JP4304279B2 - Method for producing ultrafine metal particles having an organic film formed on the surface - Google Patents

Method for producing ultrafine metal particles having an organic film formed on the surface Download PDF

Info

Publication number
JP4304279B2
JP4304279B2 JP2006082340A JP2006082340A JP4304279B2 JP 4304279 B2 JP4304279 B2 JP 4304279B2 JP 2006082340 A JP2006082340 A JP 2006082340A JP 2006082340 A JP2006082340 A JP 2006082340A JP 4304279 B2 JP4304279 B2 JP 4304279B2
Authority
JP
Japan
Prior art keywords
metal
particles
ultrafine
organic
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006082340A
Other languages
Japanese (ja)
Other versions
JP2007254841A (en
Inventor
皓一 新原
久幸 末松
江  偉華
忠親 中山
常生 鈴木
啓一 村井
祐介 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2006082340A priority Critical patent/JP4304279B2/en
Publication of JP2007254841A publication Critical patent/JP2007254841A/en
Application granted granted Critical
Publication of JP4304279B2 publication Critical patent/JP4304279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material

Description

本発明は、大気中でも酸化しにくい金属超微粒子の製造方法及び該製造方法に使用する製造装置に関する。   The present invention relates to a method for producing ultrafine metal particles that are difficult to oxidize in the atmosphere and a production apparatus used in the production method.

現在多くの電子機器の導線として、導電性ペーストが使用されている。このペーストの中には金属粒子が分散されており、ペーストの揮発成分を蒸発させることにより、任意の形状の導線が作製できる。現在、このペーストには直径200nm程度の金属粒子が使用されているが電子部品の小型化の要求により、このペースト厚も薄膜化が求められ、ペースト中に分散される金属粒子の粒径を小さくすることが必要とされている。   Currently, conductive paste is used as a conductor of many electronic devices. Metal particles are dispersed in the paste, and a conductor having an arbitrary shape can be produced by evaporating the volatile components of the paste. Currently, metal particles having a diameter of about 200 nm are used in this paste, but due to the demand for downsizing of electronic components, the thickness of this paste is also required to be reduced, and the particle size of the metal particles dispersed in the paste is reduced. There is a need to do.

一方、金属粒子の粒径を小さくすると、比表面積が大きくなり、酸化速度が増大する。金属微粒子の表面が酸化されると導電性が低下するため、導電性ペーストに使用する金属微粒子は高価な不活性ガス中で保存する必要があり、金属微粒子の作製とその保存は困難であった。このため、金属微粒子の作製、ひいては電子部品の小型化への大きな障害となっていた。   On the other hand, when the particle size of the metal particles is reduced, the specific surface area is increased and the oxidation rate is increased. When the surface of the metal fine particles is oxidized, the conductivity is lowered. Therefore, it is necessary to store the metal fine particles used in the conductive paste in an expensive inert gas, and it is difficult to produce and store the metal fine particles. . For this reason, it has been a major obstacle to the production of metal fine particles and consequently to the miniaturization of electronic components.

このような問題点を解決するために、本発明者等は先に、有機物蒸気・ミスト中で金属細線をパルス通電加熱して、発生した金属蒸気を凝結させた直後に金属微粒子表面に有機物被膜を形成することにより有機物被覆金属超微粒子を作製する方法を提案した。(特許文献1、2参照)
特開2004−107784号公報 特開2005−272897号公報
In order to solve such problems, the present inventors previously applied a metal film on the surface of the metal fine particles immediately after the metal vapor was heated by pulse current heating in the organic vapor / mist to condense the generated metal vapor. We proposed a method to fabricate organic-coated metal ultrafine particles by forming. (See Patent Documents 1 and 2)
JP 2004-107784 A JP 2005-272897 A

この方法はエネルギー変換効率の高いパルス細線放電法を利用して超微粒子作製するものであるが、有機物蒸気・ミストを発生させるために、熱拡散によるエネルギー損失が大きいヒーターによって反応室を加熱して有機物を蒸発させる必要があった。このため、金属微粒子の製造に多大のエネルギーを必要とし、超微粒子製造コストを下げることが出来なかった。さらに、反応室内に有機物を均一に蒸発分散させることが必要となり、その製造装置の構成が複雑化し、製造装置自体も高価なものとなるという問題があった。   In this method, ultrafine particles are produced using the pulsed wire discharge method with high energy conversion efficiency. In order to generate organic vapor and mist, the reaction chamber is heated by a heater with a large energy loss due to thermal diffusion. It was necessary to evaporate the organics. For this reason, enormous energy was required for the production of metal fine particles, and the production cost of ultrafine particles could not be reduced. Furthermore, it is necessary to uniformly evaporate and disperse the organic substance in the reaction chamber, which complicates the configuration of the manufacturing apparatus and causes the manufacturing apparatus itself to be expensive.

したがって、本発明は上記従来技術の問題点を解消して、簡単な工程で外部加熱装置を必要とせずに、高いエネルギー効率で表面に有機物被膜が形成された、大気中でも酸化しにくい金属超微粒子を効率良く製造する方法、及び該方法に使用する安価で簡単な構成の製造装置を提供することを目的とする。   Therefore, the present invention solves the above-mentioned problems of the prior art, and does not require an external heating device in a simple process, and an organic coating film is formed on the surface with high energy efficiency, and is a metal ultrafine particle that is not easily oxidized in the atmosphere. It is an object of the present invention to provide a method for efficiently manufacturing a device and a manufacturing apparatus having a low-cost and simple configuration used in the method.

本発明者等は鋭意検討した結果、金属超微粒子の原料となる金属細線に有機物を直接塗布することによって、高いエネルギー効率で金属蒸気及び有機物蒸気・ミストを同時に発生させることができることを見出し、本発明を完成したものである。
すなわち、本発明は次の1〜3の構成をとるものである。
1.沸点が400℃以下で、常温常圧で液体である有機物を塗布した金属細線に、0.1〜50μsの間パルス電流を通電することにより発生した蒸気を不活性気体中で凝結させることを特徴とする、平均粒径が5〜100nmで表面に有機物被膜を形成した金属超微粒子の製造方法。
2.金属細線がNi、Cu、Sn、Bi、Ag、Inからなる群から選択された1種又は2種以上の金属により構成されたものであることを特徴とする1に記載された金属超微粒子の製造方法。
3.有機物が鉱物油、炭素数1〜18の脂肪族カルボン酸、炭素数1〜5の脂肪族低級アルコール、3−エチル−3−ヒドロキシメチルオキセタン、1,6−ヘキサンジオールジグリシジルエーテルから選択されたものであることを特徴とする1又は2に記載された金属超微粒子の製造方法。
As a result of intensive studies, the present inventors have found that by directly applying an organic substance to a fine metal wire that is a raw material of ultrafine metal particles, it is possible to simultaneously generate metal vapor and organic vapor / mist with high energy efficiency. The invention has been completed.
That is, this invention takes the structure of the following 1-3.
1. It is characterized in that vapor generated by applying a pulse current for 0.1 to 50μs to a thin metal wire coated with an organic substance that has a boiling point of 400 ° C. or less and is liquid at normal temperature and pressure is condensed in an inert gas. The manufacturing method of the metal ultrafine particle which formed the organic substance film in the surface with an average particle diameter of 5-100 nm.
2. 1. The ultrafine metal particles according to 1, wherein the fine metal wire is composed of one or more metals selected from the group consisting of Ni, Cu, Sn, Bi, Ag, and In. Production method.
3. The organic substance was selected from mineral oil, aliphatic carboxylic acid having 1 to 18 carbon atoms, aliphatic lower alcohol having 1 to 5 carbon atoms, 3-ethyl-3-hydroxymethyloxetane, and 1,6-hexanediol diglycidyl ether. metal ultrafine particles production method according to 1 or 2, characterized in that.

本発明の製造方法によれば、耐酸化性に優れた有機物被覆金属超微粒子を、外部加熱装置を必要とせずに高いエネルギー効率で安価に製造することができる。また、本発明の製造装置は、簡単な構成で装置の小型化、低コスト化を図り、有機物被覆金属超微粒子を安価に製造することができる。有機物蒸気・ミストを使用する従来の技術では、金属超微粒子の重量の2倍以上の重量の有機物を蒸発させる必要があったが、本発明では有機物の使用量を金属超微粒子の重量の0.2〜1.9倍程度の量に抑えることができるので、更なる低コスト化を可能とした。
本発明は、小型積層セラミックコンデンサーや、電解コンデンサー代替大容量積層セラミックコンデンサー等の、次世代電子機器用基盤部品の実用的生産の道を拓くものであり、極めて実用的価値の高いものである。
According to the production method of the present invention, it is possible to produce organic-coated metal ultrafine particles excellent in oxidation resistance at low cost with high energy efficiency without requiring an external heating device. In addition, the manufacturing apparatus of the present invention can reduce the size and cost of the apparatus with a simple configuration and can manufacture organic-coated metal ultrafine particles at low cost. In the conventional technique using the organic vapor / mist, it is necessary to evaporate an organic substance having a weight more than twice the weight of the ultrafine metal particles. Since the amount can be reduced to about 2 to 1.9 times, further cost reduction can be achieved.
The present invention opens up the path of practical production of base parts for next-generation electronic devices, such as small monolithic ceramic capacitors and large-capacity monolithic ceramic capacitors that replace electrolytic capacitors, and has extremely high practical value.

つぎに、本発明の好適な実施形態について図面を参照しながら説明するが、以下の具体例は本発明を限定するものではない。
図1は、本発明の有機物被覆金属超微粒子の製造装置の1例を示す模式図である。
この製造装置1は、不活性ガス供給装置2を備えた密閉可能な反応室3内に、有機物を塗布した金属細線4を保持する電極5を配置し、該電極5にコンデンサー6、及び電源7を接続すると共にギャップスイッチ9を設けたものである。そして、反応室3には生成した金属超微粒子を回収するためのフイルター8が設置されている。製造装置1を構成する各部材の寸法は任意に選択することができるが、例えば反応室3の体積としては、通常は1〜10L程度とすることが好ましい。
Next, preferred embodiments of the present invention will be described with reference to the drawings, but the following specific examples do not limit the present invention.
FIG. 1 is a schematic view showing an example of an apparatus for producing organic coated metal ultrafine particles of the present invention.
In this manufacturing apparatus 1, an electrode 5 that holds a thin metal wire 4 coated with an organic substance is disposed in a sealable reaction chamber 3 equipped with an inert gas supply device 2, and a capacitor 6 and a power source 7 are disposed on the electrode 5. And a gap switch 9 is provided. The reaction chamber 3 is provided with a filter 8 for collecting the generated ultrafine metal particles. Although the dimension of each member which comprises the manufacturing apparatus 1 can be selected arbitrarily, as a volume of the reaction chamber 3, for example, it is usually preferable to set it as about 1-10L.

この製造装置1を使用して有機物被覆金属超微粒子を製造するには、反応室3内の電極5に有機物を塗布した金属細線4を保持させて、窒素、ヘリウム、アルゴン等の不活性気体を充填した後にコンデンサー6によりパルス電流を通電し、金属蒸気と有機物蒸気ミストを同時に発生させ、不活性気体中で金属超微粒子を凝結させることによって、表面に有機物被膜を形成した平均粒径が5〜100nm程度の金属超微粒子を製造する。
有機物を塗布した金属細線には、あらかじめ電源7により0.1〜20KV程度、好ましくは1〜10KV程度に充電したコンデンサー6からパルス大電流を0.01〜100μs程度、好ましくは0.1〜50μs程度通電するが、パルス電流の通電量、時間等は、金属或いは有機物の種類に応じて適宜選択することができる。
In order to produce organic matter-coated metal ultrafine particles using this production apparatus 1, an inert gas such as nitrogen, helium, argon, etc. is held by holding a metal thin wire 4 coated with an organic matter on an electrode 5 in a reaction chamber 3. After filling, a pulse current is applied by the condenser 6 to simultaneously generate metal vapor and organic vapor mist, and by condensing ultrafine metal particles in an inert gas, the average particle size of the organic film formed on the surface is 5 to 5. Metal ultrafine particles of about 100 nm are manufactured.
The fine metal wire coated with an organic substance is subjected to a pulse high current of about 0.01 to 100 μs, preferably 0.1 to 50 μs from a capacitor 6 charged in advance by the power source 7 to about 0.1 to 20 KV, preferably about 1 to 10 KV. The energization amount and time of the pulse current can be appropriately selected according to the type of metal or organic matter.

金属細線を構成する好ましい金属としては、Sc、Ti、V、Cr、Mn、Fe、Co、Zn、Y、Zr、Nb、Zr、Mo、Tc、Ru、Rh、Cd、Sn、Hf、Ta、W、Re、Os、Ir、Tl、Pb、Bi、In等が挙げられ、これらは金属単体又は2種以上の合金として使用することができる。
特に好ましい金属としては、Ni、Cu、Sn、Bi、Ag、In等が挙げられる。
Preferred metals constituting the fine metal wires include Sc, Ti, V, Cr, Mn, Fe, Co, Zn, Y, Zr, Nb, Zr, Mo, Tc, Ru, Rh, Cd, Sn, Hf, Ta, W, Re, Os, Ir, Tl, Pb, Bi, In, etc. are mentioned, These can be used as a metal simple substance or 2 or more types of alloys.
Particularly preferable metals include Ni, Cu, Sn, Bi, Ag, In and the like.

金属細線に塗布する好ましい有機物としては沸点が400℃以下で、常温常圧で液体である炭素数1〜18の脂肪族カルボン酸、炭素数1〜5の脂肪族低級アルコール、3−エチル−3−ヒドロキシメチルオキセタン、1,6−ヘキサンジオールジグリシジルエーテル等が挙げられる。
特に有機物として沸点が400℃以下で常温常圧で液体であるオレイン酸、スピンドル油のような鉱物油を使用した場合には、低粘度導電ペースト用として好適な有機物被覆金属超微粒子を作製することが可能となる。
Preferred organic substances to be applied to the fine metal wires are aliphatic carboxylic acids having 1 to 18 carbon atoms, aliphatic lower alcohols having 1 to 5 carbon atoms, and 3-ethyl-3 having a boiling point of 400 ° C. or lower and liquid at normal temperature and pressure. -Hydroxymethyloxetane, 1,6-hexanediol diglycidyl ether and the like.
In particular, when mineral oil such as oleic acid or spindle oil, which has a boiling point of 400 ° C. or lower and is liquid at room temperature and normal pressure, is used as an organic substance, organic coated metal ultrafine particles suitable for low-viscosity conductive pastes should be prepared. Is possible.

(実施例1)
図1に示す内容積が1Lの反応室3を有する製造装置1を用いて、表面にオレイン酸を0.1mmの厚さで塗布した直径0.25mm、長さ25mmの銅線を電極5に保持させ、不活性ガス供給装置2から窒素ガスを充填して反応室内の圧力を100kPaとした。ついで、あらかじめ電源7で5.2kVに充電しておいた容量10μFのコンデンサー6に電極5を接続し、パルス大電流放電によってオレイン酸塗布銅線4を加熱・蒸発させた。プラズマの冷却によって作製した有機物被膜銅超微粒子は、フイルター8を介して脱気することにより回収した。
Example 1
Using a manufacturing apparatus 1 having a reaction chamber 3 having an internal volume of 1 L shown in FIG. 1, a copper wire having a diameter of 0.25 mm and a length of 25 mm applied to the surface with oleic acid applied to a thickness of 0.1 mm is applied to the electrode 5. The pressure in the reaction chamber was set to 100 kPa by filling with nitrogen gas from the inert gas supply device 2. Next, the electrode 5 was connected to a capacitor 6 having a capacity of 10 μF that had been charged to 5.2 kV by the power source 7 in advance, and the oleic acid-coated copper wire 4 was heated and evaporated by pulsed high-current discharge. The organic coated copper ultrafine particles produced by cooling the plasma were recovered by deaeration through the filter 8.

図2に回収した銅超微粒子の透過型電子顕微鏡明視野像を示す。10−30nmの球形粒子が濃いコントラストを示し、そのまわりを薄いコントラストの物質が取り巻いているのが分かる。また、図3にこの銅超微粒子のエネルギー分散型エックス線分析結果を示す。この図3のピークの中で、Moピークはサンプル保持用グリッドから発した特性X線で、試料から発したものではない。この他にはCuとCのピークが見られることから、超微粒子はCuとCを含むことが分かる。
そして、図4に超微粒子をアセトンに沈降させた後、上澄み液を取りだして揮発成分を乾燥させた後測定した赤外吸収スペクトルを示す。また、オレイン酸のスペクトルも同図に示す。このスペクトルの対比から超微粒子中にはオレイン酸が含まれていることが分かる。
FIG. 2 shows a transmission electron microscope bright field image of the collected copper ultrafine particles. It can be seen that 10-30 nm spherical particles show a strong contrast and a thin contrast material surrounds them. FIG. 3 shows the result of energy dispersion X-ray analysis of the copper ultrafine particles. Among the peaks in FIG. 3, the Mo peak is a characteristic X-ray emitted from the sample holding grid and is not emitted from the sample. In addition, since Cu and C peaks are observed, it can be seen that the ultrafine particles contain Cu and C.
FIG. 4 shows an infrared absorption spectrum measured after the ultrafine particles are precipitated in acetone, and then the supernatant liquid is taken out and the volatile components are dried. The spectrum of oleic acid is also shown in the figure. From the comparison of the spectra, it can be seen that oleic acid is contained in the ultrafine particles.

さらに、図5に作製後14日間室温大気中に保持した銅超微粒子のX線回折図形を示す。また、同図内に、オレイン酸を塗布しない銅細線を用いて作製し同期間室温大気中に保持した銅超微粒子のX線回折図形も示す。オレイン酸塗布銅細線を用いた超微粒子には、14日後も酸化物が生成していないが、オレイン酸塗布していない銅細線を用いた場合、酸化物が生成した。これらの結果より、オレイン酸塗布銅細線を用いて作製された銅超微粒子では、原料となる銅線中に含まれるオレイン酸が銅超微粒子を被覆し、耐酸化性を向上させることによって14日間銅超微粒子の酸化を抑えたことが判明した。   Further, FIG. 5 shows an X-ray diffraction pattern of copper ultrafine particles kept in the room temperature atmosphere for 14 days after the production. Also shown in the figure is an X-ray diffraction pattern of ultrafine copper particles prepared using copper fine wires not coated with oleic acid and held in the atmosphere for the same period. In the ultrafine particles using the oleic acid-coated copper fine wire, no oxide was formed even after 14 days, but when a copper fine wire not coated with oleic acid was used, an oxide was produced. From these results, in the copper ultrafine particles produced using the oleic acid-coated copper fine wires, the oleic acid contained in the raw copper wire covers the copper ultrafine particles and improves the oxidation resistance for 14 days. It was found that the oxidation of copper ultrafine particles was suppressed.

(実施例2)
実施例1において、金属超微粒子の原料となるオレイン酸を塗布した銅線に代えて、石油系真空ポンプオイル(沸点200℃の鉱油油)を塗布した直径1mmのSn線を使用した以外は、実施例1と同様にして有機物被覆金属超微粒子を製造した。
得られた超微粒子は、室温大気中で2月以上酸化物を生成せずに安定に保存することができた。
(Example 2)
In Example 1, instead of using a copper wire coated with oleic acid as a raw material for ultrafine metal particles, a Sn wire having a diameter of 1 mm coated with petroleum-based vacuum pump oil (mineral oil oil having a boiling point of 200 ° C.) was used. Organic coated ultrafine metal particles were produced in the same manner as in Example 1.
The obtained ultrafine particles could be stably stored in the air at room temperature without generating oxides for more than two months.

(実施例3)
実施例1において、金属超微粒子の原料となる金属細線として、Sn:Ag:Cuが97:2:1の合金からなる細線の表面に3−エチル−3−ヒドロキシメチルオキセタンを塗布した直径1mmの細線を使用した以外は、実施例1と同様にして有機物被覆金属超微粒子を製造した。
得られた超微粒子は、室温大気中で1月以上酸化物を生成せずに安定に保存することができた。
(Example 3)
In Example 1, as a metal fine wire used as a raw material for ultrafine metal particles, 3-ethyl-3-hydroxymethyloxetane was applied to the surface of a fine wire made of an alloy of Sn: Ag: Cu of 97: 2: 1. Organic coated metal ultrafine particles were produced in the same manner as in Example 1 except that fine wires were used.
The obtained ultrafine particles could be stably stored in the air at room temperature without generating oxides for more than one month.

(実施例4)
実施例1において、金属超微粒子の原料となる金属細線としてSn:Inが70:30の合金からなる細線の表面にイソプロピルアルコールを塗布した直径0.5mmの細線を使用した以外は、実施例1と同様にして有機物被覆金属超微粒子を製造した。
得られた超微粒子は、室温大気中で2月以上酸化物を生成せずに安定に保存することができた。
(Example 4)
In Example 1, except that a thin wire having a diameter of 0.5 mm in which isopropyl alcohol was applied to the surface of a thin wire made of an alloy of Sn: In 70:30 was used as a thin metal wire used as a raw material for ultrafine metal particles, Example 1 Organic coated metal ultrafine particles were produced in the same manner as described above.
The obtained ultrafine particles could be stably stored in the air at room temperature without generating oxides for more than two months.

(実施例5)
実施例1において、金属超微粒子の原料となる金属細線として、Sn:Biが70:30の合金からなる細線の表面に1,6−ヘキサンジオールジクリシジルエーテルを塗布した直径1mmの細線を使用した以外は、実施例1と同様にして有機物被覆金属超微粒子を製造した。
得られた超微粒子は、室温大気中で1月以上酸化物を生成せずに安定に保存することができた。
(Example 5)
In Example 1, a thin wire having a diameter of 1 mm in which 1,6-hexanediol diglycidyl ether was applied to the surface of a thin wire made of an alloy of Sn: Bi of 70:30 was used as a thin metal wire used as a raw material for ultrafine metal particles. Except for the above, organic-coated metal ultrafine particles were produced in the same manner as in Example 1.
The obtained ultrafine particles could be stably stored in the air at room temperature without generating oxides for more than one month.

(比較例1)
実施例2において、金属超微粒子の原料となる金属細線として、石油系真空ポンプオイルを塗布していない直径1mmのSn線を使用した以外は、実施例2と同様にして金属超微粒子を製造した。
得られた超微粒子は、製造装置から取り出した時点で酸化され、導電性が低いものであった。
(Comparative Example 1)
In Example 2, ultrafine metal particles were produced in the same manner as in Example 2 except that a 1 mm diameter Sn wire not coated with petroleum-based vacuum pump oil was used as the fine metal wire used as the raw material for ultrafine metal particles. .
The obtained ultrafine particles were oxidized when taken out from the production apparatus, and had low conductivity.

特許文献1、2に記載された有機物蒸気・ミストを使用する従来の技術では、金属超微粒子の重量の2倍以上の重量の有機物を蒸発させる必要があった。これに対して、本発明の方法によれば有機物の使用量を金属超微粒子の重量の0.2〜1.9倍程度の量に抑えることができるので、有機物被覆を形成した金属超微粒子をさらに低コストで製造することが可能となる。   In the conventional technique using the organic vapor / mist described in Patent Documents 1 and 2, it is necessary to evaporate an organic substance having a weight more than twice the weight of the ultrafine metal particles. On the other hand, according to the method of the present invention, the amount of organic matter used can be suppressed to an amount of about 0.2 to 1.9 times the weight of the ultrafine metal particles. Furthermore, it becomes possible to manufacture at low cost.

本発明の有機物被覆金属超微粒子の製造装置の1例を示す図である。It is a figure which shows one example of the manufacturing apparatus of the organic substance covering metal ultrafine particle of this invention. 実施例1で得られた金属超微粒子の透過型電子顕微鏡明視野像である。2 is a transmission electron microscope bright field image of ultrafine metal particles obtained in Example 1. FIG. 実施例1で得られた金属超微粒子のエネルギー分散型X線分析スペクトルである。2 is an energy dispersive X-ray analysis spectrum of ultrafine metal particles obtained in Example 1. 実施例1で得られた金属超微粒子から抽出した物質の赤外分光スペクトルである。2 is an infrared spectroscopic spectrum of a substance extracted from ultrafine metal particles obtained in Example 1. 実施例1で得られた金属超微粒子とオレイン酸を塗布しない細線を用いて作製した金属超微粒子を、それぞれ14日間室温大気中で保存した後測定した粉末X線回折図形である。It is the powder X-ray-diffraction figure measured after storing the metal ultrafine particle obtained in Example 1 and the metal ultrafine particle produced using the fine wire which does not apply oleic acid for 14 days in the room temperature atmosphere, respectively.

符号の説明Explanation of symbols

1 有機物被覆金属超微粒子の製造装置
2 不活性ガス供給装置
3 反応室
4 有機物塗布金属細線
5 電極
6 コンデンサー
7 電源
8 フイルター
9 ギャップスイッチ
DESCRIPTION OF SYMBOLS 1 Production device of organic-coated metal ultrafine particles 2 Inert gas supply device 3 Reaction chamber 4 Fine metal coated metal wire 5 Electrode 6 Capacitor 7 Power supply 8 Filter 9 Gap switch

Claims (3)

沸点が400℃以下で、常温常圧で液体である有機物を塗布した金属細線に、0.1〜50μsの間パルス電流を通電することにより発生した蒸気を不活性気体中で凝結させることを特徴とする、平均粒径が5〜100nmで表面に有機物被膜を形成した金属超微粒子の製造方法。 It is characterized in that vapor generated by applying a pulse current for 0.1 to 50μs to a thin metal wire coated with an organic substance that has a boiling point of 400 ° C. or less and is liquid at normal temperature and pressure is condensed in an inert gas. The manufacturing method of the metal ultrafine particle which formed the organic substance film in the surface with an average particle diameter of 5-100 nm. 金属細線がNi、Cu、Sn、Bi、Ag、Inからなる群から選択された1種又は2種以上の金属により構成されたものであることを特徴とする請求項1に記載された金属超微粒子の製造方法。   2. The metal superconductor according to claim 1, wherein the metal thin wire is composed of one or more metals selected from the group consisting of Ni, Cu, Sn, Bi, Ag, and In. A method for producing fine particles. 有機物が鉱物油、炭素数1〜18の脂肪族カルボン酸、炭素数1〜5の脂肪族低級アルコール、3−エチル−3−ヒドロキシメチルオキセタン、1,6−ヘキサンジオールジグリシジルエーテルから選択されたものであることを特徴とする請求項1又は2に記載された金属超微粒子の製造方法。 The organic substance was selected from mineral oil, aliphatic carboxylic acid having 1 to 18 carbon atoms, aliphatic lower alcohol having 1 to 5 carbon atoms, 3-ethyl-3-hydroxymethyloxetane, and 1,6-hexanediol diglycidyl ether. The method for producing ultrafine metal particles according to claim 1 or 2, wherein the metal ultrafine particles are produced.
JP2006082340A 2006-03-24 2006-03-24 Method for producing ultrafine metal particles having an organic film formed on the surface Active JP4304279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082340A JP4304279B2 (en) 2006-03-24 2006-03-24 Method for producing ultrafine metal particles having an organic film formed on the surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082340A JP4304279B2 (en) 2006-03-24 2006-03-24 Method for producing ultrafine metal particles having an organic film formed on the surface

Publications (2)

Publication Number Publication Date
JP2007254841A JP2007254841A (en) 2007-10-04
JP4304279B2 true JP4304279B2 (en) 2009-07-29

Family

ID=38629365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082340A Active JP4304279B2 (en) 2006-03-24 2006-03-24 Method for producing ultrafine metal particles having an organic film formed on the surface

Country Status (1)

Country Link
JP (1) JP4304279B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161094A (en) * 2011-04-02 2011-08-24 福建三祥工业新材料有限公司 Method for avoiding surface oxidation of metal in core-spun yarn

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090748A1 (en) 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Silver composite nanoparticle and process and apparatus for producing the same
JP5308758B2 (en) * 2008-09-24 2013-10-09 パナソニック株式会社 Metal fine particle generation device and hair care device including the same
JP5376498B2 (en) * 2008-10-31 2013-12-25 国立大学法人長岡技術科学大学 Manufacturing method of nanosheet
KR20110099757A (en) * 2008-12-24 2011-09-08 인트린시크 머티리얼즈 리미티드 Fine particles
JP5408823B2 (en) * 2009-03-10 2014-02-05 国立大学法人長岡技術科学大学 Method for producing metal fine particles
JP4633857B1 (en) * 2009-04-16 2011-02-23 ニホンハンダ株式会社 Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly
WO2012053034A1 (en) * 2010-10-20 2012-04-26 ニホンハンダ株式会社 Method for evaluating heat sinterability of metal particles coated in organic matter, method for producing heat sinterable metal paste, and production method for metal member bonded product
JP5693249B2 (en) * 2011-01-13 2015-04-01 国立大学法人長岡技術科学大学 Method for producing alloy fine particles
JP5704640B2 (en) * 2011-01-25 2015-04-22 国立大学法人長岡技術科学大学 Metal-supported boron nitride nanostructure and manufacturing method thereof
CN111565870B (en) * 2018-01-26 2023-04-04 日清工程株式会社 Copper microparticles
US20210069782A1 (en) * 2018-01-26 2021-03-11 Nisshin Engineering Inc. Fine particle production method and fine particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161094A (en) * 2011-04-02 2011-08-24 福建三祥工业新材料有限公司 Method for avoiding surface oxidation of metal in core-spun yarn
CN102161094B (en) * 2011-04-02 2012-12-19 三祥新材股份有限公司 Method for avoiding surface oxidation of metal in core-spun yarn

Also Published As

Publication number Publication date
JP2007254841A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4304279B2 (en) Method for producing ultrafine metal particles having an organic film formed on the surface
TWI447767B (en) Semifinished products with a structured sinter-active surface and a process for their production
EP2185304B1 (en) Method for the production of a multi-element alloy powder containing silver and at least two non-silver containing elements
US6391084B1 (en) Metal nickel powder
JP2005505695A (en) Multilayer ceramic capacitor electrode internal powder
KR101705943B1 (en) Method of manufacturing multilayer graphene coated composite powders by wire explosion
JP5408823B2 (en) Method for producing metal fine particles
KR20130078560A (en) Fabrication method of amorphous alloy powder using gas atomization
TWI548752B (en) Nickel alloys for hydrogen storage and the generation of energy therefrom
TWI539009B (en) Nickel powder,conductive paste and laminate ceramic electronic component
Tokoi et al. Particle size determining equation in metallic nanopowder preparation by pulsed wire discharge
Tokoi et al. Preparation of titanium nanopowders covered with organics by pulsed wire discharge
CN103050279B (en) A kind of base metal inner electrode material for multilayer ceramic capacitor and preparation method thereof
KR100788413B1 (en) Method of manufacturing nano composite powder using thermal plasma synthesis
KR100984414B1 (en) Method for preparing carbon coated metal nanopowder and carbon coated metal nanopowder manufactured using same
JP6001578B2 (en) Method for producing core / shell type nanoparticles and method for producing sintered body using the method
Liu et al. Study on characteristics of nanopowders synthesized by nanosecond electrical explosion of thin aluminum wire in the argon gas
KR20170019172A (en) Core-shell metal nano powder, method for producing a nano powder and conductive ink containing the same
JP5243510B2 (en) Wiring material, wiring manufacturing method, and nanoparticle dispersion
JP5704640B2 (en) Metal-supported boron nitride nanostructure and manufacturing method thereof
JP3790898B2 (en) Method for producing metal ultrafine particles
Kim et al. Role of voltage and gas in determining the mean diameter in Sn-58 Bi intermetallic compound nanoparticles for pulsed wire discharge
JP2005272897A (en) Fine metal particle, and method for manufacturing fine metal particle
JP2009013456A (en) Nickel alloy powder production method
JP6595808B2 (en) Magnesium metal fine particles and method for producing magnesium metal fine particles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150