. Y Four = -SO 2 R twenty three And Y Five = -SO 2 R twenty four 2,4-hexadiyne-1,6-diol dimethanesulfonate [R Ten = R 11 = R 12 = R 13 = Hydrogen atom, R twenty three = R twenty four = Methyl group, x = 1], 2,4-hexadiyne-1,6-diol diethanesulfonate [R Ten = R 11 = R 12 = R 13 = Hydrogen atom, R twenty three = R twenty four = Ethyl group, x = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol dimethanesulfonate [R Ten = R 11 = R 12 = R 13 = Methyl group, R twenty three = R twenty four = Methyl group, x = 1], 2,7-dimethyl-3,5-octadiyne-2,7-diol diethanesulfonate [R Ten = R 11 = R 12 = R 13 = Methyl group, R twenty three = R twenty four = Ethyl group, x = 1] and the like. However, the present invention is not limited to these compounds.
[0042]
Specific examples of the alkyne derivative represented by the general formula (VI) include, for example, dipropargyl carbonate [R 14 = R 15 = R 16 = R 17 = R 18 = R 19 = Hydrogen atom, x = 1], di (1-methyl-2-propynyl) carbonate [R 14 = R 16 = R 18 = R 19 = Hydrogen atom, R 15 = R 17 = Methyl group, x = 1], di (2-butynyl) carbonate [R 14 = R 19 = Methyl group, R 15 = R 16 = R 17 = R 18 = Hydrogen atom, x = 1], di (3-butynyl) carbonate [R 14 = R 15 = R 16 = R 17 = R 18 = R 19 = Hydrogen atom, x = 2], di (2-pentynyl) carbonate [R 14 = R 19 = Ethyl group, R 15 = R 16 = R 17 = R 18 = Hydrogen atom, x = 1], di (1-methyl-2-butynyl) carbonate [R 14 = R 15 = R 16 = R 19 = Methyl group, R 17 = R 18 = Hydrogen atom, x = 1], 2-propynyl 2-butynyl carbonate [R 14 = R 15 = R 16 = R 17 = R 18 = Hydrogen atom, R 19 = Methyl group, x = 1], di (1,1-dimethyl-2-propynyl) carbonate [R 14 = R 19 = Hydrogen atom, R 15 = R 16 = R 17 = R 18 = Methyl group, x = 1], di (1,1-diethyl-2-propynyl) carbonate [R 14 = R 19 = Hydrogen atom, R 15 = R 16 = R 17 = R 18 = Ethyl group, x = 1], di (1,1-ethylmethyl-2-propynyl) carbonate [R 14 = R 19 = Hydrogen atom, R 15 = R 17 = Ethyl group, R 16 = R 18 = Methyl group, x = 1], di (1,1-isobutylmethyl-2-propynyl) carbonate [R 14 = R 19 = Hydrogen atom, R 15 = R 17 = Isobutyl group, R 16 = R 18 = Methyl group, x = 1], di (1,1-dimethyl-2-butynyl) carbonate [R 14 = R 15 = R 16 = R 17 = R 18 = R 19 = Methyl group, x = 1], di (1-ethynylcyclohexyl) carbonate [R 14 = R 19 = Hydrogen atom, R 15 And R 16 Is a bond = pentamethylene group, R 17 And R 18 Is a bond = pentamethylene group, n = 1]. However, the present invention is not limited to these compounds.
[0043]
In the alkyne derivatives, if the content of the alkyne derivatives represented by the general formulas (III), (IV), (V), (VI) is excessively large, the conductivity of the electrolyte changes and the battery performance If the amount is too small, a sufficient film is not formed, and the expected battery characteristics cannot be obtained. A range of 5 to 5% by weight is preferred.
[0044]
As the non-aqueous solvent used in the present invention, a solvent mainly composed of cyclic carbonate and chain carbonate is preferable.
Suitable examples of the cyclic carbonate include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC). These high dielectric constant solvents may be used alone or in combination of two or more.
[0045]
Preferred examples of the chain carbonate include chain carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC). These high dielectric constant solvents may be used alone or in combination of two or more.
The content of the cyclic carbonate in the non-aqueous solvent is preferably 10% by weight or more and 70% by weight or less, and the content of the chain carbonate is preferably 30% by weight or more and 90% by weight or less.
Furthermore, a low-viscosity solvent can be contained. Specific examples of the low viscosity solvent include ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. Lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, methyl pivalate, ethyl pivalate, octyl pivalate, amides such as dimethylformamide, triethyl phosphate, tributyl phosphate, Examples thereof include phosphate esters such as trioctyl phosphate. These low viscosity solvents may be used alone or in combination of two or more.
[0046]
Examples of the electrolyte used in the present invention include LiPF. 6 , LiBF Four , LiAsF 6 LiClO Four , LiN (SO 2 CF Three ) 2 , LiN (SO 2 C 2 F Five ) 2 , LiC (SO 2 CF Three ) Three , LiPF Four (CF Three ) 2 , LiPF Three (C 2 F Five ) Three , LiPF Three (CF Three ) Three , LiPF Three (Iso-C Three F 7 ) Three , LiPF Five (Iso-C Three F 7 ) And the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are used by being dissolved in the non-aqueous solvent usually at a concentration of 0.1 to 3M, preferably 0.5 to 1.5M.
[0047]
The nonaqueous electrolytic solution of the present invention is prepared by, for example, mixing a high dielectric constant solvent and a low viscosity solvent, dissolving the electrolyte therein, and the alkoxybenzene derivative represented by the formulas (I) and (II) and the formula (III) It can be obtained by dissolving alkyne derivatives represented by (IV), (V), (VI).
[0048]
For example, a composite metal oxide of at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron, and vanadium and lithium is used as the positive electrode active material. As such a composite metal oxide, for example, LiCoO 2 , LiMn 2 O Four , LiNiO 2 Etc.
[0049]
The positive electrode is composed of a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), a copolymer of acrylonitrile and butadiene. After kneading with a binder such as a polymer (NBR) and carboxymethyl cellulose (CMC) and a solvent to form a positive electrode mixture, this positive electrode material is applied to an aluminum foil or stainless steel lath plate as a current collector. After drying and pressure molding, it is produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
[0050]
As the negative electrode active material, a material containing graphite having a graphite-type crystal structure capable of inserting and extracting lithium, such as natural graphite and artificial graphite, is used. In particular, the lattice spacing (d) of the lattice plane (002) 002 ) Is preferably a carbon material having a graphite type crystal structure of 0.335 to 0.340 nm (nanometer). Powder materials such as carbon materials are ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), and a copolymer of acrylonitrile and butadiene. Kneaded with a binder such as a polymer (NBR) or carboxymethylcellulose (CMC) and used as a negative electrode mixture.
[0051]
The structure of the lithium secondary battery is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a cylindrical battery or a square type having a positive electrode, a negative electrode, and a roll separator. An example is a battery. A known polyolefin microporous film, woven fabric, non-woven fabric or the like is used as the separator.
[0052]
In the voltage range of the charge / discharge cycle of the lithium secondary battery in the present invention, the maximum operating voltage is preferably greater than 4.1V, more preferably greater than 4.2V, and most preferably 4.3V or more. The cut-off voltage is preferably 2.0 V or higher, more preferably 2.5 V or higher. Although it does not specifically limit about an electric current value, Usually, it is used by 0.1-2C constant current discharge. The temperature range of the charge / discharge cycle is preferably −40 to 100 ° C., and more preferably 40 to 80 ° C.
[0053]
【Example】
Next, an Example and a comparative example are given and this invention is demonstrated concretely.
Example 1
(Preparation of non-aqueous electrolyte)
A non-aqueous solvent of PC: DMC (volume ratio) = 1: 2 was prepared, and this was added to LiPF. 6 Was dissolved to a concentration of 1M to prepare a non-aqueous electrolyte, and then 1,2,4-trimethoxybenzene [in formula (I), R 1 = Methyl group, R 2 = All methyl groups, m = 2] 0.1% by weight, and 2-propynyl methanesulfonate [in formula (III), Y 1 = -SO 2 R 20 , R Three = R Four = R Five = Hydrogen atom, R 20 = Methyl group, x = 1] was added to 2.0 wt%.
[0054]
[Production of lithium secondary battery and measurement of battery characteristics]
LiCoO 2 80% by weight of (positive electrode active material), 10% by weight of acetylene black (conductive agent), and 10% by weight of polyvinylidene fluoride (binder) are mixed, and 1-methyl-2-pyrrolidone solvent is added thereto. In addition, the mixture was applied onto an aluminum foil, dried, pressure-molded, and heat-treated to prepare a positive electrode. 90% by weight of natural graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) are mixed, and a 1-methyl-2-pyrrolidone solvent is added thereto, and the resulting mixture is added to a copper foil. The negative electrode was prepared by drying, pressure molding, and heat treatment. And using the separator of a polypropylene microporous film, said nonaqueous electrolyte solution was inject | poured and the coin battery (diameter 20mm, thickness 3.2mm) was produced.
Using this coin battery, the battery was charged to 4.3 V at a constant current of 0.8 mA at a high temperature (40 ° C.), and then charged at a constant voltage as a final voltage of 4.3 V for a total of 6 hours. Next, the battery was discharged to a final voltage of 2.7 V under a constant current of 0.8 mA, and this charge / discharge was repeated. Initial discharge capacity is 1M LiPF 6 + EC: PC: DEC (capacity ratio) = 3: 1: 6 relative ratio when the non-aqueous electrolyte (Comparative Example 4; no addition of alkoxybenzene derivative and alkyne derivative) was set to 1. Further, the discharge capacity retention rate after 100 cycles when the initial discharge capacity was 100% was 92.5%. Also, the low temperature characteristics were good. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0055]
Comparative Example 1
A non-aqueous solvent of PC: DMC (volume ratio) = 1: 2 was prepared, and this was added to LiPF. 6 Was dissolved to a concentration of 1M. At this time, no alkoxybenzenebenzene derivative or alkyne derivative was added. Using this non-aqueous electrolyte, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0056]
Comparative Example 2
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that only 1,2,4-trimethoxybenzene was used as an additive in an amount of 0.1% by weight based on the non-aqueous electrolyte. . The battery characteristics were measured in the same manner as in Example 1 except that this non-aqueous electrolyte was used to charge the battery to a final voltage of 4.3 V for 6 hours. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0057]
Comparative Example 3
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that only 2-propynyl methanesulfonate was used as an additive in an amount of 2.0% by weight based on the non-aqueous electrolyte, and a coin battery was produced. The production conditions and battery characteristics of the coin battery are shown in Table 1.
[0058]
[Table 1]
Figure 0004304404
[0059]
Example 2
EC / PC / DEC (volume ratio) = 3/6/6 non-aqueous solvent was prepared, and LiPF 6 Was dissolved to a concentration of 1 M to prepare an electrolytic solution, and 0.05% by weight of 1,2,4-trimethoxybenzene and dipropargyl carbonate [formula (VI ) Medium, R 14 = R 15 = R 16 = R 17 = R 18 = R 19 = Hydrogen atom, x = 1] was used as a 1.0 wt% additive, and a non-aqueous electrolyte was prepared in the same manner as in Example 1 to produce a coin battery. Table 2 shows the production conditions and battery characteristics of the coin battery.
[0060]
Example 3 to Example 5
A non-aqueous electrolyte was prepared in the same manner as in Example 2 except that the amounts used of 1,2,4-trimethoxybenzene and dipropargyl carbonate were changed to produce a coin battery. Table 2 shows the production conditions and battery characteristics of the coin battery.
[0061]
Comparative Example 4
A non-aqueous electrolyte was prepared in the same manner as in Example 2 except that 1,2,4-trimethoxybenzene and dipropargyl carbonate were not added, and a coin battery was produced. Table 2 shows the production conditions and battery characteristics of the coin battery.
[0062]
Comparative Example 5
Non-aqueous solution as in Example 2 except that 2.5% by weight of 1,2-dimethoxybenzene was added to the electrolyte instead of 1,2,4-trimethoxybenzene, and dipropargyl carbonate was not added. An electrolyte solution was prepared to produce a coin battery. Table 2 shows the production conditions and battery characteristics of the coin battery.
[0063]
Comparative Example 6
A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as in Comparative Example 5 except that the end voltage during charging was 4.1 V. Table 2 shows the production conditions and battery characteristics of the coin battery.
[0064]
Comparative Example 7
The same as in Example 2 except that 2.5% by weight of 1,3,5-trimethoxybenzene was added to the electrolyte instead of 1,2,4-trimethoxybenzene and no dipropargyl carbonate was added. A non-aqueous electrolyte was prepared to prepare a coin battery. Table 2 shows the production conditions and battery characteristics of the coin battery.
[0065]
Comparative Example 8
Non-aqueous solution as in Example 2 except that 1,2-dimethoxybenzene was added in an amount of 0.1% by weight with respect to the electrolyte solution instead of 1,2,4-trimethoxybenzene, and dipropargyl carbonate was not added. An electrolyte solution was prepared to produce a coin battery. Table 2 shows the production conditions and battery characteristics of the coin battery.
[0066]
Comparative Example 9
A non-aqueous electrolyte was prepared in the same manner as in Example 2 except that 1.0% by weight of dipropargyl carbonate was added to the electrolyte and 1,2,4-trimethoxybenzene was not added. Produced. Table 2 shows the production conditions and battery characteristics of the coin battery.
[0067]
[Table 2]
Figure 0004304404
[0068]
Example 6
1,2-diethoxybenzene instead of 1,2,4-trimethoxybenzene for the non-aqueous electrolyte [in the formula (I), R 1 = R 2 = Ethyl group, m = 1] is added in an amount of 0.1% by weight, and 1,1-dimethyl-2-propynylmethyl carbonate [in formula (III), Y in place of dipropargyl carbonate 1 = -COOR 20 , R Three = Hydrogen atom, R Four = R Five = Methyl group, R 20 = Methyl group, x = 1] was added in the same manner as in Example 2 except that 2.0% by weight was added to prepare a coin battery. Table 3 shows the production conditions and battery characteristics of the coin battery.
[0069]
Example 7 to Example 11
A non-aqueous electrolyte was prepared in the same manner as in Example 6 except that the alkoxybenzene derivative and the alkyne derivative were changed as shown in Table 3, and a coin battery was produced. Table 3 shows the production conditions and battery characteristics of the coin battery.
[0070]
Examples 12-14
A non-aqueous electrolyte was prepared in the same manner as in Example 6 except that artificial graphite was used in place of natural graphite as the negative electrode active material, and the alkoxybenzene derivative and alkyne derivative were changed as shown in Table 3. Produced. Table 3 shows the production conditions and battery characteristics of the coin battery.
[0071]
[Table 3]
Figure 0004304404
[0072]
Example 15
LiCoO as positive electrode active material 2 Instead of LiMn 2 O Four Artificial graphite instead of natural graphite is used as the negative electrode active material, and 0.1% by weight of 1,2,4-trimethoxybenzene with respect to the non-aqueous electrolyte, and methanesulfonic acid 2- A non-aqueous electrolyte was prepared in the same manner as in Example 2 except that 2.0% by weight of propynyl was used to produce a coin battery. The initial discharge capacity was 0.85 in relative ratio when Comparative Example 4 was 1. When the battery characteristics after 100 cycles were measured, the discharge capacity retention rate was 93.9%. Table 4 shows the production conditions and battery characteristics of the coin battery.
[0073]
Example 16 and Comparative Examples 10-11
A non-aqueous electrolyte was prepared in the same manner as in Example 15 except that the alkoxybenzene derivative and alkyne derivative were changed as shown in Table 4, and a coin battery was produced. Table 4 shows the production conditions and battery characteristics of the coin battery.
[0074]
[Table 4]
Figure 0004304404
[0075]
As described above, when 0.001 to 0.8 wt% of the alkoxybenzene derivative and 0.1 to 10 wt% of the alkyne derivative are added in the present invention, the upper limit voltage is higher than 4.1 V and / or 40 ° C. It was found that the cycle characteristics were clearly superior in the charge and discharge in the above high temperature state.
[0076]
In addition, this invention is not limited to the Example described, The various combination which can be easily guessed from the meaning of invention is possible. In particular, the combination of solvents in the above examples is not limited. Furthermore, although the said Example is related with a coin battery, this invention is applied also to a cylindrical, prismatic battery, and a laminated polymer.
[0077]
【The invention's effect】
According to the present invention, it is possible to provide a lithium secondary battery excellent in battery characteristics such as battery cycle characteristics, electric capacity, and storage characteristics.

Claims (12)

正極、負極および非水溶媒に電解質が溶解されている非水電解液からなるリチウム二次電池において、正極がリチウム複合酸化物を含む材料であり、負極がグラファイトを含む材料であり、非水溶媒は環状カーボネートおよび鎖状カーボネートを主成分とし、且つ前記非水電解液中に下記一般式(I)、(II)
Figure 0004304404
Figure 0004304404
(式中、R1、R2はそれぞれ独立してメチル基またはエチル基を示し、mは1〜3の置換基数を示す。ただし、m=2または3の場合は、R2はそれぞれ独立してメチル基またはエチル基を示す。n=1または2の整数を示す。)で表されるアルコキシベンゼン誘導体が0.001〜0.8重量%、および下記一般式(III)、(IV)、(V)、(VI)
Figure 0004304404
Figure 0004304404
Figure 0004304404
Figure 0004304404
(式中、R3〜R19は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基、または水素原子を示す。また、R4とR5、R6とR7、R8とR9、R10とR11、R12とR13、R15とR16、R17とR18は、互いに結合して炭素数3〜6のシクロアルキル基を形成していても良い。式中、Y1は、−COOR20、−COR20または−SO220、Y2は、−COOR21、−COR21または−SO221、Y3は、−COOR22、−COR22または−SO222、Y4は、−COOR23、−COR23または−SO223、およびY5は、−COOR24、−COR24または−SO224を示し、前記R20、R21、R22、R23およびR24は、それぞれ独立して、炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。ただし、xは1または2の整数を示す。)で表されるアルキン誘導体が0.1〜10重量%含有されていることを特徴とするリチウム二次電池。
In a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, the positive electrode is a material containing a lithium composite oxide, the negative electrode is a material containing graphite, and a non-aqueous solvent Is mainly composed of a cyclic carbonate and a chain carbonate, and in the non-aqueous electrolyte, the following general formulas (I) and (II)
Figure 0004304404
Figure 0004304404
(In the formula, R 1 and R 2 each independently represents a methyl group or an ethyl group, and m represents the number of substituents of 1 to 3. However, when m = 2 or 3, R 2 is independently selected. A methyl group or an ethyl group, n represents an integer of 1 or 2, and an alkoxybenzene derivative represented by 0.001 to 0.8% by weight, and the following general formulas (III), (IV), (V), (VI)
Figure 0004304404
Figure 0004304404
Figure 0004304404
Figure 0004304404
(Wherein R 3 to R 19 each independently represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an aryl group, or a hydrogen atom. Also, R 4 and R 5 R 6 and R 7 , R 8 and R 9 , R 10 and R 11 , R 12 and R 13 , R 15 and R 16 , R 17 and R 18 are bonded to each other to form a cycloalkyl having 3 to 6 carbon atoms. In the formula, Y 1 represents —COOR 20 , —COR 20 or —SO 2 R 20 , Y 2 represents —COOR 21 , —COR 21 or —SO 2 R 21 , Y 3. Is —COOR 22 , —COR 22 or —SO 2 R 22 , Y 4 is —COOR 23 , —COR 23 or —SO 2 R 23 , and Y 5 is —COOR 24 , —COR 24 or —SO 2. R 24 , wherein R 20 , R 21 , R 22 , R 23 and R 24 are each independently an alkyl group having 1 to 12 carbon atoms, 3 carbon atoms A cycloalkyl group and an aryl group of -6, wherein x is an integer of 1 or 2, and 0.1 to 10% by weight of an alkyne derivative is contained. Next battery.
前記非水溶媒中の環状カーボネートの含有量が10重量%以上70重量%以下であり、前記鎖状カーボネートの含有量が30重量%以上90重量%以下である請求項1記載のリチウム二次電池。2. The lithium secondary battery according to claim 1, wherein the content of the cyclic carbonate in the non-aqueous solvent is 10 wt% or more and 70 wt% or less, and the content of the chain carbonate is 30 wt% or more and 90 wt% or less. . 前記環状カーボネートは、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびビニレンカーボネートから選ばれる少なくとも一種以上である請求項1記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the cyclic carbonate is at least one selected from ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate. 前記鎖状カーボネートは、ジメチルカーボネート、ジエチルカーボネートおよびメチルエチルカーボネートから選ばれる少なくとも一種以上である請求項1記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the chain carbonate is at least one selected from dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. 前記グラファイトが天然黒鉛または人造黒鉛である請求項1記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the graphite is natural graphite or artificial graphite. 前記グラファイトの格子面(002)の面間隔(d002)が0.335〜0.340nmである請求項1記載のリチウム二次電池。2. The lithium secondary battery according to claim 1, wherein an interval (d 002 ) between lattice planes (002) of the graphite is 0.335 to 0.340 nm. リチウム複合酸化物を含む材料からなる正極およびグラファイトを含む材料からなる負極を備えたリチウム二次電池用非水電解液において、前記非水電解液は非水溶媒に電解質が溶解されている非水電解液であって、非水溶媒は環状カーボネートおよび鎖状カーボネートを主成分とし、且つ前記非水電解液中に前記一般式(I)、(II)
Figure 0004304404
Figure 0004304404
(式中、R1、R2はそれぞれ独立してメチル基またはエチル基を示し、mは1〜3の置換基数を示す。ただし、m=2または3の場合は、R2はそれぞれ独立してメチル基またはエチル基を示す。n=1または2の整数を示す。)で表されるアルコキシベンゼン誘導体が0.001〜0.8重量%、および下記一般式(III)、(IV)、(V)、(VI)
Figure 0004304404
Figure 0004304404
Figure 0004304404
Figure 0004304404
(式中、R3〜R19は、それぞれ独立して炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基、または水素原子を示す。また、R4とR5、R6とR7、R8とR9、R10とR11、R12とR13、R15とR16、R17とR18は、互いに結合して炭素数3〜6のシクロアルキル基を形成していても良い。式中、Y1は、−COOR20、−COR20または−SO220、Y2は、−COOR21、−COR21または−SO221、Y3は、−COOR22、−COR22または−SO222、Y4は、−COOR23、−COR23または−SO223、およびY5は、−COOR24、−COR24または−SO224を示し、前記R20、R21、R22、R23およびR24は、それぞれ独立して、炭素数1〜12のアルキル基、炭素数3〜6のシクロアルキル基、アリール基を示す。ただし、xは1または2の整数を示す。)で表されるアルキン誘導体が0.1〜10重量%含有されていることを特徴とするリチウム二次電池用非水電解液。
In a non-aqueous electrolyte for a lithium secondary battery provided with a positive electrode made of a material containing a lithium composite oxide and a negative electrode made of a material containing graphite, the non-aqueous electrolyte is a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent. An electrolyte solution, wherein the non-aqueous solvent is mainly composed of a cyclic carbonate and a chain carbonate, and the non-aqueous electrolyte contains the general formulas (I) and (II).
Figure 0004304404
Figure 0004304404
(In the formula, R 1 and R 2 each independently represents a methyl group or an ethyl group, and m represents the number of substituents of 1 to 3. However, when m = 2 or 3, R 2 is independently selected. A methyl group or an ethyl group, n represents an integer of 1 or 2, and an alkoxybenzene derivative represented by 0.001 to 0.8% by weight, and the following general formulas (III), (IV), (V), (VI)
Figure 0004304404
Figure 0004304404
Figure 0004304404
Figure 0004304404
(Wherein R 3 to R 19 each independently represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an aryl group, or a hydrogen atom. Also, R 4 and R 5 R 6 and R 7 , R 8 and R 9 , R 10 and R 11 , R 12 and R 13 , R 15 and R 16 , R 17 and R 18 are bonded to each other to form a cycloalkyl having 3 to 6 carbon atoms. In the formula, Y 1 represents —COOR 20 , —COR 20 or —SO 2 R 20 , Y 2 represents —COOR 21 , —COR 21 or —SO 2 R 21 , Y 3. Is —COOR 22 , —COR 22 or —SO 2 R 22 , Y 4 is —COOR 23 , —COR 23 or —SO 2 R 23 , and Y 5 is —COOR 24 , —COR 24 or —SO 2. R 24 , wherein R 20 , R 21 , R 22 , R 23 and R 24 are each independently an alkyl group having 1 to 12 carbon atoms, 3 carbon atoms A cycloalkyl group and an aryl group of -6, wherein x is an integer of 1 or 2, and 0.1 to 10% by weight of an alkyne derivative is contained. Nonaqueous electrolyte for secondary batteries.
前記非水溶媒中の環状カーボネートの含有量が10重量%以上70重量%以下であり、前記鎖状カーボネートの含有量が30重量%以上90重量%以下である請求項7記載のリチウム二次電池用非水電解液。The lithium secondary battery according to claim 7, wherein the content of the cyclic carbonate in the non-aqueous solvent is 10% by weight or more and 70% by weight or less, and the content of the chain carbonate is 30% by weight or more and 90% by weight or less. Non-aqueous electrolyte for use. 前記環状カーボネートは、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびビニレンカーボネートから選ばれる少なくとも一種以上である請求項7記載のリチウム二次電池用非水電解液。The non-aqueous electrolyte for a lithium secondary battery according to claim 7, wherein the cyclic carbonate is at least one selected from ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate. 前記鎖状カーボネートは、ジメチルカーボネート、ジエチルカーボネートおよびメチルエチルカーボネートから選ばれる少なくとも一種以上である請求項7記載のリチウム二次電池用非水電解液。The non-aqueous electrolyte for a lithium secondary battery according to claim 7, wherein the chain carbonate is at least one selected from dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. 前記グラファイトが天然黒鉛または人造黒鉛である請求項7記載のリチウム二次電池用非水電解液。The non-aqueous electrolyte for a lithium secondary battery according to claim 7, wherein the graphite is natural graphite or artificial graphite. 前記グラファイトの格子面(002)の面間隔(d002)が0.335〜0.340nmである請求項7記載のリチウム二次電池用非水電解液。The non-aqueous electrolyte for a lithium secondary battery according to claim 7, wherein a plane interval (d 002 ) of the graphite lattice plane (002) is 0.335 to 0.340 nm.
JP2000302080A 2000-10-02 2000-10-02 Non-aqueous electrolyte and lithium secondary battery using the same Expired - Fee Related JP4304404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000302080A JP4304404B2 (en) 2000-10-02 2000-10-02 Non-aqueous electrolyte and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000302080A JP4304404B2 (en) 2000-10-02 2000-10-02 Non-aqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2002110234A JP2002110234A (en) 2002-04-12
JP4304404B2 true JP4304404B2 (en) 2009-07-29

Family

ID=18783501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000302080A Expired - Fee Related JP4304404B2 (en) 2000-10-02 2000-10-02 Non-aqueous electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4304404B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448275B2 (en) 2001-05-11 2010-04-07 三星エスディアイ株式会社 ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
WO2005008829A1 (en) * 2003-07-17 2005-01-27 Ube Industries, Ltd. Nonaqueous electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP4819795B2 (en) * 2004-04-01 2011-11-24 スリーエム イノベイティブ プロパティズ カンパニー Lithium ion battery electrolyte and lithium ion battery
ES2406956T3 (en) * 2004-05-28 2013-06-10 Ube Industries, Ltd. Non-aqueous electrolyte solution and secondary lithium battery
WO2006077763A1 (en) * 2005-01-20 2006-07-27 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
WO2007020876A1 (en) * 2005-08-18 2007-02-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP5561163B2 (en) * 2008-07-15 2014-07-30 宇部興産株式会社 Nonaqueous electrolyte for lithium battery, lithium battery using the same, and formyloxy group-containing compound used therefor
JP2010027361A (en) * 2008-07-18 2010-02-04 Denso Corp Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using nonaqueous electrolyte
JP5230341B2 (en) * 2008-10-09 2013-07-10 株式会社デンソー Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the electrolyte
WO2011142412A1 (en) * 2010-05-12 2011-11-17 三菱化学株式会社 Nonaqueous-electrolyte secondary battery
CN103109410A (en) 2010-09-16 2013-05-15 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
CN104205471B (en) * 2012-03-23 2017-12-19 宇部兴产株式会社 Nonaqueous electrolytic solution and the electric energy storage device for having used the nonaqueous electrolytic solution
US20150024267A1 (en) * 2012-03-30 2015-01-22 University Of Seoul Industry Cooperation Foundation Electrolyte having improved high-rate charge and discharge property, and capacitor comprising same
CN108140889B (en) * 2015-10-09 2020-12-25 宇部兴产株式会社 Nonaqueous electrolyte solution and electricity storage device using same

Also Published As

Publication number Publication date
JP2002110234A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP5626379B2 (en) Non-aqueous electrolyte for lithium secondary battery
US6503662B1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3951486B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US7976988B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
EP1729365A1 (en) Nonaqueous electrolyte solution and lithium secondary battery using same
KR20070103296A (en) Nonaqueous secondary cell
JPWO2010016475A1 (en) Nonaqueous electrolyte and lithium battery using the same
JP2001313071A (en) Nonaqueous electrolyte and lithium secondary cell using it
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4304404B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP5070780B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
EP2369671A1 (en) Non-aqueous electrolyte secondary battery
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3663897B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JPH11273724A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
US20030148190A1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4075416B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4517730B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP2000195546A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees