JP4297424B2 - Plasmon generator - Google Patents

Plasmon generator Download PDF

Info

Publication number
JP4297424B2
JP4297424B2 JP2003330562A JP2003330562A JP4297424B2 JP 4297424 B2 JP4297424 B2 JP 4297424B2 JP 2003330562 A JP2003330562 A JP 2003330562A JP 2003330562 A JP2003330562 A JP 2003330562A JP 4297424 B2 JP4297424 B2 JP 4297424B2
Authority
JP
Japan
Prior art keywords
plasmon
dielectric constant
thickness
negative dielectric
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003330562A
Other languages
Japanese (ja)
Other versions
JP2005098756A (en
Inventor
和喜 袴田
智幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2003330562A priority Critical patent/JP4297424B2/en
Publication of JP2005098756A publication Critical patent/JP2005098756A/en
Application granted granted Critical
Publication of JP4297424B2 publication Critical patent/JP4297424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、入射光によって表面プラズモンを励起し、それを効率よく伝搬させるプラズモン発生装置に関するものである。この技術は、表面プラズモンを利用する各種の光デバイス、例えばナノ光回路、光記録再生装置用のヘッド、光計測分野、光センサなどに有用である。   The present invention relates to a plasmon generator that excites surface plasmons with incident light and efficiently propagates the surface plasmons. This technology is useful for various optical devices that use surface plasmons, such as nano optical circuits, heads for optical recording / reproducing apparatuses, optical measurement fields, optical sensors, and the like.

表面プラズモンは、金属−誘電体境界に生じる電子の疎密波の1種であり、発生したプラズモンは金属薄膜表面を伝搬する。プラズモンを発生させるには、例えば図5に示すように、プリズム10の表面に負誘電率材料膜(例えば金属薄膜12)を形成し、包囲材料14により包囲したクレッチマン光学配置が用いられる。入射光20をプリズム10の表面で全反射するように照射してエバネッセント光22を発生させ、このエバネッセント光22が表面プラズモンを励起させる。発生した表面プラズモンは、符号24で示す黒矢印の方向に金属薄膜12上を伝搬する。この種のプラズモン発生装置は、例えば非特許文献1などにも記載がある。   The surface plasmon is a kind of electron density wave generated at the metal-dielectric boundary, and the generated plasmon propagates on the surface of the metal thin film. In order to generate plasmons, for example, as shown in FIG. 5, a Kretschmann optical arrangement in which a negative dielectric constant material film (for example, metal thin film 12) is formed on the surface of the prism 10 and surrounded by the surrounding material 14 is used. Incident light 20 is irradiated so as to be totally reflected by the surface of the prism 10 to generate evanescent light 22, and the evanescent light 22 excites surface plasmons. The generated surface plasmon propagates on the metal thin film 12 in the direction of the black arrow indicated by reference numeral 24. This type of plasmon generator is also described in Non-Patent Document 1, for example.

入射光の波数の水平成分Kxは式(1)で、また金属薄膜の表面プラズモンの波数Kpは式(2)で表せる。
Kx=(ε1 1/2 ・(ω・sin θ)/C …(1)
Kp=ω・{(ε2 ε3 )/(ε2 +ε3 )}1/2 /C …(2)
但し、
ω:入射光の角振動数
θ:入射光の入射角度
C:光速度
ε1 :プリズムの誘電率
ε2 :金属薄膜の誘電率
ε3 :包囲材料の誘電率
である。上記KxとKpが一致するように入射光の入射角度θを調整することにより、プラズモンを励起することができる。
The horizontal component Kx of the wave number of incident light can be expressed by equation (1), and the wave number Kp of the surface plasmon of the metal thin film can be expressed by equation (2).
Kx = (ε 1 ) 1/2 · (ω · sin θ) / C (1)
Kp = ω · {(ε 2 ε 3 ) / (ε 2 + ε 3 )} 1/2 / C (2)
However,
ω: angular frequency of incident light θ: incident angle of incident light C: speed of light ε 1 : dielectric constant of prism ε 2 : dielectric constant of metal thin film ε 3 : dielectric constant of surrounding material. Plasmons can be excited by adjusting the incident angle θ of the incident light so that Kx and Kp coincide with each other.

このようなプラズモン発生装置において、プラズモンを励起するためには、入射光がプリズム界面で全反射を起こし、その時に生じるエバネッセント光22が金属薄膜12を通り抜けることが必要である。このためには、金属薄膜は十分に薄くなければならない。他方、励起された表面プラズモンは金属薄膜上を伝搬していくが、伝搬損失を低減するためには膜厚が厚い方が好ましい。   In such a plasmon generator, in order to excite plasmons, it is necessary that incident light causes total reflection at the prism interface, and evanescent light 22 generated at that time passes through the metal thin film 12. For this purpose, the metal thin film must be sufficiently thin. On the other hand, the excited surface plasmon propagates on the metal thin film, but in order to reduce propagation loss, a thicker film is preferable.

例えば図5の構造において、プリズム10の誘電率ε1 =2.132(石英ガラスを想定)、金属薄膜12の誘電率ε2 =−18+0.7j(銀薄膜を想定)、包囲材料14の誘電率ε3 =1.0(空気を想定)とし、波長633nm、入射角度45°、ビーム径1800nmのTMモードのガウスビームを入射したときのプラズモン励起・伝搬のシミュレーション結果は次のようになる。図6は金属薄膜の膜厚Hと励起されるプラズモン光強度の関係を、図7は膜厚Hとプラズモンの伝搬距離の関係を、図8は膜厚Hと励起中心から15μm離れた位置でのプラズモン光強度の関係を、それぞれ示している。計算はFDTD(時間領域差分法)により行った。その結果、金属薄膜の膜厚Hが薄いほど励起されるプラズモン光強度は大きいが、伝搬距離は短くなること、プラズモンの励起と伝搬を考慮した励起中心から15μm離れた位置では、膜厚Hが40nmのときにプラズモン光強度が最大となることが分かった。このことは、従来技術において、金属薄膜の膜厚を40nm程度に設定していることと合致している。なお、励起中心から15μm離れた位置でのプラズモン光強度を目安としているのは、光回路や光記録再生装置用ヘッド、光計測などの用途を考慮すると、その程度離れた位置まではプラズモンが伝搬することが求められるからである。 For example, in the structure of FIG. 5, the dielectric constant ε 1 = 2.132 of the prism 10 (assuming quartz glass), the dielectric constant of the metal thin film 12 ε 2 = −18 + 0.7 j (assuming a silver thin film), and the dielectric of the surrounding material 14. The simulation result of plasmon excitation and propagation when a rate ε 3 = 1.0 (assuming air) and a TM mode Gaussian beam having a wavelength of 633 nm, an incident angle of 45 °, and a beam diameter of 1800 nm is incident is as follows. 6 shows the relationship between the film thickness H of the metal thin film and the excited plasmon light intensity, FIG. 7 shows the relationship between the film thickness H and the propagation distance of plasmon, and FIG. 8 shows the relationship between the film thickness H and the excitation center 15 μm away. The relationship of the plasmon light intensity of each is shown. The calculation was performed by FDTD (time domain difference method). As a result, the plasmon light intensity that is excited increases as the film thickness H of the metal thin film decreases, but the propagation distance decreases, and the film thickness H is 15 μm away from the excitation center in consideration of plasmon excitation and propagation. It was found that the plasmon light intensity was maximum at 40 nm. This is consistent with the prior art in which the thickness of the metal thin film is set to about 40 nm. Note that the plasmon light intensity at a position 15 μm away from the excitation center is used as a guideline in consideration of applications such as an optical circuit, a head for an optical recording / reproducing apparatus, optical measurement, and so on. Because it is required to do.

上記のように、金属薄膜の膜厚に対して、励起されるプラズモン光強度と伝搬距離は相反する関係にあり、このため良好なプラズモンの励起性能と伝搬性能を兼ね備えたプラズモン発生装置の実現は困難であった。
T.Yatsui, M.Kourogi and M.Ohtsu, "Plasmon waveguide for optical far/near-field conversion", Applied Physics Letters, vol.79, No.27, p4583-4585, (2001)
As described above, the intensity of the excited plasmon light and the propagation distance are in conflict with the film thickness of the metal thin film. Therefore, the realization of a plasmon generator that combines good plasmon excitation performance and propagation performance is possible. It was difficult.
T.Yatsui, M.Kourogi and M.Ohtsu, "Plasmon waveguide for optical far / near-field conversion", Applied Physics Letters, vol.79, No.27, p4583-4585, (2001)

本発明が解決しようとする課題は、励起されるプラズモン光強度と伝搬距離が相反する関係にあることから、プラズモンの励起効率が高く且つ伝搬距離を長くすることができない点である。   The problem to be solved by the present invention is that the excitation efficiency of plasmons is high and the propagation distance cannot be increased because the intensity of the excited plasmon light and the propagation distance are in conflict.

本発明は、基材の表面に負誘電率材料膜を形成し、基材界面で全反射する入射光によりプラズモンを励起し、励起されたプラズモンが負誘電率材料膜上を伝搬するプラズモン発生装置において、負誘電率材料膜の厚さがプラズモン伝搬方向で変化し、励起部分の負誘電率材料膜の厚さは30nm以下、伝搬部分の負誘電率材料膜の厚さは50nm以上に設定されているプラズモン発生装置である。 The present invention relates to a plasmon generator in which a negative dielectric constant material film is formed on the surface of a substrate, plasmons are excited by incident light totally reflected at the substrate interface, and the excited plasmons propagate on the negative dielectric constant material film , The thickness of the negative dielectric constant material film changes in the plasmon propagation direction, the thickness of the negative dielectric constant material film in the excitation part is set to 30 nm or less, and the thickness of the negative dielectric constant material film in the propagation part is set to 50 nm or more. It is a plasmon generator.

ここで、より好ましくは、励起部分の負誘電率材料膜の厚さは20nm以下とし、伝搬部分の負誘電率材料膜の厚さは70nm以上として、両者は徐々に厚みが変わる結合区間を経て連続している構造とする。また、基材界面での励起中心と負誘電率材料膜が厚くなる点までの結合距離を入射光のビーム半径の3倍以下とすることが望ましい。


More preferably, the thickness of the negative dielectric constant material film in the excitation portion is 20 nm or less, and the thickness of the negative dielectric constant material film in the propagation portion is 70 nm or more. It is set as the structure which passes through. In addition, it is desirable that the coupling distance between the excitation center at the substrate interface and the point where the negative dielectric constant material film becomes thick is not more than three times the beam radius of the incident light.


負誘電率材料膜は、誘電率の実数部が負となる材料の膜であり、例えば金、銀、銅、アルミニウムなどの金属薄膜、あるいは半導体薄膜などからなる。入射光は、レーザや発光ダイオードなどの光でもよいし、タングステンランプあるいはハロゲンランプなどの光でもよい。   The negative dielectric constant material film is a film of a material in which the real part of the dielectric constant is negative, and is made of, for example, a metal thin film such as gold, silver, copper, or aluminum, or a semiconductor thin film. The incident light may be light such as a laser or a light emitting diode, or may be light such as a tungsten lamp or a halogen lamp.

本発明に係るプラズモン発生装置は、負誘電率材料膜の膜厚構造を最適化したことにより、プラズモンの励起効率が高く、且つ伝搬距離を長くでき、その結果、入射光から効率よくプラズモンを発生させることができる。   The plasmon generator according to the present invention optimizes the film thickness structure of the negative dielectric constant material film, so that the plasmon excitation efficiency is high and the propagation distance can be increased. As a result, plasmons are efficiently generated from incident light. Can be made.

プリズム(基材)の表面に金属薄膜(負誘電率材料膜)を形成する。プリズム界面で全反射する入射光によりプラズモンを励起し、励起されたプラズモンが金属薄膜上を伝搬する。本発明では、金属薄膜の厚さがプラズモン伝搬方向で変化し、励起部分では薄く、伝搬部分では厚く設定されている。励起部分の金属薄膜の厚さHは20nm以下、伝搬部分の金属薄膜の厚さhは70nm以上とし、両者は徐々に厚みが変わる結合区間を経て連続している。また、プリズム界面での励起中心と金属薄膜が厚くなる点までの結合距離を入射光のビーム半径の3倍以下とする。プリズム界面で全反射する入射光によって生じるエバネッセント光がプラズモンを励起し、励起されたプラズモンが金属薄膜上を伝搬する。   A metal thin film (negative dielectric constant material film) is formed on the surface of the prism (base material). The plasmon is excited by incident light totally reflected at the prism interface, and the excited plasmon propagates on the metal thin film. In the present invention, the thickness of the metal thin film changes in the plasmon propagation direction, and is set to be thin at the excitation portion and thick at the propagation portion. The thickness H of the metal thin film in the excitation part is 20 nm or less, and the thickness h of the metal thin film in the propagation part is 70 nm or more, and both continue through the coupling section where the thickness gradually changes. Further, the coupling distance from the excitation center at the prism interface to the point where the metal thin film becomes thick is set to be three times or less the beam radius of the incident light. The evanescent light generated by the incident light totally reflected at the prism interface excites the plasmon, and the excited plasmon propagates on the metal thin film.

図1は、本発明に係るプラズモン発生装置の一実施例を示す説明図である。ここでは基材として二等辺三角形状のプリズム30を用いており、その底面に金属薄膜(負誘電率材料膜)32を形成し、それを包囲材料34で覆う構造である。入射光40は、プリズム側面に垂直に入射し、プリズム底面で全反射する。このとき生じるエバネッセント光42によりプラズモンを励起し、励起されたプラズモンは、符号44で示す黒矢印の方向に金属薄膜32上を伝搬する。本発明では、金属薄膜32の厚さがプラズモンの伝搬方向で変化しており、励起部分では薄く(膜厚H)、伝搬部分では厚く(膜厚h)設定している。例えば、励起部分に適した薄い膜厚Hの金属薄膜32aを形成し、伝搬部分は、その上に部分的に更に金属薄膜32bを形成して合計で所定の膜厚hとなるようにする。従って、金属薄膜32aと金属薄膜32bとは、同じ材料でもよいし、勿論異なる材料を用いることもできる。   FIG. 1 is an explanatory view showing an embodiment of a plasmon generator according to the present invention. Here, an isosceles triangular prism 30 is used as a base material, and a metal thin film (negative dielectric constant material film) 32 is formed on the bottom surface thereof and covered with an enclosing material 34. Incident light 40 enters the prism side surface perpendicularly and is totally reflected by the prism bottom surface. The plasmon is excited by the evanescent light 42 generated at this time, and the excited plasmon propagates on the metal thin film 32 in the direction of the black arrow indicated by reference numeral 44. In the present invention, the thickness of the metal thin film 32 changes in the propagation direction of the plasmon, and is set to be thin (film thickness H) in the excitation portion and thick (film thickness h) in the propagation portion. For example, a thin metal film 32a having a thin film thickness H suitable for the excitation portion is formed, and the metal thin film 32b is partially further formed on the propagation portion so as to have a predetermined film thickness h in total. Therefore, the metal thin film 32a and the metal thin film 32b may be made of the same material, or of course, different materials can be used.

図1に示す構造において、プリズム30の誘電率ε1 =2.132(石英ガラスを想定)、金属薄膜32(32a,32b)の誘電率ε21=ε22=−18+0.7j(銀薄膜を想定)、包囲材料34の誘電率ε3 =1.0(空気を想定)とし、波長633nm、入射角度45°、ビーム径1800nmのTMモードのガウスビームを入射したときのプラズモン励起・伝搬についてシミュレーションを行った。計算はFDTD(時間領域差分法)により行った。結果は以下の如くである。 In the structure shown in FIG. 1, the dielectric constant ε 1 = 2.132 of the prism 30 (assuming quartz glass), the dielectric constant of the metal thin film 32 (32a, 32b) ε 21 = ε 22 = −18 + 0.7j (silver thin film) Assuming that the surrounding material 34 has a dielectric constant ε 3 = 1.0 (assuming air), and simulates plasmon excitation and propagation when a TM mode Gaussian beam having a wavelength of 633 nm, an incident angle of 45 °, and a beam diameter of 1800 nm is incident. Went. The calculation was performed by FDTD (time domain difference method). The results are as follows.

図2は、プラズモン励起部分の金属薄膜の膜厚Hをパラメータとし、結合距離Lを変化させたときの励起中心から15μm離れた位置でのプラズモン光強度の関係を示すグラフである。ここではプラズモン伝搬部分の金属薄膜の膜厚h=100nm、プラズモン励起部分とプラズモン伝搬部分の結合角度α=90°(即ちステップ状に結合)とした構造を前提としている。因みに、従来構造のプラズモン光強度は0.15である。本発明によるプラズモン発生装置では、従来構造に比べてプラズモン発生効率が約6.7倍向上していることが分かる。また、励起部分に金属薄膜が無い(H=0nm)の場合でも、全反射により生じたエバネッセント光を、直接プラズモン伝搬部分に結合することにより、プラズモンを発生させることができる。   FIG. 2 is a graph showing the relationship of the plasmon light intensity at a position 15 μm away from the excitation center when the coupling distance L is changed with the film thickness H of the metal thin film at the plasmon excitation portion as a parameter. Here, it is assumed that the thickness of the metal thin film in the plasmon propagation portion is h = 100 nm, and the coupling angle α of the plasmon excitation portion and the plasmon propagation portion is 90 ° (that is, stepwise coupling). Incidentally, the plasmon light intensity of the conventional structure is 0.15. In the plasmon generator according to the present invention, it can be seen that the plasmon generation efficiency is improved by about 6.7 times compared to the conventional structure. Even when there is no metal thin film in the excitation portion (H = 0 nm), plasmons can be generated by directly coupling evanescent light generated by total reflection to the plasmon propagation portion.

図3は、プラズモン励起部分とプラズモン伝搬部分とを滑らかに結合させた場合について、結合距離Lを変化させたときの励起中心から15μm離れた位置でのプラズモン光強度の関係を示すグラフである。ここでは、プラズモン励起部分の金属薄膜の厚さH=10nm、プラズモン伝搬部分の金属薄膜の厚さh=100nmとし、結合角度α=15°としている。このように15°程度の角度で滑らかに結合することにより、プラズモンが励起部分から伝搬部分へと効率よく伝搬し、その結果、従来構造に比べてプラズモン発生効率は10.5倍向上していることが分かる。但し、結合角度が小さすぎると、過渡的な結合区間が長くなりそこでの損失が増大するため、逆に好ましくない結果となる。   FIG. 3 is a graph showing the relationship of the plasmon light intensity at a position 15 μm away from the excitation center when the coupling distance L is changed when the plasmon excitation part and the plasmon propagation part are smoothly coupled. Here, the thickness H of the metal thin film in the plasmon excitation portion is 10 nm, the thickness h of the metal thin film in the plasmon propagation portion is 100 nm, and the coupling angle α is 15 °. By smoothly coupling at an angle of about 15 ° in this way, the plasmon propagates efficiently from the excitation portion to the propagation portion, and as a result, the plasmon generation efficiency is improved by 10.5 times compared to the conventional structure. I understand that. However, if the coupling angle is too small, the transitional coupling section becomes long and the loss there increases, which is not preferable.

また、図2及び図3から分かるように、結合距離Lが長くなりすぎると光強度は低下する。これは励起されたプラズモンが伝搬部分に達するまでに、放射などによる損失が大きくなるからである。このことから、プリズム底面での励起中心と金属薄膜が厚くなる点までの結合距離Lは、入射光のビーム半径の3倍以下とするのが望ましいのである。   As can be seen from FIGS. 2 and 3, the light intensity decreases when the coupling distance L becomes too long. This is because loss due to radiation or the like increases until the excited plasmon reaches the propagation part. For this reason, it is desirable that the coupling distance L from the excitation center on the prism bottom surface to the point where the metal thin film becomes thick is not more than three times the beam radius of the incident light.

図4は、本発明に係るプラズモン発生装置の他の実施例を示す説明図である。基本的な構成は図1の例と同様なので、対応する部材には同一符号を付し、説明は省略する。ここでは、基材50内に光導波路52を形成し、該光導波路52を通して入射光を導くようにしている。光導波路ではなく、光ファイバを挿入するような構成でもよい。   FIG. 4 is an explanatory view showing another embodiment of the plasmon generator according to the present invention. Since the basic configuration is the same as that of the example of FIG. 1, corresponding members are denoted by the same reference numerals and description thereof is omitted. Here, an optical waveguide 52 is formed in the substrate 50, and incident light is guided through the optical waveguide 52. Instead of the optical waveguide, an optical fiber may be inserted.

本発明において、基材は、負誘電率材料膜を担持すると共に、入射光を導入する機能があればよく、形状的には格別の制限はない。光導波路や光ファイバを形成する場合には、膜担持機能のみ備えていればよい。従って、外形的には、三角プリズム状のほか、半球状・半円柱状、平板状などでもよい。   In the present invention, the substrate only needs to have a function of introducing the incident light while supporting the negative dielectric constant material film, and there is no particular limitation in shape. When forming an optical waveguide or an optical fiber, it is only necessary to have a film carrying function. Accordingly, the outer shape may be a triangular prism shape, a hemispherical shape, a semi-cylindrical shape, a flat plate shape or the like.

以上のことから、本発明によればプラズモンを高効率で発生させることができる。このようにして発生させたプラズモンは、例えばナノ光回路、光記録再生装置のヘッド、光計測、光センサなどに利用することができる。   From the above, according to the present invention, plasmons can be generated with high efficiency. The plasmon generated in this way can be used for, for example, a nano optical circuit, a head of an optical recording / reproducing apparatus, optical measurement, an optical sensor, and the like.

本発明に係るプラズモン発生装置の一実施例を示す説明図。Explanatory drawing which shows one Example of the plasmon generator which concerns on this invention. 膜厚と励起中心から15μm離れた位置での光強度の関係を示すグラフ。The graph which shows the relationship between a film thickness and the light intensity in the position 15 micrometers away from the excitation center. 結合角を15°にしたときの膜厚と光強度の関係を示すグラフ。The graph which shows the relationship between a film thickness and light intensity when a bond angle is 15 degrees. 本発明に係るプラズモン発生装置の他の実施例を示す説明図。Explanatory drawing which shows the other Example of the plasmon generator which concerns on this invention. 従来構造の一例を示す説明図。An explanatory view showing an example of conventional structure. 従来構造における膜厚と励起プラズモン光強度の関係を示すグラフ。The graph which shows the relationship between the film thickness and excitation plasmon light intensity in a conventional structure. 従来構造における膜厚とプラズモン伝搬距離の関係を示すグラフ。The graph which shows the relationship between the film thickness in a conventional structure, and a plasmon propagation distance. 従来構造における膜厚と励起中心から15μm離れた位置での光強度の関係を示すグラフ。The graph which shows the relationship between the film thickness in a conventional structure, and the light intensity in the position 15 micrometers away from the excitation center.

符号の説明Explanation of symbols

30 プリズム
32 金属薄膜
34 包囲材料
40 入射光
42 エバネッセント光
30 Prism 32 Metal thin film 34 Surrounding material 40 Incident light 42 Evanescent light

Claims (3)

基材の表面に負誘電率材料膜を形成し、基材界面で全反射する入射光によりプラズモンを励起し、励起されたプラズモンが負誘電率材料膜上を伝搬する構造のプラズモン発生装置において、負誘電率材料膜の厚さがプラズモン伝搬方向で変化し、励起部分の負誘電率材料膜の厚さは30nm以下、伝搬部分の負誘電率材料膜の厚さは50nm以上に設定されていることを特徴とするプラズモン発生装置。 In a plasmon generator having a structure in which a negative dielectric constant material film is formed on the surface of a base material, plasmons are excited by incident light totally reflected at the base material interface, and the excited plasmons propagate on the negative dielectric constant material film, The thickness of the negative dielectric constant material film changes in the plasmon propagation direction, the thickness of the negative dielectric constant material film in the excitation part is set to 30 nm or less, and the thickness of the negative dielectric constant material film in the propagation part is set to 50 nm or more . A plasmon generator characterized by that. 励起部分の負誘電率材料膜の厚さは20nm以下であり、伝搬部分の負誘電率材料膜の厚さは70nm以上であって、両者は徐々に厚みが変わる結合区間を経て連続している請求項1記載のプラズモン発生装置。 The thickness of the negative dielectric constant material film of the excitation portion is under 20nm or less, the thickness of the negative dielectric constant material film in the propagation portion is an at 70nm or more, both gradually continuously through the infeed section which thickness is changed The plasmon generator according to claim 1. 負誘電率材料膜が、金、銀、銅、アルミニウムのいずれか1種以上の薄膜からなる請求項1又は2記載のプラズモン発生装置。 The plasmon generator according to claim 1 or 2 , wherein the negative dielectric constant material film is made of one or more thin films of gold, silver, copper, and aluminum.
JP2003330562A 2003-09-22 2003-09-22 Plasmon generator Expired - Fee Related JP4297424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330562A JP4297424B2 (en) 2003-09-22 2003-09-22 Plasmon generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330562A JP4297424B2 (en) 2003-09-22 2003-09-22 Plasmon generator

Publications (2)

Publication Number Publication Date
JP2005098756A JP2005098756A (en) 2005-04-14
JP4297424B2 true JP4297424B2 (en) 2009-07-15

Family

ID=34459490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330562A Expired - Fee Related JP4297424B2 (en) 2003-09-22 2003-09-22 Plasmon generator

Country Status (1)

Country Link
JP (1) JP4297424B2 (en)

Also Published As

Publication number Publication date
JP2005098756A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US7106935B2 (en) Apparatus for focusing plasmon waves
Fu et al. Plasmonic lenses: a review
US6539156B1 (en) Apparatus and method of optical transfer and control in plasmon supporting metal nanostructures
US6649894B2 (en) Optical near field generator
Yin et al. Plasmonic nano-lasers
US7440660B1 (en) Transducer for heat assisted magnetic recording
US7706654B2 (en) Integrated device for heat assisted magnetic recording
US8848756B2 (en) Surface plasmon laser
JP5007651B2 (en) Near-field light generating apparatus, near-field light generating method, and information recording / reproducing apparatus
JP2006259064A (en) Method and device for intensifying electric field with surface plasmon
US20090251771A1 (en) Apparatus and method for enhanced optical transmission through a small aperture, using radially polarized radiation
CN108666865A (en) A kind of metal-semiconductor composite construction, SPPs mode of excitation and preparation method
JP2009150899A (en) Device for generating near-field light
Kumar et al. Single photon emitters coupled to plasmonic waveguides: A review
Lee et al. Ultrathin WS2 polariton waveguide for efficient light guiding
JP4297424B2 (en) Plasmon generator
JP2004117181A (en) Apparatus for exciting surface plasmon and microscope including the same
JP4281760B2 (en) Recording / playback device
JP4032708B2 (en) Near-field light generator, near-field optical microscope, optical recording / reproducing apparatus and sensor using the same
JP4530254B2 (en) Plasmon mode optical waveguide
JP2006258641A (en) Optical measuring method
JP2006259178A (en) Method, device, and element for optical modulation
CN109541733B (en) Processing method and equipment for efficient and high-resolution nano-pattern
Yatsui et al. Production of size-controlled Si nanocrystals using self-organized optical near-field chemical etching
Wang et al. Interference lithography for metal nanopattern fabrication assisted by surface plasmon polaritons reflecting image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A131 Notification of reasons for refusal

Effective date: 20081112

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090109

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees