JP4299858B2 - 容器用鋼板およびその製造方法 - Google Patents

容器用鋼板およびその製造方法 Download PDF

Info

Publication number
JP4299858B2
JP4299858B2 JP2006520471A JP2006520471A JP4299858B2 JP 4299858 B2 JP4299858 B2 JP 4299858B2 JP 2006520471 A JP2006520471 A JP 2006520471A JP 2006520471 A JP2006520471 A JP 2006520471A JP 4299858 B2 JP4299858 B2 JP 4299858B2
Authority
JP
Japan
Prior art keywords
less
steel plate
containers
nitriding
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006520471A
Other languages
English (en)
Other versions
JP2007520628A (ja
Inventor
英邦 村上
茂 平野
明弘 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2007520628A publication Critical patent/JP2007520628A/ja
Application granted granted Critical
Publication of JP4299858B2 publication Critical patent/JP4299858B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0457Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、飲料缶などの金属容器に利用される鋼板と、その製造方法とに関する。
本出願は、2004年1月19日出願の特願2004−011139号を基礎出願とし、その内容を取り込むものとする。
飲料缶、食品缶などに代表される容器用鋼板では、容器の低コスト化のための薄手化が進行しており、0.2mm以下の素材も適用されるにいたっている。このような極薄材料で容器を製造した場合に顕在化する問題として、例えば、表面状態の制御の困難さに起因する色調、表面被覆の密着性、溶接性の低下がある。
色調、表面被覆密着性、溶接性に対して鋼板表面の状態が大きな影響を及ぼすことが知られており、例えば、特許文献1、特許文献2、特許文献3等に開示されている。また、表面粗度の制御方法が特許文献4に開示されている。これらの例では、表面状態の制御を行うために製造条件を精緻に制御する必要があるため、生産性の低下が避けられない。また、これらの例に示される制御方法では、本発明が目的とする極薄素材で成形した容器の色調、表面被覆密着性、溶接性を必ずしも十分に向上させることができなかった。
特開平11−197704号公報 特開平8−3781号公報 特開平6−57488号公報 特開平7−9005号公報
本発明の目的の一つは、極薄手材を使用して製造される容器で問題となる、鋼板の表面状態に起因した容器の色調、表面被覆密着性、溶接性について、素材の表面状態を、窒化物形態を制御することで改質するとともに、鋼板表面の状態の制御が可能で、生産性を阻害するような格別な処理を回避することにある。
特願2003−119381号及び特願2003−100720号に記載されているように、鋼板の延性をそれほど劣化させることなく容器の耐変形性を格段に向上させることを目的として、焼鈍以降の工程で鋼板を窒化し、その際の板厚方向の窒化状態を適正に制御することは可能である。この材料の溶接性等を評価すると、同材料においては従来のように、表面状態の制御を目的とした陰極電解処理の適用、界面活性剤の使用、Cr酸化物の精緻な制御、ロール精度を精緻に制御した特殊圧延などを行わずとも、鋼板の表面状態が好ましいものとなる。したがって、極薄鋼板を素材とした容器で問題となっていた鋼板の表面状態に起因する容器の色調、表面被覆密着性、溶接性を大幅に向上させることができる条件が得られた。
すなわち、冷間圧延後に窒化処理を行って鋼中の窒素量を増加させる場合、単に表面硬度を造り分けただけでは缶の色調、表面被覆密着性、溶接性がそれほど向上するものではないが、本発明では、成分、特にN量を特定範囲に限定し、さらに窒化条件を最適化することにより、材料表層部の特に最表面の窒化物形態を好ましく制御することが可能となっている。また、これによって鋼板表面の凹凸等も変化させることが可能となるので、結果として、極薄素材を用いた缶の色調、表面被覆密着性、溶接性を向上させることが可能としている。本発明の各態様によれば、その条件およびその制御方法が提供可能である。
本発明にかかる容器用鋼板の第1の態様は、板厚が0.400mm以下の容器用の鋼板である。この材料は、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部がFeおよび不可避的不純物から成る。また、表面における窒化物の面積率が1.0%以上となっている。
本発明にかかる容器用鋼板の第2の態様は、(鋼板の表面位置における窒化物面積率)/(鋼板の板厚1/4の断面位置における窒化物面積率)が1.5以上であることにある。
本発明にかかる容器用鋼板の第3の態様は、表面における直径0.1μm以上の独立した窒化物の数が0.001個/μm2以上である。
本発明にかかる容器用鋼板の他の態様によれば、表面粗度を、Raで0.90μm以下、かつ、長さ1インチあたりの凹凸のピーク個数であるPPIで250以上としてもよい。更に、質量%で、Ti:0.08%以下、Nb:0.08%以下、B:0.015%以下、Ni:5.0%以下、Cu:2.0%以下、Cr:2.0%以下の一種または二種以上を含有してもよい。更に、質量%で、Sn、Sb、Mo、Ta、V、Wの合計で0.1%以下を含有してもよい。
本発明にかかる容器用鋼板の製造方法の態様は、板厚が0.400mm以下の容器用鋼板の製造方法である。この材料は、質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物からなる。この鋼を、冷延後、再結晶焼鈍と同時またはその後に窒化処理を行って、N量を0.0002%以上増加させ、鋼板の表面における窒化物の面積率を1.0%以上とする。さらに、鋼板のN:0.600%以下とする。ただし、窒化処理は、アンモニアガスを0.02%以上含有する雰囲気中で、板温度が550〜800℃となるように0.1秒以上かつ360秒以下保持するものとする。
本発明にかかる容器用鋼板の製造方法の態様では、鋼が、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物からなるものとしてもよい。この鋼を冷延後、再結晶焼鈍と同時またはその後に窒化処理を行って、N量を0.0002%以上増加させ、鋼板の表面における窒化物の面積率を1.0%以上とする。さらに、鋼板のN:0.600%以下とする。ただし、窒化処理は、アンモニアガスを0.02%以上含有する雰囲気中で、板温度が550〜800℃となるように0.1秒以上かつ360秒以下保持するものとする。
本発明にかかる容器用鋼板の製造方法の他の態様では、鋼を冷延後、再結晶焼鈍と同時またはその後に窒化処理を行って、N量を0.0002%以上増加させ、(鋼板の表面位置における窒化物面積率)/(鋼板の板厚1/4の断面位置における窒化物面積率)を1.5以上としてもよい。さらに、鋼板のN:0.600%以下とする。ただし、窒化処理は、アンモニアガスを0.02%以上含有する雰囲気中で、板温度が550〜800℃となるように0.1秒以上かつ360秒以下保持するものとする。
本発明にかかる容器用鋼板の製造方法の更なる他の態様によれば、鋼を、冷延後、再結晶焼鈍と同時またはその後に窒化処理を行って、N量を0.0002%以上増加させ、鋼板表面における直径0.1μm以上の独立した窒化物を0.001個/μm2以上としてもよい。さらに、鋼板のN:0.600%以下とする。ただし、窒化処理は、アンモニアガスを0.02%以上含有する雰囲気中で、板温度が550〜800℃となるように0.1秒以上かつ360秒以下保持するものとする。
本発明の他の例では、再結晶焼鈍と同時またはその後に窒化処理を行うに際し、(窒化開始時の板温度(℃)−550)/(窒化開始時のアンモニアガス濃度(%))<150とする。
本発明にかかる容器用鋼板の他の態様によれば、少なくとも一部の板厚が0.400mm以下である少なくとも1つの容器用の鋼板であって、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部がFeおよび不可避的不純物から成る組成で、(窒化処理後の鋼板表面位置における窒化物面積率)/(窒化処理前の鋼板表面位置における窒化物面積率)が1.5以上である。
この場合、前記少なくとも一部における表面粗度がRaで0.90μm以下であり、前記少なくとも一部の領域における長さ1インチあたりの厚みの凹凸ピーク数であるPPIが250以上であってもよい。
また、Ti:0.08%以下、Nb:0.08%以下、B:0.015%以下、Ni:5.0%以下、Cu:2.0%以下、Cr:2.0%以下のうちの少なくとも1つを含有してもよい。
また、Sn、Sb、Mo、Ta、V、Wの合計で0.1%以下を含有してもよい。
本発明の容器用鋼板およびその製造方法によれば、容器の色調、表面被覆密着性、溶接性を、窒化処理後の複雑な処理や、この複雑な処理による生産性阻害などを回避した上で、改善することができる。このように、極薄容器用鋼板の生産性を高めることができ、生産工程上の著しい効果を発揮することが可能となる。
まず、鋼材成分について説明する。鋼材成分はすべて質量%を示す。
C量の上限は、加工性の劣化を回避するために必要であり、C:0.0800%以下とする。好ましくは0.0600%以下、さらに好ましくは0.040%以下とするのがよい。
窒化により焼鈍後にCと同様の性質を有するNを増量させる本発明の実施形態に係る鋼では、強度確保などの観点で必要となるC含有量は、低くても構わない。C:0.0050%以下でも必要な強度確保が可能であり、0.0020%以下でも構わない。0.0015%以下とすれば、窒化量との兼ね合いもあるが、通常の容器材料では規格外となる極軟質材の製造も可能となる。r値を向上させることで絞り成形性が高くなるので、窒化前のC量は低い方が好ましい。
最終製品のN量の上限も、C同様、加工性の劣化を回避するために必要であり、N:0.600%以下とするのがよい。好ましくはN:0.200%以下、さらに好ましくはN:0.150%以下、さらに好ましくはN:0.100%以下とするのがよい。ただし、本発明の態様の効果を得るためには、少なくとも鋼板表面に相当量の窒化物を形成するだけのNが必要である。このN量に関して言えば、板厚方向にどの程度のN分布を生じさせるかにもよるが、通常の窒化を用いる場合には、当然ながらN量が窒化処理前よりも増加していることが必要であり、特に本発明では0.0002%以上増加させている。これは、N増加量としては非常に小さく見えるが、鋼板表面のN増加量を考えると非常に大きなものである。
すなわち、鋼板表面成分に相当する厚さを、例えば板厚の1/100、0.20mmの鋼板の場合で言うと2μmの厚さ部分が表層部であると仮定した場合、板厚平均でN含有量が0.0002%増加するということは、表層部で0.0100%のN量増加があったことになる。このN増加量が多いほど、本発明で必要とする表面での窒化物量が増えることになるので、好ましくは0.0005%以上、さらに好ましくは0.0010%以上、さらに好ましくは0.0020%以上、さらに好ましくは0.0050%以上、さらに好ましくは0.0100%以上、さらに好ましくは0.0200%以上、さらに好ましくは0.0400%以上とするのがよい。特に、0.0100%以上とすると、鋼板表面のN量が非常に高く、必要とする窒化物の量も十分となり、本発明の効果が安定して得られるようになる。ただし、N増加量があまりに過剰になると、鋼板表面のみならず鋼板内部にも厚く粗大な窒化物が多数形成されてしまうため、加工性を劣化させるばかりでなく、表面欠陥となる場合もあり得るので、注意が必要である。このような理由により、鋼板平均のN含有量の上限を超えないようにすべきである。
窒化前のN量の上限も、C同様、加工性の劣化を回避するために必要であり、N:0.0300%以下とするのがよい。好ましくはN:0.0200%以下、さらに好ましくはN:0.0150%以下、さらに好ましくはN:0.0100%以下、さらに好ましくはN:0.0050%以下、さらに好ましくはN:0.0030%以下とするのがよい。r値を向上させることで絞り成形性が高くなるので、窒化前のN量は低い方が好ましい。注意を要するのは、後述のように、焼鈍後の窒化によって含有させたNは、良好な缶の色調、表面被覆密着性、溶接性を付与するために存在するものであり、焼鈍前に存在するNとは効果が異なることである。
Siは、強度調整のために添加されるが、多すぎると加工性、めっき性が劣化するため、2.0%以下とするのが好ましい。本発明に係る実施形態の鋼においては、結晶粒界において窒化により鋼中に侵入したNと窒化物を形成し、脆性的な割れを起こすばかりでなく、本発明の効果を損ねる場合もあるので、1.5%以下、さらに1.0%以下にする必要が生じることもある。特に、成形性を高く保つ意味では、Si量は低い方が好ましく、0.5%以下、さらには0.1%以下、さらには0.07%以下とすることで、成形性の向上及びSi窒化物の形成の抑制が可能となる。
Mnは、強度調整のために添加されるが、多すぎると加工性が劣化するため、2.0%以下とするのがよい。成形性を高く保つ意味では、Mn量は低い方が好ましく、0.6%以下、さらには0.2%以下とすることで成形性が向上する。
Pは、強度調整のために添加されるが、多すぎると加工性が劣化するばかりでなく鋼板の窒化を阻害するため、0.10%以下とするのが好ましい。成形性を高く保つ意味においては、P量は低い方が好ましく、0.05%以下、さらには0.01%以下とすることで成形性が向上する。
Sは、熱間延性を劣化させ、鋳造や熱間圧延の阻害要因となるので、0.05%以下とするのがよい。成形性を高く保つ意味においては、S量は低い方が好ましく、0.02%以下、さらには0.01%以下とすることで成形性が向上する。
Alは、脱酸のために添加される元素であるが、含有量が高いと、鋳造が困難になる、表面の疵が増加するなどの害があるため、2.0%以下とするのが好ましい。また、Al量が0.2%以上と高い場合には、窒化により鋼板に浸入したNと結合して鋼中に多量のAlNを形成し、窒化部を硬質化させる効果がある。しかし、その反面、粗大なAlNを形成して脆化を招く場合もあるので、注意が必要である。窒化の程度が低い鋼板板厚中心層部の成形性を高く保つ意味においては、Al量は低い方が好ましく、0.2%以下、さらには0.1%以下とすることで、窒化程度が低い部位の成形性を向上させることができる。
上述の基本元素以外の、通常の容器用鋼板で考慮される元素の効果およびその制御について以下に述べる。
Tiは、鋼板の再結晶温度を上げ、本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させるため、0.080%以下とするのがよい。特に、高いr値を必要としない通常の用途ではTiを添加する必要がなく、0.04%以下、さらに好ましくは0.01%以下とするのがよい。また、窒化前に鋼中に固溶しているTiは、窒化によって鋼板に浸入したNと結合して鋼中に微細なTiNを形成し、窒化部を硬質化させる効果が強い。このため、窒化の程度が低い鋼板板厚中心層でも材質の硬質化が必要以上に現れてしまう場合もあるので、軟質な鋼板を得る必要がある場合にはTi量が低い方が好ましく、0.005%以下、さらには0.003%以下とすることで鋼板の不用意な硬質化を抑制することが可能となる。窒化で鋼板表面に形成されるTiNは非常に微細であり、本発明が目的とする表面改質効果が小さいので、これを利用して表面改質効果を高めることも可能である。このことより、本発明に規定の添加量範囲内となるように意識的に添加することも可能である。
Nbも、Tiと同様の影響を有する。Nbは、鋼板の再結晶温度を上げ、本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させるため、0.080%以下とするのが好ましい。特に、高いr値を必要としない通常用途では、Nbを添加する必要がなく、0.04%以下、さらに好ましくは0.01%以下とするのが好ましい。また、窒化前の鋼中に固溶しているNbは、窒化によって鋼板に浸入したNと結合して鋼中に微細なNbNを形成し、窒化部を硬質化させる効果が強い。このため、窒化の程度が低い鋼板板厚中心層でも材質の硬質化が必要以上に現れてしまう場合もあるので、軟質な鋼板を得る必要がある場合にはNb量が低い方が好ましく、0.005%以下、さらには0.003%以下とすることで鋼板の不用意な硬質化を抑制することが可能となる。一方、窒化で鋼板表面に形成されるNbNは、非常に微細であり、本発明が目的とする表面改質効果が小さいものの、これを利用して表面改質効果を高めることも可能である。このことより、本発明に規定の添加量範囲内となるように意識的に添加することも可能である。
Bは、Ti、Nbを0.01%程度以上含有する鋼板に添加した場合、鋼板の再結晶温度を上げ、本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させる。一方、Ti,Nbの含有量が少ない場合には、この点での悪影響は小さく、むしろ再結晶温度を下げるため、低温での再結晶焼鈍が可能となる。さらに、焼鈍通板性を向上させる効果も有するため、積極的に添加することも可能である。しかし、過剰に添加すると鋳造時の鋳片の割れが顕著になるため、上限を0.015%とするのが好ましい。再結晶温度を低下させて焼鈍通板性を向上させる目的では、窒化前の含有N量との関係でB/N=0.6〜1.5とすれば十分である。
また、窒化前の鋼中に固溶しているBは、窒化によって鋼板に浸入したNと結合して鋼中に微細なBNを形成し、窒化部を硬質化させる効果が強い。このBNによる表層硬質化を活用する場合には、窒化前の含有B量と含有N量との比をB/N>0.8としておくことが好ましい。この比を1.5以上、さらには2.5以上とすることで、BN形成による硬化が顕著になる。一方、BNの形成が原因となって材質の硬質化が必要以上に現れて成形性を劣化させてしまう場合もあるので、注意が必要である。本発明に係る実施形態の鋼で特にBN形成による硬質化を活用しないのであれば、窒化前の含有N量と含有B量との比をB/N<0.8、さらに厳格にはB/N<0.1とすればよい。一方、窒化によって鋼板表面に形成されるBNは非常に微細であり、本発明の実施形態で目的としている表面改質効果が小さいものの、これを利用して表面改質効果を高めることは可能である。このことより、本発明の実施形態に規定の添加量範囲内となるように意識的に添加することも可能である。
また、耐食性を高めるなどの本明細書で規定していない特性を付与するために、Cr:20%以下、Ni:10%以下、Cu:5%以下を添加することは可能である。しかしながら、過剰に添加すると、本発明鋼に必須となる窒化能を低下させる場合があるので、Cr:30%以下、Ni:15%以下、Cu:5%以下とすることが好ましく、さらに好ましくはCr:15%以下、Ni:5%以下、Cu:2%以下にとどめるべきである。特に窒化前の鋼中に固溶しているCrは、窒化によって鋼板に浸入したNと結合し、鋼中、特に鋼板表面に微細なCr窒化物を形成する効果を有し、この窒化物を活用して本発明の効果を高めることも可能である。この目的でCrを0.01%以上添加することが好ましい。
Crは鋼板の再結晶温度を上げる。過剰に添加すると本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させる場合がある。この再結晶温度の上昇による焼鈍通板性の低下を回避するにはCr の添加を2.0%以下とすることが好ましく、0.6%以下であれば再結晶温度の上昇が実用的に問題ない程度に抑制できる。
さらに、本発明で規定していない特性を付与するためにSn,Sb,Mo,Ta,V,Wを合計で0.1%以下含有させても、本発明の効果を何ら損ねることはない。
上述の元素のうちのP,B,Sn,Sbは、条件によっては本発明の重要な要件である窒化の効率を低下させる場合があるので、窒化条件との兼ね合いで上限の含有量に注意を払う必要がある。特にSn、Sbは、窒化効率の著しい低下を防ぐために、それぞれ0.06%以下、更に好ましくは0.02%以下とするのが好ましい。
以上、本明細書中の説明にて用いる、鋼板板厚方向の部位の区分について、図1を用いて説明する。
特に、「板厚1/4位置」とは、図1中の対応位置を表す。この「板厚1/4位置」に対応する部位は鋼板の両表面に存在するが、本発明では、そのどちらか一面についてでも本発明の限定範囲に該当するものを対象とする。窒化の方法や窒化前の表面処理、さらには窒化後の何らかの処理等によって表と裏の窒化物分布を変化させることは比較的容易である。本発明の実施形態では、そのような表裏異表層の鋼板についても対象とする。これは、片面のみであっても本発明が目的とする色調、表面被覆密着性、溶接性の向上効果を得ることが可能であるからである。
本発明に係る実施形態では、鋼板表面および鋼板の板厚方向の特定位置における、窒化物に関連する面積率または数密度が規定される。存在する析出物については、電子顕微鏡などの回折パターンや付設されたX線分析機器などで同定が可能である。もちろん化学分析などこれ以外の方法によっても同定が可能である。これらの直径、面積率および後述の数密度は、例えば電子顕微鏡鏡観察で定量が可能である。窒化物サイズおよび面積率と数密度の制御のためには、後述の450〜700℃の温度範囲で、温度と時間およびこの温度域に入る直前の冷却速度などを適当に制御することが有効である。この影響は、通常の条件であれば一般の析出物形成と同様に、高冷速、低温であるほど窒化物サイズが微細かつ高密度となり、長時間化により窒化物サイズが粗大化する。
本発明の実施形態は、窒化物単独の析出物ではなく、酸化物や炭化物、硫化物などとともに複合析出した場合も対象とする。例えば、複合析出物を形成した場合には、一つの析出物の種類および各化合物についてのサイズを特定することが困難であるものの、明らかに一つの析出物が窒化物とその他の化合物部分とに分けられる場合を除き、一つの窒化物として判定する。
窒化物の観察方法に特に限定はなく、EDX付走査型電子顕微鏡や他の表面観察装置を用いて直接観察してもよいし、SPEED法によって得られた抽出レプリカ等を観察してもよい。ただし、抽出レプリカ等では、レプリカが鋼板上の観察面のみの情報からなるようにレプリカ作成時に注意を払う必要がある。これは、SPEED法などによる場合、電解抽出量が多すぎると板厚方向の情報が重畳することになり、鋼板を直接観察した場合よりも多くの析出物を観察することになるからである。このため、電解抽出量は鋼板厚さに換算して2μm以内にとどめるべきである。EDXにより分析を行う場合、主として観察される非金属元素がNの場合を窒化物とする。また、大きさが小さいため、Nの特性スペクトルが明瞭ではなくとも、Fe,Ti、Nb、B、Cr等が検出され、なおかつO、S等の明瞭なスペクトルが観察されず、かつ窒化物と特定できる他の析出物との形態比較から窒化物とほぼ断定できる析出物も、本発明における窒化物として考慮に入れる。また析出物の定性に電子線回折パターン等を用いても良い。
窒化物の同定は、EDXや電子線回折パターンを用いた手法に限らず、他の分析機器を使用しても構わない。要は、析出物の種類とサイズおよび数密度が、妥当と認められる方法により決定できればよい。析出物によっては、炭化物か窒化物かの判別が困難となる場合も考えられるが、通常の分析機器でその種類が妥当に決定できないものは本発明からは除外する。すなわち、大きさが非常に微小であり、EDXスペクトルや通常の分析機器で定性不可能なものは、本発明で考慮すべき窒化物からは除外する。本発明の実施形態によれば、通常用途の分析機器における定性可能な析出物の最小サイズは、大体0.02μmである。より高度な分析機器を使用してより微細な窒化物まで考慮すれば、面積率等が増加することは当然である。また、個々の原子配置までが明示された場合には、Nと金属原子の超微細な原子合体をどこまで窒化物と判定するかが問題となるが、現状の分析レベルを考慮し、上記サイズより細かいものは除外する。
また、形状が延伸した窒化物が見られる場合もあるが、形状が等方的でないものについては、長径と短径の平均をその析出物の直径とする。
本発明の実施形態に係る鋼板の、鋼板1/4厚さ位置断面の観察においては、鋼板の研磨が必要である。鋼板表面の観察においても、表面を清浄にするため、または析出物を明確にして正確な観察を行うために何らかの研磨処理またはエッチング処理を行うことが可能である。鋼板表面を研磨処理またはエッチング処理した場合、観察面は厳密には鋼板表面ではなくなるため、加工を行わないことが好ましいことは言うまでもない。したがって、研磨等を必要としない何らかの方法を選択すべきである。表面を加工する場合も、加工による板厚減少量は2μm程度以下にとどめるべきである。
また、板の表面方向からの観察(二次元的な観察)ではなく、断面方向からの観察(表面および1/4厚さ位置に関する観察は二次元的でなく、一次元的である)により、面積率や数密度、直径等を算出してもよい。画像解析等を用いて窒化物数と直径を求めることもできる。
以下、本発明の好ましい形態である鋼板表面の状態について記述する。
本発明の実施形態では、鋼板表面の窒化物形態を制御する。例えば、鋼板表面を、鋼とは異なる物質で覆うことによって表面の不均一さを増大させ、目的とする表面状態に関連した特性の向上を図るものである。また、表面状態に関連した特性は、表面に形成される窒化物の形態に依存するため、窒化後の熱履歴、冷却条件等によっても窒化物形態の制御を行うようにしている。このように、本発明の特徴は鋼板表面での窒化物の状態にある。これを限定する方法として、本発明の実施形態では窒化物の面積率を用い、これを1.0%以上に限定する。好ましくは2.0%以上、さらに好ましくは5.0%以上、さらに好ましくは10%以上、さらに好ましくは20%以上、さらに好ましくは40%以上とするのがよく、鋼板表面の全面が窒化物で覆われても問題はない。
ただし、膜状に形成した窒化物は破壊しやすく、製造工程での通板において少なからず破壊する。注意を要するのは、表面の窒化物の膜が非常に厚い場合であり、鋼板の破断の起点になったり、何らかの表面欠陥として認識されたりする場合もある。したがって、N量の過剰な表面濃化は避けるべきである。
また、(鋼板の表面位置における窒化物面積率)/(鋼板の板厚1/4の断面位置における窒化物面積率)の比で規定することもでき、この比を1.5以上、好ましくは3以上、さらに好ましくは6以上、さらに好ましくは10以上、さらに好ましくは30以上、さらに好ましくは100以上とするのがよい。この比が小さいと本発明の効果が小さくなり、目的とする鋼板を得ることができない。また、このように表層部の窒化物の数密度を増大させる方法として窒化を適用する場合には、(窒化処理後の鋼板の表面位置における窒化物面積率)/(窒化処理前の鋼板の表面位置における窒化物面積率)の比で規定することもできる。この場合も上と同様に、この比を1.5以上、好ましくは3以上、さらに好ましくは6以上、さらに好ましくは10以上、さらに好ましくは30以上、さらに好ましくは100以上とするのがよい。この比が大きいほど、基本的に本発明の効果が大きくなることは言うまでもない。
さらに、表面の窒化物の形態としては、粗大なものがまばらに分散するよりも、ある程度微細なものが均一に分散する方が好ましい。ただし、あまりにも微細なものは、本発明が目的とする表面改質効果に対する寄与が小さくなる場合もあるため、直径0.10μm以上であることが好ましい。本発明の実施形態では、鋼板表面における独立した窒化物領域または独立した鋼領域に対し、数密度を限定する。本発明の態様では、窒化領域および鋼領域のうち、数密度が高い方の数値を採用する。この数値が高いほど、鋼板表面に前記領域が微細に分散していることが示されている。本発明では、この数密度を0.001個/μm2以上とするのが好ましい。さらに好ましくは0.003個/μm2以上、さらに好ましくは0.010個/μm2以上、さらに好ましくは0.030個/μm2以上、さらに好ましくは0.10個/μm2以上さらに好ましくは0.30個/μm2以上、さらに好ましくは1.0個/μm2以上、さらに好ましくは3.0個/μm2以上とするのがよい。上述の面積率および数密度を模式的に示したものを図2,3に示す。
次に、本発明の実施形態の鋼板の表面粗度の制御について述べる。表面粗度の記述に関しては様々なものが考えられるが、本発明では、表面粗さRaと長さ1インチあたりの凹凸のピークの個数を示すPPIで記述する。この測定方法は、特に限定されるものではないが、触針式、レーザー式などの方法、二次元、三次元測定など通常行われる方法を用いる。
本発明では、Raが0.90μm以下、かつPPIが250以上である。Raが高すぎたり、またはPPIが低すぎたりすると、本発明が目的とする色調、密着性、溶接性などの特性が、表面凹凸に起因して劣化する。Raは、好ましくは0.80μm以下、さらに好ましくは0.70μm以下、さらに好ましくは0.60μm以下、さらに好ましくは0.50μm以下とするのがよい。また、PPIは、好ましくは300以上、さらに好ましくはPPIが350以上、さらに好ましくはPPIが400以上、さらに好ましくはPPIが450以上、さらに好ましくはPPIが500以上とするのがよい。定性的には、高さの揃った凹凸が高密度で存在することが好ましい。Raの下限は特に限定されるものではなく、窒化条件や調質圧延条件等により、目的に応じた値に制御される。しかしながら、このRaの下限に0は含まれず、現実的には0.02μm以上である。
PPIの上限も限定されるものではなく、窒化条件や調質圧延条件等に応じて制御される。基本的には、表面近傍ほどN濃度が高くなるようにNを偏析させた方がRaは低く、PPIは高くなる。Nを表面に偏析させる方法の1つとしては、アンモニア雰囲気中において比較的短時間で窒化を行うことになる。もちろん、表面状態は、それ以前の鋼成分や結晶粒径、焼鈍温度や冷延条件、さらには窒化後の調質圧延時の圧下率やパス数、ロール粗度、金属めっきを行う場合はめっき条件等にも影響される。したがって、表面状態を特定の範囲に限定することは困難であるが、基本的な制御は通常行われるものと同様であり、数回の試行で問題なく制御することができるようになる。
従来では、このように粗度を制御するために、焼鈍後の調質圧延において圧延ロールの凹凸を転写したり、特殊な電解処理やめっき等の表面被覆金属による形態制御を行ったり、さらには、粗度が金属めっきなどの鋼板表面への付着状態にも強く依存するため、めっきによる被覆物の形態制御等が精緻に行われてきた。しかし、本発明の実施形態では、これらの条件をほとんど受けることがないため、生産上において多大な利点を享受することが可能となっている。例えば、圧延ロールの凹凸については、従来では圧延によって圧延ロールの凹凸が摩滅してしまうため、鋼板表面の凹凸を好ましい範囲に規定するために、圧延ロールの取り替えや凹凸加工を頻繁に行う必要があるばかりでなく、その管理のために生産を中断するなど、生産性、労力の面でも過大な負荷を生じていた。
これに対し、本発明の実施形態によれば、鋼板の表面状態は調質圧延の方法にほとんど影響されず、圧延ロールの凹凸の摩滅をほとんど管理することなく大量の処理を行うことが可能となる。また、金属めっきの形態についても、特にめっき条件等を精緻に制御することなく非常に微細で形状が揃った金属めっき被覆物を均一に分散させることが可能になる。これにより、鋼板の生産性を大幅に向上させることが可能となっている。一般的に、焼鈍後には調質圧延が行われる場合がほとんどであるが、本発明鋼では、通常の連続焼鈍ライン内を通板させる際のハースロールの曲げによっても鋼板表面に微細な亀裂、凹凸が形成されるため、調質圧延が必須となるものではない。
鋼板表面の粗度が、その粗度を生じさせる手法、条件にほとんど影響を受けない理由は、粗度を生じる原因が鋼板そのもの、つまり鋼表面での窒化物の分散状態にあるためと考えられる。以下に、このメカニズムについて述べる。本発明鋼は、鋼板表面の、通常に比べて非常に大きな部分を窒化物で覆うことにより、通常の、基本的に均質なFeからなる鋼板とは異なった状態になっている。鋼板の表面が窒化物で部分的に覆われている場合には、窒化物部分と鋼板が露出している部分で表面特性に差を生じると予想することは自然である。表面を被覆している窒化物は、鋼とは変形特性が大きく異なるものであろうことから、スキンパスや鋼板製造時の通板に伴う曲げ加工による変形が、ミクロな領域において窒化物部分と鋼板露出部分とで異なると考えられる。これにより、表面粗度についてはスキンパスなどの加工条件の影響が緩和され、鋼板表面の窒化物状態のみに強く依存したものになると考えられる。また、ほぼ全面が窒化物で覆われた場合にも、この窒化物はわずかな変形により微細に破砕され、均一な表面粗度を形成するようになると考えられる。
更に、このような窒化物については、メッキ等の表面処理によって形成される鋼板表面を覆う被覆物質との濡れ性や反応性が、鋼板そのものとは異なっており、これが原因となって目的とする特性が好ましい方向に変化するといった効果も有すると考えられる。すなわち、窒化物が存在しない従来の鋼板では、被覆物質が比較的均一に鋼板表面を覆うのに対し、鋼板表面の一部に窒化物が存在すると、窒化物が露出している部分と、鋼母相が露出している部分とで、被覆物質の形成状態(厚みなど)が異なり、このため表面処理時の被覆物質が、鋼板表面の窒化物の存在状態に依存して偏在するようになる。したがって、鋼板製造時における鋼板表面に窒化物または露出した鋼表面を微細に分散させておくか、もしくは、鋼板表面の全面を、微細に破砕された窒化物で覆うことで、表面処理時の被覆物質を、表面処理条件等に関わらず微細に分散させることができる。そして、このような偏在した被覆物質(すなわち、被覆物質のミクロな不均一性)が、色調、密着性、溶接性を向上させるものと考えられる。
次に、窒化条件に関して述べる。本発明の窒化処理は、冷延後の再結晶焼鈍と同時またはその後に、再結晶焼鈍と連続して行なうことが生産性の観点からは好都合であるが、特にこれに限定するものではない。焼鈍の方法は、バッチ式または連続焼鈍を問わず、適用可能である。ただし、窒化処理の生産性および窒化材のコイル内材質の均一性の観点からは、連続焼鈍法の方がはるかに有利である。また、本発明の実施形態で規定するように表内層の材質を制御して大きな効果を得るためには、窒化時間およびその後の熱履歴が長時間化するのは不利であるという点からも、少なくとも窒化処理は連続焼鈍設備で行なわれることが好ましい。特別な理由がない場合は、連続焼鈍材に適用されるものとする。特に連続焼鈍工程において炉中の雰囲気を部分的に制御し、前半で再結晶、後半で窒化する工程を行うと、生産性や材質の均一性、窒化状態の制御のし易さなど、多くのメリットがある。
また、再結晶が終了する前に窒化処理を行なうと、再結晶が著しく抑制されて未再結晶組織が残り、加工性の顕著な劣化が起こる場合があるため、注意が必要である。この限界は、鋼成分や窒化条件、再結晶焼鈍条件などによって複雑に決定されるが、当業者であれば未再結晶組織が残存しない条件を適度な試行の後に見出すことは容易である。窒化処理は、窒化による鋼板のN増加量のみならず、鋼成分や再結晶焼鈍条件、さらには窒化後の熱履歴等も考慮し、Nの鋼板表面から内部への拡散や板厚断面での硬度変化を考えて決定する必要がある。単にロックウェル硬度で決定される材質だけを指標にしたのでは、本発明が目的とする好ましい色調、表面被覆密着性、溶接性を得ることはできない。この条件は、実操業では、適当な回数の試行を参考として決定する必要があるが、基本的な考え方は以下のようであり、それに基づき本発明を規定する。
すなわち、窒化は、板温度が550〜800℃の状態で行なわれる必要がある。これは、通常の焼鈍のように窒化雰囲気をこの温度にしておき、その雰囲気中に鋼板を通過させることで板温度をこの範囲にし、同時に窒化を行なうことでも可能である。または、窒化雰囲気をより低い温度にしておき、この範囲の温度に加熱した鋼板をその中に侵入させることで窒化を進行させてもよい。窒化雰囲気をこの温度に昇温する場合には、鋼板の窒化と無関係な雰囲気の変質および分解により鋼板の窒化効率が低下する場合があるので、550〜750℃とする。好ましくは600〜700℃、さらに好ましくは630〜680℃とするのがよい。
窒化雰囲気は、体積比で窒素ガスを10%以上、さらに好ましくは20%以上、さらに好ましくは40%以上、さらに好ましくは60%以上含み、必要に応じて水素ガスを90%以下、さらに好ましくは80%以下、さらに好ましくは60%以下、さらに好ましくは20%以下含み、さらに必要に応じてアンモニアガスを0.02%以上含むものがよい。残部は、酸素ガス、水素ガス、二酸化炭素ガス、炭化水素ガスまたは各種の不活性ガスなどが可能である
特にアンモニアガスは窒化効率を上げる効果が高く、所定の窒化量を短時間で得ることが可能になるため、鋼板中心へのNの拡散を抑制し、本発明にとって好ましい効果を得ることができる。この効果は、0.02%以下でも十分であるが、好ましくは0.1%以上、さらに好ましくは0.2%以上、さらに好ましくは1.0%以上、さらに好ましくは5%以上とするのが好ましい。10%以上とすれば、5秒以下での窒化処理でも十分な効果を得ることが可能となる。また、窒化効率の点から、アンモニアガス以外の主成分の比率、特に窒素ガスと水素ガスとの比率(窒素ガス)/(水素ガス)が1以上であることが好ましく、この比を2以上にすることでさらに効率的な窒化が可能となる。また、通常の焼鈍においては窒素ガスと水素ガスを主体とした雰囲気中で窒化しないような条件で焼鈍が行なわれるが、当業者であれば、上述のアンモニアガス混入に限らず、露点の変更や微量ガスの混入、ガス比率の変更などによって窒化が起きる条件に変更することも、適当な試行の後に可能となる。少なくとも焼鈍を含む熱処理により窒化したことが現在の分析能力によって検知できるものを、本発明の対象とする。
窒化雰囲気での保持時間は特に限定されるものではないが、550℃以上という本発明の温度条件に絡んで、最大0.400mmという鋼板厚さを考えた場合、保持時間が長すぎると、保持中の鋼中Nの拡散による窒化により鋼板表面から侵入したNが鋼板中心層へ到達し、本発明が目的とするN分布または硬度分布が得られなくなること考え、360秒を上限とする。また、窒化効率を向上させても本発明が必要とする窒化量および鋼板板厚方向の窒素および硬度分布を得るには、1秒は必要である。好ましくは2〜120秒、さらに好ましくは3〜60秒、さらに好ましくは4〜30秒、さらに好ましくは5〜15秒とするのがよい。短時間で制御する場合には、アンモニア濃度を高くするなどして窒化効率を上昇させる必要があることは言うまでもない。
本発明では、鋼板表面の窒化物の分散状態を制御することが重要であり、これを好ましく制御する方法として窒化時の条件を制御することが有効である。以下に、特に望ましいアンモニアガスを用いた場合のガス窒化について記す。
この制御に関する後述の技術的な見地は当業者であれば容易に理解できる現象であり、本制御思想を異なった窒化方法に適用することは比較的容易である。本発明の実施形態では、鋼板表面の窒化物の分散状態を好ましく制御するために、窒化処理を行うに際し、(窒化開始時の板温度(℃)−550)/(窒化開始時のアンモニアガス濃度(%))<150とする。この(窒化開始時の板温度(℃)−550)/(窒化開始時のアンモニアガス濃度(%))の式が示す値は、好ましくは100以下、さらに好ましくは50以下とするのがよい。窒化開始時の板温度が550℃以下の場合は、上式の値は負となるが、このような場合も本発明に含むものとする。上式で分母が0になる場合は意味のある値が得られなくなるが、分母が0になるということは実質的に窒化が起きていないことを意味し、上式中の「窒化開始時の」に適合しないため、自動的に除外される。上式の意味するところ、すなわち本制御の技術的な意味合いは、以下のように考えられる。
窒化物の分散状態は、窒化物を形成する初期の状態、言い換えれば窒化物の核形成時の状態に大きく依存するため、窒化開始時の条件が最終的な窒化物の分散状態に影響するものと考えられる。そして、窒化物の核形成は、通常の鋼中における析出等と同様に、低温で析出元素が過飽和に固溶した状態で高密度かつ微細に核形成が起きる現象であると考えられる。つまり、過飽和な固溶元素が何らかの析出物を形成しようとするが、その際の温度が低いと十分な拡散が起きずに拡散距離が短くなるため、微細な析出形態となるのである。
本発明の実施形態によれば、過飽和な状況に制御するため、アンモニアガス濃度が高いことが好ましい。ただし、温度が低すぎると十分な窒化が起きなくなり、アンモニアガス濃度が高くても十分な過飽和状態に制御できなくなる場合もある。この状況を完全に数式化して最適条件を正確に提示することは、困難であるものの、基本的には、上述のような考えに従い、本発明の制限式のような形で表されることになる。最適な状況としては、ある程度の窒化が十分に起き、なおかつ拡散が過度に起きない温度域(例えば、アンモニアガス窒化の場合には550〜700℃程度の温度域)であり、比較的高めのガス濃度で窒化を開始し、鋼板表面での窒化物の核形成を行うことが好ましい。これには時間的な因子が入っていないが、より拡散を抑制した低温において時間をかけて核形成を行うことで、微細な核分散を行うことも可能と思われる。このような場合は、上式の値は負の領域になるが、本発明に含まれることは上述の通りである。
上述の制御思想は、アンモニアガス窒化に限定されるものではないため、ガス窒化における窒化ガスは、アンモニアに限定されるものではなく、また、窒化方法もガス窒化に限定されるものではない。すなわち、一般的に知られている核形成現象のメタラジーを用いて析出核を微細に分散させるように制御を行うものであり、通常の鉄鋼材料に関する知見を有する当業者であれば、特定の窒化方法に応じて好ましい条件を設定することは容易である。
以上、鋼板をガス窒化する場合について述べたが、本発明鋼板を得る手段はガス窒化に限定されるものではなく、液体窒化、プラズマ窒化、イオン注入等で行うことも可能である。本発明は、表面の少なからざる領域を窒化物で覆うことを必要条件としているので、表面にNを濃化させるものであれば、その他の方法も適用可能である。特に、鋼板のトータルのN含有量を増加させることなく鋼板の板厚方向のN分布を変化させ、表面のみにNを濃化させるようなプロセスであれば、鋼板の加工性等の変化も小さくなり、好都合である。
また、鋼板を窒化するプロセスに限らず、何らかのN含有物質を鋼板表面に付着させることによって鋼板表面を改質するプロセスでも、本発明の実現は可能である。特に鋼板との反応性が低い何らかの窒化物を表面に付着させれば、鋼板母材そのものの加工性等の特性への影響が小さくなるため、好都合である。
薄手の容器用鋼板の製造においては、硬度調整や板厚調整のために再結晶焼鈍の後に再冷延を行なう場合がある。この圧下率は、形状矯正のために行なわれるスキンパスに近い1%程度から、冷延と同様の50%以上までが実用化されている。本発明に係る実施形態の鋼においても、用途に応じて窒化後の再冷延の圧下率を0〜90%の範囲で変化させて実験を行った結果、再冷延率の上昇に伴う強度上昇、延性低下、缶成形後の耐変形性など、従来と同様の特性変化が見られることを確認した。しかしながら、本発明が特徴とする、表面析出物に起因する色調、表面皮膜密着性、溶接性等は、従来材と同等以上のレベルを維持することも確認した。すなわち、再冷延によって本発明の特徴が消失するものではないことから、再冷延の条件は従来の当業者技術の範囲で、客先ニーズに応じて適宜決めれば良く、本発明においても、従来鋼と同様の再冷延が適用可能である。形状矯正等が必要でない場合には、全く再冷延を行なわないことも可能である。また、形状矯正等を目的とする場合には、0.5%から2.5%程度の範囲の圧下率で圧延が行われるが、本発明鋼も、通常、この程度の圧延が行われる。一方、再冷延率が高くなれば、鋼板自体が十分に硬質化する。したがって、本発明の実施形態のように板厚方向の材質分布を制御せずとも十分な缶強度を得ることが可能となるため、通常の適用範囲を大幅に越えてまで再冷延率を高める意義は小さくなる。
また、再冷延率が高くなると加工性が低下することから、不用意に高い再冷延率の適用は避けるべきである。以上のことから、本発明鋼に再冷延を適用する場合は、70%程度までとすることが好ましい。この制限は、あくまでも缶強度や延性を考慮して決定されるものであるが、例え70%を超える再冷延を施しても、本発明の特徴である、表面析出物の制御による表面特性や溶接性の向上効果が消失することはない。
硬質な材料を製造するために再冷延を行なうのであれば、再冷延率が高いほうが好ましいことは言うまでもなく、再冷延率を、好ましくは6%以上、さらに好ましくは10%以上、さらに好ましくは20%以上、さらに好ましくは30%以上、さらに好ましくは40%以上とすることが、硬度を高める上で好ましい。一方、延性の確保を優先するのであれば、再冷延の圧下率は低いほうが好ましいことは言うまでもなく、再冷延率を、好ましくは50%以下、さらに好ましくは40%以下、さらに好ましくは30%以下、さらに好ましくは20%以下、さらに好ましくは10%以下、さらに好ましくは5%とすることが、鋼鈑の延性を確保する上で好ましい。生産性の観点から好ましい、再結晶焼鈍と特定熱処理とを連続的に行なう工程では、再冷延の時期は、特定熱処理の後になる。しかしながら、再結晶焼鈍と特定熱処理とを別々の工程として行なう場合には、特定熱処理の前に行なうことも可能である。
また、溶接部を考えた場合、通常の材料では溶接熱により材料が局部的に軟化し、フランジ成形等において加工歪が集中して成形性を劣化させる問題が指摘される。表層部にNを多量に含有する本発明鋼では、この溶接熱による軟化も抑制されるため、溶接部の成形性に関してもメリットを得ることが可能となる。
本発明の実施形態は、板厚0.400mm以下の鋼板に適用される。これは、板厚がこれより厚い鋼板では成形部材の色調、表面被覆密着性、溶接性が問題となりにくいからである。好ましくは0.300mm以下、さらに好ましくは0.240mm以下の鋼板を対象とし、0.190mm以下、さらには0.160mm以下の鋼板では非常に顕著な効果を得ることが可能となる。このように、主として窒化後の鋼板表面における窒化物の状態を制御することで、ただ単にNを含有した鋼や表面硬度の造り分けのみを目的として窒化した鋼に無い本発明鋼特有の材質を持つようになる。すなわち、本発明で規定する窒化条件に基づいて鋼板表面の窒化物の形態制御を行うことにより、非常に良好な色調、表面被覆密着性、溶接性を得ることが可能となる。
本発明の実施形態の効果は、成分調整以降、焼鈍前の熱履歴、製造履歴によらない。熱延を行う場合のスラブは、インゴット法、連続鋳造法などの製造法には限定されず、また熱延に至るまでの熱履歴にもよらないため、スラブ再加熱法、鋳造したスラブを再加熱することなく直接熱延するCC−DR法、さらには粗圧延などを省略した薄スラブ鋳造によっても本発明の効果を得ることができる。また、熱延条件にもよらず、仕上げ温度をα+γの二相域とする二相域圧延や、粗バーを接合して圧延する連続熱延によっても、本発明の効果が得られる。
また、本発明の実施形態に係る鋼を、溶接部を有する容器用素材として用いる場合には、熱影響部の軟化を抑制、特にN濃度が高い表層部が急冷され硬化するため、溶接部の強度を向上させる効果も有する。これは、B,Nbなど、通常でも熱影響部の軟化を抑制する元素が添加された場合にさらに顕著となる。
本発明の実施形態に係る鋼板は、何らかの表面処理が施された場合も含む。すなわち、表面処理後にユーザーによって用いられる鋼板では、色調や溶接性は表面処理後の鋼板で必要なものであり、これらの特性に必要となる鋼板表面の好ましい状態は、上述のように製造された鋼板では表面処理により損なわれない。もちろん、表面処理によりRaやPPIの絶対値は少なからず変化するが、鋼板表面の窒化物形態を制御することにより生じる鋼板の表面状態を好ましくする機能、すなわち高さの小さな多数の凹凸が形成されている状態は、表面処理後の鋼板でも十分に検知可能である。この効果により、表面処理後の鋼板において非常に良好な色調、溶接性が提供される。
一方、金属めっきや塗装、有機皮膜(ラミネート)などの表面被覆の密着性においては、表面処理前の鋼板の表面状態が重要である。この特性に関しても、本発明の実施形態に係る鋼板の板厚方向の硬度を制御することにより、鋼板の表面状態を好ましくすること、すなわち高さの小さな多数の凹凸が形成されている状態とすることにより、非常に良好な密着性が提供される。表面処理としては、金属めっきの場合、通常適用されている、錫、クロム(ティンフリー)、Ni、亜鉛、アルミなどが施される。これら被覆の密着性のみならず、被覆形成後の色調や溶接性が向上する。また、近年使用されるようになっている有機皮膜を被覆したラミネート鋼板用の原板や、鋼板へ直接または金属めっき等の後に塗装を行う場合においても、本発明の効果により密着性を高めることが可能となる。
用途としては、2ピース缶、3ピース缶を問わず、容器全般に使用可能で、何らかの用途において上述と同様の課題がある場合には適用が可能である。
本発明の実施例として、容器用鋼板として最も一般的なものの一つであるSnめっき鋼板を用い、色調、表面被覆密着性、溶接性の評価を行なった。
密着性は、エポキシフェノール系塗料を25mg/m2両面塗布した2枚の板をナイロン系接着剤で加熱圧着した試験片を、水道水で濡らした状態でT型剥離試験を行い、剥離強度を測定した。当然ながら、剥離強度の高いものを密着性が良好と判定した。
色調は、透明なポリエステル樹脂を10μm塗布、乾燥後、分光測色計を用いて得られるL値を指標とした。L値が高いほど色調が優れていることを示し、この値で優劣の判定を行った。
溶接性は、通常3ピース缶で適用されているシーム溶接において溶接電流を変えて溶接を行い、溶接時のスプラッシュ発生(チリ発生)、ピールテスト(ハインテスト)による溶接部強度、溶接時の鋼板表面と極輪間のアーク電流による溶接部表面損傷から溶接可能電流範囲を求め、範囲の広さと下限値により判定した。範囲が広いほうが製造上の安定性が高くて好ましく、下限が低いほうが溶接部の温度上昇によるめっき剥離や材質変化がおきにくいとして判定を行った。粗度は、レーザー式三次元粗度計を用いて測定した。
窒化後の鋼板は板厚方向に少なからざるN濃度の変動を生じているが本発明では板厚平均の値を用いた。
表1に示す各成分の鋼に対して、熱間圧延、冷間圧延、再結晶焼鈍を行い、各種鋼板を製造した。表1に記載のN量は、窒化前の板厚平均のN量である。一部の材料については、再結晶焼鈍用の高温保定炉に続く窒化炉の温度、雰囲気等を制御することで、表1に示す条件で通板させて窒化を行った。窒化は、全て焼鈍の間または後に行なわれており、窒化が起きる前に再結晶は完了していたものと考えられる条件になっている。
さらに、調質圧延を施して鋼板を製造した。これらの鋼についての圧延条件、最終板厚、窒素量の分析結果、特性評価結果を表2に示す。本発明の製造法を用いて、板厚方向の状態を本発明の規定範囲内に制御することで、良好な色調、表面被覆密着性、溶接性が得られていることが確認できる。一部、窒化を行わない材料に対し、調質圧延条件を特殊なものにすることで表面粗度の調整を試みたが、ロールの損耗やパス回数などのために効率的な生産が阻害されたものとなっている(生産性の評価欄が「不良」)。また、このような特殊な圧延によって鋼板粗度の評価値が本発明鋼レベルに達する場合もあるが、特性は本発明の実施形態に係る鋼の最適材のレベルには到達していない。
Figure 0004299858
Figure 0004299858
以上、本発明の実施形態並びに他の例について説明したが、本発明これら実施形態並びに変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本願発明では各種文献を引用したが、それらの内容全般をここに援用する。
図1は、本発明の容器用鋼板の板厚方向における各部位を示す図である。 図2は、本発明の容器用鋼板の窒化物領域を示す図である。 図3は、本発明の容器用鋼板の鋼領域を示す図である。

Claims (20)

  1. 少なくとも一部の板厚が0.400mm以下である少なくとも1つの容器用の鋼板であって、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物から成る組成で、
    表面における窒化物の面積率が少なくとも1.0%以上であることを特徴とする容器用鋼板。
  2. 前記少なくとも一部における表面粗度がRaで0.90μm以下であり、前記少なくとも一部の領域における長さ1インチあたりの厚みの凹凸ピーク数であるPPIが250以上である請求項1に記載の容器用鋼板。
  3. Ti:0.08%以下、Nb:0.08%以下、B:0.015%以下、Ni:5.0%以下、Cu:2.0%以下、Cr:2.0%以下のうちの少なくとも1つを含有する請求項1に記載の容器用鋼板。
  4. Sn、Sb、Mo、Ta、V、Wの合計で0.1%以下を含有する請求項1に記載の容器用鋼板。
  5. 少なくとも一部の板厚が0.400mm以下である少なくとも1つの容器用の鋼板であって、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物から成る組成で、
    (少なくとも一部の表面位置における窒化物面積率)/(前記少なくとも一部の板厚1/4の断面位置における窒化物面積率)が1.5以上であることを特徴とする容器用鋼板。
  6. 前記少なくとも一部における表面粗度がRaで0.90μm以下であり、前記少なくとも一部の領域における長さ1インチあたりの厚みの凹凸ピーク数であるPPIが250以上である請求項5に記載の容器用鋼板。
  7. Ti:0.08%以下、Nb:0.08%以下、B:0.015%以下、Ni:5.0%以下、Cu:2.0%以下、Cr:2.0%以下のうちの少なくとも1つを含有する請求項5に記載の容器用鋼板。
  8. Sn、Sb、Mo、Ta、V、Wの合計で0.1%以下を含有する請求項5に記載の容器用鋼板。
  9. 少なくとも一部の板厚が0.400mm以下である少なくとも1つの容器用の鋼板であって、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物から成る組成で、
    前記少なくとも一部の表面における直径0.1μm以上の独立した窒化物の数が0.001個/μm2以上であることを特徴とする容器用鋼板。
  10. 前記少なくとも一部における表面粗度がRaで0.90μm以下であり、前記少なくとも一部の領域における長さ1インチあたりの厚みの凹凸ピーク数であるPPIが250以上である請求項9に記載の容器用鋼板。
  11. Ti:0.08%以下、Nb:0.08%以下、B:0.015%以下、Ni:5.0%以下、Cu:2.0%以下、Cr:2.0%以下のうちの少なくとも1つを含有する請求項9に記載の容器用鋼板。
  12. Sn、Sb、Mo、Ta、V、Wの合計で0.1%以下を含有する請求項9に記載の容器用鋼板。
  13. 少なくとも一部の板厚が0.400mm以下である少なくとも1つの容器用の鋼板の製造方法であり、前記少なくとも一部が、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物からなる鋼を、
    (a)冷延し、
    (b)上記(a)工程の後、再結晶焼鈍と同時またはその後に窒化処理を行い、
    (c)N量を0.0002%以上増加させ、鋼板の表面における窒化物の面積率を1.0%以上とし、かつ鋼板内のN量を0.600%以下とすることを特徴とする容器用鋼板の製造方法。
    ただし、(b)工程の窒化処理は、アンモニアガスを0.02%以上含有する雰囲気中で、板温度が550〜800℃となるように0.1秒以上かつ360秒以下保持するものとする。
  14. 少なくとも一部の板厚が0.400mm以下である少なくとも1つの容器用の鋼板の製造方法であり、前記少なくとも一部が、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物からなる鋼を、
    (a)冷延し、
    (b)上記(a)工程の後、再結晶焼鈍と同時またはその後に窒化処理を行い、
    (c)N量を少なくとも0.0002%以上増加させ、(鋼板の表面位置における窒化物面積率)/(鋼板の板厚1/4の断面位置における窒化物面積率)を1.5以上とし、かつ鋼板内のN量を0.600%以下とすることを特徴とする容器用鋼板の製造方法。
    ただし、(b)工程の窒化処理は、アンモニアガスを0.02%以上含有する雰囲気中で、板温度が550〜800℃となるように0.1秒以上かつ360秒以下保持するものとする。
  15. 少なくとも一部の板厚が0.400mm以下である少なくとも1つの容器用の鋼板の製造方法であり、前記少なくとも一部が、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物からなる鋼を、
    (a)冷延し、
    (b)上記(a)工程の後、再結晶焼鈍と同時またはその後に窒化処理を行い、
    (c)N量を少なくとも0.0002%以上増加させ、前記少なくとも一部の鋼板表面における直径0.1μm以上の独立した窒化物を0.001個/μm2以上とし、かつ鋼板内のN量を0.600%以下とすることを特徴とする容器用鋼板の製造方法。
    ただし、(b)工程の窒化処理は、アンモニアガスを0.02%以上含有する雰囲気中で、板温度が550〜800℃となるように0.1秒以上かつ360秒以下保持するものとする。
  16. 上記(b)工程の窒化処理を、(窒化開始時の板温度℃−550)/(窒化開始時のアンモニアガス濃度%)<150とすることを特徴とする請求項13〜15の何れか一項に記載の容器用鋼板の製造方法。
  17. 少なくとも一部の板厚が0.400mm以下である少なくとも1つの容器用の鋼板であって、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物から成る組成で
    (窒化処理後の鋼板表面位置における窒化物面積率)/(窒化処理前の鋼板表面位置における窒化物面積率)が1.5以上であることを特徴とする容器用鋼板。
  18. 前記少なくとも一部における表面粗度がRaで0.90μm以下であり、前記少なくとも一部の領域における長さ1インチあたりの厚みの凹凸ピーク数であるPPIが250以上である請求項17に記載の容器用鋼板。
  19. Ti:0.08%以下、Nb:0.08%以下、B:0.015%以下、Ni:5.0%以下、Cu:2.0%以下、Cr:2.0%以下のうちの少なくとも1つを含有する請求項17に記載の容器用鋼板。
  20. Sn、Sb、Mo、Ta、V、Wの合計で0.1%以下を含有する請求項17に記載の容器用鋼板。
JP2006520471A 2004-01-19 2005-01-17 容器用鋼板およびその製造方法 Active JP4299858B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004011139 2004-01-19
PCT/JP2005/000796 WO2005068667A1 (en) 2004-01-19 2005-01-17 Steel sheet for use in containers and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2007520628A JP2007520628A (ja) 2007-07-26
JP4299858B2 true JP4299858B2 (ja) 2009-07-22

Family

ID=34792320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006520471A Active JP4299858B2 (ja) 2004-01-19 2005-01-17 容器用鋼板およびその製造方法

Country Status (5)

Country Link
EP (1) EP1706514B1 (ja)
JP (1) JP4299858B2 (ja)
KR (1) KR100851691B1 (ja)
CN (1) CN1910296B (ja)
WO (1) WO2005068667A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1806420A4 (en) * 2004-09-09 2008-04-23 Nippon Steel Corp STEEL PLATE FOR EXTREMELY THIN CONTAINERS AND RELATED MANUFACTURING METHOD
JP4646858B2 (ja) * 2006-06-14 2011-03-09 株式会社神戸製鋼所 窒化処理用鋼板
US8518501B2 (en) 2010-03-10 2013-08-27 Restaurant Technology, Inc. Food holding device, method of making, and method of storing cooked food
KR101256516B1 (ko) * 2010-12-23 2013-04-22 주식회사 포스코 내꺽임성 및 내식성이 우수한 열연강판 제조방법 및 이에 의해 제조된 열연강판
DE102014112286A1 (de) * 2014-08-27 2016-03-03 Thyssenkrupp Ag Verfahren zur Herstellung eines aufgestickten Verpackungsstahls
CN106222551B (zh) * 2016-08-16 2018-05-01 武汉钢铁有限公司 一种表面无缺陷的渗氮铁制容器基板及生产方法
EP3875626A1 (de) * 2020-03-06 2021-09-08 ThyssenKrupp Rasselstein GmbH Verpackungsblecherzeugnis
DE102020106164A1 (de) * 2020-03-06 2021-09-09 Thyssenkrupp Rasselstein Gmbh Kaltgewalztes Stahlflachprodukt für Verpackungen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3105380B2 (ja) * 1993-06-21 2000-10-30 新日本製鐵株式会社 耐デント性ならびに耐面ひずみ性に優れた深絞り用冷延鋼板の製造方法
JP3233770B2 (ja) * 1994-02-14 2001-11-26 新日本製鐵株式会社 耐デント性ならびに耐面ひずみ性に優れた深絞り用bh鋼板の製造方法
JP3448380B2 (ja) * 1994-12-27 2003-09-22 新日本製鐵株式会社 容器用鋼板の製造方法
JP3777049B2 (ja) * 1998-04-30 2006-05-24 新日本製鐵株式会社 耐デント性ならびに耐面ひずみ性に優れた深絞り用bh冷延鋼板の製造方法
JP4249860B2 (ja) * 1999-10-01 2009-04-08 新日本製鐵株式会社 容器用鋼板の製造方法
JP2001107189A (ja) * 1999-10-06 2001-04-17 Nippon Steel Corp コイル内の材質の均質性に優れる極薄鋼板およびその製造方法
JP3542946B2 (ja) * 2000-06-29 2004-07-14 新日本製鐵株式会社 加工性及びめっき密着性に優れた高強度鋼板及びその製造方法

Also Published As

Publication number Publication date
CN1910296A (zh) 2007-02-07
CN1910296B (zh) 2011-08-31
EP1706514A1 (en) 2006-10-04
JP2007520628A (ja) 2007-07-26
EP1706514B1 (en) 2015-03-11
KR100851691B1 (ko) 2008-08-11
KR20060113984A (ko) 2006-11-03
WO2005068667A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
EP2138599B1 (en) High-strength hot-dip galvanized steel sheet and method for producing the same
JP4299858B2 (ja) 容器用鋼板およびその製造方法
JP4525450B2 (ja) 高強度高延性な缶用鋼板およびその製造方法
WO2013046476A1 (ja) 高強度鋼板およびその製造方法
JP2004315900A (ja) 伸びフランジ成形性に優れた高強度鋼板およびその製造方法
JP7120461B2 (ja) 鋼板
WO2020136988A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6809647B1 (ja) 高強度鋼板およびその製造方法
WO2020203943A1 (ja) 亜鉛めっき鋼板およびその製造方法
WO2018199328A1 (ja) 高強度鋼板およびその製造方法
JP7481651B2 (ja) 鋼板
JP4328124B2 (ja) 缶特性が著しく良好な極薄容器用鋼板およびその製造方法
JP4299859B2 (ja) 容器用鋼板およびその製造方法
JP4360319B2 (ja) 高張力溶融亜鉛めっき鋼板とその製造方法
JP2006219717A (ja) 耐変形性、表面特性、溶接性が著しく良好な容器用鋼板及びその製造方法
WO2006027854A1 (ja) 極薄容器用の鋼板およびその製造方法
US20240158879A1 (en) Martensitic stainless steel sheet having excellent corrosion resistance and method for manufacturing same, and martensitic stainless bladed product
JP6947334B1 (ja) 高強度鋼板およびその製造方法
JP6881696B1 (ja) 缶用鋼板およびその製造方法
WO2021125283A1 (ja) 鋼板及びその製造方法
JP6958037B2 (ja) 高強度めっき鋼板とその製造方法
WO2023162893A1 (ja) 鋼板、および鋼板の製造方法
EP4253576A1 (en) High-strength steel sheet and method for producing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R151 Written notification of patent or utility model registration

Ref document number: 4299858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350