JP4300316B2 - Multilayer integrated circuit device - Google Patents

Multilayer integrated circuit device Download PDF

Info

Publication number
JP4300316B2
JP4300316B2 JP2005038296A JP2005038296A JP4300316B2 JP 4300316 B2 JP4300316 B2 JP 4300316B2 JP 2005038296 A JP2005038296 A JP 2005038296A JP 2005038296 A JP2005038296 A JP 2005038296A JP 4300316 B2 JP4300316 B2 JP 4300316B2
Authority
JP
Japan
Prior art keywords
integrated circuit
heat flow
fine wiring
flow path
interposer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005038296A
Other languages
Japanese (ja)
Other versions
JP2006228834A (en
Inventor
克弥 菊地
昌宏 青柳
博 仲川
和彦 所
義邦 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005038296A priority Critical patent/JP4300316B2/en
Publication of JP2006228834A publication Critical patent/JP2006228834A/en
Application granted granted Critical
Publication of JP4300316B2 publication Critical patent/JP4300316B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本願発明は、LSI等の集積回路チップとインターポーザとを積層させた半導体装置である積層型集積回路装置に関するものである。   The present invention relates to a stacked integrated circuit device which is a semiconductor device in which an integrated circuit chip such as an LSI and an interposer are stacked.

上記の半導体装置に関して、本願発明の発明者等は既に、貫通電極を持つLSIと微細配線構造を持つインターポーザとを交互に積層し、各LSIの間をインターポーザを介して配線するという3次元実装技術を提案しており(非特許文献1参照)、この実装技術に好適な高密度の微細配線インターポーザの作製方法も提案している(非特許文献2参照)。高密度微細配線構造は、第一のグランドプレーン、第一の絶縁層、信号線、第二の絶縁層、および第二のグランドプレーンを順に積層させたストリップライン構造により実現され、これにおいて第一絶縁層および第二絶縁層を感光性ポリイミドを用いて形成している。   With respect to the semiconductor device described above, the inventors of the present invention already have a three-dimensional mounting technique in which LSIs having through electrodes and interposers having a fine wiring structure are alternately stacked, and wiring between the LSIs is performed via the interposer. (See Non-Patent Document 1), and a method for manufacturing a high-density fine wiring interposer suitable for this mounting technique is also proposed (see Non-Patent Document 2). The high-density fine wiring structure is realized by a strip line structure in which a first ground plane, a first insulating layer, a signal line, a second insulating layer, and a second ground plane are sequentially stacked. The insulating layer and the second insulating layer are formed using photosensitive polyimide.

従来、図2に例示した、CPUやメモリなど個々のチップが挿入されたパッケージをプリント基板上に搭載してプリント配線でシステムを構築するSoB(System on Board)や、図3に例示した、ワンチップ上にシステムを構成する要素回路を全て集積するSoC(System on Chip)、図4に例示した、一つのパッケージの中に平面的あるいは立体的にLSIチップを挿入してシステムを構築し、ワイヤーボンディングにより外部との接続を得るようにしたSiP(System in Package)が知られているが、上記本願発明の発明者等による実装技術は、集積回路チップを3次元に接続して実質的に1チップ程度の平面サイズに集積でき、これにより配線経路が縮小されて駆動電力が小さくなり、更に一層の小型化、低消費電力化、高機能化(高速、大容量)、低価格化を実現することのできる高密度実装技術として研究開発されたものである。   Conventionally, the SoB (System on Board) illustrated in FIG. 2 that builds a system with printed wiring by mounting a package in which individual chips such as a CPU and a memory are inserted on a printed circuit board, and the one illustrated in FIG. SoC (System on Chip) that integrates all the component circuits that make up the system on the chip, the system is constructed by inserting the LSI chip planarly or three-dimensionally into one package illustrated in FIG. A SiP (System in Package) is known in which connection to the outside is obtained by bonding. However, the mounting technique by the inventors of the present invention described above is substantially 1 by connecting integrated circuit chips in three dimensions. It can be integrated in a chip-like plane size, thereby reducing the wiring path and driving power, further miniaturization, low power consumption, high functionality (high speed, large capacity), and low price. It was researched and developed as a high-density packaging technology that can realize the above.

もちろん、本願発明の発明者等だけでなく、インターポーザや貫通電極を用いた積層型の半導体装置に関しては様々な研究開発が盛んに進められている(たとえば特許文献1〜4参照)。
”LSIの3次元実装を実現する超高速高密度インターポーザの開発に成功”,AIST Today,独立行政法人産業技術総合研究所,2003,Vol.3,No.12,pp.12-14(http://www.aist.go.jp/aist_j/aistinfo/aist_today/vol03_12/vol03_12_main.html) Katsuya Kikuchi et al., "Fabrication of High-Density WiringInterposer for 10 GHz 3D Packaging Using a Photosensitive MultiblockCopolymerized Polyimide", Japanese Journal of Applied Physics, 2004,Vol.43, No.7A, pp.4141-4145 特開2004−228393号公報 特開2004−22610号公報 特開2004−214286号公報 特開平11−145381号公報
Of course, not only the inventors of the present invention, but also various research and developments are actively conducted on stacked semiconductor devices using interposers and through electrodes (for example, see Patent Documents 1 to 4).
“Succeeded in developing an ultra-high-speed and high-density interposer that realizes three-dimensional LSI mounting”, AIST Today, National Institute of Advanced Industrial Science and Technology, 2003, Vol. 3, No. 12, pp. 12-14 (http: //www.aist.go.jp/aist_j/aistinfo/aist_today/vol03_12/vol03_12_main.html) Katsuya Kikuchi et al., "Fabrication of High-Density WiringInterposer for 10 GHz 3D Packaging Using a Photosensitive Multiblock Copolymerized Polyimide", Japanese Journal of Applied Physics, 2004, Vol.43, No.7A, pp.4141-4145 JP 2004-228393 A JP 2004-22610 A JP 2004-214286 A JP-A-11-145381

ところで、上記実装技術においては、小さな立体スペースに多くの素子を集積することになるため、各素子で生じる発熱の対策を従来に増して考慮する必要がある。   By the way, in the above mounting technology, since many elements are integrated in a small three-dimensional space, it is necessary to consider countermeasures against heat generated in each element more than ever.

たとえば、上記特許文献2では、インターポーザを構成する電気絶縁材の素材を適当なものに選択することで、その熱伝導率を高くして、半導体や電子部品から発生する熱を電気絶縁材そのものによって放熱することが開示されている。   For example, in the above-mentioned Patent Document 2, by selecting an appropriate material for the electrical insulating material constituting the interposer, the thermal conductivity is increased, and the heat generated from the semiconductor or electronic component is caused by the electrical insulating material itself. Dissipating heat is disclosed.

上記特許文献3では、インターポーザに、ベタパターンやメッシュ状パターンの放熱用導体パターンと、これに接続させた放熱用スルーホールとを形成し、LSIチップで発生した熱を放熱用スルーホールを介して放熱用導体パターンへ伝達させて、放熱を促すことが開示されている。また、電源供給経路および電気信号経路である導体パターンに接続させてインターポーザに形成した導電用スルーホールを、放熱用スルーホールと同様に、放熱用導体パターンに接続させて、放熱経路としても機能させることが開示されている。   In Patent Document 3, a solid pattern or a mesh-shaped heat radiation conductor pattern and a heat radiation through hole connected to the interposer are formed, and heat generated in the LSI chip is transmitted through the heat radiation through hole. It is disclosed that the heat radiation is promoted by transmitting the heat radiation to the conductive pattern. In addition, the conductive through hole formed in the interposer connected to the conductor pattern that is the power supply path and the electric signal path is connected to the heat radiating conductor pattern in the same manner as the heat radiating through hole so as to function as a heat radiating path. It is disclosed.

上記特許文献4では、インターポーザに、その内部若しくは表裏面に形成された金属薄膜層およびこれに接続させたサーマルビアからなる放熱経路と、これにインターポーザの端面にて接続させたヒートシンクとを設け、半導体チップからの発熱を放熱経路を通じて逃がし、逃がした熱をヒートシンクを介して放熱することが開示されている。   In the above Patent Document 4, the interposer is provided with a heat radiation path composed of a metal thin film layer formed inside or on the front and back surfaces thereof and a thermal via connected thereto, and a heat sink connected to the end face of the interposer. It is disclosed that heat generated from a semiconductor chip is released through a heat dissipation path, and the released heat is dissipated through a heat sink.

上記特許文献1には、熱対策に関する開示は全くない。   The above-mentioned Patent Document 1 has no disclosure regarding heat countermeasures.

以上のとおりの事情に鑑み、本願発明は、これら従来の熱対策とは全く技術思想を異にした、集積回路チップをストリップライン構造を持つ微細配線インターポーザを介して互いに配線して積層させることで1チップサイズの立体集積構造を実現するとともに、この立体集積構造におけるより一層効果的な熱対策を実現することのできる積層型集積回路装置を提供することを課題としている。   In view of the circumstances as described above, the invention of the present application differs from these conventional thermal countermeasures in that the technical idea is completely different from each other by wiring and stacking integrated circuit chips via a fine wiring interposer having a stripline structure. It is an object of the present invention to provide a stacked integrated circuit device capable of realizing a one-chip size three-dimensionally integrated structure and realizing a more effective heat countermeasure in this three-dimensionally integrated structure.

本願発明は、上記の課題を解決するものとして、第1には、集積回路チップをストリップライン構造の微細配線インターポーザを介して積層させた積層型集積回路装置であって、集積回路チップおよび微細配線インターポーザは、積層時に互いに接続されて電源経路を形成するとともに集積回路チップにて発生した熱を装置内縦方向に流す縦方向熱流路を形成する電源経路・縦方向熱流路兼用の貫通電極を有しており、微細配線インターポーザはさらに、そのストリップライン構造を構成するグランドプレーンとして、前記電源経路・縦方向熱流路兼用の貫通電極に接続されて電気的アースを形成するとともに集積回路チップにて発生した熱を装置内横方向に流して前記縦方向熱流路に導く横方向熱流路を形成する電気的アース・横方向熱流路兼用のグランドプレーンを有していることを特徴とする。   In order to solve the above-described problems, the present invention provides a stacked integrated circuit device in which integrated circuit chips are stacked via a micro wiring interposer having a stripline structure. The interposer is connected to each other at the time of stacking to form a power supply path, and has a through-hole electrode that also serves as a power supply path / vertical heat flow path that forms a vertical heat flow path for flowing heat generated in the integrated circuit chip in the vertical direction in the device. Furthermore, the fine wiring interposer is connected to the power supply path / longitudinal heat passage through electrode as a ground plane constituting the strip line structure to form an electrical ground and is generated in the integrated circuit chip. Electrical grounding / transverse heat flow that forms a transverse heat flow path that guides the generated heat to the longitudinal heat flow path in the transverse direction in the apparatus Characterized in that it has a shared ground plane.

また、本願発明は、第2には、前記第1の積層型集積回路装置であって、冷却装置を備え、この冷却装置に集積回路チップまたは微細配線インターポーザの前記電源経路・縦方向熱流路兼用の貫通電極が接続されていることを特徴とする。   The second aspect of the present invention is the first stacked integrated circuit device according to the first aspect of the present invention, which includes a cooling device, and the cooling device also serves as the power supply path / vertical heat flow path of the integrated circuit chip or the fine wiring interposer. These through electrodes are connected.

また、本願発明は、第3には、前記第1の積層型集積回路装置であって、前記貫通電極を有する一枚若しくは複数枚の集積回路チップと前記貫通電極および前記グランドプレーンを有する一枚若しくは複数枚の微細配線インターポーザとを予め積層させてなる積層型集積回路モジュールを、複数個積み上げて構成されていることを特徴とする。   The third aspect of the present invention is the first multilayer integrated circuit device, wherein one or a plurality of integrated circuit chips having the through electrode, the through electrode, and the ground plane are provided. Alternatively, a plurality of stacked integrated circuit modules in which a plurality of fine wiring interposers are stacked in advance are stacked.

上記第1の発明によれば、集積回路チップおよび微細配線インターポーザに設けた上記貫通電極によって電源経路と縦方向熱流路が形成され、且つ、微細配線インターポーザのストリップライン構造を構成する上記グランドプレーンによって電気的アースと横方向熱流路が形成され、これにより、微細配線インターポーザを介した集積回路チップの1チップサイズでの3次元実装はそのままに、電気の流れと熱の流れを同時に実現した、つまり高速信号伝送と排熱を両立した積層型集積回路装置を提供することができる。しかも、熱の流れについては、装置内にて横方向から縦方向へと流れる経路を実現しており、より優れた排熱効果を実現している。   According to the first invention, a power path and a vertical heat flow path are formed by the through electrodes provided in the integrated circuit chip and the fine wiring interposer, and the ground plane constituting the strip line structure of the fine wiring interposer is used. An electrical ground and a lateral heat flow path are formed, which realizes a flow of electricity and a heat flow at the same time without changing the three-dimensional mounting of the integrated circuit chip through the fine wiring interposer. It is possible to provide a stacked integrated circuit device that achieves both high-speed signal transmission and exhaust heat. In addition, as for the heat flow, a path that flows from the horizontal direction to the vertical direction in the apparatus is realized, and a more excellent exhaust heat effect is realized.

上記第2の発明によれば、上記第1の発明と同様な効果が得られ、また、上記冷却装置によって上記貫通電極による縦方向熱流路を伝わってくる熱を外部に効果的に排出することができ、より一層の排熱効果且つ冷却効果を実現している。   According to the second invention, the same effect as the first invention can be obtained, and the heat transmitted through the vertical heat flow path by the through electrode can be effectively discharged to the outside by the cooling device. It is possible to achieve a further exhaust heat effect and cooling effect.

上記第3の発明によれば、上記第1の発明と同様な効果が得られ、また、予め集積回路チップ2と微細配線インターポーザ3を積層させてモジュール化した積層型集積回路モジュールを用意しておき、これを必要に応じて複数個積み上げていくことで、モジュール単位での積層型集積回路装置の構築が可能になる。これは、スタッカブルチップによるシステム集積技術(SISC:System Integration by Stackable Chips)と呼ぶことができる。   According to the third aspect of the invention, the same effect as the first aspect of the invention can be obtained, and a laminated integrated circuit module in which the integrated circuit chip 2 and the fine wiring interposer 3 are laminated in advance to prepare a module is prepared. In addition, by stacking a plurality of these as necessary, it becomes possible to construct a stacked integrated circuit device in units of modules. This can be called system integration technology (SISSC: System Integration by Stackable Chips) using stackable chips.

[第一の実施形態]
図1は、上記のとおりの特徴を有する本願発明の一実施形態を示したものである。
[First embodiment]
FIG. 1 shows an embodiment of the present invention having the features as described above.

本実施形態の積層型集積回路装置1において、まず、LSI等の集積回路チップ2は、電源経路・縦方向熱流路兼用の貫通電極20と、信号配線用の貫通電極21とを有している。   In the stacked integrated circuit device 1 of the present embodiment, first, an integrated circuit chip 2 such as an LSI has a through electrode 20 that also serves as a power supply path / vertical heat flow path and a through electrode 21 for signal wiring. .

電源経路・縦方向熱流路兼用の貫通電極20は、導電性および伝熱性に優れた物質(たとえば銅や銀などの金属)で形成されて、集積回路チップ2を上下に貫通して設けられている。信号配線用の貫通電極21は、従来と同様のものが用いられる。   The power supply path / longitudinal heat flow path penetration electrode 20 is formed of a material having excellent conductivity and heat conductivity (for example, a metal such as copper or silver), and is provided through the integrated circuit chip 2 in the vertical direction. Yes. As the through electrode 21 for signal wiring, the same one as the conventional one is used.

次に、ストリップライン構造を持つ微細配線インターポーザ3は、電源経路・縦方向熱流路兼用の貫通電極30と、この貫通電極30に接続された電気的アース・横方向熱流路兼用の第一、第二のグランドプレーン31、35とを有している。   Next, the fine wiring interposer 3 having a stripline structure includes a through electrode 30 serving both as a power supply path and a vertical heat flow path, and first and second electrical earth / transverse heat flow paths connected to the through electrode 30. And two ground planes 31 and 35.

電源経路・縦方向熱流路兼用の貫通電極30は、導電性および伝熱性に優れた物質(たとえば銅や銀などの金属)で形成されて、微細配線インターポーザ3を上下に貫通して設けられている。また、上記集積回路チップ2の貫通電極20とは貫通位置が揃っており、積層時に集積回路チップ2および微細配線インターポー3とを縦に貫く一本の貫通電極を構成するようになっている。これら貫通電極20、30は外部の電源アースEに接続される。   The power supply path / longitudinal heat flow path penetrating electrode 30 is formed of a material having excellent conductivity and heat conductivity (for example, a metal such as copper or silver), and is provided through the fine wiring interposer 3 vertically. Yes. Further, the through-electrode 20 of the integrated circuit chip 2 is aligned with the through-hole 20 so as to constitute a single through-electrode that vertically penetrates the integrated circuit chip 2 and the fine wiring interposer 3 when stacked. . These through electrodes 20 and 30 are connected to an external power source ground E.

第一、第二のグランドプレーン31、35は、平板状またはメッシュ状(図1はメッシュ状)の導電性および伝熱性に優れた物質(たとえば銅や銀などの金属)で形成されて、第一の絶縁層32と信号線33と第二の絶縁層34とによりストリップライン構造を形成している。また、このストリップライン構造を貫通している上記貫通電極30とは電器および熱が伝わるように接触して接続されている。   The first and second ground planes 31 and 35 are formed of a plate-like or mesh-like material (FIG. 1 is a mesh-like) having excellent conductivity and heat conductivity (for example, a metal such as copper or silver). A strip line structure is formed by the one insulating layer 32, the signal line 33, and the second insulating layer 34. In addition, the through electrode 30 penetrating through the strip line structure is connected in contact with the electric and heat so as to be transmitted.

そして、これら集積回路チップ2と微細配線インターポーザ3が積層される際には、集積回路チップ2の信号配線用の貫通電極21と微細配線インターポーザ3のストリップライン構造を構成する信号線33とが接続されるとともに、集積回路チップ2の電源経路・縦方向熱流路兼用の貫通電極20と微細配線インターポーザ3の電源経路・縦方向熱流路兼用の貫通電極30とが接続される。   When the integrated circuit chip 2 and the fine wiring interposer 3 are stacked, the signal wiring through electrode 21 of the integrated circuit chip 2 and the signal line 33 constituting the strip line structure of the fine wiring interposer 3 are connected. In addition, the power supply path / vertical heat flow path through electrode 20 of the integrated circuit chip 2 is connected to the fine wiring interposer 3 power supply path / vertical heat flow path penetration electrode 30.

この貫通電極21および信号線33の接続によって、集積回路チップ2および微細配線インターポーザ3間の信号伝送路Sが形成され、その一方で、貫通電極20および貫通電極30の接続によって、微細配線インターポーザの第一、第二のグランドプレーン31、35から集積回路チップ2および微細配線インターポーザ3両方の貫通電極20、30を介して電源アースEに延びる電源アース経路が形成されるとともに、貫通電極20、30による縦方向に延びる熱流路(「熱排出経路」とも呼べる)Vと、第一、第二のグランドプレーン31、35によるこの縦方向熱流路Vに連通した横方向に延びる熱流路Lとが形成される。なお、図1の実施形態では、集積回路チップ2は基板上に各素子が搭載されて構成されており、各素子からの熱はその上方に位置する微細配線インターポーザ3の第二のグランドプレーン35により集熱されることとなるため、この第二のグランドプレーン35が主に横方向熱流路Lを形成している。   The signal transmission path S between the integrated circuit chip 2 and the fine wiring interposer 3 is formed by the connection of the through electrode 21 and the signal line 33, while the connection of the through electrode 20 and the through electrode 30 of the fine wiring interposer is formed. A power supply ground path extending from the first and second ground planes 31 and 35 to the power supply ground E through the through electrodes 20 and 30 of both the integrated circuit chip 2 and the fine wiring interposer 3 is formed. A heat flow path V (which can also be referred to as a “heat exhaust path”) V and a heat flow path L extending in the horizontal direction connected to the vertical heat flow path V by the first and second ground planes 31 and 35 are formed. Is done. In the embodiment of FIG. 1, the integrated circuit chip 2 is configured by mounting each element on a substrate, and the heat from each element is the second ground plane 35 of the fine wiring interposer 3 located above the element. Therefore, the second ground plane 35 mainly forms the lateral heat flow path L.

これにより、従来と同様に微細配線インターポーザ3を介在させて信号配線且つ電源配線して積層させた集積回路チップ2の1チップサイズでの3次元実装はそのままに、それら集積回路チップ2および微細配線インターポーザ3を縦に貫く貫通電極20、30と微細配線インターザー3を横に走る第一、第二のグランドプレーン31、35とによる縦方向熱流路V、横方向熱流路Lが実現されることとなる。   As a result, the integrated circuit chip 2 and the fine wiring are arranged in the same one-chip size as the conventional integrated circuit chip 2 laminated with the signal wiring and the power supply wiring through the fine wiring interposer 3 as in the prior art. The vertical heat flow path V and the horizontal heat flow path L are realized by the through electrodes 20 and 30 penetrating the interposer 3 vertically and the first and second ground planes 31 and 35 running horizontally through the fine wiring interser 3. It becomes.

すなわち、各層の集積回路チップ2で発生した熱をその上層の微細配線インターポーザ3の第一、第二のグランドプレーン31、35により集熱して積層型集積回路装置1内を横方向に流して貫通電極20、30に集め(横方向熱流路L)、さらにその熱を各層を貫く貫通電極20、30により積層型集積回路装置1内を縦方向に流すことができ(縦方向熱流路V)、熱が各層間に溜まらずにスムーズに積層型集積回路装置1内を横方向から縦方向に排出されて、極めて優れた排熱効果を高速信号伝送と同時に実現できるのである。   That is, the heat generated in the integrated circuit chip 2 in each layer is collected by the first and second ground planes 31 and 35 of the fine wiring interposer 3 in the upper layer, and flows through the laminated integrated circuit device 1 in the lateral direction. The heat can be collected in the electrodes 20 and 30 (lateral heat flow path L), and the heat can be passed through the stacked integrated circuit device 1 in the vertical direction by the through electrodes 20 and 30 penetrating each layer (vertical heat flow path V). The heat is smoothly accumulated in the stacked integrated circuit device 1 from the horizontal direction to the vertical direction without accumulating between the layers, and an extremely excellent heat removal effect can be realized simultaneously with the high-speed signal transmission.

このときさらに、ヒートシンクや冷却フィンなどといった冷却装置4を設けて、冷却装置4に集積回路チップ2または微細配線インターポーザ3の電源経路・縦方向熱流路兼用の貫通電極20、30を接続させておくことで、これら貫通電極20、30の縦方向熱流路Vを伝わってくる熱をより効果的に外部に排出して、積層型集積回路装置1全体の冷却効果をさらに向上させることができる。図1の実施形態では、この冷却装置4としての冷却フィンが最上層の微細配線インターポーザ3上に設置され、貫通電極30が接続されている。   At this time, a cooling device 4 such as a heat sink or a cooling fin is further provided, and the through-electrodes 20 and 30 that also serve as the power supply path / vertical heat flow path of the integrated circuit chip 2 or the fine wiring interposer 3 are connected to the cooling device 4. As a result, the heat transmitted through the vertical heat flow paths V of the through electrodes 20 and 30 can be more effectively discharged to the outside, and the cooling effect of the entire multilayer integrated circuit device 1 can be further improved. In the embodiment of FIG. 1, the cooling fins as the cooling device 4 are installed on the uppermost fine wiring interposer 3 and the through electrode 30 is connected.

[第二の実施形態]
以上の積層型集積回路装置1については、一枚もしくは複数枚の集積回路チップ2と一枚もしくは複数枚の微細配線インターポーザ3とを予め交互に積層させてモジュール化しておき、この積層型集積回路モジュール(「スタッカブルチップ」とも呼べる)を必要に応じて複数個積み上げることで幾層もの積層型集積回路装置1を構築する実施形態も可能である。
[Second Embodiment]
With respect to the stacked integrated circuit device 1 described above, one or a plurality of integrated circuit chips 2 and one or a plurality of fine wiring interposers 3 are alternately stacked in advance to form a module. An embodiment in which a plurality of stacked integrated circuit devices 1 are constructed by stacking a plurality of modules (also called “stackable chips”) as necessary is also possible.

この場合、各積層型集積回路モジュールの最上層を集積回路チップ2および最下層を微細配線インターポーザ3としておき、またはその逆としておき、積み上げ時に集積回路チップ2および微細配線インターポーザ3が交互に位置して、上記のとおりの高速信号伝送と排熱との両立が実現できるようにする。   In this case, the uppermost layer of each stacked type integrated circuit module is set as the integrated circuit chip 2 and the lowermost layer as the fine wiring interposer 3, or vice versa, and the integrated circuit chips 2 and the fine wiring interposer 3 are alternately positioned at the time of stacking. Thus, it is possible to realize both high-speed signal transmission and exhaust heat as described above.

本願発明の一実施形態について説明するための斜視図。The perspective view for demonstrating one Embodiment of this invention. 従来のSoBについて説明するための図。The figure for demonstrating conventional SoB. 従来のSoCについて説明するための図。The figure for demonstrating the conventional SoC. 従来のSiPについて説明するための図。The figure for demonstrating the conventional SiP.

符号の説明Explanation of symbols

1 積層型集積回路装置
2 集積回路チップ
20 貫通電極
21 貫通電極
3 微細配線インターポーザ
30 貫通電極
31 第一のグランドプレーン
32 第一の絶縁層
33 信号線
34 第二の絶縁層
35 第二のグランドプレーン
4 冷却装置
V 縦方向熱流路
L 横方向熱流路
S 信号伝送路
E 電源アース

DESCRIPTION OF SYMBOLS 1 Stacked type integrated circuit device 2 Integrated circuit chip 20 Through electrode 21 Through electrode 3 Fine wiring interposer 30 Through electrode 31 First ground plane 32 First insulating layer 33 Signal line 34 Second insulating layer 35 Second ground plane 4 Cooling device V Longitudinal heat flow path L Horizontal heat flow path S Signal transmission line E Power supply ground

Claims (2)

集積回路チップをストリップライン構造の微細配線インターポーザを介して積層させた積層型集積回路装置であって、
集積回路チップおよび微細配線インターポーザは、積層時に互いに接続されて電源経路を形成するとともに集積回路チップにて発生した熱を装置内縦方向に流す縦方向熱流路を形成する電源経路・縦方向熱流路兼用の貫通電極を有しており、
微細配線インターポーザはさらに、そのストリップライン構造を構成するグランドプレーンとして、前記電源経路・縦方向熱流路兼用の貫通電極に接続されて電気的アースを形成するとともに集積回路チップにて発生した熱を装置内横方向に流して前記縦方向熱流路に導く横方向熱流路を形成する電気的アース・横方向熱流路兼用のグランドプレーンを有し、
冷却装置を備え、この冷却装置に集積回路チップまたは微細配線インターポーザの前記電源経路・縦方向熱流路兼用の貫通電極が接続されていることを特徴とする積層型集積回路装置。
A laminated integrated circuit device in which an integrated circuit chip is laminated through a fine wiring interposer having a stripline structure,
The integrated circuit chip and the fine wiring interposer are connected to each other at the time of stacking to form a power supply path and to form a vertical heat flow path for flowing heat generated in the integrated circuit chip in the vertical direction in the apparatus. It has a combined through electrode,
The fine wiring interposer is further connected to the power supply path / longitudinal heat flow path through electrode as a ground plane constituting the stripline structure to form an electrical ground and to generate heat generated in the integrated circuit chip. flushed with inner lateral possess electrical ground lateral heat flow path shared ground plane to form a transverse heat flow path for guiding the longitudinal heat flow path,
A laminated integrated circuit device comprising a cooling device, wherein the cooling device is connected to the integrated circuit chip or the through-electrode serving as the power path / vertical heat flow channel of the fine wiring interposer .
前記貫通電極を有する一枚若しくは複数枚の集積回路チップと前記貫通電極および前記グランドプレーンを有する一枚若しくは複数枚の微細配線インターポーザを予め積層させてなる積層型集積回路モジュールを、複数個積み上げて構成されていることを特徴とする請求項1記載の積層型集積回路装置。   Stacking a plurality of stacked integrated circuit modules in which one or a plurality of integrated circuit chips having the through electrodes and one or a plurality of fine wiring interposers having the through electrodes and the ground plane are stacked in advance. 2. The stacked integrated circuit device according to claim 1, wherein the stacked integrated circuit device is configured.
JP2005038296A 2005-02-15 2005-02-15 Multilayer integrated circuit device Expired - Fee Related JP4300316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038296A JP4300316B2 (en) 2005-02-15 2005-02-15 Multilayer integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038296A JP4300316B2 (en) 2005-02-15 2005-02-15 Multilayer integrated circuit device

Publications (2)

Publication Number Publication Date
JP2006228834A JP2006228834A (en) 2006-08-31
JP4300316B2 true JP4300316B2 (en) 2009-07-22

Family

ID=36989956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038296A Expired - Fee Related JP4300316B2 (en) 2005-02-15 2005-02-15 Multilayer integrated circuit device

Country Status (1)

Country Link
JP (1) JP4300316B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008108334A1 (en) * 2007-03-06 2010-06-17 株式会社ニコン Semiconductor device and method for manufacturing the semiconductor device
US8035223B2 (en) * 2007-08-28 2011-10-11 Research Triangle Institute Structure and process for electrical interconnect and thermal management
JP5206822B2 (en) 2010-07-09 2013-06-12 株式会社デンソー Semiconductor device
US8492911B2 (en) * 2010-07-20 2013-07-23 Lsi Corporation Stacked interconnect heat sink
JP2012186393A (en) * 2011-03-07 2012-09-27 Fujitsu Ltd Electronic device, portable electronic terminal, and method for manufacturing electronic device
JP6135533B2 (en) * 2014-02-06 2017-05-31 日立金属株式会社 Multi-module
JPWO2019078291A1 (en) * 2017-10-20 2020-11-26 ソニーセミコンダクタソリューションズ株式会社 Imaging device

Also Published As

Publication number Publication date
JP2006228834A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
US10134711B2 (en) Thermally enhanced semiconductor assembly with three dimensional integration and method of making the same
US9240377B2 (en) X-line routing for dense multi-chip-package interconnects
JP4300316B2 (en) Multilayer integrated circuit device
US6670699B2 (en) Semiconductor device packaging structure
JP6033843B2 (en) Multi-die face-down stacking for two or more dies
US11282776B2 (en) High density routing for heterogeneous package integration
US9622339B2 (en) Routing design for high speed input/output links
US20120299173A1 (en) Thermally Enhanced Stacked Package and Method
US7230332B2 (en) Chip package with embedded component
US8263871B2 (en) Mount board and semiconductor module
JP2007234881A (en) Semiconductor device laminating semiconductor chips, and its manufacturing method
US20070045804A1 (en) Printed circuit board for thermal dissipation and electronic device using the same
KR20160091831A (en) Semiconductor device
TW202226509A (en) Shield structures in microelectronic assemblies having direct bonding
CN110865441B (en) Optical module
US20050258533A1 (en) Semiconductor device mounting structure
US20190037707A1 (en) Printed circuit board with edge soldering for high-density packages and assemblies
US9558311B2 (en) Surface region selection for heat sink placement
JP6159820B2 (en) Semiconductor device and information processing apparatus
JP4522271B2 (en) Electronic device and heat sink assembly used therefor
US11854935B2 (en) Enhanced base die heat path using through-silicon vias
JP5115200B2 (en) Electronic device, package having the same, and electronic device
CN213782014U (en) Three-dimensional interconnected system-in-package
JP2009206398A (en) Cooling module and composite mounting substrate
KR20080088094A (en) Stack package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4300316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees