JP4514291B2 - Microwave plasma processing apparatus and plasma processing method - Google Patents

Microwave plasma processing apparatus and plasma processing method Download PDF

Info

Publication number
JP4514291B2
JP4514291B2 JP2000195201A JP2000195201A JP4514291B2 JP 4514291 B2 JP4514291 B2 JP 4514291B2 JP 2000195201 A JP2000195201 A JP 2000195201A JP 2000195201 A JP2000195201 A JP 2000195201A JP 4514291 B2 JP4514291 B2 JP 4514291B2
Authority
JP
Japan
Prior art keywords
microwave
dielectric member
plasma processing
dielectric
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000195201A
Other languages
Japanese (ja)
Other versions
JP2002016046A (en
JP2002016046A5 (en
Inventor
敏雄 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2000195201A priority Critical patent/JP4514291B2/en
Publication of JP2002016046A publication Critical patent/JP2002016046A/en
Publication of JP2002016046A5 publication Critical patent/JP2002016046A5/ja
Application granted granted Critical
Publication of JP4514291B2 publication Critical patent/JP4514291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波を用いて生成したプラズマによって、半導体基板,液晶ディスプレイ用ガラス基板等の試料にエッチング,アッシング等の処理を施すマイクロ波プラズマ処理装置及びプラズマ処理方法に関する。
【0002】
【従来の技術】
反応ガスに外部からエネルギを与えて生じるプラズマは、LSI,LCD等の製造プロセスにおいて広く用いられており、特に、ドライエッチングプロセスにおいて、プラズマの利用は不可欠の基本技術となっている。一般にプラズマを生成させる励起手法には、2.45GHzのマイクロ波を用いる場合と、13.56MHzのRF(Radio Frequency)を用いる場合とがある。前者は後者に比べて高密度のプラズマが得られると共に、プラズマ発生のために電極を必要とせず、従って電極からのコンタミネーションを防止できるという利点がある。
【0003】
マイクロ波プラズマ処理装置の基本構成にあっては、マイクロ波発振器にて発振したマイクロ波を導波管を介して略円形板状の誘電体部材に伝播させ、その誘電体部材の表面に生じる表面波からマイクロ波を、処理対象の試料を載置する試料台を内部に有し、封止板にて真空に封止されている反応容器へ導入することにより、反応容器内でプラズマを生成させて試料に処理を施すようにしている。
【0004】
【発明が解決しようとする課題】
このようなマイクロ波プラズマ処理装置にあっては、特にプラズマ生成領域の面積を広くした場合に、密度が均一になるようにプラズマを生成させることが難しく、プラズマ処理の均一性を向上させることが困難であるという問題がある。
【0005】
そこで、本願出願人は、密度が均一になるようにプラズマを生成させることができて、プラズマ処理の均一性を向上させ得るマイクロ波プラズマ処理装置を提案している(特開平11−329789号公報)。この提案では、マイクロ波が略円形板状の誘電体部材を伝播して生じる定在波による電界の強度が相対的に強い複数の領域が、その誘電体部材の中心と略同心円上であって、その誘電体部材の直径上の軸に対して略軸対称に分布するように、誘電体部材の直径を設定することを開示している。
【0006】
しかしながら、このマイクロ波プラズマ処理装置にあっては、誘電体部材の直径も含めた反応ガス圧,反応ガス種,マイクロ波パワー等の諸条件を最適にした場合には確かに密度が均一なプラズマを生成できるが、それらの条件が変わったときには均一な密度でプラズマを生成できないことになるという課題が残っており、改善の余地がある。
【0007】
本発明は斯かる事情に鑑みてなされたものであり、マイクロ波が伝播される略円形板状の誘電体部材の中央に導体部材を設けておくことにより、広い範囲の条件において、均一なプラズマを生成できて、プラズマ処理の均一性を向上させることができるマイクロ波プラズマ処理装置及びプラズマ処理方法を提供することを目的とする。
【0008】
本発明の他の目的は、プラズマの着火性を向上できるマイクロ波プラズマ処理装置及びプラズマ処理方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明に係るマイクロ波プラズマ処理装置は、マイクロ波を用いて生成したプラズマによって試料に処理を行うマイクロ波プラズマ処理装置において、前記マイクロ波を発振するマイクロ波発振器と、該マイクロ波発振器にて発振されたマイクロ波を伝播させ上部がカバー部材により覆われる略円形板状の誘電体部材と、該誘電体部材の中央にその厚さ方向に貫通し上部が前記カバー部材に覆われる態様で設けられた導体部材と、前記誘電体部材の一主面に対向して配設されており、前記試料を載置する試料台を内部に有する反応容器とを備えることを特徴とする。
【0010】
本発明に係るマイクロ波プラズマ処理装置は、マイクロ波を用いて生成したプラズマによって試料に処理を行うマイクロ波プラズマ処理装置において、前記マイクロ波を発振するマイクロ波発振器と、該マイクロ波発振器にて発振されたマイクロ波を伝播させる導波管と、該導波管がその外周部の一部に接続されており、その接続部分を除く外周部及び上部が導体板で覆われている略円形板状の誘電体部材と、該誘電体部材の中央にその厚さ方向に貫通し上部が前記導体板に覆われる態様で設けられた導体部材と、前記誘電体部材の下表面に対向して配設されており、前記試料を載置する試料台と、該試料台を内部に有する反応容器と、前記誘電体部材と前記試料台との間に設けられており、前記反応容器を真空に封止する誘電体からなる封止板とを備えることを特徴とする。
【0011】
本発明のマイクロ波プラズマ処理装置にあっては、マイクロ波が伝播される略円形板状の誘電体部材の中央に導体部材が設けられているため、マイクロ波が誘電体部材を伝播して生じる定在波による電界強度が相対的に強い複数の領域が均一に分布し、これに応じて反応容器内で生成されるプラズマの密度が均一となり、試料に対するプラズマ処理の均一性は向上する。また、導体部材の設置により、誘電体部材の中央付近の電界密度が高くなり、プラズマの着火安定性は向上する。
【0012】
本発明に係るマイクロ波プラズマ処理装置は、前記導体部材の直径dは、以下の条件(A)を満たすことを特徴とする。
10≦d<D−1.3λg(単位:mm)…(A)
但し、D:前記誘電体部材の直径
λg:マイクロ波の管内波長
本発明に係るマイクロ波プラズマ処理装置は、前記試料台の中心は前記導体部材の中心の鉛直下方に存在することを特徴とする。
本発明に係るマイクロ波プラズマ処理装置は、前記導体部材の前記試料台に対向する下表面と前記誘電体部材の前記試料台に対向する下表面とが同一平面上に存在することを特徴とする。
本発明に係るプラズマ処理方法は、マイクロ波を発振するマイクロ波発振器と、該マイクロ波発振器にて発振されたマイクロ波を伝播させ上部がカバー部材により覆われる略円形板状の誘電体部材と、該誘電体部材の中央にその厚さ方向に貫通し上部が前記カバー部材に覆われる態様で設けられた導体部材と、前記誘電体部材の一主面に対向して配設されており、前記試料を載置する試料台を内部に有する反応容器と、前記誘電体部材と前記試料台との間に設けられており、前記反応容器を真空に封止する誘電体からなる封止板とを備えるマイクロ波プラズマ処理装置を用いたプラズマ処理方法において、前記マイクロ波発振器によりマイクロ波を発振させるステップと、該発振させたマイクロ波を前記誘電体部材に導入するステップと、該誘電体部材に定在波を形成させることによって所定分布の漏れ電界を発生させるステップと、該発生した漏れ電界を、前記封止板を透過させて前記反応容器内へ導入し、該反応容器内にプラズマを生成するステップとを備えることを特徴とする。
本発明に係るプラズマ処理方法は、前記導体部材の直径dは、以下の条件(A)を満たすことを特徴とする。
10≦d<D−1.3λg(単位:mm)…(A)
但し、D:前記誘電体部材の直径
λg:マイクロ波の管内波長
本発明に係るプラズマ処理方法は、導体部材の直径が相互に相違する複数の誘電体部材の中から、一の誘電体部材を選択し、中央部のイオン電流密度を平坦化させるステップをさらに備えることを特徴とする。
【0013】
導体部材の直径を10mmより小さくした場合には、電界密度の集中が少なくなり、プラズマの着火安定性はあまり向上しない。一方、導体部材の直径を誘電体部材の直径からマイクロ波の管内波長の1.3倍を引いたもの以上とした場合には、電界強度が相対的に強い領域が一方向にしか生じないので、導波管付近の電界密度が高くなって、プラズマの均一性が悪化する。よって、導体部材の直径を上記(A)の条件を満たすようにして、導体部材の設置に伴う効果を確実なものにする。
【0014】
【発明の実施の形態】
以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
図1は本発明に係るマイクロ波プラズマ処理装置の構造を示す側断面図、図2は後述する誘電体部材11及び導体部材12の平面図である。
【0015】
図1において、有底円筒状の反応容器1は、その全体がアルミニウムで形成されている。反応容器1の上部にはマイクロ波導入窓が開設してあり、マイクロ波導入窓は封止板4で気密状態に封止されている。この封止板4は、耐熱性及びマイクロ波透過性を有すると共に誘電損失が小さい、石英ガラスまたはアルミナ等の誘電体で形成されている。
【0016】
反応容器1には、反応容器1の上部を覆う箱状の導電性のカバー部材10が連結してある。このカバー部材10内の天井部分には誘電体部材11が取り付けてあり、誘電体部材11と封止板4との間にはエアギャップ9が形成されている。誘電体部材11は、テフロン(登録商標)といったポリフッ化エチレン樹脂,ポリエチレン樹脂またはポリスチレン樹脂等の誘電体を、所定直径の円板状の本体11aの周面に略矩形の入射ポート部11bを設けた形状に成形してなり、入射ポート部11bをカバー部材10の周面に連結した断面矩形の導波管21に内嵌させてある。誘電体部材11の中心部には、その厚さ方向に貫通する態様でアルミニウム製の導体部材12が設けられている。この導体部材12の直径(d)は、誘電体部材11の直径(D)を510mmとした場合に、10mm以上365mm未満である。
【0017】
導波管21にはマイクロ波発振器20が連結してあり、マイクロ波発振器20が発振したマイクロ波は、導波管21によって誘電体部材11の入射ポート部11bに入射される。このマイクロ波は、誘電体部材11の形状及び寸法等によって定まる伝搬モードにより本体11aの全領域に伝搬し、所定分布の電界が形成される。
【0018】
反応容器1には処理室2の周囲壁を貫通する複数の貫通穴が開設してあり、貫通穴に嵌合させたガス導入管5から処理室2内に所要の反応ガスが導入される。処理室2の底部壁中央には、試料Wを載置する試料台3が設けてあり、試料台3にはマッチングボックス6を介して高周波電源7が接続されている。また、反応容器1の底部壁には排気口8が開設してあり、排気口8から処理室2の内気を排出するようになしてある。
【0019】
このようなマイクロ波プラズマ処理装置を用いて試料Wの表面にエッチング処理を施すには、排気口8から排気して処理室2内を所望の圧力まで減圧した後、ガス導入管5から処理室2内に反応ガスを供給する。次いで、マイクロ波発振器20から2.45GHzのマイクロ波を発振させ、これを導波管21を介して誘電体部材11に導入し、そこに定在波を形成させることによって所定分布の漏れ電界を発生させる。この漏れ電界がエアギャップ9及び封止板4を透過して処理室2内へ導入され、これにより、処理室2内にプラズマが生成され、そのプラズマによって試料Wの表面をエッチングする。その後、封止板4表面とプラズマとの間(プラズマシース)には表面波が形成されるので、プラズマは安定する。
【0020】
次に、誘電体部材11の中央部に導体部材12を設けた本発明例と、誘電体部材にそのような導体部材を設けない従来例とにおけるイオン電流分布の測定実験の結果について説明する。
【0021】
図3は本発明例(直径510mmの誘電体部材11の中央部に直径10mmの導体部材12を設置)における測定結果を示し、図4は従来例における測定結果を示している。何れの例においても、処理室内に供給する反応ガスをC4 8 (流量30SCCM)/O2 (流量20SCCM)/Ar(流量1000SCCM)として、内部の圧力を40mTorrとした。また、マイクロ波発振器の出力を2kW,3kW,4kWの3段階とした夫々の場合について、測定を行った。
【0022】
図3,図4において、横軸は誘電体部材の中心からX方向またはY方向の変位量(mm)を表し、縦軸はイオン電流密度(任意単位)を表している。また、図3,図4において、●,○は2kWの場合のX方向,Y方向のイオン電流分布を示し、★,☆は3kWの場合のX方向,Y方向のイオン電流分布を示し、◆,◇は4kWの場合のX方向,Y方向のイオン電流分布を示している。測定は封止板より60mm下方に離れた位置で行った。
【0023】
図3,図4を比較することにより、本発明例では従来例より、中央付近での電流密度が高くなり、中央付近の広い範囲において電流密度の分布が均一であることが分かる。
【0024】
次に、誘電体部材11の中央部に導体部材12を設けた本発明例と、誘電体部材にそのような導体部材を設けない従来例とにおけるプラズマの発光強度の観察結果について説明する。
【0025】
反応室内に設けた石英上に、本発明例(直径510mmの誘電体部材11の中央部に直径10mmの導体部材12を設置),従来例を夫々載置し、マイクロ波を導入して、処理室内でプラズマを生成させて、石英表面上でのプラズマの発光状態をCCDカメラにて撮影した。この際のプラズマ生成における反応ガスの条件は上述したイオン電流分布の測定実験の場合と同様であり、マイクロ波発振器の出力は2kWとした。
【0026】
このようにして得られた観察結果を、図5に模式的に示す。図5(a)は本発明例での観察結果を示し、図5(b)は従来例での観察結果を示している。図5において、黒い点が発光点を表している。図5(a),(b)を比較することにより、本発明例では従来例より、プラズマの発光状態が均一化していることが分かる。このプラズマの発光強度はプラズマ密度に相関するので、本発明例では、均一なプラズマ密度が得られていることが分かる。
【0027】
また、本発明例(直径510mmの誘電体部材11の中央部に直径10mmの導体部材12を設置)と、従来例(導体部材12を設けない)とについて、プラズマの着火性を調べた。従来例では着火に3kW以上のマイクロ波発振器出力を必要としたが、本発明例では、中央部での電界密度が高いため、1.2kWでのマイクロ波発振器出力にて着火が可能であった。
【0028】
次に、本発明において誘電体部材11の中央部に設ける導体部材12の直径について考察する。導体部材12の直径d(mm)を、以下の条件(1)を満たすようにする。但し、Dは誘電体部材11の直径(mm)、λg は管内波長(導波管21内でのマイクロ波の波長)(mm)である。
10≦d<D−1.3λg …(1)
【0029】
導体部材12の直径dが10mmより小さい場合には、中央部への電界密度の集中が少なく、プラズマの着火安定性が悪く、プラズマ密度の均一化も実現できない。よって、その直径dの値は10mm以上にすることが必要である。
【0030】
ところで、ドーナツ型の誘電体において、内周径と外周径との差が1.3λg 以下である場合には、その隙間に腹が1個しか存在しない定在波モードが形成される。内周と外周との隙間に定在波の腹が1個しか存在しない場合、誘電体の導波管接続部近傍での電界強度が大きくなりすぎて、誘電体での電界強度分布が不均一になる。よって、その隙間に1個より大きい数の腹が形成されるように、内周と外周との隙間を1.3λg より大きく取る必要があることがシミュレーションにより見出された。本発明の場合、その隙間はD−dで表されるので、D−d>1.3λg 、変形してd<D−1.3λg を満たす必要がある。
【0031】
次に、本発明における導体部材12の直径dの具体的な数値例について説明する。管内波長λg は、下記(2)によって求められる。また、(2)におけるλc は下記(3)で示される。
【0032】
【数1】

Figure 0004514291
【0033】
但し、λ:真空自由空間内の波長(122mm(=光速÷マイクロ波の周波数))
ε:誘電体部材11の比誘電率
a:導波管21断面の長辺の長さ
b:導波管21断面の短辺の長さ
m:長辺方向のモード数
n:短辺方向のモード数
【0034】
ここで、テフロン(ε=2)で満たされたa=96mm,b=27mmの導波管21にて、TE10モード(m=1,n=0)のマイクロ波を伝播した場合、上記(2)よりλc =192mmとなり、管内波長λg は、具体的に下記(4)のように112mmとなる。
【0035】
【数2】
Figure 0004514291
【0036】
よって、1.3λg =1.3×112=145.6(mm)であり、誘電体部材11の直径D=510mmとした場合、dの上限は510−145.6=364.4(mm)となる。従って、導体部材12の直径が365mm以上である場合には、誘電体部材11の電界分布が不均一になる。この場合の導体部材12の直径dの具体的な条件は、下記(5)となる。
10≦d<365 …(5)
【0037】
次に、導体部材12の直径dを変化させて、封止板下面における電界をシミュレーションした結果について説明する。その結果を図6〜図10に示す。図6〜図10は、テフロンを成形してなる誘電体部材11に2.45GHz(真空自由空間内の波長:122mm)のマイクロ波を導入し、マイクロ波の伝播によって形成される電界の強度をシミュレーションによって求め、同じ電界強度の地点を線で結んだものを示す。図6はd=0mmの場合(従来例)を示し、図7,図8,図9,図10は夫々、d=30mm,d=100mm,d=200m,d=370mmとした場合を示す。
【0038】
導体部材12を設けない従来例の場合(図6)には、マイクロ波の進行方向(導波管21との接続部分とその反対側とを結ぶ方向)にのみ電界が強い領域が存在しており、電界が強い領域が直線状に分布しているため、電界分布は均一化していない。これに対して、導体部材12を設けた本発明例の場合(図7,図8,図9)には、複数の径方向について電界が強い領域が存在しており、電界が強い領域が直径上の軸に対して略軸対称に分布しているため、電界分布は均一化している。但し、導体部材12の直径d=370mmの場合(図10)には、従来例と同様に、マイクロ波の進行方向にのみ電界が強い領域が存在しており、電界分布は均一化していない。このようなシミュレーションの結果は、上記(5)の条件と合致している。
【0039】
よって、上記(1),(5)の条件を満たすような導体部材12を設けることにより、誘電体部材11の複数の径方向について電界が強い領域が存在し、それらが直径上の軸に対して略軸対称に分布するので、これらの強電界領域に対応する部分に夫々プラズマが生成され、それらが拡散して均一なプラズマが得られる。
【0040】
以上詳述した如く、本発明に係るマイクロ波プラズマ処理装置及びプラズマ処理方法では、誘電体部材の中央部にその厚さ方向に貫通する態様で導体部材を設けるようにしたので、誘電体部材を伝播するマイクロ波の定在波による電界の強度が相対的に強い複数の領域が、複数の径方向について存在し、それらが直径上の軸に対して略軸対称に分布するため、これに応じて生成されるプラズマの密度を均一化でき、均一な密度になったプラズマによって試料を処理でき、プラズマ処理の均一性を向上することが可能である。
【0041】
また、設置する導体部材の直径を上記(A)の条件を満たすようにしたので、誘電体部材において軸対称で均一な電界分布を常に得ることができる。
【図面の簡単な説明】
【図1】本発明に係るマイクロ波プラズマ処理装置の構造を示す側断面図である。
【図2】本発明のマイクロ波プラズマ処理装置における誘電体部材及び導体部材の平面図である。
【図3】本発明例におけるイオン電流分布の測定実験の結果を示すグラフである。
【図4】従来例におけるイオン電流分布の測定実験の結果を示すグラフである。
【図5】本発明例と従来例とにおけるプラズマ発光の観察結果を模式的に示す図である。
【図6】従来例(導体部材の直径d=0mm)における封止板下面での電界分布のシミュレーション結果を示す図である。
【図7】本発明例(導体部材の直径d=30mm)における封止板下面での電界分布のシミュレーション結果を示す図である。
【図8】本発明例(導体部材の直径d=100mm)における封止板下面での電界分布のシミュレーション結果を示す図である。
【図9】本発明例(導体部材の直径d=200mm)における封止板下面での電界分布のシミュレーション結果を示す図である。
【図10】比較例(導体部材の直径d=370mm)における封止板下面での電界分布のシミュレーション結果を示す図である。
【符号の説明】
1 反応容器
3 試料台
4 封止板
10 カバー部材
11 誘電体部材
11a 本体
11b 入射ポート部
12 導体部材
20 マイクロ波発振器
21 導波管
W 試料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microwave plasma processing apparatus and a plasma processing method for performing processing such as etching and ashing on a sample such as a semiconductor substrate and a glass substrate for a liquid crystal display using plasma generated using microwaves.
[0002]
[Prior art]
Plasma generated by applying energy to the reaction gas from the outside is widely used in manufacturing processes for LSIs, LCDs, and the like. In particular, the use of plasma is an indispensable basic technology in dry etching processes. Generally, excitation methods for generating plasma include a case where a 2.45 GHz microwave is used and a case where 13.56 MHz RF (Radio Frequency) is used. The former has the advantage that a higher density plasma can be obtained than the latter, and that no electrode is required for plasma generation, thus preventing contamination from the electrode.
[0003]
In the basic configuration of the microwave plasma processing apparatus, the surface generated on the surface of the dielectric member is generated by propagating the microwave oscillated by the microwave oscillator to the substantially circular plate-like dielectric member through the waveguide. Plasma is generated in the reaction vessel by introducing microwaves from the waves into the reaction vessel that has a sample stage on which the sample to be processed is placed and is sealed in a vacuum with a sealing plate. The sample is processed.
[0004]
[Problems to be solved by the invention]
In such a microwave plasma processing apparatus, it is difficult to generate plasma so that the density becomes uniform, especially when the area of the plasma generation region is widened, and it is possible to improve the uniformity of the plasma processing. There is a problem that it is difficult.
[0005]
Therefore, the applicant of the present application has proposed a microwave plasma processing apparatus that can generate plasma so that the density is uniform and can improve the uniformity of plasma processing (Japanese Patent Laid-Open No. 11-329789). ). In this proposal, a plurality of regions having relatively strong electric field strength due to standing waves generated by propagation of microwaves through a substantially circular plate-shaped dielectric member are substantially concentric with the center of the dielectric member. The diameter of the dielectric member is disclosed so as to be distributed approximately axisymmetrically with respect to the axis on the diameter of the dielectric member.
[0006]
However, in this microwave plasma processing apparatus, when conditions such as the reaction gas pressure, the reaction gas type, and the microwave power including the diameter of the dielectric member are optimized, the plasma is surely uniform in density. However, when these conditions change, there remains a problem that plasma cannot be generated at a uniform density, and there is room for improvement.
[0007]
The present invention has been made in view of such circumstances, and by providing a conductor member at the center of a substantially circular plate-like dielectric member through which microwaves propagate, a uniform plasma can be obtained over a wide range of conditions. An object of the present invention is to provide a microwave plasma processing apparatus and a plasma processing method that can generate plasma and improve the uniformity of plasma processing .
[0008]
Another object of the present invention is to provide a microwave plasma processing apparatus and a plasma processing method capable of improving plasma ignitability.
[0009]
[Means for Solving the Problems]
A microwave plasma processing apparatus according to the present invention is a microwave plasma processing apparatus that processes a sample with plasma generated using a microwave, and a microwave oscillator that oscillates the microwave, and an oscillation by the microwave oscillator in has been substantially circular plate shaped dielectric member top to propagate microwave Ru covered by the cover member, aspects penetrating in its thickness direction at the center of the dielectric member upper Ru covered with the cover member It is provided with the provided conductor member and the reaction container which is arrange | positioned facing one main surface of the said dielectric material member, and has the sample stand which mounts the said sample inside.
[0010]
A microwave plasma processing apparatus according to the present invention is a microwave plasma processing apparatus that processes a sample with plasma generated using a microwave, and a microwave oscillator that oscillates the microwave, and an oscillation by the microwave oscillator A waveguide for propagating microwaves, and a substantially circular plate shape in which the waveguide is connected to a part of its outer peripheral part, and the outer peripheral part and the upper part except the connecting part are covered with a conductor plate a dielectric member, the conductor member penetrating in its thickness direction at the center of the dielectric member upper is provided in the manner Ru covered with the conductive plate, distribution to face the lower surface of said dielectric member A sample stage on which the sample is placed; a reaction container having the sample stage therein; and the dielectric member and the sample stage. The reaction container is sealed in a vacuum. Seal made of dielectric material Characterized in that it comprises a plate.
[0011]
In the microwave plasma processing apparatus of the present invention, since the conductor member is provided in the center of the substantially circular plate-like dielectric member through which the microwave is propagated, the microwave is generated by propagating through the dielectric member. A plurality of regions having relatively strong electric field strength due to standing waves are uniformly distributed, and accordingly, the density of plasma generated in the reaction vessel becomes uniform, and the uniformity of plasma processing on the sample is improved. In addition, the installation of the conductor member increases the electric field density near the center of the dielectric member, thereby improving the plasma ignition stability.
[0012]
The microwave plasma processing apparatus according to the present invention is characterized in that the diameter d of the conductor member satisfies the following condition (A).
10 ≦ d <D−1.3λ g (unit: mm) (A)
Where D: Diameter of the dielectric member
λ g : In-tube wavelength of microwave The microwave plasma processing apparatus according to the present invention is characterized in that the center of the sample stage is present vertically below the center of the conductor member.
The microwave plasma processing apparatus according to the present invention is characterized in that the lower surface of the conductor member facing the sample stage and the lower surface of the dielectric member facing the sample stage exist on the same plane. .
The plasma processing method according to the present invention comprises a microwave oscillator for generating microwaves, a substantially circular plate shaped dielectric member top to propagate microwave oscillated is Ru covered by the cover member in the microwave oscillator a conductor member disposed in a manner penetrating in its thickness direction at the center of the dielectric member upper Ru covered by the cover member are disposed opposite to one main surface of said dielectric member , A reaction vessel having a sample stage on which the sample is placed, and a sealing plate made of a dielectric that is provided between the dielectric member and the sample stage and seals the reaction vessel in a vacuum In a plasma processing method using a microwave plasma processing apparatus comprising: a step of oscillating a microwave by the microwave oscillator; a step of introducing the oscillated microwave into the dielectric member; and Generating a leakage electric field having a predetermined distribution by forming a standing wave in the electric member; and introducing the generated leakage electric field into the reaction vessel through the sealing plate; And a step of generating plasma.
The plasma processing method according to the present invention is characterized in that the diameter d of the conductor member satisfies the following condition (A).
10 ≦ d <D−1.3λ g (unit: mm) (A)
Where D: Diameter of the dielectric member
λ g : In-tube wavelength of microwave In the plasma processing method according to the present invention, one dielectric member is selected from a plurality of dielectric members having different diameters of the conductor member, and the ion current density at the central portion is selected. The method further comprises the step of flattening.
[0013]
When the diameter of the conductor member is smaller than 10 mm, the concentration of the electric field density is reduced and the ignition stability of plasma is not improved so much. On the other hand, if the diameter of the conductor member is greater than or equal to the diameter of the dielectric member minus 1.3 times the in-tube wavelength of the microwave, a region with a relatively strong electric field strength is generated only in one direction. The electric field density in the vicinity of the waveguide is increased and the uniformity of the plasma is deteriorated. Therefore, the diameter of the conductor member is made to satisfy the above condition (A), and the effect accompanying the installation of the conductor member is ensured.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
FIG. 1 is a side sectional view showing the structure of a microwave plasma processing apparatus according to the present invention, and FIG. 2 is a plan view of a dielectric member 11 and a conductor member 12 described later.
[0015]
In FIG. 1, the bottomed cylindrical reaction container 1 is entirely made of aluminum. A microwave introduction window is opened at the top of the reaction vessel 1, and the microwave introduction window is sealed in an airtight state by a sealing plate 4. The sealing plate 4 is made of a dielectric material such as quartz glass or alumina, which has heat resistance and microwave transparency and has a low dielectric loss.
[0016]
A box-shaped conductive cover member 10 that covers the upper part of the reaction vessel 1 is connected to the reaction vessel 1. A dielectric member 11 is attached to the ceiling portion in the cover member 10, and an air gap 9 is formed between the dielectric member 11 and the sealing plate 4. The dielectric member 11 is made of a dielectric material such as Teflon (registered trademark) such as polyfluorinated ethylene resin, polyethylene resin or polystyrene resin, and a substantially rectangular incident port portion 11b is provided on the peripheral surface of a disk-shaped main body 11a having a predetermined diameter. The incident port portion 11b is internally fitted into a waveguide 21 having a rectangular cross section connected to the peripheral surface of the cover member 10. A conductor member 12 made of aluminum is provided at the center of the dielectric member 11 so as to penetrate in the thickness direction. The diameter (d) of the conductor member 12 is not less than 10 mm and less than 365 mm when the diameter (D) of the dielectric member 11 is 510 mm.
[0017]
A microwave oscillator 20 is connected to the waveguide 21, and the microwave oscillated by the microwave oscillator 20 enters the incident port portion 11 b of the dielectric member 11 through the waveguide 21. This microwave propagates to the entire region of the main body 11a in a propagation mode determined by the shape and dimensions of the dielectric member 11, and forms an electric field with a predetermined distribution.
[0018]
The reaction vessel 1 has a plurality of through holes penetrating the peripheral wall of the processing chamber 2, and a required reaction gas is introduced into the processing chamber 2 from a gas introduction pipe 5 fitted in the through hole. A sample stage 3 on which the sample W is placed is provided in the center of the bottom wall of the processing chamber 2, and a high frequency power source 7 is connected to the sample stage 3 through a matching box 6. In addition, an exhaust port 8 is formed in the bottom wall of the reaction vessel 1, and the inside air of the processing chamber 2 is discharged from the exhaust port 8.
[0019]
In order to perform an etching process on the surface of the sample W using such a microwave plasma processing apparatus, the processing chamber 2 is evacuated from the exhaust port 8 to a desired pressure, and then the processing chamber 2 is connected to the processing chamber 2. The reaction gas is supplied into 2. Next, a microwave of 2.45 GHz is oscillated from the microwave oscillator 20, introduced into the dielectric member 11 through the waveguide 21, and a standing wave is formed therein, thereby causing a leakage electric field having a predetermined distribution. generate. This leakage electric field passes through the air gap 9 and the sealing plate 4 and is introduced into the processing chamber 2, whereby plasma is generated in the processing chamber 2 and the surface of the sample W is etched by the plasma. Thereafter, since the surface wave is formed between the surface of the sealing plate 4 and the plasma (plasma sheath), the plasma is stabilized.
[0020]
Next, the results of measurement experiments of ion current distribution in the present invention example in which the conductor member 12 is provided in the center of the dielectric member 11 and the conventional example in which such a conductor member is not provided in the dielectric member will be described.
[0021]
FIG. 3 shows a measurement result in an example of the present invention (a conductor member 12 having a diameter of 10 mm is installed at the center of a dielectric member 11 having a diameter of 510 mm), and FIG. 4 shows a measurement result in a conventional example. In any example, the reaction gas supplied into the processing chamber was C 4 F 8 (flow rate 30 SCCM) / O 2 (flow rate 20 SCCM) / Ar (flow rate 1000 SCCM), and the internal pressure was 40 mTorr. In addition, the measurement was performed for each case where the output of the microwave oscillator was set to three stages of 2 kW, 3 kW, and 4 kW.
[0022]
3 and 4, the horizontal axis represents the displacement (mm) in the X direction or Y direction from the center of the dielectric member, and the vertical axis represents the ion current density (arbitrary unit). 3 and 4, ● and ○ indicate ion current distributions in the X and Y directions at 2 kW, ★ and ☆ indicate ion current distributions in the X and Y directions at 3 kW, and ◆ , ◇ indicate ion current distributions in the X direction and Y direction in the case of 4 kW. The measurement was performed at a position 60 mm below the sealing plate.
[0023]
3 and 4 show that the current density in the example of the present invention is higher near the center than in the conventional example, and the current density distribution is uniform over a wide range near the center.
[0024]
Next, observation results of plasma emission intensity in the present invention example in which the conductor member 12 is provided at the center of the dielectric member 11 and in the conventional example in which such a conductor member is not provided in the dielectric member will be described.
[0025]
An example of the present invention (a conductive member 12 having a diameter of 10 mm is installed at the center of a dielectric member 11 having a diameter of 510 mm) and a conventional example are placed on quartz provided in the reaction chamber, respectively, and microwaves are introduced for processing. Plasma was generated in the room, and the light emission state of the plasma on the quartz surface was photographed with a CCD camera. The conditions of the reactive gas in the plasma generation at this time are the same as those in the measurement experiment of the ion current distribution described above, and the output of the microwave oscillator is 2 kW.
[0026]
The observation results thus obtained are schematically shown in FIG. FIG. 5A shows the observation result in the example of the present invention, and FIG. 5B shows the observation result in the conventional example. In FIG. 5, black dots represent light emission points. 5A and 5B, it can be seen that the light emission state of plasma is more uniform in the example of the present invention than in the conventional example. Since the emission intensity of the plasma correlates with the plasma density, it can be seen that a uniform plasma density is obtained in the example of the present invention.
[0027]
In addition, the ignitability of plasma was examined for the inventive example (the conductor member 12 having a diameter of 10 mm was installed at the center of the dielectric member 11 having a diameter of 510 mm) and the conventional example (the conductor member 12 was not provided). In the conventional example, a microwave oscillator output of 3 kW or more is required for ignition, but in the example of the present invention, since the electric field density in the center portion is high, ignition was possible with the microwave oscillator output at 1.2 kW. .
[0028]
Next, the diameter of the conductor member 12 provided at the center of the dielectric member 11 in the present invention will be considered. The diameter d (mm) of the conductor member 12 is set to satisfy the following condition (1). Here, D is the diameter (mm) of the dielectric member 11, and λ g is the wavelength in the tube (the wavelength of the microwave in the waveguide 21) (mm).
10 ≦ d <D−1.3λ g (1)
[0029]
When the diameter d of the conductor member 12 is smaller than 10 mm, the concentration of the electric field density at the center is small, the plasma ignition stability is poor, and the plasma density cannot be made uniform. Therefore, the value of the diameter d needs to be 10 mm or more.
[0030]
Meanwhile, in the dielectric toroidal, if the difference between the inner circumference and the outer diameter is less than 1.3Ramuda g is the standing wave mode antinode into the gap has only one is formed. If there is only one antinode of standing wave in the gap between the inner and outer circumferences, the electric field strength in the vicinity of the waveguide connection portion of the dielectric becomes too large, and the electric field strength distribution in the dielectric is non-uniform become. Therefore, it has been found by simulation that the gap between the inner periphery and the outer periphery needs to be larger than 1.3λ g so that a larger number of antinodes are formed in the gap. For the present invention, the gap is so represented by D-d, it is necessary to satisfy the D-d> 1.3λ g, deformed d <D-1.3λ g.
[0031]
Next, specific numerical examples of the diameter d of the conductor member 12 in the present invention will be described. The guide wavelength λ g is obtained by the following (2). In addition, λ c in (2) is represented by (3) below.
[0032]
[Expression 1]
Figure 0004514291
[0033]
Where λ: wavelength in vacuum free space (122 mm (= light speed ÷ microwave frequency))
ε: relative dielectric constant of dielectric member 11 a: length of long side of waveguide 21 cross section b: length of short side of waveguide 21 cross section m: number of modes in long side direction n: length of short side direction Number of modes [0034]
Here, when a microwave of TE10 mode (m = 1, n = 0) is propagated through the waveguide 21 of a = 96 mm and b = 27 mm filled with Teflon (ε = 2), the above (2 ), Λ c = 192 mm, and the in-tube wavelength λ g is specifically 112 mm as shown in (4) below.
[0035]
[Expression 2]
Figure 0004514291
[0036]
Therefore, when 1.3λ g = 1.3 × 112 = 145.6 (mm) and the diameter D of the dielectric member 11 is 510 mm, the upper limit of d is 510-145.6 = 364.4 (mm) ) Therefore, when the diameter of the conductor member 12 is 365 mm or more, the electric field distribution of the dielectric member 11 becomes non-uniform. The specific condition of the diameter d of the conductor member 12 in this case is the following (5).
10 ≦ d <365 (5)
[0037]
Next, the result of simulating the electric field on the lower surface of the sealing plate by changing the diameter d of the conductor member 12 will be described. The results are shown in FIGS. 6 to 10 show a case where a microwave of 2.45 GHz (wavelength in a vacuum free space: 122 mm) is introduced into a dielectric member 11 formed of Teflon, and the strength of an electric field formed by the propagation of the microwave is shown. This is obtained by simulating and connecting points with the same electric field strength with lines. FIG. 6 shows a case where d = 0 mm (conventional example), and FIGS. 7, 8, 9, and 10 show cases where d = 30 mm, d = 100 mm, d = 200 m, and d = 370 mm, respectively.
[0038]
In the case of the conventional example in which the conductor member 12 is not provided (FIG. 6), there is a region where the electric field is strong only in the microwave traveling direction (the direction connecting the connecting portion with the waveguide 21 and the opposite side). In addition, since the region where the electric field is strong is distributed linearly, the electric field distribution is not uniform. On the other hand, in the case of the present invention example in which the conductor member 12 is provided (FIGS. 7, 8, and 9), there are regions where the electric field is strong in a plurality of radial directions, and the region where the electric field is strong is the diameter. Since the distribution is substantially axisymmetric with respect to the upper axis, the electric field distribution is uniform. However, when the diameter d of the conductor member 12 is 370 mm (FIG. 10), there is a region where the electric field is strong only in the traveling direction of the microwave as in the conventional example, and the electric field distribution is not uniform. The result of such simulation matches the condition (5) above.
[0039]
Therefore, by providing the conductor member 12 that satisfies the above conditions (1) and (5), there is a region where the electric field is strong in a plurality of radial directions of the dielectric member 11, and these are relative to the axis on the diameter. Therefore, the plasma is generated in the portions corresponding to these strong electric field regions, and they are diffused to obtain a uniform plasma.
[0040]
As described above in detail, in the microwave plasma processing apparatus and the plasma processing method according to the present invention, the conductor member is provided in the central portion of the dielectric member so as to penetrate in the thickness direction. Because there are multiple regions with multiple radial directions where the electric field strength is relatively strong due to the standing wave of the propagating microwaves, and they are distributed approximately axisymmetrically with respect to the axis on the diameter. The density of the plasma generated in this way can be made uniform, the sample can be processed with the plasma having a uniform density, and the uniformity of the plasma processing can be improved.
[0041]
In addition, since the diameter of the conductor member to be installed satisfies the above condition (A), an axially symmetric and uniform electric field distribution can always be obtained in the dielectric member.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a structure of a microwave plasma processing apparatus according to the present invention.
FIG. 2 is a plan view of a dielectric member and a conductor member in the microwave plasma processing apparatus of the present invention.
FIG. 3 is a graph showing the results of an ion current distribution measurement experiment in an example of the present invention.
FIG. 4 is a graph showing the results of a measurement experiment of ion current distribution in a conventional example.
FIG. 5 is a diagram schematically showing the observation result of plasma emission in the present invention example and the conventional example.
FIG. 6 is a diagram showing a simulation result of electric field distribution on the lower surface of the sealing plate in a conventional example (conductor member diameter d = 0 mm).
FIG. 7 is a diagram showing a simulation result of an electric field distribution on the lower surface of the sealing plate in the example of the present invention (conductor member diameter d = 30 mm).
FIG. 8 is a diagram showing a simulation result of an electric field distribution on the lower surface of the sealing plate in an example of the present invention (conductor member diameter d = 100 mm).
FIG. 9 is a diagram showing a simulation result of electric field distribution on the lower surface of the sealing plate in the example of the present invention (conductor member diameter d = 200 mm).
FIG. 10 is a diagram showing a simulation result of an electric field distribution on the lower surface of the sealing plate in a comparative example (conductor member diameter d = 370 mm).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction container 3 Sample stand 4 Sealing plate 10 Cover member 11 Dielectric member 11a Main body 11b Incident port part 12 Conductive member 20 Microwave oscillator 21 Waveguide W Sample

Claims (8)

マイクロ波を用いて生成したプラズマによって試料に処理を行うマイクロ波プラズマ処理装置において、前記マイクロ波を発振するマイクロ波発振器と、該マイクロ波発振器にて発振されたマイクロ波を伝播させ上部がカバー部材により覆われる略円形板状の誘電体部材と、該誘電体部材の中央にその厚さ方向に貫通し上部が前記カバー部材に覆われる態様で設けられた導体部材と、前記誘電体部材の一主面に対向して配設されており、前記試料を載置する試料台を内部に有する反応容器とを備えることを特徴とするマイクロ波プラズマ処理装置。In a microwave plasma processing apparatus for processing a sample with plasma generated using microwaves, a microwave oscillator that oscillates the microwaves, and a microwave that is oscillated by the microwave oscillators and an upper part is a cover member a conductive member substantially circular plate shaped dielectric member, the upper penetrating in its thickness direction at the center of the dielectric member is provided in the manner Ru covered with the cover member Ru covered by the dielectric member A microwave plasma processing apparatus, comprising: a reaction vessel that is disposed to face one main surface and has a sample stage on which the sample is placed. マイクロ波を用いて生成したプラズマによって試料に処理を行うマイクロ波プラズマ処理装置において、前記マイクロ波を発振するマイクロ波発振器と、該マイクロ波発振器にて発振されたマイクロ波を伝播させる導波管と、該導波管がその外周部の一部に接続されており、その接続部分を除く外周部及び上部が導体板で覆われている略円形板状の誘電体部材と、該誘電体部材の中央にその厚さ方向に貫通し上部が前記導体板に覆われる態様で設けられた導体部材と、前記誘電体部材の下表面に対向して配設されており、前記試料を載置する試料台と、該試料台を内部に有する反応容器と、前記誘電体部材と前記試料台との間に設けられており、前記反応容器を真空に封止する誘電体からなる封止板とを備えることを特徴とするマイクロ波プラズマ処理装置。In a microwave plasma processing apparatus for processing a sample with plasma generated by using a microwave, a microwave oscillator that oscillates the microwave, and a waveguide that propagates the microwave oscillated by the microwave oscillator; The waveguide is connected to a part of the outer peripheral portion, and the outer peripheral portion and the upper portion excluding the connecting portion are covered with a conductor plate, and a substantially circular plate-like dielectric member; a conductor member disposed in a manner penetrating in its thickness direction at the center upper Ru covered by the conductor plate are disposed to face the lower surface of the dielectric member, placing the sample A sample stage, a reaction vessel having the sample stage therein, a sealing plate made of a dielectric material provided between the dielectric member and the sample stage and sealing the reaction vessel in a vacuum. A microwave probe characterized by comprising Zuma processing apparatus. 前記導体部材の直径dは、以下の条件(A)を満たす請求項1または2記載のマイクロ波プラズマ処理装置。
10≦d<D−1.3λg(単位:mm)…(A)
但し、D:前記誘電体部材の直径
λg:マイクロ波の管内波長
The microwave plasma processing apparatus according to claim 1 or 2, wherein the diameter d of the conductor member satisfies the following condition (A).
10 ≦ d <D−1.3λ g (unit: mm) (A)
Where D: Diameter of the dielectric member
λ g : In-tube wavelength of microwave
前記試料台の中心は前記導体部材の中心の鉛直下方に存在する
ことを特徴とする請求項1乃至3のいずれか一つに記載のマイクロ波プラズマ処理装置。
The microwave plasma processing apparatus according to any one of claims 1 to 3, wherein the center of the sample stage is present vertically below the center of the conductor member.
前記導体部材の前記試料台に対向する下表面と前記誘電体部材の前記試料台に対向する下表面とが同一平面上に存在する
ことを特徴とする請求項1乃至4のいずれか一つに記載のマイクロ波プラズマ処理装置。
The lower surface of the conductor member facing the sample stage and the lower surface of the dielectric member facing the sample stage exist on the same plane. The microwave plasma processing apparatus as described.
マイクロ波を発振するマイクロ波発振器と、該マイクロ波発振器にて発振されたマイクロ波を伝播させ上部がカバー部材により覆われる略円形板状の誘電体部材と、該誘電体部材の中央にその厚さ方向に貫通し上部が前記カバー部材に覆われる態様で設けられた導体部材と、前記誘電体部材の一主面に対向して配設されており、前記試料を載置する試料台を内部に有する反応容器と、前記誘電体部材と前記試料台との間に設けられており、前記反応容器を真空に封止する誘電体からなる封止板とを備えるマイクロ波プラズマ処理装置を用いたプラズマ処理方法において、
前記マイクロ波発振器によりマイクロ波を発振させるステップと、
該発振させたマイクロ波を前記誘電体部材に導入するステップと、
該誘電体部材に定在波を形成させることによって所定分布の漏れ電界を発生させるステップと、
該発生した漏れ電界を、前記封止板を透過させて前記反応容器内へ導入し、該反応容器内にプラズマを生成するステップと
を備えることを特徴とするプラズマ処理方法。
A microwave oscillator for generating microwaves, a substantially circular plate shaped dielectric member top to propagate microwave oscillated is Ru covered by the cover member in the microwave oscillator, its center of the dielectric member a conductor member disposed in a manner where the upper through in the thickness direction Ru covered by the cover member are disposed opposite to one main surface of said dielectric member, a sample stage for placing the sample A microwave plasma processing apparatus comprising: a reaction vessel having an internal structure; and a sealing plate made of a dielectric material provided between the dielectric member and the sample stage and sealing the reaction vessel in a vacuum. In the plasma processing method used,
Oscillating microwaves with the microwave oscillator;
Introducing the oscillated microwave into the dielectric member;
Generating a leakage electric field having a predetermined distribution by forming a standing wave in the dielectric member;
Introducing the generated leakage electric field through the sealing plate into the reaction vessel and generating plasma in the reaction vessel.
前記導体部材の直径dは、以下の条件(A)を満たす請求項6に記載のプラズマ処理方法。
10≦d<D−1.3λg(単位:mm)…(A)
但し、D:前記誘電体部材の直径
λg:マイクロ波の管内波長
The plasma processing method according to claim 6, wherein the diameter d of the conductor member satisfies the following condition (A).
10 ≦ d <D−1.3λ g (unit: mm) (A)
Where D: Diameter of the dielectric member
λ g : In-tube wavelength of microwave
導体部材の直径が相互に相違する複数の誘電体部材の中から、一の誘電体部材を選択し、中央部のイオン電流密度を平坦化させるステップ
をさらに備えることを特徴とする請求項7に記載のプラズマ処理方法。
8. The method according to claim 7, further comprising: selecting one dielectric member from a plurality of dielectric members having different diameters from each other and flattening an ionic current density at a central portion. The plasma processing method as described.
JP2000195201A 2000-06-28 2000-06-28 Microwave plasma processing apparatus and plasma processing method Expired - Fee Related JP4514291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195201A JP4514291B2 (en) 2000-06-28 2000-06-28 Microwave plasma processing apparatus and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195201A JP4514291B2 (en) 2000-06-28 2000-06-28 Microwave plasma processing apparatus and plasma processing method

Publications (3)

Publication Number Publication Date
JP2002016046A JP2002016046A (en) 2002-01-18
JP2002016046A5 JP2002016046A5 (en) 2007-08-23
JP4514291B2 true JP4514291B2 (en) 2010-07-28

Family

ID=18693895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195201A Expired - Fee Related JP4514291B2 (en) 2000-06-28 2000-06-28 Microwave plasma processing apparatus and plasma processing method

Country Status (1)

Country Link
JP (1) JP4514291B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204296A (en) * 1998-01-14 1999-07-30 Sumitomo Metal Ind Ltd Microwave plasma treating apparatus
JP2000133495A (en) * 1998-10-20 2000-05-12 Sumitomo Metal Ind Ltd Plasma processing device
JP2000173797A (en) * 1998-12-01 2000-06-23 Sumitomo Metal Ind Ltd Microwave plasma treating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2925535B2 (en) * 1997-05-22 1999-07-28 キヤノン株式会社 Microwave supplier having annular waveguide, plasma processing apparatus and processing method having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204296A (en) * 1998-01-14 1999-07-30 Sumitomo Metal Ind Ltd Microwave plasma treating apparatus
JP2000133495A (en) * 1998-10-20 2000-05-12 Sumitomo Metal Ind Ltd Plasma processing device
JP2000173797A (en) * 1998-12-01 2000-06-23 Sumitomo Metal Ind Ltd Microwave plasma treating device

Also Published As

Publication number Publication date
JP2002016046A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
KR100363820B1 (en) Plasma processor
JP5036092B2 (en) Microwave plasma processing equipment
KR100311104B1 (en) Microwave plasma processing apparatus and method
KR100311433B1 (en) Microwave plasma processing apparatus and process
JPH1167492A (en) Plasma treatment equipment and plasma treatment method
WO2021220459A1 (en) Plasma processing device
JPH11204296A (en) Microwave plasma treating apparatus
JP4514291B2 (en) Microwave plasma processing apparatus and plasma processing method
JP4165946B2 (en) Microwave plasma processing equipment
JPH0544798B2 (en)
JP2000173797A (en) Microwave plasma treating device
JP3491190B2 (en) Plasma processing equipment
JP4165944B2 (en) Microwave plasma processing equipment
JP4132313B2 (en) Microwave plasma processing equipment
JP4107738B2 (en) Microwave plasma processing equipment
JPH11204295A (en) Microwave plasma treating apparatus
JP3683081B2 (en) Plasma processing equipment
JP2000277296A (en) Method and apparatus for plasma treatment
JPH10294199A (en) Microwave plasma processing device
JP4076645B2 (en) Microwave plasma processing apparatus and processing method thereof
JP2697464B2 (en) Microwave plasma processing equipment
JP4052735B2 (en) Plasma processing equipment
JP3085155B2 (en) Plasma processing equipment
JP2001156004A (en) Plasma treatment device
JPH11329789A (en) Microwave plasma processor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4514291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees