JP4522271B2 - Electronic device and heat sink assembly used therefor - Google Patents

Electronic device and heat sink assembly used therefor Download PDF

Info

Publication number
JP4522271B2
JP4522271B2 JP2005012937A JP2005012937A JP4522271B2 JP 4522271 B2 JP4522271 B2 JP 4522271B2 JP 2005012937 A JP2005012937 A JP 2005012937A JP 2005012937 A JP2005012937 A JP 2005012937A JP 4522271 B2 JP4522271 B2 JP 4522271B2
Authority
JP
Japan
Prior art keywords
circuit board
double
heat sink
electronic device
mounting circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005012937A
Other languages
Japanese (ja)
Other versions
JP2006202975A (en
Inventor
大輔 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005012937A priority Critical patent/JP4522271B2/en
Publication of JP2006202975A publication Critical patent/JP2006202975A/en
Application granted granted Critical
Publication of JP4522271B2 publication Critical patent/JP4522271B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、両面実装回路基板ユニットにより半導体素子を高密度に電気接続した高密度実装電子装置のための冷却構造に関する。   The present invention relates to a cooling structure for a high-density mounting electronic device in which semiconductor elements are electrically connected with high density by a double-sided mounting circuit board unit.

ネットワーク機器の高速化、大容量化にともない、半導体素子間の配線距離を短縮し、実装密度を上げることが要求されている。一方、微細化がすすむ半導体素子では発熱量が増加するため、冷却構造が必須となってきている。   As network devices increase in speed and capacity, it is required to reduce the wiring distance between semiconductor elements and increase the mounting density. On the other hand, in semiconductor elements that are increasingly miniaturized, the amount of heat generated increases, so a cooling structure has become essential.

従来から、電子機器における高密度実装冷却構造として、半導体素子面に形成したヒートシンクを向かい合わせに設置し、ヒートシンクの間を流れる空気流によって冷却する構造が知られている(たとえば、特許文献1参照)。この方法は、回路基板上の半導体チップが低電力チップである場合に採用されている。チップからヒートシンク側へ除去された熱を、対流する空気流に移すことで、チップの動作に伴う発熱を取り除くことができる。   2. Description of the Related Art Conventionally, as a high-density mounting cooling structure in an electronic device, a structure in which heat sinks formed on a semiconductor element surface are installed face to face and cooled by an air flow flowing between the heat sinks is known (for example, see Patent Document 1). ). This method is employed when the semiconductor chip on the circuit board is a low power chip. By transferring the heat removed from the chip to the heat sink side into a convection air flow, heat generated by the operation of the chip can be removed.

中電力のチップに対しては、冷媒として液体を内蔵したヒートパイプを用いた冷却構造が提案されている(たとえば、特許文献2参照)。しかし、冷却構造が大掛かりとなるために、複数の半導体素子を高密度に実装する三次元実装型の電子装置には不向きである。特に、ヒートパイプと片面実装の電子回路モジュールとを交互に積み重ねていく構造では、電子装置全体が大型化してしまう。   For medium-power chips, a cooling structure using a heat pipe containing a liquid as a refrigerant has been proposed (see, for example, Patent Document 2). However, since the cooling structure becomes large, it is not suitable for a three-dimensional mounting type electronic device that mounts a plurality of semiconductor elements at high density. In particular, in a structure in which heat pipes and single-side mounted electronic circuit modules are alternately stacked, the entire electronic device becomes large.

一方、高密度に半導体素子を実装する形態として、半導体素子を実装したフレキシブルプリント配線板を折りたたむことで、半導体素子の積み重ね構造を実現する方法が提案されている(たとえば、特許文献3参照)。この方法は、熱量の小さい素子を高密度にフレキシブル実装することを目的としているが、放熱についてはなんら考慮されていない。
特開平6−291228号公報 特開平6−21290号公報 特開2000−307055号公報
On the other hand, as a form for mounting semiconductor elements at high density, a method of realizing a stacked structure of semiconductor elements by folding a flexible printed wiring board on which semiconductor elements are mounted has been proposed (for example, see Patent Document 3). This method is intended to flexibly mount an element with a small amount of heat at a high density, but does not consider any heat dissipation.
JP-A-6-291228 JP-A-6-21290 JP 2000-307055 A

特許文献1に開示される構成は、同一平面上に1以上の半導体素子が実装された複数の基板を効率よく冷却するための冷却構造である。各素子面上に、冷却のための三角形の放熱フィンを形成し、互いに対抗する放熱フィンの間の空間を利用して空気流を流し、熱を除去している。この構成では、素子の表面に放熱フィンを設置するための空間と、さらに、対向する放熱フィンの間にダクトを通す空間が必要になる。   The configuration disclosed in Patent Document 1 is a cooling structure for efficiently cooling a plurality of substrates on which one or more semiconductor elements are mounted on the same plane. Triangular radiating fins for cooling are formed on each element surface, and an air flow is made to flow through the space between the radiating fins facing each other to remove heat. In this configuration, a space for installing the radiation fins on the surface of the element and a space for passing the duct between the opposing radiation fins are required.

このため、高密度化に限界があり、三次元のスタック構造で積み重ねられた複数の半導体素子間の配線距離を短縮することができない。   For this reason, there is a limit to increasing the density, and the wiring distance between a plurality of semiconductor elements stacked in a three-dimensional stack structure cannot be shortened.

そこで、本発明は、半導体素子の高密度実装を維持しつつ、効率よく放熱するための高密度実装冷却構造を提供することを課題とする。   Therefore, an object of the present invention is to provide a high-density mounting cooling structure for efficiently radiating heat while maintaining high-density mounting of semiconductor elements.

また、複数の半導体素子が3次元的に高密度実装された電子装置に、容易に組み込むことができる簡単な構成の高密度実装冷却構造を提供することを課題とする。   It is another object of the present invention to provide a high-density mounting cooling structure with a simple configuration that can be easily incorporated into an electronic device in which a plurality of semiconductor elements are three-dimensionally mounted with high density.

上記課題を解決するために、本発明は、両面実装の回路基板を積み重ねた電子装置に、一回の挿入で組み込むことのできる冷却構造を実現する。   In order to solve the above problems, the present invention realizes a cooling structure that can be incorporated into an electronic device in which circuit boards mounted on both sides are stacked with a single insertion.

これを実現するために、半導体素子を両面に実装した回路基板を三次元的に積み重ねるときに、少なくとも1辺側が開口するように、回路基板上にコネクタを設ける。この開口側から、互いに対向する半導体素子面の双方に接するように、放熱板を一度に挿入し、半導体素子で発生する熱を、3次元的に積み重ねた回路基板の外部へ導き出す。   In order to realize this, a connector is provided on the circuit board so that at least one side is opened when the circuit boards on which the semiconductor elements are mounted on both sides are three-dimensionally stacked. From this opening side, a heat sink is inserted at a time so as to be in contact with both of the semiconductor element surfaces facing each other, and the heat generated in the semiconductor elements is led out of the three-dimensionally stacked circuit boards.

本発明の第1の側面では、冷却構造を有する電子装置を提供する。電子装置は、
(a)実装された半導体素子の高さ方向に、スタック構造で積み重ねられた複数の両面実装回路基板ユニットと、
(b)前記積み重ねられた複数の両面実装回路基板ユニットの少なくとも一辺側が開口するように配置され、かつ、前記両面実装回路基板ユニットの端部で、前記両面実装回路基板ユニット間の電気的な接続を行なうコネクタと、
(c)前記スタック構造で互いに対向する半導体素子の間に設けられ、当該対向する半導体素子の各々に接する冷却構造とを備え、
(d)前記冷却構造は、互いに平行に延びる複数の放熱板が一体的に組み合わせられた放熱板アセンブリを含んでいる
In a first aspect of the present invention, an electronic device having a cooling structure is provided. Electronic devices
(A) a plurality of double-sided mounting circuit board units stacked in a stack structure in the height direction of the mounted semiconductor element;
(B) An electrical connection between the double-sided mounted circuit board units is arranged such that at least one side of the stacked double-sided mounted circuit board units is opened, and at an end of the double-sided mounted circuit board unit. A connector for performing
(C) provided between the semiconductor element facing each other in said stack structure, e Bei and a cooling structure in contact with the respective semiconductor element such opposing,
(D) The cooling structure includes a heat sink assembly in which a plurality of heat sinks extending in parallel with each other are integrally combined .

これにより、スタック構造で積み重ねられる両面実装回路基板ユニット間で、向かい合う半導体チップ間の余分な空間を排除し、チップで発生する熱をスタック構造の外部へ導くことができる。   Thereby, it is possible to eliminate the extra space between the semiconductor chips facing each other between the double-sided mounting circuit board units stacked in the stack structure, and to guide the heat generated in the chips to the outside of the stack structure.

良好な構成例では、冷却構造は、互いに対向する半導体素子間に延びる放熱板を有し、スタックされた両面実装回路基板ユニットの少なくとも1つは、基板表面に形成されたグランド層を有し、このグランド層と同じ面上に実装された半導体素子と接する放熱板は、グランド層に接触する突起部を有する。   In a favorable configuration example, the cooling structure has a heat sink extending between semiconductor elements facing each other, at least one of the stacked double-sided mounted circuit board units has a ground layer formed on the substrate surface, The heat sink that contacts the semiconductor element mounted on the same surface as the ground layer has a protrusion that contacts the ground layer.

これにより、放熱板をグランドとして機能させ、両面実装回路基板ユニット間の配線距離を実質的に短くすることができる。   Thereby, a heat sink can be functioned as a ground and the wiring distance between double-sided mounting circuit board units can be shortened substantially.

また別の良好な構成例では、コネクタは複数のピンで構成される。この場合、両面実装回路基板ユニットの各々は、前記ピンに対応する位置に形成された複数の貫通穴を有し、各両面実装回路基板ユニットにおいて、貫通穴が選択的に導電処理されている。   In another preferable configuration example, the connector includes a plurality of pins. In this case, each double-sided mounting circuit board unit has a plurality of through holes formed at positions corresponding to the pins, and the through holes are selectively subjected to conductive processing in each double-sided mounting circuit board unit.

この構成により、複数段の両面実装回路基板ユニットの任意のレイヤ間で配線接続することが可能になり、電子装置の設計の自由度が向上する。   With this configuration, it is possible to perform wiring connection between arbitrary layers of the multi-stage double-sided mounting circuit board unit, and the degree of freedom in designing the electronic device is improved.

本発明の第2の側面では、3次元スタック構造の高密度実装回路基板を有する電子装置に用いられる放熱板アセンブリを提供する。放熱板アセンブリは、
第1のフィン部を有するS字型または逆S字型の第1の放熱板と、
第2のフィン部を有するL字型の第2の放熱板と、
が前記第1のフィン部と第2のフィン部が平行に延びるように一体的に接合され、
前記第1のフィン部および第2のフィン部は、3次元的に積み重ねられた両面実装回路基板ユニットに実装され互いに対向する半導体素子の間に挿入されたときに、前記両面実装回路基板ユニット上に形成されたグランド層と接触するように設けられた突起部を有する。
According to a second aspect of the present invention, there is provided a heat sink assembly used in an electronic device having a high-density mounting circuit board having a three-dimensional stack structure. The heat sink assembly
An S-shaped or reverse S-shaped first heat dissipating plate having a first fin portion;
An L-shaped second heat sink having a second fin portion;
Are integrally joined so that the first fin portion and the second fin portion extend in parallel,
The first fin portion and the second fin portion are mounted on the double-sided mounting circuit board unit that is three-dimensionally stacked and inserted between the semiconductor elements facing each other. And a projecting portion provided so as to be in contact with the ground layer formed.

こにより、簡単な構成で、一度の挿入で複数段の両面実装回路基板ユニットの対向する半導体素子間に組み込むことができる冷却機構を実現できる。   Accordingly, it is possible to realize a cooling mechanism that can be assembled between opposing semiconductor elements of a plurality of double-sided mounting circuit board units with a simple configuration with a single insertion.

両面実装基板の高密度スタック構造に、冷却構造を容易に組み込むことができる。   The cooling structure can be easily incorporated into the high-density stack structure of the double-sided mounting substrate.

この結果、高密度化と冷却効率を両立させることが可能になる。   As a result, it is possible to achieve both high density and cooling efficiency.

冷却機能を備えた高密度電子装置の製造コストを低減することができる。   The manufacturing cost of a high-density electronic device having a cooling function can be reduced.

以下、添付図面を参照して、本発明の良好な実施形態を説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る電子装置で用いられる両面実装回路基板ユニット10の構成例である。LSIなどの半導体素子(チップ)11が、回路基板12の両面に実装されている。図1の例では、半導体素子11が上下対称の位置に実装されているが、必ずしも対称配置である必要はない。また、各半導体素子11の内部配線構造も、必ずしも対称である必要はない。   FIG. 1 is a configuration example of a double-sided mounted circuit board unit 10 used in an electronic device according to an embodiment of the present invention. Semiconductor elements (chips) 11 such as LSI are mounted on both surfaces of the circuit board 12. In the example of FIG. 1, the semiconductor element 11 is mounted in a vertically symmetrical position, but it is not always necessary to have a symmetrical arrangement. Further, the internal wiring structure of each semiconductor element 11 is not necessarily symmetrical.

このような両面実装回路基板ユニット10は、高さ方向に積み重ねられて、高密度の三次元実装電子装置を構成する。   Such double-sided mounting circuit board units 10 are stacked in the height direction to constitute a high-density three-dimensional mounting electronic device.

図2は、図1に示す両面実装回路基板ユニット10を用いた電子装置1の側面図である。両面実装回路基板ユニット10の両端には、電気的接続用の端子(不図示)が設けられており、コネクタ4によって両面実装回路基板ユニット10間の電気接続を行なう。コネクタ4は、マザーボード6に電気的に接続されており、半導体素子11とマザーボード上に実装される他の電子部品(不図示)との間の電気的な接続をとる。   FIG. 2 is a side view of the electronic apparatus 1 using the double-sided mounted circuit board unit 10 shown in FIG. Terminals for electrical connection (not shown) are provided at both ends of the double-sided mounting circuit board unit 10, and electrical connection between the double-sided mounting circuit board units 10 is performed by the connector 4. The connector 4 is electrically connected to the mother board 6 and establishes an electric connection between the semiconductor element 11 and other electronic components (not shown) mounted on the mother board.

図2のスタック構造において、回路基板12の両面に実装された半導体素子11は、互いに向かい合う配置となる。この向かい合う半導体素子11の間に生じる空間に、放熱板5が挿入されている。図2の側面図では、複数の放熱板5の各々が、対向する半導体素子11の間の空間に挿入されているが、後述するように、これら複数の放熱板5は一体化されて、放熱板アセンブリを構成している。   In the stack structure of FIG. 2, the semiconductor elements 11 mounted on both surfaces of the circuit board 12 are arranged to face each other. A heat radiating plate 5 is inserted in a space generated between the semiconductor elements 11 facing each other. In the side view of FIG. 2, each of the plurality of heat sinks 5 is inserted into the space between the opposing semiconductor elements 11. However, as will be described later, the plurality of heat sinks 5 are integrated to dissipate heat. It constitutes a plate assembly.

放熱板5の材質は、熱伝導率が高く、安価で機械加工が容易なものが望ましい。一例として、アルミニウム、またはアルミニウム合金を用いる。   The material of the heat radiating plate 5 is preferably a material having high thermal conductivity, low cost and easy machining. As an example, aluminum or an aluminum alloy is used.

放熱板5の厚さは、電子装置1全体の小型化の観点から、本実施形態では1mm未満に設定する。放熱板5の表面と半導体素子11の表面との隙間を埋めるために、あらかじめ素子11上または放熱板5の表面に、放熱用のグリースを塗っておいてもよい。   In the present embodiment, the thickness of the heat sink 5 is set to be less than 1 mm from the viewpoint of downsizing the entire electronic device 1. In order to fill a gap between the surface of the heat sink 5 and the surface of the semiconductor element 11, heat release grease may be applied on the element 11 or the surface of the heat sink 5 in advance.

図3は、図2の電子装置1の上面図である。上述したように、両面実装回路基板ユニット10の上下端には、図示しない電気的接続用の端子が設けられており、コネクタ4によってスタックされた両面実装回路基板ユニット10が互いに電気的に接続されている。   FIG. 3 is a top view of the electronic device 1 of FIG. As described above, electrical connection terminals (not shown) are provided at the upper and lower ends of the double-sided mounting circuit board unit 10, and the double-sided mounting circuit board units 10 stacked by the connector 4 are electrically connected to each other. ing.

放熱板5は、図3の左右方向に挿入され、互いに対向する半導体素子11(図2参照)間の空間を貫通している。図3の例では、放熱板5の左右方向の長さL1を、両面実装回路基板ユニット10の対応する辺の長さL2よりも長くしてある。この構成により、対向する半導体素子11の間の空間へ、放熱板5が挿入し易くなる。   The heat sink 5 is inserted in the left-right direction of FIG. 3 and penetrates the space between the semiconductor elements 11 (see FIG. 2) facing each other. In the example of FIG. 3, the length L1 in the left-right direction of the heat sink 5 is longer than the corresponding side length L2 of the double-sided mounted circuit board unit 10. With this configuration, the heat sink 5 can be easily inserted into the space between the semiconductor elements 11 facing each other.

矢印方向(左右方向)への放熱板5の挿入を可能にするために、マザーボード6上のコネクタ4は、両面実装回路基板ユニット10の挿入方向に沿った2辺と接続されるように配置されている。すなわち、コネクタ4は、放熱板5が挿入できるように、スタックされた両面実装回路基板ユニット10の少なくとも1辺側が開口するように配置される。   In order to allow the heat sink 5 to be inserted in the direction of the arrow (left and right), the connector 4 on the mother board 6 is arranged so as to be connected to two sides along the insertion direction of the double-sided mounting circuit board unit 10. ing. That is, the connector 4 is arranged so that at least one side of the stacked double-sided circuit board unit 10 is opened so that the heat sink 5 can be inserted.

図3の例では、両面実装回路基板ユニット10の互いに向き合う2辺に沿ってコネクタ4が配置されているが、3辺を囲むように配置してもよいし、両面実装回路基板ユニット10間の電気的な接続さえ確保できれば、両面実装回路基板ユニットの1辺側だけにコネクタ4を配置してもよい。   In the example of FIG. 3, the connector 4 is arranged along two opposite sides of the double-sided mounting circuit board unit 10, but it may be arranged so as to surround the three sides, or between the double-sided mounting circuit board units 10. The connector 4 may be disposed only on one side of the double-sided mounted circuit board unit as long as electrical connection can be ensured.

図4は、スタックされた両面実装回路基板ユニット10に放熱板アセンブリ15を組み付ける様子を示す斜視図である。   FIG. 4 is a perspective view showing how the heat sink assembly 15 is assembled to the stacked double-sided mounting circuit board unit 10.

放熱板アセンブリ15は、S字型(あるいは逆S字型)に屈曲された第1の放熱板5aと、L字型に屈曲された第2の放熱板5bとを組み合わせて構成される。放熱板5a、5bにアルミニウムまたはアルミニウム合金を用いた場合、加工が容易であり、それぞれ別個に加工された放熱板5a、5bを張り合わせて一体化することで、放熱板アセンブリ15を低コストで作成することができる。   The heat radiating plate assembly 15 is configured by combining a first heat radiating plate 5a bent in an S shape (or an inverted S shape) and a second heat radiating plate 5b bent in an L shape. When aluminum or aluminum alloy is used for the heat sinks 5a and 5b, the processing is easy, and the heat sinks 15a and 5b, which are separately processed, are laminated and integrated to create the heat sink assembly 15 at a low cost. can do.

この場合、S字型放熱板5aをベースにして、L字型放熱板5bを順次重ね合わせることで、S字型放熱板5aのフィン部5fと、L字型放熱板5bのフィン部5fが所定の間隔で互いに平行に延びるように組み付ける。   In this case, the L-shaped heat radiating plate 5b and the fin portions 5f of the L-shaped heat radiating plate 5b and the fin portions 5f of the L-shaped heat radiating plate 5b are formed by sequentially superposing the L-shaped heat radiating plates 5b on the basis of the S-shaped heat radiating plate 5a. They are assembled so as to extend in parallel with each other at a predetermined interval.

図4の例では、矢印の方向に放熱板アセンブリ15が挿入され、平行なフィン部5fが、スタックされた両面実装回路基板ユニット10の対向する素子11間の空間に差し込まれることになる。上述したように、挿入に先立って、回路基板12の両面に実装された半導体素子11の表面に、放熱グリースを塗っておいてもよい。なお、図4には描かれていないが、スタックされた複数の両面実装回路基板ユニット10は、紙面の手前側および/または後ろ側でコネクタに電気的に接続されているものとする。   In the example of FIG. 4, the heat sink assembly 15 is inserted in the direction of the arrow, and the parallel fin portions 5 f are inserted into the space between the opposing elements 11 of the stacked double-sided mounting circuit board unit 10. As described above, heat radiation grease may be applied to the surface of the semiconductor element 11 mounted on both surfaces of the circuit board 12 prior to insertion. Although not depicted in FIG. 4, it is assumed that the plurality of stacked double-sided circuit board units 10 are electrically connected to the connectors on the front side and / or the back side of the paper.

図5は、放熱板アセンブリ15が、対向する半導体素子11間に完全に挿入された状態を示す。この状態で、各半導体素子11(図4参照)の高速動作に伴った発熱が生じても、放熱板5a、5bにより熱が除去される。   FIG. 5 shows a state where the heat sink assembly 15 is completely inserted between the semiconductor elements 11 facing each other. In this state, even if heat is generated due to high-speed operation of each semiconductor element 11 (see FIG. 4), heat is removed by the heat radiating plates 5a and 5b.

図示はしないが、放熱板アセンブリ15の基部15aに、別途放熱フィンを設けてもよい。あるいは、マザーボード6上で、放熱板アセンブリ15のテール部15bに、チラーなどの冷却機構を接続してもよい。この場合、両面実装回路基板ユニット10を三次元的にスタックした電子装置1の外部から、容易に冷却の度合いを制御することができ、調整の自由度が高くなる。   Although not shown, a heat radiating fin may be separately provided on the base portion 15 a of the heat radiating plate assembly 15. Alternatively, a cooling mechanism such as a chiller may be connected to the tail portion 15 b of the heat sink assembly 15 on the mother board 6. In this case, the degree of cooling can be easily controlled from the outside of the electronic device 1 in which the double-sided mounting circuit board units 10 are three-dimensionally stacked, and the degree of freedom of adjustment is increased.

図6は、図2に示す電子装置の冷却構造の変形例を示す図である。図6の例では、両面実装回路基板ユニット10の基板12の表面に、グランド層22が形成されており、放熱板5を、突起5でグランド層22に接触させている。放熱板5にアルミニウムなどの導電性を有する材料を用いた場合、放熱板5と両面実装回路基板ユニット10のグランド層22を電気的に接続することで、半導体素子11からみると、放熱板5もグランドとして機能し、実際の配線距離を短くすることができる。また、半導体素子11からグランド層22までの間に発生するインダクタンスを低減することができる。   FIG. 6 is a diagram showing a modification of the cooling structure of the electronic device shown in FIG. In the example of FIG. 6, the ground layer 22 is formed on the surface of the substrate 12 of the double-sided mounted circuit board unit 10, and the heat sink 5 is brought into contact with the ground layer 22 with the protrusions 5. In the case where a conductive material such as aluminum is used for the heat sink 5, the heat sink 5 is electrically connected to the ground layer 22 of the double-sided mounting circuit board unit 10. Also functions as a ground, and the actual wiring distance can be shortened. In addition, inductance generated between the semiconductor element 11 and the ground layer 22 can be reduced.

放熱板5の突起部5dは、たとえばプレス加工により、容易に形成することができる。この場合も、あらかじめプレス加工により突起5dを形成したS字型(または逆S字型)の放熱板5aと、あらかじめ突起5dを形成したL字型の放熱板5bとを接合することによって、安価かつ容易に放熱板アセンブリ15を作成することができる。突起5dを設けた放熱板アセンブリ15も、コネクタを設置していない側(開口側)から、スタックされた両面実装回路基板ユニット10間の隙間に一度に差し込むことができる。   The protrusion 5d of the heat sink 5 can be easily formed, for example, by press working. Also in this case, the S-shaped (or inverted S-shaped) heat sink 5a in which the protrusions 5d are formed in advance by press working and the L-shaped heat sink 5b in which the protrusions 5d are formed in advance are bonded to each other. And the heat sink assembly 15 can be produced easily. The heat sink assembly 15 provided with the protrusions 5d can also be inserted into the gap between the stacked double-sided mounted circuit board units 10 from the side where the connector is not installed (opening side).

図7は、本発明の実施形態に係るコネクタ構造の一例を示す図である。マザーボード6上の向き合う2辺に沿って、複数のコネクタピン24が設けられている。   FIG. 7 is a view showing an example of a connector structure according to the embodiment of the present invention. A plurality of connector pins 24 are provided along two opposing sides on the mother board 6.

両面実装回路基板ユニット10の回路基板12の向かい合う2辺には、電気的接続および位置合わせのための貫通孔17が形成されている。隣接する両面実装回路基板ユニット10の間には、スペーサ25が配置され、スペーサにも、両面実装回路基板ユニット10の貫通穴17と対応する位置に、貫通穴25hが設けられている。スペーサは、たとえばゴムなどの絶縁体であり、その厚さを調整することによって、両面実装回路基板ユニット10間の距離を調整することができる。両面実装回路基板ユニット10の貫通穴17と、スペーサ25の貫通穴25hに、導電性のコネクタピン24を差し込むことによって、両面実装回路基板ユニット10が位置決めされる。   Through holes 17 for electrical connection and alignment are formed on two opposite sides of the circuit board 12 of the double-sided mounting circuit board unit 10. A spacer 25 is disposed between the adjacent double-sided mounting circuit board units 10, and a through-hole 25 h is provided in the spacer at a position corresponding to the through-hole 17 of the double-sided mounting circuit board unit 10. The spacer is an insulator such as rubber, for example, and the distance between the double-sided mounted circuit board units 10 can be adjusted by adjusting the thickness thereof. By inserting the conductive connector pin 24 into the through hole 17 of the double-sided mounting circuit board unit 10 and the through hole 25h of the spacer 25, the double-sided mounting circuit board unit 10 is positioned.

コネクタピン24とスペーサ25によって位置決めされた両面実装回路基板ユニット10の間に、コネクタピン24が配置されていない開口側から、図4または図6に示す放熱板アセンブリ15が挿入される。   The heat sink assembly 15 shown in FIG. 4 or 6 is inserted between the double-sided mounting circuit board unit 10 positioned by the connector pin 24 and the spacer 25 from the opening side where the connector pin 24 is not disposed.

図8は、コネクタピン24の電気的な接続方法を示す図である。両面実装回路基板ユニット10の回路基板12に形成された貫通穴17の内壁を、選択的に導電処理する。すなわち、両面実装回路基板ユニット10の各々は、その回路基板12に形成された配線19の位置に応じて、導電処理がされた貫通穴17aと、導電処理がされない貫通穴17bを有する。導電処理された貫通穴17aは、その内壁に、たとえばメッキなどによるメタル層17mを有し、配線19とコネクタピン24により、両面実装回路基板ユニット10間の電気的な接続をとる。導電処理されていない貫通穴17bは、もっぱら位置合わせのために用いられる。   FIG. 8 is a diagram illustrating an electrical connection method of the connector pins 24. The inner wall of the through hole 17 formed in the circuit board 12 of the double-sided mounting circuit board unit 10 is selectively subjected to conductive treatment. That is, each double-sided mounting circuit board unit 10 has a through hole 17a that has been subjected to a conductive process and a through hole 17b that has not been subjected to a conductive process depending on the position of the wiring 19 formed on the circuit board 12. The through hole 17 a subjected to the conductive treatment has a metal layer 17 m made of, for example, plating on its inner wall, and establishes an electrical connection between the double-sided mounted circuit board unit 10 by the wiring 19 and the connector pin 24. The through hole 17b not subjected to the conductive treatment is used exclusively for alignment.

このように、両面実装回路基板ユニット10に形成された貫通穴17を選択的に導電処理することによって、3次元スタック構造の所望のレイヤ(回路基板)間の導通を実現することができる。これにより、設計の自由度が向上する。   In this way, by selectively conducting the through holes 17 formed in the double-sided mounting circuit board unit 10, conduction between desired layers (circuit boards) of the three-dimensional stack structure can be realized. Thereby, the freedom degree of design improves.

最後に、以上の説明に関して、以下の付記を開示する。
(付記1) 実装された半導体素子の高さ方向に、スタック構造で積み重ねられた複数の両面実装回路基板ユニットと、
前記積み重ねられた複数の両面実装回路基板ユニットの少なくとも一辺側が開口するように配置され、かつ、前記両面実装回路基板ユニットの端部で、前記両面実装回路基板ユニット間の電気的な接続を行なうコネクタと、
前記スタック構造で互いに対向する半導体素子の間に設けられ、当該対向する半導体素子の各々に接する冷却構造と
を備えることを特徴とする電子装置。
(付記2) 前記両面実装回路基板ユニットの少なくとも1つは、基板表面に形成されたグランド層を有し、
前記冷却構造は、前記互いに対向する半導体素子の間に延びる放熱板を有し、
前記グランド層と同じ面上に実装された半導体素子と接する放熱板は、前記グランド層に接触する突起部を有する
ことを特徴とする付記1に記載の電子装置。
(付記3) 前記冷却構造は、互いに平行に延びる複数の放熱板が一体的に組み合わせられた放熱板アセンブリを含み、前記放熱板アセンブリは、前記開口から、前記半導体素子の間に一体的に組み込まれることを特徴とする付記1に記載の電子装置。
(付記4) 前記放熱板アセンブリは、
第1のフィン部を有するS字型または逆S字型の第1の放熱板と、
第2のフィン部を有するL字型の第2の放熱板と、
が前記第1のフィン部と第2のフィン部が平行に延びるように一体的に接合されていることを特徴とする付記3に記載の電子装置。
(付記5) 前記両面実装回路基板ユニットは基板表面に形成されたグランド層を有し、
前記第1のフィン部および第2のフィン部は、前記両面実装回路基板ユニット上のグランド層と接触する突起部を有することを特徴とする付記4に記載の電子装置。
(付記6) 前記コネクタは、複数のピンで構成され、
前記両面実装回路基板ユニットの各々は、前記ピンに対応する位置に形成された複数の貫通穴を有し、各両面実装回路基板ユニットにおいて、前記貫通穴が選択的に導電処理されていることを特徴とする付記1に記載の電子装置。
(付記7) 前記スタック構造の外部で、前記放熱板に接続されるチラーをさらに備えることを特徴とする付記1〜6のいずれかに記載の電子装置。
(付記8) 第1のフィン部を有するS字型または逆S字型の第1の放熱板と、
第2のフィン部を有するL字型の第2の放熱板と、
が前記第1のフィン部と第2のフィン部が平行に延びるように一体的に接合され、
前記第1のフィン部および第2のフィン部は、3次元的に積み重ねられた両面実装回路基板ユニットに実装され互いに対向する半導体素子の間に挿入されたときに、前記両面実装回路基板ユニット上に形成されたグランド層と接触するように設けられた突起部を有することを特徴とする放熱板アセンブリ。
Finally, the following notes are disclosed regarding the above description.
(Appendix 1) A plurality of double-sided mounting circuit board units stacked in a stack structure in the height direction of the mounted semiconductor element;
A connector that is arranged so that at least one side of the plurality of stacked double-sided mounting circuit board units is opened, and that electrically connects the double-sided mounting circuit board units at an end of the double-sided mounting circuit board unit When,
An electronic device comprising: a cooling structure provided between the semiconductor elements facing each other in the stack structure and in contact with each of the facing semiconductor elements.
(Appendix 2) At least one of the double-sided mounted circuit board units has a ground layer formed on the substrate surface,
The cooling structure has a heat sink extending between the semiconductor elements facing each other,
2. The electronic device according to appendix 1, wherein a heat radiating plate in contact with a semiconductor element mounted on the same surface as the ground layer has a protruding portion in contact with the ground layer.
(Supplementary Note 3) The cooling structure includes a heat sink assembly in which a plurality of heat sinks extending in parallel with each other are integrally combined, and the heat sink assembly is integrally incorporated between the semiconductor elements from the opening. The electronic device as set forth in Appendix 1, wherein
(Appendix 4) The heat sink assembly is
An S-shaped or reverse S-shaped first heat dissipating plate having a first fin portion;
An L-shaped second heat sink having a second fin portion;
The electronic device according to appendix 3, wherein the first fin portion and the second fin portion are integrally joined so as to extend in parallel.
(Additional remark 5) The said double-sided mounting circuit board unit has a ground layer formed on the substrate surface,
The electronic device according to appendix 4, wherein the first fin portion and the second fin portion have a protrusion that contacts a ground layer on the double-sided mounted circuit board unit.
(Appendix 6) The connector is composed of a plurality of pins,
Each of the double-sided mounting circuit board units has a plurality of through holes formed at positions corresponding to the pins, and in each of the double-sided mounting circuit board units, the through holes are selectively conductively processed. The electronic device according to Supplementary Note 1, wherein the electronic device is characterized.
(Supplementary note 7) The electronic device according to any one of supplementary notes 1 to 6, further comprising a chiller connected to the heat radiating plate outside the stack structure.
(Supplementary Note 8) An S-shaped or reverse S-shaped first heat radiating plate having a first fin portion;
An L-shaped second heat sink having a second fin portion;
Are integrally joined so that the first fin portion and the second fin portion extend in parallel,
The first fin portion and the second fin portion are mounted on the double-sided mounting circuit board unit that is three-dimensionally stacked and inserted between the semiconductor elements facing each other. A heat sink assembly comprising a protrusion provided to be in contact with a ground layer formed on the heat sink.

本発明の一実施形態に係る電子装置で用いられ、3次元的にスタックされる両面実装回路基板ユニットの構成例を示す図である。It is a figure which shows the structural example of the double-sided mounting circuit board unit used with the electronic device which concerns on one Embodiment of this invention, and is stacked | stacked three-dimensionally. 本発明の一実施形態に係る冷却構造を有する電子装置の側面図である。It is a side view of an electronic device having a cooling structure according to an embodiment of the present invention. 図2の電子装置の上面図である。FIG. 3 is a top view of the electronic device of FIG. 2. 図2の電子装置に冷却構造として組み込まれる放熱アセンブリの斜視図である。FIG. 3 is a perspective view of a heat dissipation assembly incorporated as a cooling structure in the electronic device of FIG. 2. 放熱アセンブリの各放熱板が、両面実装回路基板ユニットの対向する半導体素子間に挿入された状態を示す斜視図である。It is a perspective view which shows the state by which each heat sink of the heat radiating assembly was inserted between the semiconductor elements which a double-sided mounting circuit board unit opposes. 冷却構造の変形例を示す図である。It is a figure which shows the modification of a cooling structure. 図2の電子装置で用いられるコネクタの一例を示す概略図である。It is the schematic which shows an example of the connector used with the electronic device of FIG. コネクタによる両面実装回路基板ユニット間の接続例を示す図である。It is a figure which shows the example of a connection between the double-sided mounting circuit board units by a connector.

符号の説明Explanation of symbols

1 電子装置
4 コネクタ
5 放熱板
5a S字型(逆S字型)放熱板
5b L字型放熱板
5d 突起部
5f フィン部
6 マザーボード
10 両面実装回路基板ユニット
11 半導体素子(チップ)
12 回路基板
15 放熱板アセンブリ
17 貫通穴
22 グランド層
24 コネクタピン
25 スペーサ
DESCRIPTION OF SYMBOLS 1 Electronic device 4 Connector 5 Heat sink 5a S-shaped (reverse S-shaped) heat sink 5b L-shaped heat sink 5d Projection part 5f Fin part 6 Mother board 10 Double-sided mounting circuit board unit 11 Semiconductor element (chip)
12 Circuit board 15 Heat sink assembly 17 Through hole 22 Ground layer 24 Connector pin 25 Spacer

Claims (5)

実装された半導体素子の高さ方向に、スタック構造で積み重ねられた複数の両面実装回路基板ユニットと、
前記積み重ねられた複数の両面実装回路基板ユニットの少なくとも一辺側が開口するように配置され、かつ、前記両面実装回路基板ユニットの端部で、前記両面実装回路基板ユニット間の電気的な接続を行なうコネクタと、
前記スタック構造で互いに対向する半導体素子の間に設けられ、当該対向する半導体素子の各々に接する冷却構造とを備え、
前記冷却構造は、互いに平行に延びる複数の放熱板が一体的に組み合わせられた放熱板アセンブリを含んでいることを特徴とする電子装置。
A plurality of double-sided mounting circuit board units stacked in a stack structure in the height direction of the mounted semiconductor elements;
A connector that is arranged so that at least one side of the plurality of stacked double-sided mounting circuit board units is opened, and that electrically connects the double-sided mounting circuit board units at an end of the double-sided mounting circuit board unit When,
Is provided between the semiconductor element facing each other in said stack structure, e Bei and a cooling structure in contact with the respective semiconductor element such opposing,
The electronic device according to claim 1, wherein the cooling structure includes a heat sink assembly in which a plurality of heat sinks extending in parallel to each other are integrally combined .
前記両面実装回路基板ユニットの少なくとも1つは、基板表面に形成されたグランド層を有し、
前記冷却構造は、前記互いに対向する半導体素子の間に延びる放熱板を含み、
前記グランド層と同じ面上に実装された半導体素子と接する放熱板は、前記グランド層に接触する突起部を有する
ことを特徴とする請求項1に記載の電子装置。
At least one of the double-sided mounted circuit board units has a ground layer formed on the substrate surface,
The cooling structure includes a heat sink extending between the semiconductor elements facing each other,
2. The electronic device according to claim 1, wherein a heat dissipation plate in contact with a semiconductor element mounted on the same surface as the ground layer has a protruding portion in contact with the ground layer.
記放熱板アセンブリは、前記開口から、前記半導体素子の間に一体的に組み込まれることを特徴とする請求項1に記載の電子装置。 Before Kiho hot plate assembly from said opening, the electronic device according to claim 1, characterized in that it is integrally assembled between the semiconductor element. 前記コネクタは、複数のピンで構成され、
前記両面実装回路基板ユニットの各々は、前記ピンに対応する位置に形成された複数の貫通穴を有し、各両面実装回路基板ユニットにおいて、前記貫通穴が選択的に導電処理されていることを特徴とする請求項1に記載の電子装置。
The connector is composed of a plurality of pins,
Each of the double-sided mounting circuit board units has a plurality of through holes formed at positions corresponding to the pins, and in each of the double-sided mounting circuit board units, the through holes are selectively conductively processed. The electronic device according to claim 1, characterized in that:
第1のフィン部を有するS字型または逆S字型の第1の放熱板と、
第2のフィン部を有するL字型の第2の放熱板と、
が前記第1のフィン部と第2のフィン部が平行に延びるように一体的に接合され、
前記第1のフィン部および第2のフィン部は、3次元的に積み重ねられた両面実装回路基板ユニットに実装され互いに対向する半導体素子の間に挿入されたときに、前記両面実装回路基板ユニット上に形成されたグランド層と接触するように設けられた突起部を有することを特徴とする放熱板アセンブリ。
An S-shaped or reverse S-shaped first heat dissipating plate having a first fin portion;
An L-shaped second heat sink having a second fin portion;
Are integrally joined so that the first fin portion and the second fin portion extend in parallel,
The first fin portion and the second fin portion are mounted on the double-sided mounting circuit board unit that is three-dimensionally stacked and inserted between the semiconductor elements facing each other. A heat sink assembly comprising a protrusion provided to be in contact with a ground layer formed on the heat sink.
JP2005012937A 2005-01-20 2005-01-20 Electronic device and heat sink assembly used therefor Expired - Fee Related JP4522271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012937A JP4522271B2 (en) 2005-01-20 2005-01-20 Electronic device and heat sink assembly used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012937A JP4522271B2 (en) 2005-01-20 2005-01-20 Electronic device and heat sink assembly used therefor

Publications (2)

Publication Number Publication Date
JP2006202975A JP2006202975A (en) 2006-08-03
JP4522271B2 true JP4522271B2 (en) 2010-08-11

Family

ID=36960691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012937A Expired - Fee Related JP4522271B2 (en) 2005-01-20 2005-01-20 Electronic device and heat sink assembly used therefor

Country Status (1)

Country Link
JP (1) JP4522271B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486553B2 (en) * 2005-06-23 2010-06-23 富士通株式会社 Electronic device having double-sided mounting circuit board with built-in capacitor
JP5082970B2 (en) 2008-03-25 2012-11-28 富士通株式会社 Circuit board equipment
DE102015212233A1 (en) * 2015-06-30 2017-01-05 TRUMPF Hüttinger GmbH + Co. KG Power combiner with symmetrically arranged heat sink and power combiner arrangement
JP6432623B2 (en) * 2017-03-15 2018-12-05 日本電気株式会社 Laminated module, laminating method, cooling power supply mechanism, laminated module mounting board
JP6994342B2 (en) * 2017-10-03 2022-01-14 新光電気工業株式会社 Board with built-in electronic components and its manufacturing method
JP6843731B2 (en) * 2017-11-22 2021-03-17 三菱電機株式会社 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332519A (en) * 2002-05-07 2003-11-21 Sony Corp Semiconductor device and method for manufacturing semiconductor device
JP2004296663A (en) * 2003-03-26 2004-10-21 Denso Corp Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299258A (en) * 1987-05-29 1988-12-06 Nec Corp Structure of cooling semiconductor device
JP2806357B2 (en) * 1996-04-18 1998-09-30 日本電気株式会社 Stack module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332519A (en) * 2002-05-07 2003-11-21 Sony Corp Semiconductor device and method for manufacturing semiconductor device
JP2004296663A (en) * 2003-03-26 2004-10-21 Denso Corp Semiconductor device

Also Published As

Publication number Publication date
JP2006202975A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP5106519B2 (en) Thermally conductive substrate and electronic component mounting method thereof
US20060072291A1 (en) Surface mount heat sink
JP2009105394A (en) Electric assembly using circuit board having internal cooling structure
EP2426711A2 (en) Heat sink for a protrusion-type ic package
JP4522271B2 (en) Electronic device and heat sink assembly used therefor
JP2011066399A (en) Heat dissipation device
CN101873789A (en) Cooling system, coldplate and assembly with cooling system
US11096290B2 (en) Printed circuit board with edge soldering for high-density packages and assemblies
JP7105874B2 (en) Printed circuit board with heat sink
JP2017005010A (en) Electronic device
JP2006221912A (en) Semiconductor device
TWI522032B (en) Heat dissipating module
JP6432623B2 (en) Laminated module, laminating method, cooling power supply mechanism, laminated module mounting board
JP2020174116A (en) Heat sink fixing member and electronic device
US20040227230A1 (en) Heat spreaders
JP2010003718A (en) Heat-dissipating substrate and its manufacturing method, and module using heat-dissipating substrate
JP2005150454A (en) Cooling structure of electric power conversion system
US20060002092A1 (en) Board mounted heat sink using edge plating
JP5590713B2 (en) Wiring board and manufacturing method thereof
EP3214646A1 (en) Heat-dissipating structure
JP2017130618A (en) Electronic component heat dissipation structure
JP2003188563A (en) Electronic control device
JP4858428B2 (en) Cooling method for mounted parts
JP6600743B2 (en) Heat dissipation system for printed circuit boards using highly conductive heat dissipation pads
CN216752204U (en) High-power quick radiating circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees