JP4298876B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP4298876B2
JP4298876B2 JP33974899A JP33974899A JP4298876B2 JP 4298876 B2 JP4298876 B2 JP 4298876B2 JP 33974899 A JP33974899 A JP 33974899A JP 33974899 A JP33974899 A JP 33974899A JP 4298876 B2 JP4298876 B2 JP 4298876B2
Authority
JP
Japan
Prior art keywords
plasma
conductive film
electric field
waveguide
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33974899A
Other languages
Japanese (ja)
Other versions
JP2001156004A (en
Inventor
信雄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP33974899A priority Critical patent/JP4298876B2/en
Priority to TW089125495A priority patent/TW480594B/en
Priority to KR1020000071875A priority patent/KR100762754B1/en
Priority to US09/726,050 priority patent/US6622650B2/en
Publication of JP2001156004A publication Critical patent/JP2001156004A/en
Priority to US10/642,268 priority patent/US6823816B2/en
Priority to KR1020070051046A priority patent/KR100770630B1/en
Application granted granted Critical
Publication of JP4298876B2 publication Critical patent/JP4298876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波などの高周波のエネルギーによりプラズマを発生させ、そのプラズマにより半導体ウエハ、LCD基板(液晶ディスプレイ用ガラス基板)などの被処理基板に対して処理を施すプラズマ処理装置に関する。
【0002】
【従来の技術】
半導体デバイスの製造工程の中に、半導体ウエハ(以下ウエハという)に対してプラズマを用いて処理を行う工程がある。このようなプラズマ処理を行うための装置として図6に示すようなマイクロ波プラズマ処理装置が知られている。この装置は、ウエハWの載置台90を備えた真空容器9の天井部に例えば石英よりなるマイクロ波透過窓91を設けると共に、このマイクロ波透過窓91の上方に平面スロットアンテナ92を設け、マイクロ透過窓91の上方側に電磁シールド部材96、例えば真空容器9の上端に連続する円筒部分を設けて構成されている。そしてマイクロ波電源部93からマイクロ波を導波管94を介して前記アンテナ92に導き、このアンテナ92から真空容器9内にマイクロ波を供給して、ガス供給部95からの処理ガスをプラズマ化し、そのプラズマにより例えばウエハWの表面に成膜あるいはエッチング処理を施すように構成されている。
【0003】
【発明が解決しようとする課題】
平面スロットアンテナ92は図7に示すように金属板に多数のスリット92aを形成したものであり、このスリット92からは放射電磁界(電界強度が距離の1乗に反比例する)も放射される。放射電磁界は真空容器9内のプラズマにて反射されるので、この反射波とアンテナ92からのマイクロ波とが干渉してキャビティモードが起こって横方向に広がる定在波が生成される。このためウエハWと平行な面で見ると電界強度分布が不均一となり、この結果ウエハW上でのプラズマ密度の均一性が悪くなる。またウエハW上のプラズマ密度を均一にするために、ウエハW上方において周縁部のプラズマ密度を中央部のプラズマ密度よりも高くするように例えばガスの流し方を工夫するなどしてプラズマ密度をコントロールする場合があるが、この場合上述のように電界強度分布が不均一であると、このようなコントロールが困難である。
【0004】
本発明は、このような事情の下になされたものであり、その目的は基板上におけるプラズマ密度の均一性が高く、基板に対して面内均一性の高いプラズマ処理を行うことのできるプラズマ処理装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明のプラズマ処理装置は、真空容器内に供給された処理ガスをプラズマ化し、そのプラズマにより、真空容器内の載置台に載置された基板に対して処理を行うプラズマ処理装置において、高周波電源部と、この高周波電源部からの高周波を導く導波管と、この導波管の出口側に設けられた誘電体と、この誘電体に前記載置台に対向するように形成され、表皮厚さよりも薄いあるいは表皮厚さ程度の厚さの導電膜と、を備え、前記導電膜は、周縁部の方が中央部よりも膜厚が薄く、高周波が前記導電膜に入射し、この導電膜を通り抜けた電界に基づいて処理ガスをプラズマ化することを特徴とする。
【0006】
この発明によれば表皮厚さよりも薄い導電膜をいわばアンテナとして用いているので、導波管を通ってきた高周波例えばマイクロ波はこの導電膜中を通り抜け、エバネセント電界が真空容器内側にリークした状態となる。このエバネセント電界は伝播しないので、定在波が立ちにくくなり、基板上のプラズマ密度の均一性が高い。この場合導波膜の周縁部の膜厚を中央部よりも薄くすれば、リークする電界の強度が周縁部で大きくなり、基板上では均一性の高いプラズマ分布が得られる。
【0007】
【発明の実施の形態】
図1は本発明のプラズマ処理装置の実施の形態を示す断面図である。このプラズマ処理装置は例えばアルミニウム製の円筒状の真空容器1を備えており、この真空容器1には基板であるウエハWの載置台2が設けられると共に、底部には真空排気を行うための排気管11が接続され、また例えば側壁にはガス供給部12が設けられている。前記載置台2には例えば13.56MHzのバイアス電源部21に接続されたバイアス印加用の電極22が埋設されると共に、図示しない温度調整部が設けられていてウエハWを所定の温度に調整できるように構成されている。
【0008】
真空容器1の上部には例えば石英よりなる厚さ3〜5cm程度の板状の誘電体3が下方側の領域を真空雰囲気とするようにシール材31により気密に封止して配置されている。誘電体3の中央部には導波路である同軸の導波管33の軸部33aの一端部が上面から下面に亘って貫通して設けられている。同軸の導波管33の外管33bの下端部は外側に折り曲げられて広げられ更に下側に屈曲して偏平な円筒状の拡径部34をなし、誘電体3の上に被せて設けられている。同軸の導波管33の他端部の側面には導波路である矩形状の導波管35の一端部が接続されており、この矩形状の導波管35の他端部にはインピーダンス整合部36を介してマイクロ波電源部37が設けられている。
【0009】
前記誘電体3の下面(載置台2側の面)には導電膜4例えばアルミニウム等の金属からなる導電膜4が形成されている。この導電膜4に関して説明する。一般に導電体例えば金属は図2に示すように電界を吸収し、上面にマイクロ波が入射したとすると、電界強度は上面から下面に向かうにつれて指数関数的に減少する。金属表面(上面)の電界強度Eが1/e(eは自然対数の底)になる厚さ(深さ)は表皮厚さ(表皮深さ)と呼ばれ、金属がこの表皮厚さよりも薄い場合には下側(裏側)に電界が抜ける。このようにして抜けた電界はエバネセントな電界と呼ばれ伝播しない。前記導電膜4はウエハW側に電界が抜けるように表皮厚さよりも薄くあるいは表皮厚さ程度に作ってあり、例えば成膜されたアルミニウム膜の場合表皮厚さは成膜手段にも依るが3〜5μmであるから導電膜4の膜厚Dは例えばおよそ1〜2μmに設定されている(図面では導電膜4の厚さは大きく描いている)。
【0010】
そして導電膜4から抜けたエバネセントな電界の強度は図3に示すように下方に向かうにつれて減衰するが、プラズマは導電膜4の直下で生成されるので、充分な電界が確保され得る。従ってウエハWと導電膜4との距離Lがあまり短いとガスの拡散領域が狭くなるのでガスの供給手法が難しくなり、また逆にLが大きいとプラズマの周辺壁面への拡散消失の度合いが大きくなり、マイクロ波電源部37の電力を大きくする必要があるため、例えばLは5〜10cm程度が好ましい。
【0011】
また前記導波管33の先端部の拡径部34は真空容器1内に位置しており、拡径部34と真空容器1の内壁との間の空間S1はシール部材31によりプラズマの発生領域から区画されている。この空間S1が大気雰囲気であると誘電体3が圧力差により変形するおそれがあるので、誘電体3の形状を安定化するために、図示しない排気路を介して空間S1は真空雰囲気にしても良い。更にまた導波管33の内部空間は大気雰囲気の状態にしておくと、真空容器1内に入り込んでいる部位が圧力差で変形するおそれがあるので、真空容器1の壁の中に位置している部位においてシール部材32を用いて上側と下側とを区画し、下側空間S2を図示しない排気路を介して真空雰囲気にしてもよい。
【0012】
なお誘電体4は、導波管33の拡径部34の形状に適合するものでなくとも、例えば図4のように薄いガラス板により構成して拡径部34との間に空間が形成されていてもよく、この場合でも上述のようにシールして拡径部34の内、外を真空雰囲気とすれば拡径部34の形状が安定する。
【0013】
次に上述実施の形態の作用について、基板上にポリシリコン膜を形成する場合を例にとって説明する。先ず図示しないゲートバルブを開いて図示しない搬送アームによりウエハWを載置台2上に載置する。次いで前記ゲートバルブを閉じた後、真空容器1内を排気して所定の真空度まで真空引きし、ガス供給部12から成膜ガスである例えばSiH4ガス及びキャリアガスである例えばArガスを真空容器1内に供給する。そしてマイクロ波電源部37から例えば2.45GHz、2.5kwのマイクロ波を出力すると共に、バイアス電源部21から載置台2に例えば13.56MHz、1.5kwのバイアス電力を印加する。
【0014】
マイクロ波電源部37からのマイクロ波は導波管35、33を介して拡径部34内に伝播され、誘電体4を通って導電膜4に入射する。導電膜4は既述したように表皮厚さよりも薄いあるいは表皮膜厚程度なのでここから電界がリークして真空容器1内に入り込み、この電界(エバネセント電界)により処理ガスがプラズマ化される。そしてSiH4 ガスが電離して生成された活性種がウエハW表面に付着してポリシリコン膜が成膜される。
【0015】
上述実施の形態によれば導波管33から伝搬したマイクロ波はいわばアンテナである導電膜4に達し、この導電膜4を通り抜けたエバネセント電界は伝播しないので定在波が立ちにくくなり、定在波による電界強度分布の影響が少なくなり、この結果ウエハW上でのプラズマ密度の均一性が高く、ウエハWに対して面内分布が均一なプラズマ処理、この例では成膜処理を行うことができる。
【0016】
前記導電膜4は均一な厚さに形成してもよいが図5に示すように中央部よりも周縁部の方が厚さが薄くなるように形成してもよく、このようにすれば周縁部でリークする電界強度が中央部よりも大きくなるので、それによって周縁部で密度の高いプラズマが生成される。プラズマは生成部から離れるにつれ密度の低い部分へ拡散し、また真空容器の内壁において消失する為、導電膜4の下面側にて周辺部のプラズマ密度を高くしておけば、プラズマが下がっていくときに内側への拡散と内壁での消失によって、結果としてウエハW上のプラズマ密度がより一層均一性の高いものになる。
【0017】
なお導電膜4を誘電体3の上面に形成する構成や誘電体の中に挟み込む構成も本発明の権利範囲に含むものである。また処理ガスをプラズマ化するための電源部としてはマイクロ波電源部に限らずRF電源部やUHF電源部でもよく、本明細書では、これらを高周波電源部として扱っている。更にまた本発明は成膜処理に限らずエッチングやアッシング処理を行う場合に適用してもよい。
【0018】
【発明の効果】
本発明によれば表皮厚さよりも薄いあるいは表皮厚さ程度の厚さの導電膜をリークした電界を利用してプラズマを発生させているので、基板上においてプラズマ密度の均一性が高く、この結果基板に対して均一性の高いプラズマ処理を施すことができる。
【0019】
【図面の簡単な説明】
【図1】本発明の実施の形態を示す縦断側面図である。
【図2】本発明で用いる導電膜の役割を説明する説明図である。
【図3】図2の載置台上のウエハと導電膜との距離とこの間の電界強度の減衰の様子を示す説明図である。
【図4】本発明の他の実施の形態の要部を示す縦断側面図である。
【図5】本発明の更に他の実施の形態を示す説明図である。
【図6】従来のプラズマ処理装置を示す概略図である。
【図7】従来のプラズマ装置に用いられているアンテナを示す平面図である。
【符号の説明】
1 真空容器
2 載置台
21 バイアス電源部
W 半導体ウエハ
33、35 導波管
34 拡径部
37 高周波電源部
4 導電膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma processing apparatus that generates plasma by high-frequency energy such as microwaves and performs processing on a substrate to be processed such as a semiconductor wafer or an LCD substrate (liquid crystal display glass substrate).
[0002]
[Prior art]
Among semiconductor device manufacturing processes, there is a process of processing a semiconductor wafer (hereinafter referred to as a wafer) using plasma. A microwave plasma processing apparatus as shown in FIG. 6 is known as an apparatus for performing such plasma processing. In this apparatus, a microwave transmitting window 91 made of, for example, quartz is provided on a ceiling portion of a vacuum vessel 9 provided with a mounting table 90 for a wafer W, and a planar slot antenna 92 is provided above the microwave transmitting window 91, An electromagnetic shield member 96, for example, a cylindrical portion continuous to the upper end of the vacuum vessel 9 is provided on the upper side of the transmission window 91. Then, a microwave is guided from the microwave power source 93 to the antenna 92 through the waveguide 94, and the microwave is supplied from the antenna 92 into the vacuum vessel 9, and the processing gas from the gas supply unit 95 is converted into plasma. For example, a film is formed or etched on the surface of the wafer W by the plasma.
[0003]
[Problems to be solved by the invention]
As shown in FIG. 7, the planar slot antenna 92 is formed by forming a large number of slits 92a in a metal plate, and a radiated electromagnetic field (the electric field strength is inversely proportional to the first power of the distance) is also radiated from the slit 92. Since the radiated electromagnetic field is reflected by the plasma in the vacuum vessel 9, the reflected wave interferes with the microwave from the antenna 92, and a cavity mode occurs to generate a standing wave that spreads in the lateral direction. For this reason, when viewed in a plane parallel to the wafer W, the electric field intensity distribution is non-uniform, and as a result, the uniformity of the plasma density on the wafer W is degraded. Also, in order to make the plasma density on the wafer W uniform, the plasma density is controlled by devising the way of gas flow, for example, so that the plasma density at the peripheral part is higher than the plasma density at the central part above the wafer W. In this case, if the electric field intensity distribution is not uniform as described above, such control is difficult.
[0004]
The present invention has been made under such circumstances, and an object of the present invention is to perform plasma processing with high uniformity of plasma density on the substrate and capable of performing plasma processing with high in-plane uniformity on the substrate. To provide an apparatus.
[0005]
[Means for Solving the Problems]
A plasma processing apparatus according to the present invention is a high-frequency power supply in a plasma processing apparatus that converts a processing gas supplied into a vacuum vessel into plasma and uses the plasma to process a substrate placed on a mounting table in the vacuum vessel. Part, a waveguide for guiding a high frequency from the high-frequency power supply part, a dielectric provided on the outlet side of the waveguide, and the dielectric so as to face the mounting table described above. A conductive film having a thickness that is approximately the same as the skin thickness, and the conductive film is thinner at the periphery than at the center, and a high frequency is incident on the conductive film. The process gas is turned into plasma based on the electric field that passes through.
[0006]
According to the present invention, since the conductive film thinner than the skin thickness is used as an antenna, the high frequency wave that has passed through the waveguide, for example, microwaves passes through the conductive film, and the evanescent electric field leaks inside the vacuum vessel. It becomes. Since this evanescent electric field does not propagate, standing waves are less likely to be generated, and the uniformity of plasma density on the substrate is high. In this case, if the thickness of the peripheral portion of the waveguide film is made thinner than that of the central portion, the strength of the leaking electric field is increased at the peripheral portion, and a highly uniform plasma distribution can be obtained on the substrate.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a sectional view showing an embodiment of the plasma processing apparatus of the present invention. The plasma processing apparatus includes a cylindrical vacuum vessel 1 made of, for example, aluminum. The vacuum vessel 1 is provided with a mounting table 2 for a wafer W as a substrate, and an exhaust for evacuating the bottom. A tube 11 is connected, and a gas supply unit 12 is provided on the side wall, for example. In the mounting table 2, for example, a bias applying electrode 22 connected to a bias power supply unit 21 of 13.56 MHz is embedded, and a temperature adjusting unit (not shown) is provided to adjust the wafer W to a predetermined temperature. It is configured as follows.
[0008]
A plate-shaped dielectric 3 made of, for example, quartz and having a thickness of about 3 to 5 cm is disposed on the upper portion of the vacuum vessel 1 so as to be hermetically sealed with a sealing material 31 so that the lower region is in a vacuum atmosphere. . One end portion of a shaft portion 33a of a coaxial waveguide 33 that is a waveguide is provided in the center portion of the dielectric 3 so as to penetrate from the upper surface to the lower surface. A lower end portion of the outer tube 33b of the coaxial waveguide 33 is bent outward and widened, and further bent downward to form a flat cylindrical enlarged diameter portion 34, which is provided on the dielectric 3. ing. One end of a rectangular waveguide 35 serving as a waveguide is connected to the side surface of the other end of the coaxial waveguide 33, and impedance matching is performed on the other end of the rectangular waveguide 35. A microwave power source unit 37 is provided via the unit 36.
[0009]
A conductive film 4 made of a metal such as aluminum is formed on the lower surface of the dielectric 3 (the surface on the mounting table 2 side). The conductive film 4 will be described. In general, a conductor, for example, a metal absorbs an electric field as shown in FIG. 2, and if a microwave is incident on the upper surface, the electric field strength decreases exponentially as it goes from the upper surface to the lower surface. The thickness (depth) at which the electric field strength E on the metal surface (upper surface) becomes 1 / e (e is the base of natural logarithm) is called the skin thickness (skin depth), and the metal is thinner than this skin thickness. In this case, the electric field goes out to the lower side (back side). The electric field that escapes in this way is called an evanescent electric field and does not propagate. The conductive film 4 is made thinner or thinner than the skin thickness so that the electric field can escape to the wafer W side. For example, in the case of a formed aluminum film, the skin thickness depends on the film forming means. Since the thickness is ˜5 μm, the film thickness D of the conductive film 4 is set to, for example, about 1 to 2 μm (the thickness of the conductive film 4 is greatly drawn in the drawing).
[0010]
The intensity of the evanescent electric field that has escaped from the conductive film 4 attenuates as it goes downward as shown in FIG. 3, but since plasma is generated immediately below the conductive film 4, a sufficient electric field can be secured. Accordingly, if the distance L between the wafer W and the conductive film 4 is too short, the gas diffusion region becomes narrow and the gas supply method becomes difficult. Conversely, if L is large, the degree of diffusion disappearance to the peripheral wall surface of the plasma is large. Therefore, since it is necessary to increase the electric power of the microwave power source unit 37, for example, L is preferably about 5 to 10 cm.
[0011]
The enlarged diameter portion 34 at the distal end of the waveguide 33 is located in the vacuum vessel 1, and the space S 1 between the enlarged diameter portion 34 and the inner wall of the vacuum vessel 1 is generated by the seal member 31 in the plasma generation region. It is partitioned from. Since the dielectric 3 may be deformed due to a pressure difference if the space S1 is an air atmosphere, the space S1 is made a vacuum atmosphere via an exhaust path (not shown) in order to stabilize the shape of the dielectric 3. good. Furthermore, if the internal space of the waveguide 33 is kept in an air atmosphere, the portion entering the vacuum vessel 1 may be deformed by a pressure difference, so that it is located in the wall of the vacuum vessel 1. The upper side and the lower side may be partitioned using a seal member 32 at a portion where the lower space S2 is placed, and a vacuum atmosphere may be formed via an exhaust path (not shown).
[0012]
Even if the dielectric 4 does not conform to the shape of the enlarged diameter portion 34 of the waveguide 33, for example, a thin glass plate is used to form a space between the enlarged diameter portion 34 as shown in FIG. In this case, the shape of the enlarged diameter portion 34 can be stabilized by sealing as described above and making the outside of the enlarged diameter portion 34 a vacuum atmosphere.
[0013]
Next, the operation of the above embodiment will be described by taking as an example the case where a polysilicon film is formed on a substrate. First, a gate valve (not shown) is opened, and a wafer W is placed on the mounting table 2 by a transfer arm (not shown). Next, after closing the gate valve, the inside of the vacuum vessel 1 is evacuated and evacuated to a predetermined degree of vacuum, and the film supply gas such as SiH4 gas and the carrier gas such as Ar gas are supplied from the gas supply unit 12 to the vacuum vessel. 1 is supplied. Then, for example, a microwave of 2.45 GHz and 2.5 kW is output from the microwave power supply unit 37, and a bias power of, for example, 13.56 MHz and 1.5 kW is applied from the bias power supply unit 21 to the mounting table 2.
[0014]
Microwaves from the microwave power supply unit 37 are propagated into the enlarged diameter portion 34 through the waveguides 35 and 33 and enter the conductive film 4 through the dielectric 4. As described above, since the conductive film 4 is thinner than the skin thickness or about the thickness of the skin film, the electric field leaks from here into the vacuum vessel 1 and the processing gas is turned into plasma by this electric field (evanescent electric field). Then, active species generated by ionization of SiH4 gas adhere to the surface of the wafer W to form a polysilicon film.
[0015]
According to the above-described embodiment, the microwave propagated from the waveguide 33 reaches the conductive film 4 that is an antenna, and the evanescent electric field that has passed through the conductive film 4 does not propagate. The influence of the electric field intensity distribution due to the waves is reduced, and as a result, the plasma density on the wafer W is high and the plasma treatment with a uniform in-plane distribution on the wafer W, in this example, the film forming process can be performed. it can.
[0016]
The conductive film 4 may be formed to have a uniform thickness, but as shown in FIG. 5, it may be formed so that the peripheral portion is thinner than the central portion. Since the electric field intensity leaking at the portion becomes larger than that at the central portion, high density plasma is generated at the peripheral portion. As the plasma moves away from the generating portion, it diffuses to a lower density portion and disappears on the inner wall of the vacuum vessel. Therefore, if the plasma density in the peripheral portion is increased on the lower surface side of the conductive film 4, the plasma will decrease. Sometimes the inward diffusion and the disappearance at the inner wall results in a more uniform plasma density on the wafer W.
[0017]
The configuration in which the conductive film 4 is formed on the upper surface of the dielectric 3 and the configuration in which the conductive film 4 is sandwiched in the dielectric are also included in the scope of the present invention. Further, the power supply unit for converting the processing gas into plasma is not limited to the microwave power supply unit, but may be an RF power supply unit or a UHF power supply unit, and these are treated as a high-frequency power supply unit in this specification. Furthermore, the present invention is not limited to the film forming process, and may be applied when etching or ashing is performed.
[0018]
【The invention's effect】
According to the present invention, the plasma is generated by using the electric field leaking through the conductive film having a thickness smaller than or equal to the skin thickness, so that the plasma density is highly uniform on the substrate. A highly uniform plasma treatment can be performed on the substrate.
[0019]
[Brief description of the drawings]
FIG. 1 is a longitudinal side view showing an embodiment of the present invention.
FIG. 2 is an explanatory diagram illustrating the role of a conductive film used in the present invention.
3 is an explanatory diagram showing the distance between the wafer and the conductive film on the mounting table in FIG. 2 and the state of attenuation of the electric field strength between them.
FIG. 4 is a longitudinal sectional side view showing a main part of another embodiment of the present invention.
FIG. 5 is an explanatory view showing still another embodiment of the present invention.
FIG. 6 is a schematic view showing a conventional plasma processing apparatus.
FIG. 7 is a plan view showing an antenna used in a conventional plasma apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Mounting base 21 Bias power supply part W Semiconductor wafers 33 and 35 Waveguide 34 Wide diameter part 37 High frequency power supply part 4 Conductive film

Claims (1)

真空容器内に供給された処理ガスをプラズマ化し、そのプラズマにより、真空容器内の載置台に載置された基板に対して処理を行うプラズマ処理装置において、
高周波電源部と、この高周波電源部からの高周波を導く導波管と、この導波管の出口側に設けられた誘電体と、この誘電体に前記載置台に対向するように形成され、表皮厚さよりも薄いあるいは表皮厚さ程度の厚さの導電膜と、を備え、
前記導電膜は、周縁部の方が中央部よりも膜厚が薄く、
高周波が前記導電膜に入射し、この導電膜を通り抜けた電界に基づいて処理ガスをプラズマ化することを特徴とするプラズマ処理装置。
In the plasma processing apparatus that converts the processing gas supplied into the vacuum vessel into plasma and processes the substrate placed on the mounting table in the vacuum vessel with the plasma.
A high-frequency power supply unit, a waveguide for guiding high-frequency from the high-frequency power supply unit, a dielectric provided on the outlet side of the waveguide, and the dielectric formed so as to face the mounting table. And a conductive film having a thickness less than the thickness or about the skin thickness,
The conductive film is thinner at the periphery than at the center,
A plasma processing apparatus characterized in that a processing gas is converted into plasma based on an electric field that is incident on the conductive film and passes through the conductive film.
JP33974899A 1999-11-30 1999-11-30 Plasma processing equipment Expired - Fee Related JP4298876B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP33974899A JP4298876B2 (en) 1999-11-30 1999-11-30 Plasma processing equipment
TW089125495A TW480594B (en) 1999-11-30 2000-11-30 Plasma processing apparatus
KR1020000071875A KR100762754B1 (en) 1999-11-30 2000-11-30 Plasma processing apparatus
US09/726,050 US6622650B2 (en) 1999-11-30 2000-11-30 Plasma processing apparatus
US10/642,268 US6823816B2 (en) 1999-11-30 2003-08-18 Plasma processing system
KR1020070051046A KR100770630B1 (en) 1999-11-30 2007-05-25 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33974899A JP4298876B2 (en) 1999-11-30 1999-11-30 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2001156004A JP2001156004A (en) 2001-06-08
JP4298876B2 true JP4298876B2 (en) 2009-07-22

Family

ID=18330445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33974899A Expired - Fee Related JP4298876B2 (en) 1999-11-30 1999-11-30 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4298876B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200307A (en) 2002-12-17 2004-07-15 Tokyo Electron Ltd Plasma treatment device
DE102006037144B4 (en) * 2006-08-09 2010-05-20 Roth & Rau Ag ECR plasma source
JP5457754B2 (en) * 2009-08-07 2014-04-02 株式会社日立ハイテクノロジーズ Plasma processing apparatus using transmissive electrode body
TWI627305B (en) * 2013-03-15 2018-06-21 應用材料股份有限公司 Atmospheric lid with rigid plate for carousel processing chambers

Also Published As

Publication number Publication date
JP2001156004A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
KR100507717B1 (en) Plasma processing apparatus
KR100494607B1 (en) Plasma processing apparatus
US6091045A (en) Plasma processing apparatus utilizing a microwave window having a thinner inner area
KR20070060062A (en) Plasma processing apparatus
JP2570090B2 (en) Dry etching equipment
JP4366856B2 (en) Plasma processing equipment
JPH09106900A (en) Plasma processing method and plasma processing device
JP2004186303A (en) Plasma processing device
JP4298876B2 (en) Plasma processing equipment
JP3204145B2 (en) Plasma processing equipment
JP3979453B2 (en) Microwave plasma processing equipment
JPH10158847A (en) Plasma treating system by microwave excitation
US20040051464A1 (en) Plasma device and plasma generating method
JP3491190B2 (en) Plasma processing equipment
JP2001167900A (en) Plasma treatment apparatus
JP2007109670A (en) Plasma processing device
JPH10298786A (en) Surface treating device
JP2000164392A (en) Microwave plasma treating device
JP3147769B2 (en) Plasma processing apparatus and processing method
JP4052735B2 (en) Plasma processing equipment
JP3683081B2 (en) Plasma processing equipment
JPH11204295A (en) Microwave plasma treating apparatus
JP2000174009A (en) Plasma processing device, semiconductor manufacture device and liquid crystal manufacture device
JP4514291B2 (en) Microwave plasma processing apparatus and plasma processing method
JP3796265B2 (en) Plasma processing method, plasma processing apparatus, semiconductor device manufacturing method, and microwave dispersion plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees