JP4302930B2 - High corrosion resistance, high strength, high toughness Nitrided Mo alloy processed material and its manufacturing method - Google Patents

High corrosion resistance, high strength, high toughness Nitrided Mo alloy processed material and its manufacturing method Download PDF

Info

Publication number
JP4302930B2
JP4302930B2 JP2002098039A JP2002098039A JP4302930B2 JP 4302930 B2 JP4302930 B2 JP 4302930B2 JP 2002098039 A JP2002098039 A JP 2002098039A JP 2002098039 A JP2002098039 A JP 2002098039A JP 4302930 B2 JP4302930 B2 JP 4302930B2
Authority
JP
Japan
Prior art keywords
nitriding
processed material
alloy
nitride
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002098039A
Other languages
Japanese (ja)
Other versions
JP2003293116A (en
Inventor
潤 高田
正寛 長江
真 中西
朋広 瀧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002098039A priority Critical patent/JP4302930B2/en
Application filed by ALMT Corp filed Critical ALMT Corp
Priority to EP03745433A priority patent/EP1491651B1/en
Priority to PCT/JP2003/003912 priority patent/WO2003083157A1/en
Priority to CA002480787A priority patent/CA2480787A1/en
Priority to AT03745433T priority patent/ATE533870T1/en
Priority to US10/509,156 priority patent/US20060054247A1/en
Priority to KR1020047015093A priority patent/KR100611725B1/en
Publication of JP2003293116A publication Critical patent/JP2003293116A/en
Application granted granted Critical
Publication of JP4302930B2 publication Critical patent/JP4302930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Nitrided molybdenum alloy worked material (1) comprises base molybdenum alloy worked material and molybdenum nitride layer (4) formed on the surface. The base worked material contains fine nitride particles (2) formed by nitriding a metal element present inside the worked material. The nitride layer is formed by nitriding a worked structure or a recovered structure.

Description

【0001】
【発明の属する技術分野】
本発明は、内部窒化処理と外部窒化処理を組み合わせて強度・靭性の他に耐食性を改善した窒化処理Mo合金加工材とその製造方法に関する。
【0002】
【従来の技術】
Moは融点が約2600℃と高く、他の高融点金属に比べて比較的に機械的強度に優れており、熱膨張率が小さく、電気伝導性・熱伝導性が良好、溶融アルカリ金属や塩酸に対する耐食性が良好、などの特徴を有し、電極、管球用部品、半導体部品、耐熱構造部品、原子炉用材料などの用途がある。
【0003】
しかし、加工組織を有する加工材ではクラック伝播が困難で高靭性を示すのに対して、一旦、加熱(約1050℃以上)後の再結晶材では、クラック伝播が容易になり脆化するので高温強度が十分ではなく、高温強度を改善したMo合金としてTZM合金(Mo-0.5Ti-0.08Zr-0.03C)やTZC(Mo-1.5Nb-0.5Ti-0.03Zr-0.03C)合金が開発されている。
【0004】
本発明者らは、先に、多段階の内部窒化処理を行って超微細窒化物を分散含有させたMoなどの高融点金属合金加工材において、加工材の少なくとも表面側は加工組織を維持したままとすることにより高靭性・高強度が得られることを見出だした(特開2001−73060号公報)。
【0005】
Moは上記のように優れた特性を有するが、熱濃硫酸や硝酸などの酸化性の酸に対する耐食性がない。耐食性改善に関して、本発明者らは、MoおよびMo系合金を窒化処理して厚さ0.5〜10μmのMoN層を設けた高耐食性Mo系複合材料を開発した(特開平11−286770号公報)。
【0006】
【発明が解決しようとする課題】
超苛酷腐食条件下(例えば、沸騰濃硫酸溶液)での装置材料としては、現在までTa金属しか有用でなかった。しかし、Ta金属は低強度であり、特に高温度での強度は低く、高強度が要求される装置・構造材料としては適していない。また、Ta金属に代わる材料として本発明者らが開発した上記の高耐食性Mo系複合材料は製造過程において母材が再結晶する結果、材料全体が脆化する欠点があった。
【0007】
そこで、本発明は、沸騰濃硫酸溶液(例:75%HSO水溶液(180℃))など超苛酷腐食条件下でも十分に高耐食性および高強度を示し、その上、高温においても高強度で、かつ低温でも高靭性を有するこれまでにない物性を合わせ持つ革新的材料とその効率的な製造方法の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、Mo加工材に内部窒化処理と外部窒化処理を組み合わせることにより、効率的に安価に高強度・高靭性とともに酸化性の酸に対しても優れた耐食性を有するMo合金加工材が得られることを見出した。
【0009】
すなわち、本発明は、Mo合金加工材のMo母相中に固溶した窒化物形成金属元素が内部窒化されて生成した窒化物粒子該加工材内部の表面側の加工組織または回復組織に分散した層が形成され、さらに、加工材表面の加工組織または回復組織が外部窒化されて生成したδ−MoN、γ−Mo Nまたはβ−Mo Nの少なくとも1種からなる厚さ3μm以下のMo窒化物層が表面に形成されており、該加工材内部が再結晶組織層である、三層構造からなり、前記内部窒化した段階よりも大きな降伏強度を有することを特徴とする高耐食性・高強度・高靭性窒化処理Mo合金加工材である。
【0010】
また、本発明は、Mo合金加工材のMo母相中に固溶した窒化物形成金属元素が内部窒化されて生成した窒化物粒子が該加工材内部の表面側の加工組織または回復組織に分散した層が形成され、さらに、該加工材表面の加工組織または回復組織が外部窒化されて生成したδ−MoN、γ−Mo Nまたはβ−Mo Nの少なくとも1種からなる厚さ3μm以下のMo窒化物層が表面に形成されている、内部まで加工組織が保持され、再結晶層のない二層構造からなり、前記内部窒化した段階よりも大きな降伏強度を有することを特徴とする高耐食性・高強度・高靭性窒化処理Mo合金加工材である。
【0011】
さらに、本発明は、Moを母相とし、Ti、Zr、Hf、V、Nb、Taの少なくとも1種を固溶した合金加工材に段階的に処理温度を上げて少なくとも3段階の内部窒化処理を行い、次いで外部窒化処理を900℃以下でい厚さ3μm以下のMo窒化物層を表面に形成することを特徴とする上記の窒化処理Mo合金加工材の製造方法である。
【0012】
また、本発明は、内部窒化処理をNガスで行い、次いで外部窒化処理をNHガスで行うことを特徴とする上記の窒化処理Mo合金加工材の製造方法である。
【0013】
【発明の実施の形態】
図1は、本発明の窒化処理Mo合金加工材の断面構造の一例を示す模式図である。図1に示す本発明の窒化処理Mo合金加工材は、加工材1の内部の表面側の加工組織または回復組織層3に分散したナノサイズ窒化物粒子2の層、加工材の表面の加工組織または回復組織層3が外部窒化されて生成したMoN表面層4と加工材の内部のMo再結晶組織層5からなる三層構造となる。加工材が比較的薄い場合には内部まで完全に加工組織が保持されたままとすることも可能であり、その場合はMo再結晶層5のない二層構造となる。
【0014】
加工材は、Moを母相とし、Ti、Zr、Hf、V、Nb、Taの少なくとも1種を固溶した希薄合金を圧延などの加工を行ったものである。なお、希薄合金とは固溶体合金の溶質元素の濃度が約5重量%以下の微少量含有される合金をいう。
【0015】
本発明の高耐食性・高強度・高靭性窒化処理Mo合金加工材は下記の内部窒化処理(1)〜(3)と外部窒化処理(4)により製造される。図2の(1)〜(3)は、段階的に処理温度を上げて行う内部窒化処理(1)〜(3)の各段階の加工材の組織を示す模式図である。
【0016】
(1)第1段窒化処理:窒化雰囲気中において再結晶上限温度以下で、かつ再結晶下限温度−200℃以上の温度で加熱して、窒化物形成用金属元素の超微細窒化物粒子を分散形成させる。第1段窒化処理では、希薄合金加工材の加工組織X1を維持したまま窒素を加工材に拡散することにより母相中に固溶されている窒化物形成金属元素を優先窒化して直径1〜2nm程度のサブナノ板状窒化物粒子を形成し、母相に分散させる。なお、優先窒化とは、母相の金属ではなく窒化物形成元素のみが優先的に窒化される現象をいう。この窒化処理により生成した析出粒子のピン止め効果により加工材表面部の再結晶温度が上昇する。
【0017】
(2)第2段窒化処理:窒化雰囲気中において第1段窒化処理で得られた加工材の再結晶下限温度以上の温度で加熱して、超微細窒化物粒子を粒成長させ安定化させる。第2段窒化処理により析出粒子の成長・安定化により再結晶温度がさらに上昇する。窒化時に加工材内部は再結晶し加工組織X2が残るが、加工材が比較的薄い場合(3mm以下)には内部まで完全に加工組織の保持が可能である。
【0018】
(3)第3段以降の窒化処理:窒化雰囲気中において前段処理で得られた加工材の再結晶下限温度以上の温度で加熱して、窒化物粒子を粒成長させ安定化させる。第3段以降の窒化処理は、加工組織X3を残したまま、窒化物粒子の更なる成長・安定化を目的とするものであり、太さ約10nm、長さ約50nmの棒状窒化物粒子がMo母相に均一に分散する。第3段以降の第4段、第5段などの窒化処理は適宜行うことができる。
【0019】
(4)外部窒化処理:強い窒化処理によりMoの窒化物層を表面に形成する。窒化雰囲気は、アンモニアガス雰囲気、Nガス雰囲気、フォーミングガス雰囲気(水素ガス:窒素ガス=1:9〜5:5)、およびこれら三者のガスのそれぞれにプラズマ放電させた雰囲気などいずれでもよい。形成されるMo窒化物はδ−MoN、γ−MoNまたはβ−MoNの少なくとも1種からなる。表面のMo窒化物層と加工材内部のMo母相との間には加工組織または回復組織が残るようにする。
【0020】
外部窒化処理の加熱処理温度と皮膜の厚さの関係をMo−0.5wt%Ti合金の場合について下記の表1に示す。加熱温度が高いほど膜厚が大きくなる。耐食性の観点からは膜厚は厚い方がよいといえるが、厚くするにつれ内部窒化した段階よりも靭性(曲げ特性)が低下することが分かった。したがって、靭性と耐食性を兼ね備える条件としては、900℃以下の外部窒化処理(厚さ約3μm以下)とする必要がある。
【0021】
【表1】

Figure 0004302930
【0022】
本発明の窒化処理Mo合金加工材は、半導体・セラミックス・金属高温焼成用支持板、高温加熱炉用ヒーター、高温加熱炉用部材、腐食環境下の化学設備・装置用構造材(高温焼却炉等も含む)、超臨界・亜臨界溶液反応装置材料などの他、硫酸、硝酸などの酸化性の酸用の耐酸容器や管材、超苛酷腐食条件下(例えば、沸騰濃硫酸溶液)での装置材料、超高温ヒーター、金属射出成型金型、ディーゼルエンジン用噴射ノズルなどとして有用である。
【0023】
【実施例】
比較例1
厚さ1mm、一辺10mmの平板状のMo−1.0wt%Ti合金加工材をNガス(1気圧)気流中にて加熱温度を変えて4段内部窒化した。加熱温度は、900℃→950℃→1200℃→1500℃とした。
【0024】
この多段窒化処理により、加工材の表面域(表面から深さ約200μmまで)は加工・回復組織を保持し(内部は再結晶組織)、加えて微細なTiN粒子を分散析出させた。さらに、NHガス(1気圧)気流中にて1000℃、4時間外部窒化処理して加工材の表面に厚み14.0μmのMo窒化物(γ‐MoNなど)層を形成した。
【0025】
この加工材では、加工材の表面がMo窒化物層、その内側が微細TiN粒子が分散析出した加工・回復結晶粒組織のMoを母相とする固溶元素の窒化物層、さらにその内側は大きな等軸再結晶粒組織のMo合金層の三層構造を呈する。しかしながら、表面のMo窒化物層の膜厚が大きく内部窒化した段階よりも靭性が低下した。
【0026】
次に、苛酷腐食環境下での耐食性を検討するため、75%濃硫酸沸騰溶液(185℃)中で腐食試験を行った結果を図3に示す。図3中には、比較試料として純Moの結果も示す。純Moの腐食速度は8mm/年と高く、激しく腐食するのに対して、比較例1の加工材は0.076mm/年と殆ど腐食せず、ほぼ完全耐食性(腐食速度:<0.05mm/年)を示すことが見出された。
【0027】
実施例
Mo−0.5wt%Ti合金加工材をNガス(1気圧)気流中にて加熱温度を変えて3段内部窒化した。温度は、900℃→1200℃→1500℃とした。3段内部窒化処理したMo合金を、さらに、1気圧NH気流中で900℃、4h加熱(外部窒化処理)して、加工材表面にMo窒化物(δ−MoN,γ−MoN)層を均一に形成した。この多段窒化処理により、微細TiN粒子が分散析出し、加工・回復結晶粒組織の内部窒化層は310μmであり、Mo窒化物の外部窒化層は2.8μmであった。また、加工材表面のX線回折パターンより、δ−MoNとγ−MoNの外部窒化物層の形成が認められた。
【0028】
75%濃硫酸沸騰溶液(185℃)中で腐食試験を行った結果を図3に示す。実施例2の加工材では、0.046mm/年と殆ど腐食せず、完全耐食性(腐食速度:<0.05mm/年)を示す。
【0029】
さらに、実施例の3段内部窒化処理(900℃→1200℃→1500℃)した加工材とその後に外部窒化処理(900℃−4h)した加工材の室温における曲げ強度(降伏強度と最大強度)を表2に示す。また、図4に(a)断面組織写真と(b)曲げ試験後の試片のマクロ写真を示す。
【0030】
表2より、実施例の900℃、4h外部窒化処理した加工材(Mo窒化物層厚さ:約2.8μm)の降伏強度と最大強度は、いずれも3段内部窒化処理材(高強度・高靭性化)よりも大きく、外部窒化処理により内部窒化した段階よりも大きい降伏応力値を示すことが見出された。
【0031】
即ち、本発明の窒化処理Mo合金加工材は高耐食性とともに極めて高い強度を有することが明らかとなった。
【0032】
【表2】
Figure 0004302930
【0033】
【発明の効果】
本発明は、窒化処理のみにより効率的に安価に高強度・高靭性とともに酸化性の酸に対しても優れた耐食性を有し、極限腐食環境に対応できる窒化処理Mo合金加工材を提供するもので、従来のMoまたはMo合金の各種用途はもちろん、超苛酷腐食条件下(例えば、沸騰濃硫酸溶液)での装置材料、超高温ヒーター、金属射出成型金型、ディーゼルエンジン用噴射ノズルなどの各種用途へのMo材料の実用化に貢献するものである。
【図面の簡単な説明】
【図1】本発明の窒化処理Mo合金加工材の断面構造を示す模式図である。
【図2】本発明の窒化処理Mo合金加工材を製造する工程における内部窒化処理(1)〜(3)の各段階の加工材の組織を示す模式図である。
【図3】比較例1および実施例により得られた窒化処理Mo合金加工材と比較例(純Mo材料)の腐食試験結果を示すグラフである。
【図4】実施例により得られた窒化処理Mo合金加工材の図面代用断面組織写真(a)および曲げ試験後の窒化処理Mo合金加工材試片の図面代用マクロ写真(b)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitrided Mo alloy processed material having improved corrosion resistance in addition to strength and toughness by combining an internal nitriding treatment and an external nitriding treatment, and a method for producing the same.
[0002]
[Prior art]
Mo has a high melting point of about 2600 ° C. and relatively excellent mechanical strength compared to other refractory metals, has a low coefficient of thermal expansion, good electrical conductivity and thermal conductivity, molten alkali metal and hydrochloric acid It has a feature such as good corrosion resistance to, and has applications such as electrodes, tube components, semiconductor components, heat-resistant structural components, and reactor materials.
[0003]
However, in the processed material having a processed structure, crack propagation is difficult and exhibits high toughness, whereas in a recrystallized material after heating (about 1050 ° C. or higher), crack propagation becomes easy and embrittles, so TZM alloys (Mo-0.5Ti-0.08Zr-0.03C) and TZC (Mo-1.5Nb-0.5Ti-0.03Zr-0.03C) alloys have been developed as Mo alloys with insufficient strength and improved high-temperature strength. Yes.
[0004]
In the refractory metal alloy processed material such as Mo in which ultra-fine nitride is dispersed and subjected to multi-stage internal nitriding treatment, the inventors previously maintained a processed structure on at least the surface side of the processed material. It has been found that high toughness and high strength can be obtained by keeping it as it is (JP-A-2001-73060).
[0005]
Mo has excellent characteristics as described above, but does not have corrosion resistance to oxidizing acids such as hot concentrated sulfuric acid and nitric acid. Regarding improvement of corrosion resistance, the present inventors have developed a highly corrosion-resistant Mo-based composite material provided with a Mo 2 N layer having a thickness of 0.5 to 10 μm by nitriding Mo and an Mo-based alloy (Japanese Patent Laid-Open No. 11-286770). Issue gazette).
[0006]
[Problems to be solved by the invention]
Until now, only Ta metal has been useful as a device material under super severe corrosion conditions (for example, boiling concentrated sulfuric acid solution). However, Ta metal has low strength, particularly low strength at high temperatures, and is not suitable as a device / structural material that requires high strength. Further, the high corrosion resistance Mo-based composite material developed by the present inventors as a material to replace Ta metal has a drawback that the entire material becomes brittle as a result of recrystallization of the base material in the manufacturing process.
[0007]
Therefore, the present invention exhibits sufficiently high corrosion resistance and high strength even under super severe corrosion conditions such as boiling concentrated sulfuric acid solution (eg, 75% H 2 SO 4 aqueous solution (180 ° C.)), and also high strength at high temperatures. In addition, an object of the present invention is to provide an innovative material having unprecedented physical properties that have high toughness even at low temperatures and an efficient manufacturing method thereof.
[0008]
[Means for Solving the Problems]
The present inventors combined Mo nitriding treatment with internal nitriding treatment and external nitriding treatment to efficiently and inexpensively provide high strength and high toughness as well as excellent corrosion resistance against oxidizing acids. It was found that can be obtained.
[0009]
That is, according to the present invention, nitride particles produced by nitriding a nitride-forming metal element dissolved in the Mo matrix of a Mo alloy processed material are dispersed in the processed or recovered structure on the surface side inside the processed material. the layers are formed, further, the workpiece surface of the processed structure or restore tissue [delta]-MoN was generated externally nitride, γ-Mo 2 N, or beta-Mo 2 N follows thickness 3μm consisting of at least one Mo nitride layer is formed on the surface, high corrosion resistance inside the workpiece is recrystallized structure layer, and a three-layer structure, characterized by having a greater yield strength than the stage of the internal nitriding -High strength and high toughness nitriding Mo alloy processed material.
[0010]
The present invention also provides that nitride particles produced by internal nitridation of a nitride-forming metal element dissolved in the Mo matrix of a Mo alloy processed material are dispersed in the processed or recovered structure on the surface side inside the processed material. And a thickness of 3 μm or less composed of at least one of δ-MoN, γ-Mo 2 N or β-Mo 2 N generated by external nitriding of the processed structure or the recovered structure on the surface of the processed material of Mo nitride layer is formed on the surface, processing the tissue into the inside held, Ri bilayer structure without recrystallization layer Tona, characterized by having a greater yield strength than the stage of the internal nitriding High corrosion resistance, high strength, high toughness Ni-treated Mo alloy processed material.
[0011]
Furthermore, the present invention provides at least three stages of internal nitriding by increasing the processing temperature stepwise to an alloy processed material in which Mo is the matrix and at least one of Ti, Zr, Hf, V, Nb, and Ta is dissolved. was carried out, followed by an above-described production method of nitriding Mo alloy workpiece, which comprises forming an external nitriding treatment to the surface lines have thickness 3μm following Mo nitride layer at 900 ° C. or less.
[0012]
Further, the present invention is the above-described method for producing a nitriding-treated Mo alloy processed material, characterized in that the internal nitriding treatment is performed with N 2 gas and then the external nitriding treatment is performed with NH 3 gas.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of a nitrided Mo alloy processed material of the present invention. The nitriding Mo alloy processed material of the present invention shown in FIG. 1 is a processed structure on the surface side inside the processed material 1 or a layer of nano-sized nitride particles 2 dispersed in the recovery structure layer 3 , and a processed structure on the surface of the processed material. Alternatively, the recovery structure layer 3 has a three-layer structure including the Mo 2 N surface layer 4 generated by external nitriding and the Mo recrystallized structure layer 5 inside the processed material. When the processed material is relatively thin, it is possible to keep the processed structure completely up to the inside. In this case, a two-layer structure without the Mo recrystallized layer 5 is obtained.
[0014]
The processed material is obtained by rolling a dilute alloy containing Mo as a matrix and at least one of Ti, Zr, Hf, V, Nb, and Ta as a solid solution. The dilute alloy refers to an alloy containing a very small amount of a solute element concentration of a solid solution alloy of about 5% by weight or less.
[0015]
The high corrosion resistance, high strength and high toughness nitriding Mo alloy processed material of the present invention is produced by the following internal nitriding treatments (1) to (3) and external nitriding treatment (4). (1) to (3) in FIG. 2 are schematic views showing the structure of the processed material at each stage of the internal nitriding treatments (1) to (3) performed by gradually increasing the processing temperature.
[0016]
(1) First-stage nitriding treatment: Disperse ultrafine nitride particles of nitride-forming metal element by heating at a temperature lower than the recrystallization upper limit temperature and lower than the recrystallization lower limit temperature −200 ° C. in a nitriding atmosphere Let it form. In the first stage nitriding treatment, the nitride forming metal element dissolved in the matrix phase is preferentially nitrided by diffusing nitrogen into the work material while maintaining the work structure X1 of the dilute alloy work material. Sub-nano plate-like nitride particles of about 2 nm are formed and dispersed in the parent phase. Note that the preferential nitridation refers to a phenomenon in which only a nitride-forming element is preferentially nitrided, not a matrix metal. Due to the pinning effect of the precipitated particles generated by this nitriding treatment, the recrystallization temperature on the surface of the workpiece is increased.
[0017]
(2) Second stage nitriding treatment: Heating is performed at a temperature equal to or higher than the recrystallization lower limit temperature of the workpiece obtained by the first stage nitriding treatment in a nitriding atmosphere to grow and stabilize ultrafine nitride particles. The recrystallization temperature further increases due to the growth and stabilization of the precipitated particles by the second stage nitriding treatment. During nitriding, the inside of the work material is recrystallized and the work structure X2 remains. However, when the work material is relatively thin (3 mm or less), the work structure can be completely held up to the inside.
[0018]
(3) Nitriding treatment after the third stage: Heating is performed at a temperature equal to or higher than the recrystallization lower limit temperature of the workpiece obtained by the preceding stage treatment in a nitriding atmosphere to grow and stabilize the nitride particles. The nitriding treatment after the third stage is for the purpose of further growth and stabilization of the nitride particles while leaving the processed structure X3, and rod-like nitride particles having a thickness of about 10 nm and a length of about 50 nm are formed. Disperse uniformly in the Mo matrix. The nitriding treatment in the fourth and fifth stages after the third stage can be appropriately performed.
[0019]
(4) External nitriding treatment: Mo nitride layer is formed on the surface by strong nitriding treatment. The nitriding atmosphere may be any of an ammonia gas atmosphere, an N 2 gas atmosphere, a forming gas atmosphere (hydrogen gas: nitrogen gas = 1: 9 to 5: 5), and an atmosphere in which plasma discharge is performed on each of these three gases. . The formed Mo nitride is composed of at least one of δ-MoN, γ-Mo 2 N, and β-Mo 2 N. Between the Mo nitride layer on the surface and the workpiece inside the Mo parent phase so as worked structure or recovered structure remains.
[0020]
The relationship between the heat treatment temperature of the external nitriding treatment and the film thickness is shown in Table 1 below for the case of Mo-0.5 wt% Ti alloy. The film thickness increases as the heating temperature increases. From the viewpoint of corrosion resistance, it can be said that a thicker film is better, but it has been found that as the film is thickened, the toughness (bending properties) is lower than that at the stage of internal nitriding . Therefore, as a condition having both toughness and corrosion resistance, an external nitriding treatment (thickness of about 3 μm or less) of 900 ° C. or less is required.
[0021]
[Table 1]
Figure 0004302930
[0022]
The nitrided Mo alloy processed material of the present invention includes a semiconductor / ceramic / metal high-temperature firing support plate, a heater for a high-temperature heating furnace, a member for a high-temperature heating furnace, a structural material for a chemical facility / equipment in a corrosive environment (such as a high-temperature incinerator) In addition to supercritical / subcritical solution reactor materials, acid-resistant containers and tubes for oxidizing acids such as sulfuric acid and nitric acid, and equipment materials under super severe corrosion conditions (for example, boiling concentrated sulfuric acid solution) It is useful as an ultra-high temperature heater, metal injection mold, diesel engine injection nozzle, and the like.
[0023]
【Example】
Comparative Example 1
A plate-shaped Mo-1.0 wt% Ti alloy processed material having a thickness of 1 mm and a side of 10 mm was subjected to four-stage internal nitriding while changing the heating temperature in an N 2 gas (1 atm) air stream. The heating temperature was 900 ° C. → 950 ° C. → 1200 ° C. → 1500 ° C.
[0024]
By this multi-stage nitriding treatment, the surface area of the workpiece (from the surface to a depth of about 200 μm) retained the processing / recovery structure (inside, the recrystallized structure), and fine TiN particles were dispersed and precipitated. Further, an external nitridation treatment was performed at 1000 ° C. for 4 hours in a stream of NH 3 gas (1 atm) to form a Mo nitride (γ-Mo 2 N, etc.) layer having a thickness of 14.0 μm on the surface of the processed material.
[0025]
In this processed material, the surface of the processed material is a Mo nitride layer, the inner side is a solid solution element nitride layer having Mo as a parent phase of the processed and recovered crystal grain structure in which fine TiN particles are dispersed and precipitated, and the inner side is It exhibits a three-layer structure of a Mo alloy layer having a large equiaxed recrystallized grain structure. However, the toughness was lower than in the stage where the surface of the Mo nitride layer was thick and internally nitrided.
[0026]
Next, FIG. 3 shows the results of a corrosion test conducted in a 75% concentrated sulfuric acid boiling solution (185 ° C.) in order to examine the corrosion resistance under severe corrosion environment. In FIG. 3, the result of pure Mo is also shown as a comparative sample. The corrosion rate of pure Mo is as high as 8 mm / year, and it corrodes vigorously, whereas the processed material of Comparative Example 1 does not corrode as much as 0.076 mm / year and is almost completely corrosion resistant (corrosion rate: <0.05 mm / year). Year).
[0027]
Example 1
The Mo-0.5 wt% Ti alloy processed material was subjected to three-stage internal nitriding while changing the heating temperature in an N 2 gas (1 atm) airflow. The temperature was set to 900 ° C. → 1200 ° C. → 1500 ° C. The Mo alloy subjected to the three-stage internal nitriding treatment was further heated at 900 ° C. for 4 hours (external nitriding treatment) in a 1 atm NH 3 stream, and Mo nitride (δ-MoN, γ-Mo 2 N) was formed on the surface of the workpiece. The layer was formed uniformly. By this multi-stage nitriding treatment, fine TiN particles were dispersed and precipitated, the inner nitride layer of the processed / recovered crystal grain structure was 310 μm, and the outer nitride layer of Mo nitride was 2.8 μm. Further, from the X-ray diffraction pattern on the surface of the processed material, formation of an outer nitride layer of δ-MoN and γ-Mo 2 N was recognized.
[0028]
FIG. 3 shows the results of a corrosion test conducted in a 75% concentrated sulfuric acid boiling solution (185 ° C.). The processed material of Example 2 is hardly corroded at 0.046 mm / year, and exhibits complete corrosion resistance (corrosion rate: <0.05 mm / year).
[0029]
Further, the bending strength (yield strength and maximum strength) at room temperature of the processed material subjected to the three-stage internal nitriding treatment (900 ° C. → 1200 ° C. → 1500 ° C.) and the external nitriding treatment (900 ° C.-4 h) after that in Example 1. ) Is shown in Table 2. FIG. 4 shows (a) a cross-sectional structure photograph and (b) a macro photograph of a specimen after a bending test.
[0030]
From Table 2, the yield strength and the maximum strength of the work material (Mo nitride layer thickness: about 2.8 μm) subjected to the external nitriding treatment at 900 ° C. for 4 hours in Example 1 are both three-stage internal nitriding treatment materials (high strength). It has been found that the yield stress value is larger than that obtained by internal nitriding by an external nitriding treatment .
[0031]
That is, it became clear that the nitrided Mo alloy processed material of the present invention has extremely high strength as well as high corrosion resistance.
[0032]
[Table 2]
Figure 0004302930
[0033]
【The invention's effect】
The present invention provides a nitriding-treated Mo alloy processed material that has high corrosion resistance against oxidizing acids as well as high strength and high toughness efficiently and inexpensively only by nitriding treatment, and can cope with an extreme corrosion environment. In addition to various applications of conventional Mo or Mo alloys, various materials such as equipment materials under extremely severe corrosion conditions (for example, boiling concentrated sulfuric acid solution), ultra-high temperature heaters, metal injection molds, injection nozzles for diesel engines, etc. This contributes to the practical use of Mo materials for applications.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a cross-sectional structure of a nitrided Mo alloy processed material of the present invention.
FIG. 2 is a schematic diagram showing the structure of the workpiece in each stage of internal nitriding treatments (1) to (3) in the process for producing the nitriding Mo alloy workpiece of the present invention.
FIG. 3 is a graph showing corrosion test results of a nitrided Mo alloy processed material obtained in Comparative Example 1 and Example 1 and a comparative example (pure Mo material).
4 is a drawing-substitute sectional structure photograph (a) of the nitrided Mo alloy workpiece obtained in Example 1, and a drawing-substitute macro photograph (b) of the nitrided Mo alloy workpiece specimen after the bending test. FIG.

Claims (4)

Mo合金加工材のMo母相中に固溶した窒化物形成金属元素が内部窒化されて生成した窒化物粒子該加工材内部の表面側の加工組織または回復組織に分散した層が形成され、
さらに、加工材表面の加工組織または回復組織が外部窒化されて生成したδ−MoN、γ−Mo Nまたはβ−Mo Nの少なくとも1種からなる厚さ3μm以下のMo窒化物層が表面に形成されており、
該加工材内部が再結晶組織層である、
三層構造からなり、
前記内部窒化した段階よりも大きな降伏強度を有することを特徴とする高耐食性・高強度・高靭性窒化処理Mo合金加工材。
A layer is formed in which nitride particles formed by nitriding a nitride-forming metal element solid-solved in the Mo matrix of the Mo alloy processed material are dispersed in the processed structure or the recovered structure on the surface side inside the processed material ,
Furthermore, processed structure or restore tissue of the workpiece surface [delta]-MoN was generated externally nitride, gamma-Mo 2 N, or beta-Mo 2 at least one thickness 3μm following Mo nitride layer consisting of N is Formed on the surface ,
The inside of the processed material is a recrystallized structure layer,
It consists of a three-layer structure,
A high corrosion resistance, high strength, high toughness nitriding Mo alloy processed material characterized by having a higher yield strength than the internal nitriding stage .
Mo合金加工材のMo母相中に固溶した窒化物形成金属元素が内部窒化されて生成した窒化物粒子が該加工材内部の表面側の加工組織または回復組織に分散した層が形成され、A layer is formed in which nitride particles produced by internal nitriding of nitride-forming metal elements dissolved in the Mo matrix of the Mo alloy processed material are dispersed in the processed structure or the recovered structure on the surface side inside the processed material,
さらに、該加工材表面の加工組織または回復組織が外部窒化されて生成したδ−MoN、γ−MoFurthermore, δ-MoN, γ-Mo generated by external nitriding of the processed structure or the recovered structure on the surface of the processed material 2 Nまたはβ−MoN or β-Mo 2 Nの少なくとも1種からなる厚さ3μm以下のMo窒化物層が表面に形成されている、A Mo nitride layer made of at least one of N and having a thickness of 3 μm or less is formed on the surface;
内部まで加工組織が保持され、再結晶層のない二層構造からなり、Processed structure is maintained to the inside, and consists of a two-layer structure without a recrystallized layer.
前記内部窒化した段階よりも大きな降伏強度を有することを特徴とする高耐食性・高強度・高靭性窒化処理Mo合金加工材。A high corrosion resistance, high strength, and high toughness nitriding Mo alloy processed material having a yield strength greater than that of the internal nitriding stage.
Moを母相とし、Ti、Zr、Hf、V、Nb、Taの少なくとも1種を固溶した合金加工材に段階的に処理温度を上げて少なくとも3段階の内部窒化処理を行い、次いで外部窒化処理を900℃以下でい厚さ3μm以下のMo窒化物層を表面に形成することを特徴とする請求項1又は2に記載の窒化処理Mo合金加工材の製造方法。An alloy material with Mo as a parent phase and at least one of Ti, Zr, Hf, V, Nb, and Ta is subjected to at least three stages of internal nitriding by increasing the processing temperature stepwise , followed by external nitriding manufacturing method of nitriding Mo alloy workpiece according to claim 1 or 2, characterized in that the formation process line have a thickness 3μm following Mo nitride layer at 900 ° C. or less to the surface. 内部窒化処理をNガスで行い、次いで外部窒化処理をNHガスで行うことを特徴とする請求項記載の窒化処理Mo合金加工材の製造方法。The method for producing a nitriding-treated Mo alloy processed material according to claim 3, wherein the internal nitriding treatment is performed with N 2 gas, and then the external nitriding treatment is performed with NH 3 gas.
JP2002098039A 2002-03-29 2002-03-29 High corrosion resistance, high strength, high toughness Nitrided Mo alloy processed material and its manufacturing method Expired - Fee Related JP4302930B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002098039A JP4302930B2 (en) 2002-03-29 2002-03-29 High corrosion resistance, high strength, high toughness Nitrided Mo alloy processed material and its manufacturing method
PCT/JP2003/003912 WO2003083157A1 (en) 2002-03-29 2003-03-27 NITRIDED Mo ALLOY WORKED MATERIAL HAVING HIGH CORROSION RESISTANCE, HIGH STRENGTH AND HIGH TOUGHNESS AND METHOD FOR PRODUCTION THEREOF
CA002480787A CA2480787A1 (en) 2002-03-29 2003-03-27 Nitrided mo alloy worked material having high corrosion resistance, high strength and high toughness and method for production thereof
AT03745433T ATE533870T1 (en) 2002-03-29 2003-03-27 NITRIDATED MO ALLOY MATERIAL WITH HIGH CORROSION RESISTANCE, HIGH STRENGTH AND HIGH TOUGHNESS AND PRODUCTION PROCESS THEREOF
EP03745433A EP1491651B1 (en) 2002-03-29 2003-03-27 NITRIDED Mo ALLOY WORKED MATERIAL HAVING HIGH CORROSION RESISTANCE, HIGH STRENGTH AND HIGH TOUGHNESS AND METHOD FOR PRODUCTION THEREOF
US10/509,156 US20060054247A1 (en) 2002-03-29 2003-03-27 Nitrided mo alloy worked material having high corrosion resistance, high strength and high toughness and method for production thereof
KR1020047015093A KR100611725B1 (en) 2002-03-29 2003-03-27 Nitrided Mo alloy worked material having high corrosion resistance, high strenth and high toughness and method for prodution thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098039A JP4302930B2 (en) 2002-03-29 2002-03-29 High corrosion resistance, high strength, high toughness Nitrided Mo alloy processed material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2003293116A JP2003293116A (en) 2003-10-15
JP4302930B2 true JP4302930B2 (en) 2009-07-29

Family

ID=28671934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098039A Expired - Fee Related JP4302930B2 (en) 2002-03-29 2002-03-29 High corrosion resistance, high strength, high toughness Nitrided Mo alloy processed material and its manufacturing method

Country Status (7)

Country Link
US (1) US20060054247A1 (en)
EP (1) EP1491651B1 (en)
JP (1) JP4302930B2 (en)
KR (1) KR100611725B1 (en)
AT (1) ATE533870T1 (en)
CA (1) CA2480787A1 (en)
WO (1) WO2003083157A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4255877B2 (en) * 2004-04-30 2009-04-15 株式会社アライドマテリアル High-strength and high recrystallization temperature refractory metal alloy material and its manufacturing method
JP4558572B2 (en) * 2005-04-25 2010-10-06 株式会社アライドマテリアル High heat resistant molybdenum alloy and manufacturing method thereof
CN103409718B (en) * 2013-05-15 2015-08-26 厦门虹鹭钨钼工业有限公司 A kind of High-temperature oxidation-resistant molybdenum material and production method thereof
CN106535826A (en) 2014-06-24 2017-03-22 怡康医疗股份有限公司 Improved metal alloys for medical devices
US10682437B2 (en) 2015-07-02 2020-06-16 Mirus Llc Molybdenum alloys for medical devices
WO2017151548A1 (en) 2016-03-04 2017-09-08 Mirus Llc Stent device for spinal fusion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208066A (en) * 1983-05-13 1984-11-26 Toshiba Corp Method for working internally nitrided molybdenum-zirconium alloy
SU1747535A1 (en) * 1990-07-29 1992-07-15 Научно-исследовательский физико-химический институт им.Л.Я.Карпова Method of molybdenum nitriding
JPH11286770A (en) 1998-04-01 1999-10-19 Yoshioka Takashi High corrosion resistance molybdenum-based composite material and its production
JP4307649B2 (en) * 1999-09-06 2009-08-05 独立行政法人科学技術振興機構 High toughness / high strength refractory metal alloy material and method for producing the same

Also Published As

Publication number Publication date
ATE533870T1 (en) 2011-12-15
EP1491651A4 (en) 2008-08-27
KR20040105796A (en) 2004-12-16
CA2480787A1 (en) 2003-10-09
EP1491651A1 (en) 2004-12-29
EP1491651B1 (en) 2011-11-16
WO2003083157A1 (en) 2003-10-09
KR100611725B1 (en) 2006-08-10
JP2003293116A (en) 2003-10-15
US20060054247A1 (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP4157891B2 (en) Titanium alloy with excellent high-temperature oxidation resistance and engine exhaust pipe
KR100611724B1 (en) High strength high toughness Mo alloy worked material and method for production thereof
JP4302930B2 (en) High corrosion resistance, high strength, high toughness Nitrided Mo alloy processed material and its manufacturing method
JP4307649B2 (en) High toughness / high strength refractory metal alloy material and method for producing the same
WO2005106055A1 (en) High melting point metal based alloy material exhibiting high strength and high recrystallization temperature and method for production thereof
EP2236635B1 (en) Ni-base alloy and method of producing the same
JP5327664B2 (en) Nickel-based intermetallic compound, said intermetallic compound rolled foil, and method for producing said intermetallic compound rolled plate or foil
RU2614356C1 (en) Titanium-based alloy and product made from it
JP6394475B2 (en) Titanium member and manufacturing method thereof
JP2010255023A (en) Method for manufacturing strengthened alloy
JP3563523B2 (en) Fe-Cr-Al steel pipe with excellent shape stability at high temperature
JP2006299384A (en) High heat-resistant molybdenum alloy and producing method therefor
JP2007051355A (en) MANUFACTURING METHOD OF THIN Co3Ti SHEET, AND THIN Co3Ti SHEET
CN115305387B (en) Corrosion-resistant high-temperature alloy and preparation method thereof
CN115261700B (en) Corrosion-resistant alloy and preparation method thereof
JP4481075B2 (en) High-strength and high-toughness refractory metal alloy material by carbonization and its manufacturing method
Dima et al. STUDIES AND RESEARCH ON TREATMENT OF TITANIUM ALLOYS.
JPH05247562A (en) Manufacture of ti-al intermetallic compound
JP2510055B2 (en) Manufacturing method of heater material with excellent oxidation resistance
TW202323549A (en) High-temperature resistant alloy and method of fabricating the same
JPS60116754A (en) Corrosion resistant titanium
JPH04116130A (en) Manufacture of intermetallic compound
JP2022045612A (en) Titanium alloy, and manufacturing method of the same, and engine component using the same
CN116673589A (en) Tungsten-rhenium alloy bar for friction stir welding stirring head and preparation method thereof
JPH05345965A (en) Method for hydrogen treatment of titanium alloy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040716

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees